
Copyright (C) . January 2002 OASIS Open, Inc. All Rights Reserved.

Message Service Specification1

Version 2.0 rev C2

OASIS ebXML Messaging Services Technical Committee3

21 February 20024

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 2 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

Status of this Document5

This document specifies an ebXML Message Specification for the eBusiness community. Distribution of6
this document is unlimited.7

The document formatting is based on the Internet Society’s Standard RFC format converted to Microsoft8
Word 2000 format.9

Note: Implementers of this specification should consult the OASIS ebXML Messaging Services Technical10
Committee web site for current status and revisions to the specification11
(http://www.oasis-open.org/committees/ebxml-msg/).12

Specification13
Version 1.0 of this Technical Specification document was approved by the ebXML Plenary in May 2001.14

Version 2.0 of this Technical Specification document was approved by the OASIS Messaging Team as a15
Technical Committee(TC) Specification, January 22, 2002.16

Version 2.0 of this Technical Specification document is presented to the OASIS membership for17
consideration as an OASIS Technical Specification, April 2002.18

This version19
V2.0 –Error! Hyperlink reference not valid. http://www.oasis-open.org/committees/ebxml-20
msg/documents/ebMS_v2_0.pdf21

Errata to this version22
V2.0 –Error! Hyperlink reference not valid. http://www.oasis-open.org/committees/ebxml-23
msg/documents/ebMS_v2_0_errata.html24

Previous version25
V1.0 – http://www.ebxml.org/specs/ebMS.doc26

ebXML Participants27

The authors wish to acknowledge the support of the members of the Messaging Services Team who28
contributed ideas, comments and text to this specification by the group’s discussion eMail list, on29
conference calls and during face-to-face meetings.30

http://www.oasis-open.org/committees/ebxml-msg/
http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf
http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf
http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0_errata.html
http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0_errata.html
http://www.ebxml.org/specs/ebMS.doc

Copyright (C) . January 2002 OASIS Open, Inc. All Rights Reserved.

Arvola Chan RosettaNet/TIBCO
Aynur Unal E2Open
Bob Miller GE Global eXchange
Brad Lund Intel™ Corporation
Brian Gibb Sterling Commerce
Bruce Pedretti Hewlett-Packard
Cedrec Vessell DISA
Chris Ferris Sun Microsystems, Inc
Cliff Collins Sybase
Colleen Evans Sonic Software
Jim Galvin Drummond Group
Dale Moberg Cyclone Commerce
Daniel Weinreb eXcelon
David Burdett Commerce One
David Fischer Drummond Group
Dick Brooks Systrends, Inc

Doug Bunting Sun Microsystems, Inc
Himagiri Mukkamala Sybase
Ian Jones British Telecom
Jeff Turpin Cyclone Commerce
Jim Hughes Hewlett Packard
Kazunori Iwasa Fujitsu Limited
Martin Sachs IBM Research
Pete Wenzel RosettaNet/SeeBeyond
Philippe DeSmedt Agentis Software
Prasad Yendluri WebMethods
Ralph Berwanger BTrade
Sanjay Cherian Sterling Commerce
Scott Hinkelman IBM
Sinisa Zimek SAP
Yukinori Saito Ecom

The UN/CEFACT-OASIS v1.0 Team – see Acknowledgments31

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 4 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

Table of Contents32

Status of this Document ... 233

ebXML Participants .. 234

Introduction... 735

1 Summary of Contents of this Document..736
1.1.1 Document Conventions .. 837
1.1.2 Audience .. 838
1.1.3 Caveats and Assumptions .. 839
1.1.4 Related Documents .. 840

1.2 Concept of Operation...941
1.2.1 Scope... 942
1.2.2 Background and Objectives.. 943
1.2.3 Operational Policies and Constraints .. 1044
1.2.4 Modes of Operation .. 1145

1.3 Minimal Requirements for Conformance ...1246

Part I. Core Functionality ... 1347

2 ebXML with SOAP...1348
2.1 Packaging Specification...1349

2.1.1 SOAP Structural Conformance... 1450
2.1.2 Message Package.. 1451
2.1.3 Header Container ... 1452
2.1.4 Payload Container.. 1553
2.1.5 Additional MIME Parameters .. 1554
2.1.6 Reporting MIME Errors... 1655

2.2 XML Prolog..1656
2.2.1 XML Declaration... 1657
2.2.2 Encoding Declaration ... 1658

2.3 ebXML SOAP Envelope extensions ..1659
2.3.1 Namespace pseudo attribute.. 1660
2.3.2 xsi:schemaLocation attribute .. 1661
2.3.3 SOAP Header Element... 1762
2.3.4 SOAP Body Element .. 1763
2.3.5 ebXML SOAP Extensions... 1764
2.3.6 #wildcard Element Content... 1865
2.3.7 id attribute .. 1866
2.3.8 version attribute.. 1867
2.3.9 SOAP mustUnderstand attribute... 1968
2.3.10 ebXML "Next MSH" actor URI .. 1969
2.3.11 ebXML "To Party MSH" actor URI .. 1970

3 Core Extension Elements..1971
3.1 MessageHeader Element ..1972

3.1.1 From and To Elements ... 2073
3.1.2 CPAId Element... 2074
3.1.3 ConversationId Element ... 2175
3.1.4 Service Element ... 2176
3.1.5 Action Element ... 2277
3.1.6 MessageData Element ... 2278
3.1.7 DuplicateElimination Element ... 2379
3.1.8 Description Element ... 2380
3.1.9 MessageHeader Sample .. 2381

3.2 Manifest Element ...2382
3.2.1 Reference Element... 2483
3.2.2 Manifest Validation ... 2484
3.2.3 Manifest Sample... 2585

4 Core Modules ..2586
4.1 Security Module...2587

4.1.1 Signature Element.. 2588
4.1.2 Security and Management.. 2689
4.1.3 Signature Generation ... 2690
4.1.4 Countermeasure Technologies... 2891

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 5 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

4.1.5 Security Considerations.. 2992
4.2 Error Handling Module...3093

4.2.2 Types of Errors... 3094
4.2.3 ErrorList Element.. 3195
4.2.4 Implementing Error Reporting and Handling ... 3396

4.3 SyncReply Module...3497
4.3.1 SyncReply Element .. 3498

5 Combining ebXML SOAP Extension Elements...3499
5.1.1 MessageHeader Element Interaction.. 34100
5.1.2 Manifest Element Interaction .. 35101
5.1.3 Signature Element Interaction... 35102
5.1.4 ErrorList Element Interaction .. 35103
5.1.5 SyncReply Element Interaction... 35104

Part II. Additional Features .. 36105

6 Reliable Messaging Module ..36106
6.1 Persistent Storage and System Failure ...36107
6.2 Methods of Implementing Reliable Messaging ..36108
6.3 Reliable Messaging SOAP Header Extensions ...37109

6.3.1 AckRequested Element .. 37110
6.3.2 Acknowledgment Element .. 38111

6.4 Reliable Messaging Parameters..39112
6.4.1 DuplicateElimination ... 39113
6.4.2 AckRequested.. 40114
6.4.3 Retries.. 40115
6.4.4 RetryInterval ... 40116
6.4.5 TimeToLive .. 40117
6.4.6 PersistDuration... 40118
6.4.7 syncReplyMode.. 40119

6.5 ebXML Reliable Messaging Protocol ...41120
6.5.1 Sending Message Behavior.. 41121
6.5.2 Receiving Message Behavior ... 41122
6.5.3 Generating an Acknowledgment Message.. 42123
6.5.4 Resending Lost Application Messages ... 42124
6.5.5 Resending Acknowledgments... 43125
6.5.6 Duplicate Message Handling .. 44126
6.5.7 Failed Message Delivery .. 44127

6.6 Reliable Messaging Combinations ..45128
7 Message Status Service..45129

7.1 Message Status Messages..46130
7.1.1 Message Status Request Message .. 46131
7.1.2 Message Status Response Message.. 46132
7.1.3 Security Considerations.. 46133

7.2 StatusRequest Element ...46134
7.2.1 RefToMessageId Element .. 47135
7.2.2 StatusRequest Sample... 47136
7.2.3 StatusRequest Element Interaction... 47137

7.3 StatusResponse Element ..47138
7.3.1 RefToMessageId Element .. 47139
7.3.2 Timestamp Element.. 47140
7.3.3 messageStatus attribute... 47141
7.3.4 StatusResponse Sample .. 48142
7.3.5 StatusResponse Element Interaction.. 48143

8 Message Service Handler Ping Service ..48144
8.1 Message Service Handler Ping Message ..48145
8.2 Message Service Handler Pong Message...49146
8.3 Security Considerations...50147

9 MessageOrder Module..50148
9.1 MessageOrder Element...50149

9.1.1 SequenceNumber Element... 50150
9.1.2 MessageOrder Sample... 51151

9.2 MessageOrder Element Interaction ...51152
10 Multi-Hop Module ..51153

10.1 Multi-hop Reliable Messaging..52154
10.1.1 AckRequested Sample ... 52155

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 6 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

10.1.2 Acknowledgment Sample ... 52156
10.1.3 Multi-Hop Acknowledgments .. 52157
10.1.4 Signing Multi-Hop Acknowledgments.. 53158
10.1.5 Multi-Hop Security Considerations.. 53159

10.2 Message Ordering and Multi-Hop..53160

Part III. Normative Appendices.. 54161

Appendix A The ebXML SOAP Extension Elements Schema ..54162
Appendix B Communications Protocol Bindings ...59163

B.1 Introduction..59164
B.2 HTTP ...59165

B.2.1 Minimum level of HTTP protocol... 59166
B.2.2 Sending ebXML Service messages over HTTP .. 59167
B.2.3 HTTP Response Codes.. 60168
B.2.4 SOAP Error conditions and Synchronous Exchanges... 61169
B.2.5 Synchronous vs. Asynchronous.. 61170
B.2.6 Access Control ... 61171
B.2.7 Confidentiality and Transport Protocol Level Security ... 61172

B.3 SMTP...62173
B.3.1 Minimum Level of Supported Protocols .. 62174
B.3.2 Sending ebXML Messages over SMTP .. 62175
B.3.3 Response Messages .. 64176
B.3.4 Access Control ... 64177
B.3.5 Confidentiality and Transport Protocol Level Security ... 64178
B.3.6 SMTP Model .. 64179

B.4 Communication Errors during Reliable Messaging..65180
Appendix C Supported Security Services..66181
References...68182

Normative References.. 68183
Non-Normative References .. 69184

Contact Information..70185
Acknowledgments ..71186
Disclaimer ..71187
Copyright Statement ..71188

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 7 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

Introduction189

This specification is one of a series of specifications realizing the vision of creating a single global190
electronic marketplace where enterprises of any size and in any geographical location can meet and191
conduct business with each other through the exchange of XML based messages. The set of192
specifications enable a modular, yet complete electronic business framework.193

This specification focuses on defining a communications-protocol neutral method for exchanging194
electronic business messages. It defines specific enveloping constructs supporting reliable, secure195
delivery of business information. Furthermore, the specification defines a flexible enveloping technique,196
permitting messages to contain payloads of any format type. This versatility ensures legacy electronic197
business systems employing traditional syntaxes (i.e. UN/EDIFACT, ASC X12, or HL7) can leverage the198
advantages of the ebXML infrastructure along with users of emerging technologies.199

1 Summary of Contents of this Document200

This specification defines the ebXML Message Service Protocol enabling the secure and reliable201
exchange of messages between two parties. It includes descriptions of:202

• the ebXML Message structure used to package payload data for transport between parties,203

• the behavior of the Message Service Handler sending and receiving those messages over a data204
communications protocol.205

This specification is independent of both the payload and the communications protocol used. Appendices206
to this specification describe how to use this specification with HTTP [RFC2616] and SMTP [RFC2821].207

This specification is organized around the following topics:208

Core Functionality209
• Packaging Specification – A description of how to package an ebXML Message and its associated parts210

into a form that can be sent using a communications protocol such as HTTP or SMTP (section 2.1),211
• ebXML SOAP Envelope Extensions – A specification of the structure and composition of the information212

necessary for an ebXML Message Service to generate or process an ebXML Message (section 2.3),213

• Error Handling – A description of how one ebXML Message Service reports errors it detects to another214
ebXML Message Service Handler (section 4.2),215

• Security – Provides a specification of the security semantics for ebXML Messages (section 4.1),216

• SyncReply – Indicates to the Next MSH whether or not replies are to be returned synchronously (section217
4.3).218

Additional Features219

• Reliable Messaging – The Reliable Messaging function defines an interoperable protocol where any two220
Message Service implementations can reliably exchange messages sent using once-and-only-once delivery221
semantics (section 6),222

• Message Status Service – A description of services enabling one service to discover the status of another223
Message Service Handler (MSH) or an individual message (section 7 and 8),224

• Message Order – The Order of message receipt by the To Party MSH can be guaranteed (section 9),225

• Multi-Hop – Messages may be sent through intermediary MSH nodes (section 10).226

Appendices to this specification cover the following:227

• Appendix A Schema – This normative appendix contains XML schema definition [XMLSchema] for the228
ebXML SOAP Header and Body Extensions,229

• Appendix B Communications Protocol Envelope Mappings – This normative appendix describes how to230
transport ebXML Message Service compliant messages over HTTP and SMTP,231

• Appendix C Security Profiles – a discussion concerning Security Service Profiles.232

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 8 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

1.1.1 Document Conventions233
Terms in Italics are defined in the ebXML Glossary of Terms [ebGLOSS]. Terms listed in Bold Italics234
represent the element and/or attribute content. Terms listed in Courier font relate to MIME235
components. Notes are listed in Times New Roman font and are informative (non-normative). Attribute236
names begin with lowercase. Element names begin with Uppercase.237

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,238
RECOMMENDED, MAY and OPTIONAL, when they appear in this document, are to be interpreted as239
described in [RFC2119] as quoted here:240

• MUST: This word, or the terms "REQUIRED" or "SHALL", means that the definition is an absolute241
requirement of the specification.242

• MUST NOT: This phrase, or the phrase "SHALL NOT", means that the definition is an absolute prohibition of243
the specification.244

• SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in245
particular circumstances to ignore a particular item, but the full implications must be understood and246
carefully weighed before choosing a different course.247

• SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may exist valid248
reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full249
implications should be understood and the case carefully weighed before implementing any behavior250
described with this label.251

• MAY: This word, or the adjective "OPTIONAL", mean that an item is truly optional. One vendor may choose252
to include the item because a particular marketplace requires it or because the vendor feels that it enhances253
the product while another vendor may omit the same item. An implementation which does not include a254
particular option MUST be prepared to interoperate with another implementation which does include the255
option, though perhaps with reduced functionality. In the same vein an implementation which does include a256
particular option MUST be prepared to interoperate with another implementation which does not include the257
option (except, of course, for the feature the option provides).258

1.1.2 Audience259
The target audience for this specification is the community of software developers who will implement the260
ebXML Message Service.261

1.1.3 Caveats and Assumptions262
It is assumed the reader has an understanding of communications protocols, MIME, XML, SOAP, SOAP263
Messages with Attachments and security technologies.264

All examples are to be considered non-normative. If inconsistencies exist between the specification and265
the examples, the specification supersedes the examples.266

It is strongly RECOMMENDED implementors read and understand the Collaboration Protocol Profile/267
Agreement [ebCPP] specification and its implications prior to implementation.268

1.1.4 Related Documents269
The following set of related specifications are developed independent of this specification as part of the270
ebXML initiative:271

• ebXML Technical Architecture Specification [ebTA] – defines the overall technical architecture for ebXML272

• ebXML Technical Architecture Risk Assessment Technical Report [secRISK] – defines the security273
mechanisms necessary to negate anticipated, selected threats274

• ebXML Collaboration Protocol Profile and Agreement Specification [ebCPP] – defines how one party275
can discover and/or agree upon the information the party needs to know about another party prior to sending276
them a message that complies with this specification277

• ebXML Registry/Repository Services Specification [ebRS] – defines a registry service for the ebXML278
environment279

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 9 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

1.2 Concept of Operation280

1.2.1 Scope281
The ebXML Message Service(ebMS) defines the message enveloping and header document schema282
used to transfer ebXML messages over a communications protocol such as HTTP or SMTP and the283
behavior of software sending and receiving ebXML messages. The ebMS is defined as a set of layered284
extensions to the base Simple Object Access Protocol [SOAP] and SOAP Messages with Attachments285
[SOAPAttach] specifications. This document provides security and reliability features necessary to286
support international electronic business. These security and reliability features are not provided in the287
SOAP or SOAP with Attachments specifications.288

The ebXML infrastructure is composed of several independent, but related, components. Specifications289
for the individual components are fashioned as stand-alone documents. The specifications are totally290
self-contained; nevertheless, design decisions within one document can and do impact the other291
documents. Considering this, the ebMS is a closely coordinated definition for an ebXML message service292
handler (MSH).293

The ebMS provides the message packaging, routing and transport facilities for the ebXML infrastructure.294
The ebMS is not defined as a physical component, but rather as an abstraction of a process. An295
implementation of this specification could be delivered as a wholly independent software application or an296
integrated component of some larger business process.297

1.2.2 Background and Objectives298
Traditional business information exchanges have conformed to a variety of standards-based syntaxes.299
These exchanges were largely based on electronic data interchange (EDI) standards born out of300
mainframe and batch processing. Some of the standards defined bindings to specific communications301
protocols. These EDI techniques worked well; however, they were difficult and expensive to implement.302
Therefore, use of these systems was normally limited to large enterprises possessing mature information303
technology capabilities.304

The proliferation of XML-based business interchanges served as the catalyst for defining a new global305
paradigm that ensured all business activities, regardless of size, could engage in electronic business306
activities. The prime objective of ebMS is to facilitate the exchange of electronic business messages307
within an XML framework. Business messages, identified as the ‘payloads’ of the ebXML messages, are308
not necessarily expressed in XML. XML-based messages, as well as traditional EDI formats, are309
transported by the ebMS. Actually, the ebMS payload can take any digital form—XML, ASC X12, HL7,310
AIAG E5, database tables, binary image files, etc.311

The ebXML architecture requires that the ebXML Message Service protocol be capable of being carried312
over any available communications protocol. Therefore, this document does not mandate use of a313
specific communications protocol. This version of the specification provides bindings to HTTP and SMTP,314
but other protocols can, and reasonably will, be used.315

The ebXML Requirements Specification [ebREQ] mandates the need for secure, reliable316
communications. The ebXML work focuses on leveraging existing and emerging technology—attempts to317
create new protocols are discouraged. Therefore, this document defines security within the context of318
existing security standards and protocols. Those requirements satisfied with existing standards are319
specified in the ebMS, others must be deferred until new technologies or standards are available, for320
example encryption of individual message header elements.321

Reliability requirements defined in the ebREQ relate to delivery of ebXML messages over the322
communications channels. The ebMS provides mechanisms to satisfy the ebREQ requirements. The323
reliable messaging elements of the ebMS supply reliability to the communications layer; they are not324
intended as business-level acknowledgments to the applications supported by the ebMS. This is an325
important distinction. Business processes often anticipate responses to messages they generate. The326
responses may take the form of a simple acknowledgment of message receipt by the application327
receiving the message or a companion message reflecting action on the original message. Those328
messages are outside of the MSH scope. The acknowledgment defined in this specification does not329

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 10 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

indicate the payload of the ebXML message was syntactically correct. It does not acknowledge the330
accuracy of the payload information. It does not indicate business acceptance of the information or331
agreement with the content of the payload. The ebMS is designed to provide the sender with the332
confidence the receiving MSH has received the message securely and intact.333

The underlying architecture of the MSH assumes messages are exchanged between two ebMS-334
compliant MSH nodes. This pair of MSH nodes provides a hop-to-hop model extended as required to335
support a multi-hop environment. The multi-hop environment allows the next destination of the message336
to be an intermediary MSH other than the ‘receiving MSH’ identified by the original sending MSH. The337
ebMS architecture assumes the sender of the message MAY be unaware of the specific path used to338
deliver a message. However, it MUST be assumed the original sender has knowledge of the final339
recipient of the message and the first of one or more intermediary hops.340

The MSH supports the concept of ‘quality of service.’ The degree of service quality is controlled by an341
agreement existing between the parties directly involved in the message exchange. In practice, multiple342
agreements may be required between the two parties. The agreements might be tailored to the particular343
needs of the business exchanges. For instance, business partners may have a contract defining the344
message exchanges related to buying products from a domestic facility and another defining the345
message exchanges for buying from an overseas facility. Alternatively, the partners might agree to follow346
the agreements developed by their trade association. Multiple agreements may also exist between the347
various parties handling the message from the original sender to the final recipient. These agreements348
could include:349

• an agreement between the MSH at the message origination site and the MSH at the final destination; and350

• agreement between the MSH at the message origination site and the MSH acting as an intermediary; and351

• an agreement between the MSH at the final destination and the MSH acting as an intermediary. There352
would, of course, be agreements between any additional intermediaries; however, the originating site MSH353
and final destination MSH MAY have no knowledge of these agreements.354

An ebMS-compliant MSH shall respect the in-force agreements between itself and any other ebMS-355
compliant MSH with which it communicates. In broad terms, these agreements are expressed as356
Collaboration Protocol Agreements (CPA). This specification identifies the information that must be357
agreed. It does not specify the method or form used to create and maintain these agreements. It is358
assumed, in practice, the actual content of the contracts may be contained in initialization/configuration359
files, databases, or XML documents complying with the ebXML Collaboration Protocol Profile and360
Agreement Specification [ebCPP].361

1.2.3 Operational Policies and Constraints362
The ebMS is a service logically positioned between one or more business applications and a363
communications service. This requires the definition of an abstract service interface between the364
business applications and the MSH. This document acknowledges the interface, but does not provide a365
definition for the interface. Future versions of the ebMS MAY define the service interface structure.366

Bindings to two communications protocols are defined in this document; however, the MSH is specified367
independent of any communications protocols. While early work focuses on HTTP for transport, no368
preference is being provided to this protocol. Other protocols may be used and future versions of the369
specification may provide details related to those protocols.370

The ebMS relies on external configuration information. This information is determined either through371
defined business processes or trading partner agreements. These data are captured for use within a372
Collaboration Protocol Profile (CPP) or Collaboration Protocol Agreement (CPA). The ebXML373
Collaboration Protocol Profile and Agreement Specification [ebCPP] provides definitions for the374
information constituting the agreements. The ebXML architecture defines the relationship between this375
component of the infrastructure and the ebMS. As regards the MSH, the information composing a376
CPP/CPA must be available to support normal operation. However, the method used by a specific377
implementation of the MSH does not mandate the existence of a discrete instance of a CPA. The CPA is378
expressed as an XML document. Some implementations may elect to populate a database with the379
information from the CPA and then use the database. This specification does not prescribe how the CPA380

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 11 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

Figure 1.1 Typical Relationship
between ebXML Message Service

Handler Components

information is derived, stored, or used: it only states specific information items must be available for the381
MSH to achieve successful operations.382

1.2.4 Modes of Operation383
This specification does not mandate how the MSH will be installed within the overall ebXML framework. It384
is assumed some MSH implementations will not implement all functionality defined in this specification.385
For instance, a set of trading partners may not require reliable messaging services; therefore, no reliable386
messaging capabilities exist within their MSH. But, all MSH implementations shall comply with the387
specification with regard to the functions supported in the specific implementation and provide error388
notifications for functionality requested but not supported. Documentation for a MSH implementation389
SHALL identify all ebMS features not satisfied in the implementation.390

The ebXML Message Service may be conceptually broken down into the following three parts:391
(1) an abstract Service Interface, (2) functions provided by the MSH and (3) the mapping to underlying392
transport service(s).393

Figure 1 depicts a logical arrangement of the functional394
modules existing within one possible implementation of the395
ebXML Message Services architecture. These modules are396
arranged in a manner to indicate their inter-relationships397
and dependencies.398

Header Processing – the creation of the ebXML Header399
elements for the ebXML Message uses input from the400
application, passed through the Message Service Interface,401
information from the Collaboration Protocol Agreement402
governing the message, and generated information such as403
digital signature, timestamps and unique identifiers.404

Header Parsing – extracting or transforming information405
from a received ebXML Header element into a form suitable406
for processing by the MSH implementation.407

Security Services – digital signature creation and408
verification, encryption, authentication and authorization.409
These services MAY be used by other components of the410
MSH including the Header Processing and Header Parsing411
components.412

Reliable Messaging Services – handles the delivery and413
acknowledgment of ebXML Messages. The service414
includes handling for persistence, retry, error notification415
and acknowledgment of messages requiring reliable416
delivery.417

Message Packaging – the final enveloping of an ebXML418
Message (ebXML header elements and payload) into its419
SOAP Messages with Attachments [SOAPAttach] container.420

Error Handling – this component handles the reporting of421
errors encountered during MSH or Application processing of422
a message.423

Message Service Interface – an abstract service interface424
applications use to interact with the MSH to send and425
receive messages and which the MSH uses to interface426
with applications handling received messages (Delivery427
Module).428

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 12 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

1.3 Minimal Requirements for Conformance429

An implementation of this specification MUST satisfy ALL of the following conditions to be considered a430
conforming implementation:431

• It supports all the mandatory syntax, features and behavior (as identified by the [RFC2119] key words432
MUST, MUST NOT, REQUIRED, SHALL and SHALL NOT) defined in Part I – Core Functionality.433

• It supports all the mandatory syntax, features and behavior defined for each of the additional module(s),434
defined in Part II – Additional Features, the implementation has chosen to implement.435

• It complies with the following interpretation of the keywords OPTIONAL and MAY: When these keywords436
apply to the behavior of the implementation, the implementation is free to support these behaviors or not, as437
meant in [RFC2119]. When these keywords apply to message contents relevant to a module of features, a438
conforming implementation of such a module MUST be capable of processing these optional message439
contents according to the described ebXML semantics.440

• If it has implemented optional syntax, features and/or behavior defined in this specification, it MUST be441
capable of interoperating with another implementation that has not implemented the optional syntax,442
features and/or behavior. It MUST be capable of processing the prescribed failure mechanism for those443
optional features it has chosen to implement.444

• It is capable of interoperating with another implementation that has chosen to implement optional syntax,445
features and/or behavior, defined in this specification, it has chosen not to implement. Handling of446
unsupported features SHALL be implemented in accordance with the prescribed failure mechanism defined447
for the feature.448

More details on Conformance to this specification – conformance levels or profiles and on their449
recommended implementation – are described in a companion document, "Message Service450
Implementation Guidelines" from the OASIS ebXML Implementation, Interoperability and Conformance451
(IIC) Technical Committee.452

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 13 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

Figure 2.1 ebXML Message Structure

Communications Protocol Envelope (HTTP, SMTP, etc.)

SOAP with Attachments MIME envelope

MIME Part

SOAP-ENV: Envelope

SOAP-ENV: Header

eb:MessageHeader

eb:Error

eb:Etc.

other:Etc.

eb:Manifest

eb:Etc.

other:Etc

other:Etc
MIME Part(s)

Payload(s)

SOAP-ENV: Body

Payload
Container(s)

Header
Container

Message
Package

Part I. Core Functionality453

2 ebXML with SOAP454

The ebXML Message Service Specification defines a set of namespace-qualified SOAP Header and455
Body element extensions within the SOAP Envelope. These are packaged within a MIME multipart to456
allow payloads or attachments to be included with the SOAP extension elements. In general, separate457
ebXML SOAP extension elements are used where:458

• different software components may be used to generate ebXML SOAP extension elements,459

• an ebXML SOAP extension element is not always present or,460

• the data contained in the ebXML SOAP extension element MAY be digitally signed separately from the other461
ebXML SOAP extension elements.462

2.1 Packaging Specification463

An ebXML Message is a communications protocol independent MIME/Multipart message envelope,464
structured in compliance with the SOAP Messages with Attachments [SOAPAttach] specification, referred465
to as a Message Package.466

There are two logical MIME parts within the Message Package:467

• The first MIME part, referred to as the Header468
Container, containing one SOAP 1.1 compliant469
message. This XML document is referred to as a470
SOAP Message for the remainder of this471
specification,472

• zero or more additional MIME parts, referred to473
as Payload Containers, containing application474
level payloads.475

The general structure and composition of an ebXML476
Message is described in the following figure (2.1).477

478

The SOAP Message is an XML document consisting479
of a SOAP Envelope element. This is the root480
element of the XML document representing a SOAP481
Message. The SOAP Envelope element consists of:482

• One SOAP Header element. This is a generic483
mechanism for adding features to a SOAP484
Message, including ebXML specific header485
elements.486

• One SOAP Body element. This is a container for487
message service handler control data and488
information related to the payload parts of the489
message.490

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 14 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

2.1.1 SOAP Structural Conformance491
The ebXML Message packaging complies with the following specifications:492

• Simple Object Access Protocol (SOAP) 1.1 [SOAP]493

• SOAP Messages with Attachments [SOAPAttach]494

Carrying ebXML headers in SOAP Messages does not mean ebXML overrides existing semantics of495
SOAP, but rather the semantics of ebXML over SOAP maps directly onto SOAP semantics.496

2.1.2 Message Package497
All MIME header elements of the Message Package are in conformance with the SOAP Messages with498
Attachments [SOAPAttach] specification. In addition, the Content-Type MIME header in the Message499
Package contain a type attribute matching the MIME media type of the MIME body part containing the500
SOAP Message document. In accordance with the [SOAP] specification, the MIME media type of the501
SOAP Message has the value "text/xml".502

It is strongly RECOMMENDED the initial headers contain a Content-ID MIME header structured in503
accordance with MIME [RFC2045], and in addition to the required parameters for the Multipart/Related504
media type, the start parameter (OPTIONAL in MIME Multipart/Related [RFC2387]) always be present.505
This permits more robust error detection. The following fragment is an example of the MIME headers for506
the multipart/related Message Package:507

Content-Type: multipart/related; type="text/xml"; boundary="boundaryValue";508
start=messagepackage-123@example.com509

510
--boundaryValue511
Content-ID: <messagepackage-123@example.com>512

Implementations MUST support non-multipart messages, which may occur when there are no ebXML513
payloads. An ebXML message with no payload may be sent either as a plain SOAP message or as a514
[SOAPAttach] multipart message with only one body part.515

2.1.3 Header Container516
The root body part of the Message Package is referred to in this specification as the Header Container.517
The Header Container is a MIME body part consisting of one SOAP Message as defined in the SOAP518
Messages with Attachments [SOAPAttach] specification.519

2.1.3.1 Content-Type520

The MIME Content-Type header for the Header Container MUST have the value "text/xml" in521
accordance with the [SOAP] specification. The Content-Type header MAY contain a "charset"522
attribute. For example:523

Content-Type: text/xml; charset="UTF-8"524

2.1.3.2 charset attribute525

The MIME charset attribute identifies the character set used to create the SOAP Message. The526
semantics of this attribute are described in the "charset parameter / encoding considerations" of527
text/xml as specified in XML [XMLMedia]. The list of valid values can be found at http://www.iana.org/.528

If both are present, the MIME charset attribute SHALL be equivalent to the encoding declaration of the529
SOAP Message. If provided, the MIME charset attribute MUST NOT contain a value conflicting with the530
encoding used when creating the SOAP Message.531

For maximum interoperability it is RECOMMENDED UTF-8 [UTF-8] be used when encoding this532
document. Due to the processing rules defined for media types derived from text/xml [XMLMedia],533
this MIME attribute has no default.534

http://www.iana.org/

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 15 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

2.1.3.3 Header Container Example535

 The following fragment represents an example of a Header Container:536

Content-ID: <messagepackage-123@example.com> ---| Header537
Content-Type: text/xml; charset="UTF-8" |538

|539
<SOAP:Envelope --|SOAP Message |540

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"> | |541
<SOAP:Header> | |542
… | |543

</SOAP:Header> | |544
<SOAP:Body> | |545
… | |546

</SOAP:Body> | |547
</SOAP:Envelope> --| |548

|549
--boundaryValue ---|550

2.1.4 Payload Container551
Zero or more Payload Containers MAY be present within a Message Package in conformance with the552
SOAP Messages with Attachments [SOAPAttach] specification.553

If the Message Package contains an application payload, it SHOULD be enclosed within a Payload554
Container.555

If there is no application payload within the Message Package then a Payload Container MUST NOT be556
present.557

The contents of each Payload Container MUST be identified in the ebXML Message Manifest element558
within the SOAP Body (see section 3.2).559

The ebXML Message Service Specification makes no provision, nor limits in any way, the structure or560
content of application payloads. Payloads MAY be simple-plain-text objects or complex nested multipart561
objects. The specification of the structure and composition of payload objects is the prerogative of the562
organization defining the business process or information exchange using the ebXML Message Service.563

2.1.4.1 Example of a Payload Container564

The following fragment represents an example of a Payload Container and a payload:565

Content-ID: <domainname.example.com> -------------| ebXML MIME |566
Content-Type: application/xml -------------| |567

| Payload568
<Invoice> -------------| | Container569
<Invoicedata> | Payload |570

… | |571
</Invoicedata> | |572

</Invoice> -------------| |573

Note: It might be noticed the content-type used in the preceding example (application/XML) is different than the574
content-type in the example SOAP envelope in section 2.1.2 above (text/XML). The SOAP 1.1 specification states575
the content-type used for the SOAP envelope MUST be ‘text/xml’. However, many MIME experts disagree with576
the choice of the primary media type designation of 'text/*’ for XML documents as most XML is not "human577
readable" in the sense the MIME designation of ‘text’ was meant to infer. They believe XML documents should be578
classified as ‘application/XML’.579

2.1.5 Additional MIME Parameters580
Any MIME part described by this specification MAY contain additional MIME headers in conformance with581
the MIME [RFC2045] specification. Implementations MAY ignore any MIME header not defined in this582
specification. Implementations MUST ignore any MIME header they do not recognize.583

For example, an implementation could include content-length in a message. However, a recipient of584
a message with content-length could ignore it.585

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 16 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

2.1.6 Reporting MIME Errors586
If a MIME error is detected in the Message Package then it MUST be reported as specified in SOAP with587
Attachments [SOAPAttach].588

2.2 XML Prolog589

The SOAP Message’s XML Prolog, if present, MAY contain an XML declaration. This specification has590
defined no additional comments or processing instructions appearing in the XML prolog. For example:591

Content-Type: text/xml; charset="UTF-8"592
593

<?xml version="1.0" encoding="UTF-8"?>594

2.2.1 XML Declaration595
The XML declaration MAY be present in a SOAP Message. If present, it MUST contain the version596
specification required by the XML Recommendation [XML] and MAY contain an encoding declaration.597
The semantics described below MUST be implemented by a compliant ebXML Message Service.598

2.2.2 Encoding Declaration599
If both the encoding declaration and the Header Container MIME charset are present, the XML prolog for600
the SOAP Message SHALL contain the encoding declaration SHALL be equivalent to the charset601
attribute of the MIME Content-Type of the Header Container (see section 2.1.3).602

If provided, the encoding declaration MUST NOT contain a value conflicting with the encoding used when603
creating the SOAP Message. It is RECOMMENDED UTF-8 be used when encoding the SOAP Message.604

If the character encoding cannot be determined by an XML processor using the rules specified in section605
4.3.3 of XML [XML], the XML declaration and its contained encoding declaration SHALL be provided in606
the ebXML SOAP Header Document.607

Note: the encoding declaration is not required in an XML document according to XML v1.0 specification [XML].608

2.3 ebXML SOAP Envelope extensions609

In conformance with the [SOAP] specification, all extension element content is namespace qualified. All of610
the ebXML SOAP extension element content defined in this specification is namespace qualified to the611
ebXML SOAP Envelope extensions namespace as defined in section 2.2.2.612

Namespace declarations (xmlns psuedo attributes) for the ebXML SOAP extensions may be included in613
the SOAP Envelope, Header or Body elements, or directly in each of the ebXML SOAP extension614
elements.615

2.3.1 Namespace pseudo attribute616
The namespace declaration for the ebXML SOAP Envelope extensions (xmlns pseudo attribute) (see617
[XMLNS]) has a REQUIRED value of:618

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd619

2.3.2 xsi:schemaLocation attribute620
The SOAP namespace:621

http://schemas.xmlsoap.org/soap/envelope/622

resolves to a W3C XML Schema specification. The ebXML OASIS ebXML Messaging TC has provided623
an equivalent version of the SOAP schema conforming to the W3C Recommendation version of the XML624
Schema specification [XMLSchema].625

http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd626

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 17 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

All ebXML MSH implementations are strongly RECOMMENDED to include the XMLSchema-instance627
namespace qualified schemaLocation attribute in the SOAP Envelope element to indicate to validating628
parsers a location of the schema document that should be used to validate the document. Failure to629
include the schemaLocation attribute could prevent XML schema validation of received messages.630

For example:631

<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"632
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"633

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/634
http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd">635

In addition, ebXML SOAP Header and Body extension element content may be similarly qualified so as636
to identify the location where validating parsers can find the schema document containing the ebXML637
namespace qualified SOAP extension element definitions. The ebXML SOAP extension element schema638
has been defined using the W3C Recommendation version of the XML Schema specification639
[XMLSchema] (see Appendix A). The XMLSchema-instance namespace qualified schemaLocation640
attribute should include a mapping of the ebXML SOAP Envelope extensions namespace to its schema641
document in the same element that declares the ebXML SOAP Envelope extensions namespace.642

The schemaLocation for the namespace described above in section 2.3.1 is:643

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd644

Separate schemaLocation attribute are RECOMMENDED so tools, which may not correctly use the645
schemaLocation attribute to resolve schema for more than one namespace, will still be capable of646
validating an ebXML SOAP message. For example:647

<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"648
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"649
xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/650

http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd">651
<SOAP:Header652

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"653
xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd654

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">655
<eb:MessageHeader ...>656

...657
</eb:MessageHeader>658

</SOAP:Header>659
<SOAP:Body660

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"661
xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd662

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">663
<eb:Manifest eb:version="2.0">664

...665
</eb:Manifest>666

</SOAP:Body>667
</SOAP:Envelope>668

2.3.3 SOAP Header Element669
The SOAP Header element is the first child element of the SOAP Envelope element. It MUST have a670
namespace qualifier that matches the SOAP Envelope namespace declaration for the namespace671
"http://schemas.xmlsoap.org/soap/envelope/".672

2.3.4 SOAP Body Element673
The SOAP Body element is the second child element of the SOAP Envelope element. It MUST have a674
namespace qualifier that matches the SOAP Envelope namespace declaration for the namespace675
"http://schemas.xmlsoap.org/soap/envelope/".676

2.3.5 ebXML SOAP Extensions677
An ebXML Message extends the SOAP Message with the following principal extension elements:678

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 18 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

2.3.5.1 SOAP Header extensions:679

• MessageHeader – a REQUIRED element containing routing information for the message (To/From, etc.) as680
well as other context information about the message.681

• SyncReply – an element indicating the required transport state to the next SOAP node.682

2.3.5.2 SOAP Body extension:683

• Manifest – an element pointing to any data present either in the Payload Container(s) or elsewhere, e.g. on684
the web. This element MAY be omitted.685

2.3.5.3 Core ebXML Modules:686

• Error Handling Module687
- ErrorList – a SOAP Header element containing a list of the errors being reported against a previous688

message. The ErrorList element is only used if reporting an error or warning on a previous message.689
This element MAY be omitted.690

• Security Module691
- Signature – an element that contains a digital signature that conforms to [XMLDSIG] that signs data692

associated with the message. This element MAY be omitted.693

2.3.6 #wildcard Element Content694
Some ebXML SOAP extension elements, as indicated in the schema, allow for foreign namespace-695
qualified element content to be added for extensibility. The extension element content MUST be696
namespace-qualified in accordance with XMLNS [XMLNS] and MUST belong to a foreign namespace. A697
foreign namespace is one that is NOT http://www.oasis-open.org/committees/ebxml-698
msg/schema/msg-header-2_0.xsd. The wildcard elements are provided wherever extensions might be699
required for private extensions or future expansions to the protocol.700

An implementation of the MSH MAY ignore the namespace-qualified element and its content.701

2.3.7 id attribute702
Each of the ebXML SOAP extension elements defined in this specification has an id attribute which is an703
XML ID that MAY be added to provide for the ability to uniquely identify the element within the SOAP704
Message. This MAY be used when applying a digital signature to the ebXML SOAP Message as705
individual ebXML SOAP extension elements can be targeted for inclusion or exclusion by specifying a706
URI of "#<idvalue>" in the Reference element.707

2.3.8 version attribute708
The REQUIRED version attribute indicates the version of the ebXML Message Service Header709
Specification to which the ebXML SOAP Header extensions conform. Its purpose is to provide future710
versioning capabilities. For conformance to this specification, all of the version attributes on any SOAP711
extension elements defined in this specification MUST have a value of "2.0". An ebXML message MAY712
contain SOAP header extension elements that have a value other than "2.0". An implementation713
conforming to this specification that receives a message with ebXML SOAP extensions qualified with a714
version other than "2.0" MAY process the message if it recognizes the version identified and is capable of715
processing it. It MUST respond with an error (details TBD) if it does not recognize the identified version.716
The version attribute MUST be namespace qualified for the ebXML SOAP Envelope extensions717
namespace defined above.718

Use of multiple versions of ebXML SOAP extensions elements within the same ebXML SOAP document,719
while supported, should only be used in extreme cases where it becomes necessary to semantically720
change an element, which cannot wait for the next ebXML Message Service Specification version721
release.722

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 19 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

2.3.9 SOAP mustUnderstand attribute723
The REQUIRED SOAP mustUnderstand attribute on SOAP Header extensions, namespace qualified to724
the SOAP namespace (http://schemas.xmlsoap.org/soap/envelope/), indicates whether the contents of725
the element MUST be understood by a receiving process or else the message MUST be rejected in726
accordance with SOAP [SOAP]. This attribute with a value of '1' (true) indicates the element MUST be727
understood or rejected. This attribute with a value of '0' (false), the default, indicates the element may be728
ignored if not understood.729

2.3.10 ebXML "Next MSH" actor URI730
The URI urn:oasis:names:tc:ebxml-msg:actor:nextMSH when used in the context of the SOAP actor731
attribute value SHALL be interpreted to mean an entity that acts in the role of an instance of the ebXML732
MSH conforming to this specification.733

This actor URI has been established to allow for the possibility that SOAP nodes that are NOT ebXML734
MSH nodes MAY participate in the message path of an ebXML Message. An example might be a SOAP735
node that digitally signs or encrypts a message.736

All ebXML MSH nodes MUST act in this role.737

2.3.11 ebXML "To Party MSH" actor URI738
The URI urn:oasis:names:tc:ebxml-msg:actor:toPartyMSH when used in the context of the SOAP739
actor attribute value SHALL be interpreted to mean an instance of an ebXML MSH node, conforming to740
this specification, acting in the role of the Party identified in the MessageHeader/To/PartyId element of741
the same message. An ebXML MSH MAY be configured to act in this role. How this is done is outside742
the scope of this specification.743

The MSH that is the ultimate destination of ebXML messages MUST act in the role of the To Party MSH744
actor URI in addition to acting in the default actor as defined by SOAP.745

3 Core Extension Elements746

3.1 MessageHeader Element747

The MessageHeader element is REQUIRED in all ebXML Messages. It MUST be present as a child748
element of the SOAP Header element.749

The MessageHeader element is a composite element comprised of the following subordinate elements:750

• an id attribute (see section 2.3.7 for details)751

• a version attribute (see section 2.3.8 for details)752

• a SOAP mustUnderstand attribute with a value of "1" (see section 2.3.9 for details)753

• From element754

• To element755

• CPAId element756

• ConversationId element757

• Service element758

• Action element759

• MessageData element760

• DuplicateElimination element761

• Description element762

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 20 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

3.1.1 From and To Elements763
The REQUIRED From element identifies the Party that originated the message. The REQUIRED To764
element identifies the Party that is the intended recipient of the message. Both To and From can contain765
logical identifiers, such as a DUNS number, or identifiers that also imply a physical location such as an766
eMail address.767

The From and the To elements each contains:768

• PartyId elements – occurs one or more times769

• Role element – occurs zero or one times.770

If either the From or To elements contains multiple PartyId elements, all members of the list MUST771
identify the same organization. Unless a single type value refers to multiple identification systems, the772
value of any given type attribute MUST be unique within the list of PartyId elements contained within773
either the From or To element.774

Note: This mechanism is particularly useful when transport of a message between the parties may involve multiple775
intermediaries. More generally, the From Party should provide identification in all domains it knows in support of776
intermediaries and destinations that may give preference to particular identification systems.777

The From and To elements contain zero or one Role child element that, if present, SHALL immediately778
follow the last PartyId child element.779

3.1.1.1 PartyId Element780

The PartyId element has a single attribute, type and the content is a string value. The type attribute781
indicates the domain of names to which the string in the content of the PartyId element belongs. The782
value of the type attribute MUST be mutually agreed and understood by each of the Parties. It is783
RECOMMENDED that the value of the type attribute be a URI. It is further recommended that these784
values be taken from the EDIRA (ISO 6523), EDIFACT ISO 9735 or ANSI ASC X12 I05 registries.785

If the PartyId type attribute is not present, the content of the PartyId element MUST be a URI786
[RFC2396], otherwise the Receiving MSH SHOULD report an error (see section 4.1.5) with errorCode787
set to Inconsistent and severity set to Error. It is strongly RECOMMENDED that the content of the788
PartyId element be a URI.789

3.1.1.2 Role Element790

The Role element identifies the authorized role (fromAuthorizedRole or toAuthorizedRole) of the Party791
sending (when present as a child of the From element) and/or receiving (when present as a child of the792
To element) the message. The value of the Role element is a non-empty string, which is specified in the793
CPA.794

Note: Role is better defined as a URI – e.g. http://rosettanet.org/roles/buyer.795

The following fragment demonstrates usage of the From and To elements.796

<eb:From>797
<eb:PartyId eb:type="urn:duns">123456789</eb:PartyId>798
<eb:PartyId eb:type="SCAC">RDWY</PartyId>799
<eb:Role>http://rosettanet.org/roles/Buyer</eb:Role>800

</eb:From>801
<eb:To>802
<eb:PartyId>mailto:joe@example.com</eb:PartyId>803
<eb:Role>http://rosettanet.org/roles/Seller</eb:Role>804

</eb:To>805

3.1.2 CPAId Element806
The REQUIRED CPAId element is a string that identifies the parameters governing the exchange of807
messages between the parties. The recipient of a message MUST be able to resolve the CPAId to an808
individual set of parameters, taking into account the sender of the message.809

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 21 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

The value of a CPAId element MUST be unique within a namespace mutually agreed by the two parties.810
This could be a concatenation of the From and To PartyId values, a URI prefixed with the Internet811
domain name of one of the parties, or a namespace offered and managed by some other naming or812
registry service. It is RECOMMENDED that the CPAId be a URI.813

The CPAId MAY reference an instance of a CPA as defined in the ebXML Collaboration Protocol Profile814
and Agreement Specification [ebCPP]. An example of the CPAId element follows:815

<eb:CPAId>http://example.com/cpas/ourcpawithyou.xml</eb:CPAId>816

The messaging parameters are determined by the appropriate elements from the CPA, as identified by817
the CPAId element.818

If a receiver determines that a message is in conflict with the CPA, the appropriate handling of this conflict819
is undefined by this specification. Therefore, senders SHOULD NOT generate such messages unless820
they have prior knowledge of the receiver's capability to deal with this conflict.821

If a Receiving MSH detects an inconsistency, then it MUST report it with an errorCode of Inconsistent822
and a severity of Error. If the CPAId is not recognized, then it MUST report it with an errorCode of823
NotRecognized and a severity of Error.824

3.1.3 ConversationId Element825
The REQUIRED ConversationId element is a string identifying the set of related messages that make up826
a conversation between two Parties. It MUST be unique within the context of the specified CPAId. The827
Party initiating a conversation determines the value of the ConversationId element that SHALL be828
reflected in all messages pertaining to that conversation.829

The ConversationId enables the recipient of a message to identify the instance of an application or830
process that generated or handled earlier messages within a conversation. It remains constant for all831
messages within a conversation.832

The value used for a ConversationId is implementation dependent. An example of the ConversationId833
element follows:834

<eb:ConversationId>20001209-133003-28572</eb:ConversationId>835

Note: Implementations are free to choose how they will identify and store conversational state related to a specific836
conversation. Implementations SHOULD provide a facility for mapping between their identification scheme and a837
ConversationId generated by another implementation.838

3.1.4 Service Element839
The REQUIRED Service element identifies the service that acts on the message and it is specified by the840
designer of the service. The designer of the service may be:841

• a standards organization, or842

• an individual or enterprise843

Note: In the context of an ebXML business process model, an action equates to the lowest possible role based844
activity in the Business Process [ebBPSS] (requesting or responding role) and a service is a set of related actions for845
an authorized role within a party.846

An example of the Service element follows:847

<eb:Service>urn:services:SupplierOrderProcessing</eb:Service>848

Note: URIs in the Service element that start with the namespace urn:oasis:names:tc:ebxml-msg:service are849
reserved for use by this specification.850

The Service element has a single type attribute.851

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 22 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

3.1.4.1 type attribute852

If the type attribute is present, it indicates the parties sending and receiving the message know, by some853
other means, how to interpret the content of the Service element. The two parties MAY use the value of854
the type attribute to assist in the interpretation.855

If the type attribute is not present, the content of the Service element MUST be a URI [RFC2396]. If it is856
not a URI then report an error with errorCode of Inconsistent and severity of Error (see section 4.1.5).857

3.1.5 Action Element858
The REQUIRED Action element identifies a process within a Service that processes the Message.859
Action SHALL be unique within the Service in which it is defined. The value of the Action element is860
specified by the designer of the service. An example of the Action element follows:861

<eb:Action>NewOrder</eb:Action>862

If the value of either the Service or Action element are unrecognized by the Receiving MSH, then it863
MUST report the error with an errorCode of NotRecognized and a severity of Error.864

3.1.6 MessageData Element865
The REQUIRED MessageData element provides a means of uniquely identifying an ebXML Message. It866
contains the following:867

• MessageId element868

• Timestamp element869

• RefToMessageId element870

• TimeToLive element871
The following fragment demonstrates the structure of the MessageData element:872

<eb:MessageData>873
<eb:MessageId>20001209-133003-28572@example.com</eb:MessageId>874
<eb:Timestamp>2001-02-15T11:12:12</eb:Timestamp>875
<eb:RefToMessageId>20001209-133003-28571@example.com</eb:RefToMessageId>876

</eb:MessageData>877

3.1.6.1 MessageId Element878

The REQUIRED element MessageId is a globally unique identifier for each message conforming to879
MessageId [RFC2822].880

Note: In the Message-Id and Content-Id MIME headers, values are always surrounded by angle brackets. However881
references in mid: or cid: scheme URI's and the MessageId and RefToMessageId elements MUST NOT include882
these delimiters.883

3.1.6.2 Timestamp Element884

The REQUIRED Timestamp is a value representing the time that the message header was created885
conforming to a dateTime [XMLSchema] and MUST be expressed as UTC. Indicating UTC in the886
Timestamp element by including the ‘Z’ identifier is optional.887

3.1.6.3 RefToMessageId Element888

The RefToMessageId element has a cardinality of zero or one. When present, it MUST contain the889
MessageId value of an earlier ebXML Message to which this message relates. If there is no earlier890
related message, the element MUST NOT be present.891

For Error messages, the RefToMessageId element is REQUIRED and its value MUST be the892
MessageId value of the message in error (as defined in section 4.2).893

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 23 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

3.1.6.4 TimeToLive Element894

If the TimeToLive element is present, it MUST be used to indicate the time, expressed as UTC, by which895
a message should be delivered to the To Party MSH. It MUST conform to an XML Schema dateTime.896

In this context, the TimeToLive has expired if the time of the internal clock, adjusted for UTC, of the897
Receiving MSH is greater than the value of TimeToLive for the message.898

If the To Party’s MSH receives a message where TimeToLive has expired, it SHALL send a message to899
the From Party MSH, reporting that the TimeToLive of the message has expired. This message SHALL900
be comprised of an ErrorList containing an error with the errorCode attribute set to TimeToLiveExpired901
and the severity attribute set to Error.902

The TimeToLive element is discussed further under Reliable Messaging in section 6.4.5.903

3.1.7 DuplicateElimination Element904

The DuplicateElimination element, if present, identifies a request by the sender for the receiving MSH to905
check for duplicate messages (see section 6.4.1 for more details).906

Valid values for DuplicateElimination:907

• DuplicateElimination present – duplicate messages SHOULD be eliminated.908

• DuplicateElimination not present – this results in a delivery behavior of Best-Effort.909

The DuplicateElimination element MUST NOT be present if the CPA has duplicateElimination set to910
never (see section 6.4.1 and section 6.6 for more details).911

3.1.8 Description Element912
The Description element may be present zero or more times. Its purpose is to provide a human913
readable description of the purpose or intent of the message. The language of the description is defined914
by a required xml:lang attribute. The xml:lang attribute MUST comply with the rules for identifying915
languages specified in XML [XML]. Each occurrence SHOULD have a different value for xml:lang.916

3.1.9 MessageHeader Sample917
The following fragment demonstrates the structure of the MessageHeader element within the SOAP918
Header:919

<eb:MessageHeader eb:id="…" eb:version="2.0" SOAP:mustUnderstand="1">920
<eb:From>921

<eb:PartyId>uri:example.com</eb:PartyId>922
<eb:Role>http://rosettanet.org/roles/Buyer</eb:Role>923

</eb:From>924
<eb:To>925

<eb:PartyId eb:type="someType">QRS543</eb:PartyId>926
<eb:Role>http://rosettanet.org/roles/Seller</eb:Role>927

</eb:To>928
<eb:CPAId>http://www.oasis-open.org/cpa/123456</eb:CPAId>929
<eb:ConversationId>987654321</eb:ConversationId>930
<eb:Service eb:type="myservicetypes">QuoteToCollect</eb:Service>931
<eb:Action>NewPurchaseOrder</eb:Action>932
<eb:MessageData>933
<eb:MessageId>UUID-2</eb:MessageId>934
<eb:Timestamp>2000-07-25T12:19:05</eb:Timestamp>935
<eb:RefToMessageId>UUID-1</eb:RefToMessageId>936

</eb:MessageData>937
<eb:DuplicateElimination/>938

</eb:MessageHeader>939

3.2 Manifest Element940

The Manifest element MAY be present as a child of the SOAP Body element. The Manifest element is941
a composite element consisting of one or more Reference elements. Each Reference element identifies942

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 24 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

payload data associated with the message, whether included as part of the message as payload943
document(s) contained in a Payload Container, or remote resources accessible via a URL. It is944
RECOMMENDED that no payload data be present in the SOAP Body. The purpose of the Manifest is:945

• to make it easier to directly extract a particular payload associated with this ebXML Message,946

• to allow an application to determine whether it can process the payload without having to parse it.947

The Manifest element is comprised of the following:948

• an id attribute (see section 2.3.7 for details)949

• a version attribute (see section 2.3.8 for details)950

• one or more Reference elements951

3.2.1 Reference Element952
The Reference element is a composite element consisting of the following subordinate elements:953

• zero or more Schema elements – information about the schema(s) that define the instance document954
identified in the parent Reference element955

• zero or more Description elements – a textual description of the payload object referenced by the parent956
Reference element957

The Reference element itself is a simple link [XLINK]. It should be noted that the use of XLINK in this958
context is chosen solely for the purpose of providing a concise vocabulary for describing an association.959
Use of an XLINK processor or engine is NOT REQUIRED, but may prove useful in certain960
implementations.961

The Reference element has the following attribute content in addition to the element content described962
above:963

• id – an XML ID for the Reference element,964

• xlink:type – this attribute defines the element as being an XLINK simple link. It has a fixed value of 'simple',965

• xlink:href – this REQUIRED attribute has a value that is the URI of the payload object referenced. It SHALL966
conform to the XLINK [XLINK] specification criteria for a simple link.967

• xlink:role – this attribute identifies some resource that describes the payload object or its purpose. If968
present, then it SHALL have a value that is a valid URI in accordance with the [XLINK] specification,969

• Any other namespace-qualified attribute MAY be present. A Receiving MSH MAY choose to ignore any970
foreign namespace attributes other than those defined above.971

The designer of the business process or information exchange using ebXML Messaging decides what972
payload data is referenced by the Manifest and the values to be used for xlink:role.973

3.2.1.1 Schema Element974

If the item being referenced has schema(s) of some kind that describe it (e.g. an XML Schema, DTD975
and/or a database schema), then the Schema element SHOULD be present as a child of the Reference976
element. It provides a means of identifying the schema and its version defining the payload object977
identified by the parent Reference element. The Schema element contains the following attributes:978

• location – the REQUIRED URI of the schema979

• version – a version identifier of the schema980

3.2.1.2 Description Element981

See section 3.1.8 for more details. An example of a Description element follows.982

<eb:Description xml:lang="en-GB">Purchase Order for 100,000 widgets</eb:Description>983

3.2.2 Manifest Validation984
If an xlink:href attribute contains a URI that is a content id (URI scheme "cid") then a MIME part with985
that content-id MUST be present in the corresponding Payload Container of the message. If it is not,986

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 25 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

then the error SHALL be reported to the From Party with an errorCode of MimeProblem and a severity987
of Error.988

If an xlink:href attribute contains a URI, not a content id (URI scheme "cid"), and the URI cannot be989
resolved, it is an implementation decision whether to report the error. If the error is to be reported, it990
SHALL be reported to the From Party with an errorCode of MimeProblem and a severity of Error.991

Note: If a payload exists, which is not referenced by the Manifest, that payload SHOULD be discarded.992

3.2.3 Manifest Sample993
The following fragment demonstrates a typical Manifest for a single payload MIME body part:994

<eb:Manifest eb:id="Manifest" eb:version="2.0">995
<eb:Reference eb:id="pay01"996
xlink:href="cid:payload-1"997
xlink:role="http://regrep.org/gci/purchaseOrder">998
<eb:Schema eb:location="http://regrep.org/gci/purchaseOrder/po.xsd" eb:version="2.0"/>999
<eb:Description xml:lang="en-US">Purchase Order for 100,000 widgets</eb:Description>1000

</eb:Reference>1001
</eb:Manifest>1002

4 Core Modules1003

4.1 Security Module1004

The ebXML Message Service, by its very nature, presents certain security risks. A Message Service may1005
be at risk by means of:1006

• Unauthorized access1007

• Data integrity and/or confidentiality attacks (e.g. through man-in-the-middle attacks)1008

• Denial-of-Service and spoofing1009

Each security risk is described in detail in the ebXML Technical Architecture Risk Assessment Technical1010
Report [secRISK].1011

Each of these security risks may be addressed in whole, or in part, by the application of one, or a1012
combination, of the countermeasures described in this section. This specification describes a set of1013
profiles, or combinations of selected countermeasures, selected to address key risks based upon1014
commonly available technologies. Each of the specified profiles includes a description of the risks that1015
are not addressed. See Appendix C for a table of security profiles.1016

Application of countermeasures SHOULD be balanced against an assessment of the inherent risks and1017
the value of the asset(s) that might be placed at risk. For this specification, a Signed Message is any1018
message containing a Signature element.1019

4.1.1 Signature Element1020
An ebXML Message MAY be digitally signed to provide security countermeasures. Zero or more1021
Signature elements, belonging to the XML Signature [XMLDSIG] defined namespace, MAY be present1022
as a child of the SOAP Header. The Signature element MUST be namespace qualified in accordance1023
with XML Signature [XMLDSIG]. The structure and content of the Signature element MUST conform to1024
the XML Signature [XMLDSIG] specification. If there is more than one Signature element contained1025
within the SOAP Header, the first MUST represent the digital signature of the ebXML Message as signed1026
by the From Party MSH in conformance with section 4.1. Additional Signature elements MAY be1027
present, but their purpose is undefined by this specification.1028

Refer to section 4.1.3 for a detailed discussion on how to construct the Signature element when digitally1029
signing an ebXML Message.1030

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 26 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

4.1.2 Security and Management1031
No technology, regardless of how advanced it might be, is an adequate substitute to the effective1032
application of security management policies and practices.1033

It is strongly RECOMMENDED that the site manager of an ebXML Message Service apply due diligence1034
to the support and maintenance of its security mechanisms, site (or physical) security procedures,1035
cryptographic protocols, update implementations and apply fixes as appropriate. (See1036
http://www.cert.org/ and http://ciac.llnl.gov/)1037

4.1.2.1 Collaboration Protocol Agreement1038

The configuration of Security for MSHs is specified in the CPA. Two areas of the CPA have security1039
definitions as follows:1040

• The Document Exchange section addresses security to be applied to the payload of the message. The1041
MSH is not responsible for any security specified at this level but may offer these services to the message1042
sender.1043

• The Transport section addresses security applied to the entire ebXML Document, which includes the header1044
and the payload(s).1045

4.1.3 Signature Generation1046
An ebXML Message is signed using [XMLDSIG] following these steps:1047

1) Create a SignedInfo element with SignatureMethod, CanonicalizationMethod and Reference1048
elements for the SOAP Envelope and any required payload objects, as prescribed by XML1049
Signature [XMLDSIG].1050

2) Canonicalize and then calculate the SignatureValue over SignedInfo based on algorithms1051
specified in SignedInfo as specified in XML Signature [XMLDSIG].1052

3) Construct the Signature element that includes the SignedInfo, KeyInfo (RECOMMENDED) and1053
SignatureValue elements as specified in XML Signature [XMLDSIG].1054

4) Include the namespace qualified Signature element in the SOAP Header just signed.1055

The SignedInfo element SHALL have a CanonicalizationMethod element, a SignatureMethod element1056
and one or more Reference elements, as defined in XML Signature [XMLDSIG].1057

The RECOMMENDED canonicalization method applied to the data to be signed is1058

<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>1059

described in [XMLC14N]. This algorithm excludes comments.1060

The SignatureMethod element SHALL be present and SHALL have an Algorithm attribute. The1061
RECOMMENDED value for the Algorithm attribute is:1062

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>1063

This RECOMMENDED value SHALL be supported by all compliant ebXML Message Service software1064
implementations.1065

The [XMLDSIG] Reference element for the SOAP Envelope document SHALL have a URI attribute1066
value of "" to provide for the signature to be applied to the document that contains the Signature element.1067

The [XMLDSIG] Reference element for the SOAP Envelope MAY include a Type attribute that has a1068
value "http://www.w3.org/2000/09/xmldsig#Object" in accordance with XML Signature [XMLDSIG]. This1069
attribute is purely informative. It MAY be omitted. Implementations of the ebXML MSH SHALL be1070
prepared to handle either case. The Reference element MAY include the id attribute.1071

The [XMLDSIG] Reference element for the SOAP Envelope SHALL include a child Transforms1072
element. The Transforms element SHALL include the following Transform child elements.1073

The first Transform element has an Algorithm attribute with a value of:1074

<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>1075

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 27 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

The result of this statement excludes the parent Signature element and all its descendants.1076

The second Transform element has a child XPath element that has a value of:1077

<Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">1078
<XPath> not(ancestor-or-self::()[@SOAP:actor="urn:oasis:names:tc:ebxml-msg:actor:nextMSH"] |1079

ancestor-or-self::()[@SOAP:actor="http://schemas.xmlsoap.org/soap/actor/next"])1080
</XPath>1081

</Transform>1082

The result of this [XPath] statement excludes all elements within the SOAP Envelope which contain a1083
SOAP:actor attribute targeting the nextMSH, and all their descendants. It also excludes all elements1084
with actor attributes targeting the element at the next node (which may change en route). Any1085
intermediate node or MSH MUST NOT change, format or in any way modify any element not targeted to1086
the intermediary. Intermediate nodes MUST NOT add or delete white space. Any such change may1087
invalidate the signature.1088

The last Transform element SHOULD have an Algorithm attribute with a value of:1089

<Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>1090

The result of this algorithm is to canonicalize the SOAP Envelope XML and exclude comments.1091

Note: These transforms are intended for the SOAP Envelope and its contents. These transforms are NOT intended1092
for the payload objects. The determination of appropriate transforms for each payload is left to the implementation.1093

Each payload object requiring signing SHALL be represented by a [XMLDSIG] Reference element that1094
SHALL have a URI attribute resolving to the payload object. This can be either the Content-Id URI of1095
the MIME body part of the payload object, or a URI matching the Content-Location of the MIME body part1096
of the payload object, or a URI that resolves to a payload object external to the Message Package. It is1097
strongly RECOMMENDED that the URI attribute value match the xlink:href URI value of the1098
corresponding Manifest/Reference element for the payload object.1099

Note: When a transfer encoding (e.g. base64) specified by a Content-Transfer-Encoding MIME header is used for1100
the SOAP Envelope or payload objects, the signature generation MUST be executed before the encoding.1101

Example of digitally signed ebXML SOAP Message:1102

<?xml version="1.0" encoding="utf-8"?>1103
<SOAP:Envelope xmlns:xlink="http://www.w3.org/1999/xlink"1104

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"1105
xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"1106
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"1107
xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/1108

http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd1109
http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd1110
http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">1111

<SOAP:Header>1112
<eb:MessageHeader eb:id="..." eb:version="2.0" SOAP:mustUnderstand="1">1113

...1114
</eb:MessageHeader>1115
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">1116
<SignedInfo>1117
<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>1118
<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>1119
<Reference URI="">1120
<Transforms>1121
<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>1122
<Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">1123
<XPath> not(ancestor-or-self::()[@SOAP:actor=1124

"urn:oasis:names:tc:ebxml-msg:actor:nextMSH"]1125
| ancestor-or-self::()[@SOAP:actor=1126

"http://schemas.xmlsoap.org/soap/actor/next"])1127
</XPath>1128

</Transform>1129
<Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>1130

</Transforms>1131
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>1132

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 28 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

<DigestValue>...</DigestValue>1133
</Reference>1134
<Reference URI="cid://blahblahblah/">1135
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>1136
<DigestValue>...</DigestValue>1137

</Reference>1138
</SignedInfo>1139
<SignatureValue>...</SignatureValue>1140
<KeyInfo>...</KeyInfo>1141

</Signature>1142
</SOAP:Header>1143
<SOAP:Body>1144
<eb:Manifest eb:id="Mani01" eb:version="2.0">1145
<eb:Reference xlink:href="cid://blahblahblah/" xlink:role="http://ebxml.org/gci/invoice">1146
<eb:Schema eb:version="2.0" eb:location="http://ebxml.org/gci/busdocs/invoice.dtd"/>1147

</eb:Reference>1148
</eb:Manifest>1149

</SOAP:Body>1150
</SOAP:Envelope>1151

4.1.4 Countermeasure Technologies1152

4.1.4.1 Persistent Digital Signature1153

The only available technology that can be applied to the purpose of digitally signing an ebXML Message1154
(the ebXML SOAP Header and Body and its associated payload objects) is provided by technology that1155
conforms to the W3C/IETF joint XML Signature specification [XMLDSIG]. An XML Signature conforming1156
to this specification can selectively sign portions of an XML document(s), permitting the documents to be1157
augmented (new element content added) while preserving the validity of the signature(s).1158

If signatures are being used to digitally sign an ebXML Message then XML Signature [DSIG] MUST be1159
used to bind the ebXML SOAP Header and Body to the ebXML Payload Container(s) or data elsewhere1160
on the web that relate to the message.1161

An ebXML Message requiring a digital signature SHALL be signed following the process defined in this1162
section of the specification and SHALL be in full compliance with XML Signature [XMLDSIG].1163

4.1.4.2 Persistent Signed Receipt1164

An ebXML Message that has been digitally signed MAY be acknowledged with an Acknowledgment1165
Message that itself is digitally signed in the manner described in the previous section. The1166
Acknowledgment Message MUST contain a [XMLDSIG] Reference element list consistent with those1167
contained in the [XMLDSIG] Signature element of the original message.1168

4.1.4.3 Non-persistent Authentication1169

Non-persistent authentication is provided by the communications channel used to transport the ebXML1170
Message. This authentication MAY be either in one direction or bi-directional. The specific method will be1171
determined by the communications protocol used. For instance, the use of a secure network protocol,1172
such as TLS [RFC2246] or IPSEC [RFC2402] provides the sender of an ebXML Message with a way to1173
authenticate the destination for the TCP/IP environment.1174

4.1.4.4 Non-persistent Integrity1175

A secure network protocol such as TLS [RFC2246] or IPSEC [RFC2402] MAY be configured to provide1176
for digests and comparisons of the packets transmitted via the network connection.1177

4.1.4.5 Persistent Confidentiality1178

XML Encryption is a W3C/IETF joint activity actively engaged in the drafting of a specification for the1179
selective encryption of an XML document(s). It is anticipated that this specification will be completed1180
within the next year. The ebXML Transport, Routing and Packaging team for v1.0 of this specification1181
has identified this technology as the only viable means of providing persistent, selective confidentiality of1182
elements within an ebXML Message including the SOAP Header.1183

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 29 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

Confidentiality for ebXML Payload Containers MAY be provided by functionality possessed by a MSH.1184
Payload confidentiality MAY be provided by using XML Encryption (when available) or some other1185
cryptographic process (such as S/MIME [S/MIME], [S/MIMEV3], or PGP MIME [PGP/MIME]) bilaterally1186
agreed upon by the parties involved. The XML Encryption standard shall be the default encryption1187
method when XML Encryption has achieved W3C Recommendation status.1188

Note: When both signature and encryption are required of the MSH, sign first and then encrypt.1189

4.1.4.6 Non-persistent Confidentiality1190

A secure network protocol, such as TLS [RFC2246] or IPSEC [RFC2402], provides transient1191
confidentiality of a message as it is transferred between two ebXML adjacent MSH nodes.1192

4.1.4.7 Persistent Authorization1193

The OASIS Security Services Technical Committee (TC) is actively engaged in the definition of a1194
specification that provides for the exchange of security credentials, including Name Assertion and1195
Entitlements, based on Security Assertion Markup Language [SAML]. Use of technology based on this1196
anticipated specification may provide persistent authorization for an ebXML Message once it becomes1197
available.1198

4.1.4.8 Non-persistent Authorization1199

A secure network protocol such as TLS [RFC2246] or IPSEC [RFC2402] MAY be configured to provide1200
for bilateral authentication of certificates prior to establishing a session. This provides for the ability for an1201
ebXML MSH to authenticate the source of a connection and to recognize the source as an authorized1202
source of ebXML Messages.1203

4.1.4.9 Trusted Timestamp1204

At the time of this specification, services offering trusted timestamp capabilities are becoming available.1205
Once these become more widely available, and a standard has been defined for their use and1206
expression, these standards, technologies and services will be evaluated and considered for use in later1207
versions of this specification.1208

4.1.5 Security Considerations1209
Implementors should take note, there is a vulnerability present even when an XML Digital Signature is1210
used to protect to protect the integrity and origin of ebXML messages. The significance of the1211
vulnerability necessarily depends on the deployed environment and the transport used to exchange1212
ebXML messages.1213

The vulnerability is present because ebXML messaging is an integration of both XML and MIME1214
technologies. Whenever two or more technologies are conjoined there are always additional (sometimes1215
unique) security issues to be addressed. In this case, MIME is used as the framework for the message1216
package, containing the SOAP Envelope and any payload containers. Various elements of the SOAP1217
Envelope make reference to the payloads, identified via MIME mechanisms. In addition, various labels1218
are duplicated in both the SOAP Envelope and the MIME framework, for example, the type of the content1219
in the payload. The issue is how and when all of this information is used.1220

Specifically, the MIME Content-ID: header is used to specify a unique, identifying label for each payload.1221
The label is used in the SOAP Envelope to identify the payload whenever it is needed. The MIME1222
Content-Type: header is used to identify the type of content carried in the payload; some content types1223
may contain additional parameters serving to further qualify the actual type. This information is available1224
in the SOAP Envelope.1225

The MIME headers are not protected, even when an XML-based digital signature is applied. Although1226
XML Encryption is not currently available and thus not currently used, its application is developing1227
similarly to XML digital signatures. Insofar as its application is the same as that of XML digital signatures,1228
its use will not protect the MIME headers. Thus, an ebXML message may be at risk depending on how1229

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 30 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

the information in the MIME headers is processed as compared to the information in the SOAP1230
Envelope.1231

The Content-ID: MIME header is critical. An adversary could easily mount a denial-of-service attack by1232
mixing and matching payloads with the Content-ID: headers. As with most denial-of-service attacks, no1233
specific protection is offered for this vulnerability. However, it should be detected since the digest1234
calculated for the actual payload will not match the digest included in the SOAP Envelope when the1235
digital signature is validated.1236

The presence of the content type in both the MIME headers and SOAP Envelope is a problem. Ordinary1237
security practices discourage duplicating information in two places. When information is duplicated,1238
ordinary security practices require the information in both places to be compared to ensure they are1239
equal. It would be considered a security violation if both sets of information fail to match.1240

An adversary could change the MIME headers while a message is en route from its origin to its1241
destination and this would not be detected when the security services are validated. This threat is less1242
significant in a peer-to-peer transport environment as compared to a multi-hop transport environment. All1243
implementations are at risk if the ebXML message is ever recorded in a long-term storage area since a1244
compromise of that area puts the message at risk for modification.1245

The actual risk depends on how an implementation uses each of the duplicate sets of information. If any1246
processing beyond the MIME parsing for body part identification and separation is dependent on the1247
information in the MIME headers, then the implementation is at risk of being directed to take unintended1248
or undesirable actions. How this might be exploited is best compared to the common programming1249
mistake of permitting buffer overflows: it depends on the creativity and persistence of the adversary.1250

Thus, an implementation could reduce the risk by ensuring that the unprotected information in the MIME1251
headers is never used except by the MIME parser for the minimum purpose of identifying and separating1252
the body parts. This version of the specification makes no recommendation regarding whether or not an1253
implementation should compare the duplicate sets of information nor what action to take based on the1254
results of the comparison.1255

4.2 Error Handling Module1256

This section describes how one ebXML Message Service Handler (MSH) reports errors it detects in an1257
ebXML Message to another MSH. The ebXML Message Service error reporting and handling module is1258
to be considered as a layer of processing above the SOAP processor layer. This means the ebXML MSH1259
is essentially an application-level handler of a SOAP Message from the perspective of the SOAP1260
Processor. The SOAP processor MAY generate a SOAP Fault message if it is unable to process the1261
message. A Sending MSH MUST be prepared to accept and process these SOAP Fault values.1262

It is possible for the ebXML MSH software to cause a SOAP Fault to be generated and returned to the1263
sender of a SOAP Message. In this event, the returned message MUST conform to the [SOAP]1264
specification processing guidelines for SOAP Fault values.1265

An ebXML SOAP Message reporting an error with a highestSeverity of Warning SHALL NOT be1266
reported or returned as a SOAP Fault.1267

4.2.1.1 Definitions:1268

For clarity, two phrases are defined for use in this section:1269

• "message in error" – A message containing or causing an error or warning of some kind1270

• "message reporting the error" – A message containing an ebXML ErrorList element that describes the1271
warning(s) and/or error(s) found in a message in error (also referred to as an Error Message elsewhere in1272
this document).1273

4.2.2 Types of Errors1274
One MSH needs to report errors to another MSH. For example, errors associated with:1275

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 31 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

• ebXML namespace qualified content of the SOAP Message document (see section 2.3.1)1276

• reliable messaging failures (see section 6.5.7)1277

• security (see section 4.1)1278

Unless specified to the contrary, all references to "an error" in the remainder of this specification imply1279
any or all of the types of errors listed above or defined elsewhere.1280

Errors associated with data communications protocols are detected and reported using the standard1281
mechanisms supported by that data communications protocol and do not use the error reporting1282
mechanism described here.1283

4.2.3 ErrorList Element1284
The existence of an ErrorList extension element within the SOAP Header element indicates the1285
message identified by the RefToMessageId in the MessageHeader element has an error.1286

The ErrorList element consists of:1287

• id attribute (see section 2.3.7 for details)1288

• a version attribute (see section 2.3.8 for details)1289

• a SOAP mustUnderstand attribute with a value of "1" (see section 2.3.9 for details)1290

• highestSeverity attribute1291

• one or more Error elements1292

If there are no errors to be reported then the ErrorList element MUST NOT be present.1293

4.2.3.1 highestSeverity attribute1294

The highestSeverity attribute contains the highest severity of any of the Error elements. Specifically, if1295
any of the Error elements have a severity of Error, highestSeverity MUST be set to Error; otherwise,1296
highestSeverity MUST be set to Warning.1297

4.2.3.2 Error Element1298

An Error element consists of:1299

• id attribute (see section 2.3.7 for details)1300

• codeContext attribute1301

• errorCode attribute1302

• severity attribute1303

• location attribute1304

• Description element1305

4.2.3.2.1 id attribute1306

If the error is a part of an ebXML element, the id of the element MAY be provided for error tracking.1307

4.2.3.2.2 codeContext attribute1308

The codeContext attribute identifies the namespace or scheme for the errorCodes. It MUST be a URI.1309
Its default value is urn:oasis:names:tc:ebxml-msg:service:errors. If it does not have the default value,1310
then it indicates an implementation of this specification has used its own errorCode attribute values.1311

Use of a codeContext attribute value other than the default is NOT RECOMMENDED. In addition, an1312
implementation of this specification should not use its own errorCode attribute values if an existing1313
errorCode as defined in this section has the same or very similar meaning.1314

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 32 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

4.2.3.2.3 errorCode attribute1315

The REQUIRED errorCode attribute indicates the nature of the error in the message in error. Valid1316
values for the errorCode and a description of the code’s meaning are given in the next section.1317

4.2.3.2.4 severity attribute1318

The REQUIRED severity attribute indicates the severity of the error. Valid values are:1319

• Warning – This indicates other messages in the conversation could be generated in the normal way in spite1320
of this problem.1321

• Error – This indicates there is an unrecoverable error in the message and no further message processing1322
should occur. Appropriate failure conditions should be communicated to the Application.1323

4.2.3.2.5 location attribute1324

The location attribute points to the part of the message containing the error.1325

If an error exists in an ebXML element and the containing document is "well formed" (see XML [XML]),1326
then the content of the location attribute MUST be an XPointer [XPointer].1327

If the error is associated with an ebXML Payload Container, then location contains the content-id of1328
the MIME part in error, using URI scheme "cid".1329

4.2.3.2.6 Description Element1330

The content of the Description element provides a narrative description of the error in the language1331
defined by the xml:lang attribute. The XML parser or other software validating the message typically1332
generates the message. The content is defined by the vendor/developer of the software that generated1333
the Error element. (See section 3.1.8)1334

4.2.3.3 ErrorList Sample1335

An example of an ErrorList element is given below.1336

<eb:ErrorList eb:id="3490sdo", eb:highestSeverity="error" eb:version="2.0" SOAP:mustUnderstand="1">1337
<eb:Error eb:errorCode="SecurityFailure" eb:severity="Error" eb:location="URI_of_ds:Signature">1338
<eb:Description xml:lang="en-US">Validation of signature failed<eb:Description>1339

</eb:Error>1340
<eb:Error ...> ... </eb:Error>1341

</eb:ErrorList>1342

4.2.3.4 errorCode values1343

This section describes the values for the errorCode attribute used in a message reporting an error. They1344
are described in a table with three headings:1345

• the first column contains the value to be used as an errorCode, e.g. SecurityFailure1346

• the second column contains a "Short Description" of the errorCode. This narrative MUST NOT be used in1347

the content of the Error element.1348

• the third column contains a "Long Description" that provides an explanation of the meaning of the error and1349
provides guidance on when the particular errorCode should be used.1350

4.2.3.4.1 Reporting Errors in the ebXML Elements1351

The following list contains error codes that can be associated with ebXML elements:1352

Error Code Short Description Long Description
ValueNotRecognized Element content or

attribute value not
recognized.

Although the document is well formed and valid, the element/
attribute contains a value that could not be recognized and
therefore could not be used by the ebXML Message Service.

NotSupported Element or attribute not Although the document is well formed and valid, a module is

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 33 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

supported present consistent with the rules and constraints contained in
this specification, but is not supported by the ebXML Message
Service processing the message.

Inconsistent Element content or
attribute value
inconsistent with other
elements or attributes.

Although the document is well formed and valid, according to
the rules and constraints contained in this specification the
content of an element or attribute is inconsistent with the
content of other elements or their attributes.

OtherXml Other error in an
element content or
attribute value.

Although the document is well formed and valid, the element
content or attribute value contains values that do not conform
to the rules and constraints contained in this specification and
is not covered by other error codes. The content of the Error
element should be used to indicate the nature of the problem.

4.2.3.4.2 Non-XML Document Errors1353

The following are error codes that identify errors not associated with the ebXML elements:1354

Error Code Short Description Long Description
DeliveryFailure Message Delivery

Failure
A message has been received that either probably or definitely
could not be sent to its next destination.

Note: if severity is set to Warning then there is a small probability
that the message was delivered.

TimeToLiveExpired Message Time To Live
Expired

A message has been received that arrived after the time
specified in the TimeToLive element of the MessageHeader
element.

SecurityFailure Message Security
Checks Failed

Validation of signatures or checks on the authenticity or
authority of the sender of the message have failed.

MimeProblem URI resolve error If an xlink:href attribute contains a URI, not a content id (URI
scheme "cid"), and the URI cannot be resolved, then it is an
implementation decision whether to report the error.

Unknown Unknown Error Indicates that an error has occurred not covered explicitly by
any of the other errors. The content of the Error element
should be used to indicate the nature of the problem.

4.2.4 Implementing Error Reporting and Handling1355

4.2.4.1 When to Generate Error Messages1356

When a MSH detects an error in a message it is strongly RECOMMENDED the error is reported to the1357
MSH that sent the message in error. This is possible when:1358

• the Error Reporting Location (see section 4.2.4.2) to which the message reporting the error should be sent1359
can be determined1360

• the message in error does not have an ErrorList element with highestSeverity set to Error.1361

If the Error Reporting Location cannot be found or the message in error has an ErrorList element with1362
highestSeverity set to Error, it is RECOMMENDED:1363

• the error is logged1364

• the problem is resolved by other means1365

• no further action is taken.1366

4.2.4.2 Identifying the Error Reporting Location1367

The Error Reporting Location is a URI specified by the sender of the message in error that indicates1368
where to send a message reporting the error.1369

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 34 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

The ErrorURI implied by the CPA, identified by the CPAId on the message, SHOULD be used.1370
Otherwise, the recipient MAY resolve an ErrorURI using the From element of the message in error. If1371
neither is possible, no error will be reported to the sending Party.1372

Even if the message in error cannot be successfully analyzed, MSH implementers MAY try to determine1373
the Error Reporting Location by other means. How this is done is an implementation decision.1374

4.2.4.3 Service and Action Element Values1375

An ErrorList element can be included in a SOAP Header that is part of a message being sent as a result1376
of processing of an earlier message. In this case, the values for the Service and Action elements are1377
set by the designer of the Service. This method MUST NOT be used if the highestSeverity is Error.1378

An ErrorList element can also be included in an independent message. In this case the values of the1379
Service and Action elements MUST be set as follows:1380

• The Service element MUST be set to: urn:oasis:names:tc:ebxml-msg:service1381

• The Action element MUST be set to MessageError.1382

4.3 SyncReply Module1383

It may be necessary for the sender of a message, using a synchronous communications protocol, such as1384
HTTP, to receive the associated response message over the same connection the request message was1385
delivered. In the case of HTTP, the sender of the HTTP request message containing an ebXML message1386
needs to have the response ebXML message delivered to it on the same HTTP connection.1387

If there are intermediary nodes (either ebXML MSH nodes or possibly other SOAP nodes) involved in the1388
message path, it is necessary to provide some means by which the sender of a message can indicate it is1389
expecting a response so the intermediary nodes can keep the connection open.1390

The SyncReply ebXML SOAP extension element is provided for this purpose.1391

4.3.1 SyncReply Element1392
The SyncReply element MAY be present as a direct child descendant of the SOAP Header element. It1393
consists of:1394

• an id attribute (see section 2.3.7 for details)1395

• a version attribute (see section 2.3.8 for details)1396

• a SOAP actor attribute with the REQUIRED value of "http://schemas.xmlsoap.org/soap/actor/next"1397

• a SOAP mustUnderstand attribute with a value of "1" (see section 2.3.9 for details)1398

If present, this element indicates to the receiving SOAP or ebXML MSH node the connection over which1399
the message was received SHOULD be kept open in expectation of a response message to be returned1400
via the same connection.1401

This element MUST NOT be used to override the value of syncReplyMode in the CPA. If the value of1402
syncReplyMode is none and a SyncReply element is present, the Receiving MSH should issue an error1403
with errorCode of Inconsistent and a severity of Error (see section 4.1.5).1404

An example of a SyncReply element:1405

<eb:SyncReply eb:id="3833kkj9" eb:version="2.0" SOAP:mustUnderstand="1"1406
SOAP:actor="http://schemas.xmlsoap.org/soap/actor/next"/>1407

5 Combining ebXML SOAP Extension Elements1408

This section describes how the various ebXML SOAP extension elements may be used in combination.1409

5.1.1 MessageHeader Element Interaction1410
The MessageHeader element MUST be present in every message.1411

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 35 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

5.1.2 Manifest Element Interaction1412
The Manifest element MUST be present if there is any data associated with the message not present in1413
the Header Container. This applies specifically to data in the Payload Container(s) or elsewhere, e.g. on1414
the web.1415

5.1.3 Signature Element Interaction1416
One or more XML Signature [XMLDSIG] Signature elements MAY be present on any message.1417

5.1.4 ErrorList Element Interaction1418
If the highestSeverity attribute on the ErrorList is set to Warning, then this element MAY be present1419
with any element.1420

If the highestSeverity attribute on the ErrorList is set to Error, then this element MUST NOT be present1421
with the Manifest element1422

5.1.5 SyncReply Element Interaction1423
The SyncReply element MAY be present on any outbound message sent using synchronous1424
communication protocol.1425

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 36 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

Part II. Additional Features1426

6 Reliable Messaging Module1427

Reliable Messaging defines an interoperable protocol such that two Message Service Handlers (MSH)1428
can reliably exchange messages, using acknowledgment, retry and duplicate detection and elimination1429
mechanisms, resulting in the To Party receiving the message Once-And-Only-Once. The protocol is1430
flexible, allowing for both store-and-forward and end-to-end reliable messaging.1431

Reliability is achieved by a Receiving MSH responding to a message with an Acknowledgment Message.1432
An Acknowledgment Message is any ebXML message containing an Acknowledgment element. Failure1433
to receive an Acknowledgment Message by a Sending MSH MAY trigger successive retries until such1434
time as an Acknowledgment Message is received or the predetermined number of retries has been1435
exceeded at which time the From Party MUST be notified of the probable delivery failure.1436

Whenever an identical message may be received more than once, some method of duplicate detection1437
and elimination is indicated, usually through the mechanism of a persistent store.1438

6.1 Persistent Storage and System Failure1439

A MSH that supports Reliable Messaging MUST keep messages sent or received reliably in persistent1440
storage. In this context persistent storage is a method of storing data that does not lose information after1441
a system failure or interruption.1442

This specification recognizes different degrees of resilience may be realized depending upon the1443
technology used to store the data. However, at a minimum, persistent storage with the resilience1444
characteristics of a hard disk (or equivalent) SHOULD be used. It is strongly RECOMMENDED that1445
implementers of this specification use technology resilient to the failure of any single hardware or1446
software component.1447

After a system interruption or failure, a MSH MUST ensure that messages in persistent storage are1448
processed as if the system failure or interruption had not occurred. How this is done is an implementation1449
decision.1450

In order to support the filtering of duplicate messages, a Receiving MSH MUST save the MessageId in1451
persistent storage. It is also RECOMMENDED the following be kept in persistent storage:1452

• the complete message, at least until the information in the message has been passed to the application or1453
other process needing to process it,1454

• the time the message was received, so the information can be used to generate the response to a Message1455
Status Request (see section 7.1.1),1456

• the complete response message.1457

6.2 Methods of Implementing Reliable Messaging1458

Support for Reliable Messaging is implemented in one of the following ways:1459

• using the ebXML Reliable Messaging protocol,1460

• using ebXML SOAP structures together with commercial software products that are designed to provide1461
reliable delivery of messages using alternative protocols,1462

• user application support for some features, especially duplicate elimination, or1463

• some mixture of the above options on a per-feature basis.1464

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 37 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

6.3 Reliable Messaging SOAP Header Extensions1465

6.3.1 AckRequested Element1466
The AckRequested element is an OPTIONAL extension to the SOAP Header used by the Sending MSH1467
to request a Receiving MSH, acting in the role of the actor URI identified in the SOAP actor attribute,1468
returns an Acknowledgment Message.1469

The AckRequested element contains the following:1470

• a id attribute (see section 2.3.7 for details)1471

• a version attribute (see section 2.3.8 for details)1472

• a SOAP mustUnderstand attribute with a value of "1" (see section 2.3.9 for details)1473

• a SOAP actor attribute1474

• a signed attribute1475

This element is used to indicate to a Receiving MSH, acting in the role identified by the SOAP actor1476
attribute, whether an Acknowledgment Message is expected, and if so, whether the message should be1477
signed by the Receiving MSH.1478

An ebXML Message MAY have zero, one, or two instances of an AckRequested element. A single MSH1479
node SHOULD only insert one AckRequested element. If there are two AckRequested elements1480
present, they MUST have different values for their respective SOAP actor attributes. At most one1481
AckRequested element can be targeted at the actor URI meaning Next MSH (see section 2.3.10) and at1482
most one AckRequested element can be targeted at the actor URI meaning To Party MSH (see section1483
2.3.11) for any given message.1484

6.3.1.1 SOAP actor attribute1485

The AckRequested element MUST be targeted at either the Next MSH or the To Party MSH (these are1486
equivalent for single-hop routing). This is accomplished by including a SOAP actor with a URN value1487
with one of the two ebXML actor URNs defined in sections 2.3.10 and 2.3.11 or by leaving this attribute1488
out. The default actor targets the To Party MSH.1489

6.3.1.2 signed attribute1490

The REQUIRED signed attribute is used by a From Party to indicate whether or not a message received1491
by the To Party MSH should result in the To Party returning a signed Acknowledgment Message –1492
containing a [XMLDSIG] Signature element as described in section 4.1. Valid values for signed are:1493

• true - a signed Acknowledgment Message is requested, or1494

• false - an unsigned Acknowledgment Message is requested.1495

Before setting the value of the signed attribute in AckRequested, the Sending MSH SHOULD check if1496
the Receiving MSH supports Acknowledgment Messages of the type requested (see also [ebCPP]).1497

When a Receiving MSH receives a message with signed attribute set to true or false then it should verify1498
it is able to support the type of Acknowledgment Message requested.1499

• If the Receiving MSH can produce the Acknowledgment Message of the type requested, then it MUST1500
return to the Sending MSH a message containing an Acknowledgment element.1501

• If the Receiving MSH cannot return an Acknowledgment Message as requested it MUST report the error to1502
the Sending MSH using an errorCode of Inconsistent and a severity of either Error if inconsistent with the1503
CPA, or Warning if not supported..1504

6.3.1.3 AckRequested Sample1505

In the following example, an Acknowledgment Message is requested of a MSH node acting in the role of1506
the To Party (see section 2.3.11). The Acknowledgment element generated MUST be targeted to the1507

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 38 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

ebXML MSH node acting in the role of the From Party along the reverse message path (end-to-end1508
acknowledgment).1509

<eb:AckRequested SOAP:mustUnderstand="1" eb:version="2.0" eb:signed="false"/>1510

6.3.1.4 AckRequested Element Interaction1511

An AckRequested element MUST NOT be included on a message with only an Acknowledgment1512
element (no payload). This restriction is imposed to avoid endless loops of Acknowledgement Messages.1513
An Error Message MUST NOT contain an AckRequested element.1514

6.3.2 Acknowledgment Element1515
The Acknowledgment element is an OPTIONAL extension to the SOAP Header used by one Message1516
Service Handler to indicate to another Message Service Handler that it has received a message. The1517
RefToMessageId element in an Acknowledgment element is used to identify the message being1518
acknowledged by its MessageId.1519

The Acknowledgment element consists of the following elements and attributes:1520

• an id attribute (see section 2.3.7 for details)1521

• a version attribute (see section 2.3.8 for details)1522

• a SOAP mustUnderstand attribute with a value of "1" (see section 2.3.9 for details)1523

• a SOAP actor attribute1524

• a Timestamp element1525

• a RefToMessageId element1526

• a From element1527

• zero or more [XMLDSIG] Reference element(s)1528

6.3.2.1 SOAP actor attribute1529

The SOAP actor attribute of the Acknowledgment element SHALL have a value corresponding to the1530
AckRequested element of the message being acknowledged. If there is no SOAP actor attribute1531
present on an Acknowledgment element, the default target is the To Party MSH (see section for 10.1.3).1532

6.3.2.2 Timestamp Element1533

The REQUIRED Timestamp element is a value representing the time that the message being1534
acknowledged was received by the MSH generating the acknowledgment message. It must conform to a1535
dateTime [XMLSchema] and is expressed as UTC (section 3.1.6.2).1536

6.3.2.3 RefToMessageId Element1537

The REQUIRED RefToMessageId element contains the MessageId of the message whose delivery is1538
being reported.1539

6.3.2.4 From Element1540

This is the same element as the From element within MessageHeader element (see section 3.1.1).1541
However, when used in the context of an Acknowledgment element, it contains the identifier of the Party1542
generating the Acknowledgment Message.1543

If the From element is omitted then the Party sending the element is identified by the From element in1544
the MessageHeader element.1545

6.3.2.5 [XMLDSIG] Reference Element1546

An Acknowledgment Message MAY be used to enable non-repudiation of receipt by a MSH by including1547
one or more Reference elements, from the XML Signature [XMLDSIG] namespace, derived from the1548
message being acknowledged (see section 4.1.3 for details). The Reference element(s) MUST be1549

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 39 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

namespace qualified to the aforementioned namespace and MUST conform to the XML Signature1550
[XMLDSIG] specification. If the message being acknowledged contains an AckRequested element with1551
a signed attribute set to true, then the [XMLDSIG] Reference list is REQUIRED.1552

Receipt of an Acknowledgment Message, indicates the original message reached its destination. Receipt1553
of a signed Acknowledgment Message validates the sender of the Acknowledgment Message. However,1554
a signed Acknowledgment Message does not indicate whether the message arrived intact. Including a1555
digest (see [XMLDSIG] section 4.3.3) of the original message in the Acknowledgment Message indicates1556
to the original sender what was received by the recipient of the message being acknowledged. The1557
digest contained in the Acknowledgment Message may be compared to a digest of the original message.1558
If the digests match, the message arrived intact. Such a digest already exists in the original message, if it1559
is signed, contained within the [XMLDSIG] Signature / Reference element(s).1560

If the original message is signed, the [XMLDSIG] Signature / Reference element(s) of the original1561
message will be identical to the Acknowledgment / [XMLDSIG] Reference element(s) in the1562
Acknowledgment Message. If the original message is not signed, the [XMLDSIG] Reference element1563
must be derived from the original message (see section 4.1.3).1564

Upon receipt of an end-to-end Acknowledgment Message, the From Party MSH MAY notify the1565
application of successful delivery for the referenced message. This MSH SHOULD ignore subsequent1566
Error or Acknowledgment Messages with the same RefToMessageId value.1567

6.3.2.6 Acknowledgment Sample1568

An example Acknowledgment element targeted at the To Party MSH:1569

<eb:Acknowledgment SOAP:mustUnderstand="1" eb:version="2.0">1570
<eb:Timestamp>2001-03-09T12:22:30</eb:Timestamp>1571
<eb:RefToMessageId>323210:e52151ec74:7ffc@xtacy</eb:RefToMessageId>1572
<eb:From> <eb:PartyId>uri:www.example.com</eb:PartyId> </eb:From>1573

</eb:Acknowledgment>1574

6.3.2.7 Sending an Acknowledgment Message by Itself1575

If there are no errors in the message received and an Acknowledgment Message is being sent on its own,1576
not as a message containing payload data, then the Service and Action MUST be set as follows:1577

• the Service element MUST be set to urn:oasis:names:tc:ebxml-msg:service1578

• the Action element MUST be set to Acknowledgment1579

6.3.2.8 Acknowledgment Element Interaction1580

An Acknowledgment element MAY be present on any message, except as noted in section 6.3.1.4. An1581
Acknowledgment Message MUST NOT be returned for an Error Message.1582

6.4 Reliable Messaging Parameters1583

This section describes the parameters required to control reliable messaging. Many of these parameters1584
can be obtained from a CPA.1585

6.4.1 DuplicateElimination1586
The DuplicateElimination element MUST be used by the From Party MSH to indicate whether the1587
Receiving MSH MUST eliminate duplicates (see section 6.6 for Reliable Messaging behaviors). If the1588
value of duplicateElimination in the CPA is never, DuplicateElimination MUST NOT be present.1589

• If DuplicateElimination is present – The To Party MSH must persist messages in a persistent store so1590
duplicate messages will be presented to the To Party Application At-Most-Once, or1591

• If DuplicateElimination is not present – The To Party MSH is not required to maintain the message in1592
persistent store and is not required to check for duplicates.1593

If DuplicateElimination is present, the To Party MSH must adopt a reliable messaging behavior (see1594
section 6.6) causing duplicate messages to be ignored.1595

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 40 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

If DuplicateElimination is not present, a Receiving MSH is not required to check for duplicate message1596
delivery. Duplicate messages might be delivered to an application and persistent storage of messages is1597
not required – although elimination of duplicates is still allowed.1598

If the To Party is unable to support the requested functionality, or if the value of duplicateElimination in1599
the CPA does not match the implied value of the element, the To Party SHOULD report the error to the1600
From Party using an errorCode of Inconsistent and a Severity of Error.1601

6.4.2 AckRequested1602
The AckRequested parameter is used by the Sending MSH to request a Receiving MSH, acting in the1603
role of the actor URI identified in the SOAP actor attribute, return an Acknowledgment Message1604
containing an Acknowledgment element (see section 6.3.1).1605

6.4.3 Retries1606
The Retries parameter, from a CPA, is an integer value specifying the maximum number of times a1607
Sending MSH SHOULD attempt to redeliver an unacknowledged message using the same1608
communications protocol.1609

6.4.4 RetryInterval1610
The RetryInterval parameter, from a CPA, is a time value, expressed as a duration in accordance with1611
the duration [XMLSchema] data type. This value specifies the minimum time a Sending MSH SHOULD1612
wait between Retries, if an Acknowledgment Message is not received or if a communications error was1613
detected during an attempt to send the message. RetryInterval applies to the time between sending of1614
the original message and the first retry as well as the time between retries.1615

6.4.5 TimeToLive1616
TimeToLive is defined in section 3.1.6.4.1617

For a reliably delivered message, TimeToLive MUST conform to:1618

TimeToLive > Timestamp + ((Retries + 1) * RetryInterval).1619

where TimeStamp comes from MessageData.1620

6.4.6 PersistDuration1621
The PersistDuration parameter, from a CPA, is the minimum length of time, expressed as a duration1622
[XMLSchema], data from a reliably sent Message, is kept in Persistent Storage by a Receiving MSH.1623

If the PersistDuration has passed since the message was first sent, a Sending MSH SHOULD NOT1624
resend a message with the same MessageId.1625

If a message cannot be sent successfully before PersistDuration has passed, then the Sending MSH1626
should report a delivery failure (see section 6.5.7).1627

TimeStamp for a reliably sent message (found in the message header), plus its PersistDuration (found1628
in the CPA), must be greater than its TimeToLive (found in the message header).1629

6.4.7 syncReplyMode1630
The syncReplyMode parameter from the CPA is used only if the data communications protocol is1631
synchronous (e.g. HTTP). If the communications protocol is not synchronous, then the value of1632
syncReplyMode is ignored. If the syncReplyMode attribute is not present, it is semantically equivalent1633
to its presence with a value of none. If the syncReplyMode parameter is not none, a SyncReply1634
element MUST be present and the MSH must return any response from the application or business1635
process in the payload of the synchronous reply message, as specified in the CPA. Valid values of1636
syncReplyMode are mshSignalsOnly, signalsOnly, signalsAndRespose, responseOnly, and none.1637
See also the description of syncReplyMode in the CPPA [ebCPP] specification.1638

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 41 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

If the value of syncReplyMode is none and a SyncReply element is present, the Receiving MSH should1639
issue an error with errorCode of Inconsistent and a severity of Error (see section 4.1.5).1640

6.5 ebXML Reliable Messaging Protocol1641

The ebXML Reliable Messaging Protocol is illustrated by the following figure.1642

1643

Figure 6-1 Indicating a message has been received1644

The receipt of the Acknowledgment Message indicates the message being acknowledged has been1645
successfully received and either processed or persisted by the Receiving MSH.1646

An Acknowledgment Message MUST contain an Acknowledgment element as described in section 6.3.11647
with a RefToMessageId containing the same value as the MessageId element in the message being1648
acknowledged.1649

6.5.1 Sending Message Behavior1650
If a MSH is given data by an application needing to be sent reliably, the MSH MUST do the following:1651

1. Create a message from components received from the application.1652

2. Insert an AckRequested element as defined in section 6.3.1.1653

3. Save the message in persistent storage (see section 6.1).1654

4. Send the message to the Receiving MSH.1655

5. Wait for the return of an Acknowledgment Message acknowledging receipt of this specific1656
message and, if it does not arrive before RetryInterval has elapsed, or if a communications1657
protocol error is encountered, then take the appropriate action as described in section 6.5.4.1658

6.5.2 Receiving Message Behavior1659
If this is an Acknowledgment Message as defined in section 6 then:1660

1 Look for a message in persistent storage with a MessageId the same as the value of1661
RefToMessageId on the received Message.1662

2 If a message is found in persistent storage then mark the persisted message as delivered.1663

If the Receiving MSH is NOT the To Party MSH (as defined in section 2.3.10 and 2.3.11), then see1664
section 10.1.3 for the behavior of the AckRequested element.1665

If an AckRequested element is present (not an Acknowledgment Message) then:1666

1 If the message is a duplicate (i.e. there is a MessageId held in persistent storage containing the1667
same value as the MessageId in the received message), generate an Acknowledgment Message1668
(see section 6.5.3). Follow the procedure in section 6.5.5 for resending lost Acknowledgment1669

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 42 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

Messages. The Receiving MSH MUST NOT deliver the message to the application interface.1670
Note: The check for duplicates is only performed when DuplicateElimination is present.1671

2 If the message is not a duplicate or (there is no MessageId held in persistent storage1672
corresponding to the MessageId in the received message) then:1673

a If there is a DuplicateElimination element, save the MessageId of the received message in1674
persistent storage. As an implementation decision, the whole message MAY be stored.1675

b Generate an Acknowledgment Message in response (this may be as part of another1676
message). The Receiving MSH MUST NOT send an Acknowledgment Message until the1677
message has been safely stored in persistent storage or delivered to the application1678
interface. Delivery of an Acknowledgment Message constitutes an obligation by the1679
Receiving MSH to deliver the message to the application or forward to the next MSH in the1680
message path as appropriate.1681

If there is no AckRequested element then do the following:1682

1 If there is a DuplicateElimination element, and the message is a duplicate, then do nothing.1683

2 Otherwise, deliver the message to the application interface1684

If the Receiving MSH node is operating as an intermediary along the message's message path, then it1685
MAY use store-and-forward behavior. However, it MUST NOT filter out perceived duplicate messages1686
from their normal processing at that node.1687

If an Acknowledgment Message is received unexpectedly, it should be ignored. No error should be sent.1688

6.5.3 Generating an Acknowledgment Message1689
An Acknowledgment Message MUST be generated whenever a message is received with an1690
AckRequested element having a SOAP actor URI targeting the Receiving MSH node.1691

As a minimum, it MUST contain an Acknowledgment element with a RefToMessageId containing the1692
same value as the MessageId element in the message being acknowledged. This message MUST be1693
placed in persistent storage with the same PersistDuration as the original message.1694

The Acknowledgment Message can be sent at the same time as the response to the received message.1695
In this case, the values for the MessageHeader elements of the Acknowledgment Message are1696
determined by the Service and Action associated with the business response.1697

If an Acknowledgment Message is being sent on its own, then the value of the MessageHeader elements1698
MUST be set as follows:1699

• The Service element MUST be set to: urn:oasis:names:tc:ebxml-msg:service1700

• The Action element MUST be set to Acknowledgment.1701

• The From element MAY be populated with the To element extracted from the message received and all1702
child elements from the To element received SHOULD be included in this From element.1703

• The To element MAY be populated with the From element extracted from the message received and all1704
child elements from the From element received SHOULD be included in this To element.1705

• The RefToMessageId element MUST be set to the MessageId of the message received.1706

6.5.4 Resending Lost Application Messages1707
This section describes the behavior required by the sender and receiver of a message in order to handle1708
lost messages. A message is "lost" when a Sending MSH does not receive a positive acknowledgment to1709
a message. For example, it is possible a message was lost:1710

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 43 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

1711

Figure 6-2 Undelivered Message1712

It is also possible the Acknowledgment Message was lost, for example:1713

1714

Figure 6-3 Lost Acknowledgment Message1715

Note: Acknowledgment Messages are never acknowledged.1716

The rules applying to the non-receipt of an anticipated Acknowledgment due to the loss of either the1717
application message or the Acknowledgment Message are as follows:1718

• The Sending MSH MUST resend the original message if an Acknowledgment Message has been requested1719
but has not been received and the following are true:1720

• At least the time specified in the RetryInterval parameter has passed since the message was last sent,1721

• The message has been resent less than the number of times specified in the Retries parameter.1722

• If the Sending MSH does not receive an Acknowledgment Message after the maximum number of retries,1723
the Sending MSH SHALL notify the application and/or system administrator function of the failure to receive1724
an Acknowledgment Message (see also section 4.2.3.2.4 concerning treatment of errors).1725

• If the Sending MSH detects a communications protocol error, the Sending MSH MUST resend the message1726
using the same algorithm as if it has not received an Acknowledgment Message.1727

6.5.5 Resending Acknowledgments1728
If the Receiving MSH receives a message it discovers to be a duplicate, it should resend the original1729
Acknowledgment Message if the message is stored in persistent store. In this case, do the following:1730

Look in persistent storage for the first response to the received message (i.e. it contains a1731
RefToMessageId that matches the MessageId of the received message).1732

If a response message was found in persistent storage then resend the persisted message back to the1733
MSH that sent the received message. If no response message was found in persistent storage, then:1734

(1) If syncReplyMode is not set to none and if the CPA indicates an application response is1735
included, then it must be the case that the application has not finished processing the earlier1736

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 44 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

copy of the same message. Therefore, wait for the response from the application and then1737
return that response synchronously over the same connection that was used for the1738
retransmission.1739

(2) Otherwise, generate an Acknowledgment Message.1740

6.5.6 Duplicate Message Handling1741
In the context of this specification:1742

• an "identical message" – a message containing the same ebXML SOAP Header, Body and ebXML Payload1743
Container(s) as the earlier sent message.1744

• a "duplicate message" – a message containing the same MessageId as a previously received message.1745

• the "first response message" – the message with the earliest Timestamp in the MessageData element1746
having the same RefToMessageId as the duplicate message.1747

1748

Figure 6-4 Resending Unacknowledged Messages1749

The diagram above shows the behavior to be followed by the Sending and Receiving MSH for messages1750
sent with an AckRequested element and a DuplicateElimination element. Specifically:1751

1) The sender of the message (e.g. Party A MSH) MUST resend the "identical message" if no1752
Acknowledgment Message is received.1753

2) When the recipient (Party B MSH) of the message receives a "duplicate message", it MUST resend to1754
the sender (Party A MSH) an Acknowledgment Message identical to the first response message sent1755
to the sender Party A MSH).1756

3) The recipient of the message (Party B MSH) MUST NOT forward the message a second time to the1757
application/process.1758

6.5.7 Failed Message Delivery1759
If a message sent with an AckRequested element cannot be delivered, the MSH or process handling the1760
message (as in the case of a routing intermediary) SHALL send a delivery failure notification to the From1761
Party. The delivery failure notification message is an Error Message with errorCode of DeliveryFailure1762
and a severity of:1763

• Error if the party who detected the problem could not transmit the message (e.g. the communications1764
transport was not available)1765

• Warning if the message was transmitted, but an Acknowledgment Message was not received. This means1766
the message probably was not delivered.1767

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 45 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

It is possible an error message with an Error element having an errorCode set to DeliveryFailure1768
cannot be delivered successfully for some reason. If this occurs, then the From Party, the ultimate1769
destination for the Error Message, MUST be informed of the problem by other means. How this is done is1770
outside the scope of this specification1771

Note: If the From Party MSH receives an Acknowledgment Message from the To Party MSH, it should ignore all1772
other DeliveryFailure or Acknowledgment Messages.1773

6.6 Reliable Messaging Combinations1774

Duplicate-
Elimination§

AckRequested
ToPartyMSH

AckRequested
NextMSH Comment

1 Y Y Y
Once-And-Only-Once Reliable Messaging at the End-To-End and At-
Least-Once to the Intermediate. Intermediate and To Party can issue
Delivery Failure Notifications if they cannot deliver.

2 Y Y N
Once-And-Only-Once Reliable Message at the
End-To-End level only based upon end-to-end retransmission

3 Y N Y
At-Least-Once Reliable Messaging at the Intermediate Level –
Once-And-Only-Once end-to-end if all Intermediates are Reliable.
No End-to-End notification.

4 Y N N
At-Most-Once Duplicate Elimination only at the To Party
No retries at the Intermediate or the End.

5 N Y Y
At-Least-Once Reliable Messaging with
duplicates possible at the Intermediate and the To Party.

6 N Y N
At-Least-Once Reliable Messaging
duplicates possible at the Intermediate and the To Party.

7 N N Y
At-Least-Once Reliable Messaging
to the Intermediate and at the End.
No End-to-End notification.

8 N N N Best Effort
§Duplicate Elimination is only performed at the To Party MSH, not at the Intermediate Level.1775

7 Message Status Service1776

The Message Status Request Service consists of the following:1777

• A Message Status Request message containing details regarding a message previously sent is sent to a1778
Message Service Handler (MSH)1779

• The Message Service Handler receiving the request responds with a Message Status Response message.1780

A Message Service Handler SHOULD respond to Message Status Requests for messages that have1781
been sent reliably and the MessageId in the RefToMessageId is present in persistent storage (see1782
section 6.1).1783

A Message Service Handler MAY respond to Message Status Requests for messages that have not been1784
sent reliably.1785

A Message Service SHOULD NOT use the Message Status Request Service to implement Reliable1786
Messaging.1787

If a Receiving MSH does not support the service requested, it SHOULD return an Error Message with an1788
errorCode of NotSupported and a highestSeverity attribute set to Error. Each service is described1789
below.1790

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 46 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

7.1 Message Status Messages1791

7.1.1 Message Status Request Message1792
A Message Status Request message consists of an ebXML Message with no ebXML Payload Container1793
and the following:1794

• a MessageHeader element containing:1795

• a From element identifying the Party that created the Message Status Request message1796

• a To element identifying a Party who should receive the message.1797

• a Service element that contains: urn:oasis:names:tc:ebxml-msg:service1798

• an Action element that contains StatusRequest1799

• a MessageData element1800

• a StatusRequest element containing:1801

• a RefToMessageId element in StatusRequest element containing the MessageId of the message1802
whose status is being queried.1803

• an [XMLDSIG] Signature element (see section 4.1 for more details)1804

The message is then sent to the To Party.1805

7.1.2 Message Status Response Message1806
Once the To Party receives the Message Status Request message, they SHOULD generate a Message1807
Status Response message with no ebXML Payload Container consisting of the following:1808

• a MessageHeader element containing:1809
! a From element that identifies the sender of the Message Status Response message1810
! a To element set to the value of the From element in the Message Status Request message1811
! a Service element that contains urn:oasis:names:tc:ebxml-msg:service1812
! an Action element that contains StatusResponse1813
! a MessageData element containing:1814

• a RefToMessageId that identifies the Message Status Request message.1815

• StatusResponse element (see section 7.2.3)1816

• an [XMLDSIG] Signature element (see section 4.1 for more details)1817

The message is then sent to the To Party.1818

7.1.3 Security Considerations1819
Parties who receive a Message Status Request message SHOULD always respond to the message.1820
However, they MAY ignore the message instead of responding with messageStatus set to1821
UnAuthorized if they consider the sender of the message to be unauthorized. The decision process1822
resulting in this course of action is implementation dependent.1823

7.2 StatusRequest Element1824

The OPTIONAL StatusRequest element is an immediate child of a SOAP Body and is used to identify1825
an earlier message whose status is being requested (see section 7.3.5).1826

The StatusRequest element consists of the following:1827

• an id attribute (see section 2.3.7 for details)1828

• a version attribute (see section 2.3.8 for details)1829

• a RefToMessageId element1830

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 47 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

7.2.1 RefToMessageId Element1831
A REQUIRED RefToMessageId element contains the MessageId of the message whose status is being1832
requested.1833

7.2.2 StatusRequest Sample1834
An example of the StatusRequest element is given below:1835

<eb:StatusRequest eb:version="2.0" >1836
<eb:RefToMessageId>323210:e52151ec74:-7ffc@xtacy</eb:RefToMessageId>1837

</eb:StatusRequest>1838

7.2.3 StatusRequest Element Interaction1839
A StatusRequest element MUST NOT be present with the following elements:1840

• a Manifest element1841

• a StatusResponse element1842

• an ErrorList element1843

7.3 StatusResponse Element1844

The OPTIONAL StatusResponse element is an immediate child of a SOAP Body and is used by one1845
MSH to describe the status of processing of a message.1846

The StatusResponse element consists of the following elements and attributes:1847

• an id attribute (see section 2.3.7 for details)1848

• a version attribute (see section 2.3.8 for details)1849

• a RefToMessageId element1850

• a Timestamp element1851

• a messageStatus attribute1852

7.3.1 RefToMessageId Element1853
A REQUIRED RefToMessageId element contains the MessageId of the message whose status is being1854
reported. RefToMessageId element child of the MessageData element of a message containing a1855
StatusResponse element SHALL have the MessageId of the message containing the StatusRequest1856
element to which the StatusResponse element applies. The RefToMessageId child element of the1857
StatusRequest or StatusResponse element SHALL contain the MessageId of the message whose1858
status is being queried.1859

7.3.2 Timestamp Element1860
The Timestamp element contains the time the message, whose status is being reported, was received1861
(section 3.1.6.2.). This MUST be omitted if the message, whose status is being reported, is1862
NotRecognized or the request was UnAuthorized.1863

7.3.3 messageStatus attribute1864
The REQUIRED messageStatus attribute identifies the status of the message identified by the1865
RefToMessageId element. It SHALL be set to one of the following values:1866

• UnAuthorized – the Message Status Request is not authorized or accepted1867

• NotRecognized – the message identified by the RefToMessageId element in the StatusResponse1868
element is not recognized1869

• Received – the message identified by the RefToMessageId element in the StatusResponse element has1870
been received by the MSH1871

• Processed – the message identified by the RefToMessageId element in the StatusResponse element has1872
been processed by the MSH1873

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 48 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

• Forwarded – the message identified by the RefToMessageId element in the StatusResponse element has1874
been forwarded by the MSH to another MSH1875

Note: if a Message Status Request is sent after the elapsed time indicated by PersistDuration has passed since the1876
message being queried was sent, the Message Status Response may indicate the MessageId was NotRecognized –1877
the MessageId is no longer in persistent storage.1878

7.3.4 StatusResponse Sample1879
An example of the StatusResponse element is given below:1880

<eb:StatusResponse eb:version="2.0" eb:messageStatus="Received">1881
<eb:RefToMessageId>323210:e52151ec74:-7ffc@xtacy</eb:RefToMessageId>1882
<eb:Timestamp>2001-03-09T12:22:30</eb:Timestamp>1883

</eb:StatusResponse>1884

7.3.5 StatusResponse Element Interaction1885
This element MUST NOT be present with the following elements:1886

• a Manifest element1887

• a StatusRequest element1888

• an ErrorList element with a highestSeverity attribute set to Error1889

8 Message Service Handler Ping Service1890

The OPTIONAL Message Service Handler Ping Service enables one MSH to determine if another MSH is1891
operating. It consists of:1892

• one MSH sending a Message Service Handler Ping message to a MSH, and1893

• another MSH, receiving the Ping, responding with a Message Service Handler Pong message.1894

If a Receiving MSH does not support the service requested, it SHOULD return an Error Message with an1895
errorCode of NotSupported and a highestSeverity attribute set to Error.1896

8.1 Message Service Handler Ping Message1897

A Message Service Handler Ping (MSH Ping) message consists of an ebXML Message containing no1898
ebXML Payload Container and the following:1899

• a MessageHeader element containing the following:1900

• a From element identifying the Party creating the MSH Ping message1901

• a To element identifying the Party being sent the MSH Ping message1902

• a CPAId element1903

• a ConversationId element1904

• a Service element containing: urn:oasis:names:tc:ebxml-msg:service1905

• an Action element containing Ping1906

• a MessageData element1907

• an [XMLDSIG] Signature element (see section 4.1 for details).1908

The message is then sent to the To Party.1909

An example Ping:1910

. . .Transport Headers1911
SOAPAction: "ebXML"1912
Content-type: multipart/related; boundary="ebXMLBoundary"1913

1914
--ebXMLBoundary1915
Content-Type: text/xml1916

1917

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 49 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

<?xml version="1.0" encoding="UTF-8"?>1918
<SOAP:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"1919

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"1920
xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/1921

http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd">1922
<SOAP:Header xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"1923

xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd1924
http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">1925

<eb:MessageHeader version="2.0" SOAP:mustUnderstand="1"1926
xmlns=eb:"http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"1927
xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd1928

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">1929
<eb:From> <eb:PartyId>urn:duns:123456789</eb:PartyId> </eb:From>1930
<eb:To> <eb:PartyId>urn:duns:912345678</eb:PartyId> </eb:To>1931
<eb:CPAId>20001209-133003-28572</eb:CPAId>1932
<eb:ConversationId>20010215-111213-28572</eb:ConversationId>1933
<eb:Service>urn:oasis:names:tc:ebxml-msg:service</eb:Service>1934
<eb:Action>Ping</eb:Action>1935
<eb:MessageData>1936

<eb:MessageId>20010215-111212-28572@example.com</eb:MessageId>1937
<eb:Timestamp>2001-02-15T11:12:12</eb:Timestamp>1938

</eb:MessageData>1939
</eb:MessageHeader>1940

</SOAP:Header>1941
<SOAP:Body/>1942
</SOAP:Envelope>1943

1944
--ebXMLBoundary––1945
Note: The above example shows a Multipart/Related MIME structure with only one bodypart.1946

8.2 Message Service Handler Pong Message1947

Once the To Party receives the MSH Ping message, they MAY generate a Message Service Handler1948
Pong (MSH Pong) message consisting of an ebXML Message containing no ebXML Payload Container1949
and the following:1950

• a MessageHeader element containing the following:1951

• a From element identifying the creator of the MSH Pong message1952

• a To element identifying a Party that generated the MSH Ping message1953

• a CPAId element1954

• a ConversationId element1955

• a Service element containing the value: urn:oasis:names:tc:ebxml-msg:service1956

• an Action element containing the value Pong1957

• a MessageData element containing:1958
! a RefToMessageId identifying the MSH Ping message.1959

• an [XMLDSIG] Signature element (see section 4.1.1 for details).1960

An example Pong:1961

. . .Transport Headers1962
SOAPAction: "ebXML"1963
Content-Type: text/xml1964

1965
<?xml version="1.0" encoding="UTF-8"?>1966
<SOAP:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"1967

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"1968
xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/1969

http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd">1970
<SOAP:Header xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"1971

xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd1972
http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">1973

<eb:MessageHeader eb:version="2.0" SOAP:mustUnderstand="1">1974
<eb:From> <eb:PartyId>urn:duns:912345678</eb:PartyId> </eb:From>1975
<eb:To> <eb:PartyId>urn:duns:123456789</eb:PartyId> </eb:To>1976

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 50 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

<eb:CPAId>20001209-133003-28572</eb:CPAId>1977
<eb:ConversationId>20010215-111213-28572</eb:ConversationId>1978
<eb:Service>urn:oasis:names:tc:ebxml-msg:service</eb:Service>1979
<eb:Action>Pong</eb:Action>1980
<eb:MessageData>1981

<eb:MessageId>20010215-111213-395884@example2.com</eb:MessageId>1982
<eb:Timestamp>2001-02-15T11:12:13</eb:Timestamp>1983
<eb:RefToMessageId>20010215-111212-28572@example.com</eb:RefToMessageId>1984

</eb:MessageData>1985
</eb:MessageHeader>1986

</SOAP:Header>1987
<SOAP:Body/>1988
</SOAP:Envelope>1989
Note: This example shows a non-multipart MIME structure.1990

8.3 Security Considerations1991

Parties who receive a MSH Ping message SHOULD always respond to the message. However, there is1992
a risk some parties might use the MSH Ping message to determine the existence of a Message Service1993
Handler as part of a security attack on that MSH. Therefore, recipients of a MSH Ping MAY ignore the1994
message if they consider that the sender of the message received is unauthorized or part of some attack.1995
The decision process that results in this course of action is implementation dependent.1996

9 MessageOrder Module1997

The MessageOrder module allows messages to be presented to the To Party in a particular order. This1998
is accomplished through the use of the MessageOrder element. Reliable Messaging MUST be used1999
when a MessageOrder element is present.2000

MessageOrder module MUST only be used in conjunction with the ebXML Reliable Messaging Module2001
(section 6) with a scheme of Once-And-Only-Once (sections 6.6). If a sequence is sent and one2002
message fails to arrive at the To Party MSH, all subsequent messages will also fail to be presented to the2003
To Party Application (see status attribute section 9.1.1).2004

9.1 MessageOrder Element2005

The MessageOrder element is an OPTIONAL extension to the SOAP Header requesting the2006
preservation of message order in this conversation.2007

The MessageOrder element contains the following:2008

• a id attribute (see section 2.3.7)2009

• a version attribute (see section 2.3.8 for details)2010

• a SOAP mustUnderstand attribute with a value of "1" (see section 2.3.9 for details)2011

• a SequenceNumber element2012

When the MessageOrder element is present, DuplicateElimination MUST also be present and2013
SyncReply MUST NOT be present.2014

9.1.1 SequenceNumber Element2015
The REQUIRED SequenceNumber element indicates the sequence a Receiving MSH MUST process2016
messages. The SequenceNumber is unique within the ConversationId and MSH. The From Party MSH2017
and the To Party MSH each set an independent SequenceNumber as the Sending MSH within the2018
ConversationId. It is set to zero on the first message from that MSH within a conversation and then2019
incremented by one for each subsequent message sent.2020

A MSH that receives a message with a SequenceNumber element MUST NOT pass the message to an2021
application until all the messages with a lower SequenceNumber have been passed to the application.2022

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 51 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

If the implementation defined limit for saved out-of-sequence messages is reached, then the Receiving2023
MSH MUST indicate a delivery failure to the Sending MSH with errorCode set to DeliveryFailure and2024
severity set to Error (see section 4.1.5).2025

The SequenceNumber element is an integer value incremented by the Sending MSH (e.g. 0, 1, 2, 3, 4...)2026
for each application-prepared message sent by that MSH within the ConversationId. The next value after2027
99999999 in the increment is “0". The value of SequenceNumber consists of ASCII numerals in the2028
range 0-99999999. In following cases, SequenceNumber takes the value “0":2029

1. First message from the Sending MSH within the conversation2030
2. First message after resetting SequenceNumber information by the Sending MSH2031
3. First message after wraparound (next value after 99999999)2032

The SequenceNumber element has a single attribute, status. This attribute is an enumeration, which2033
SHALL have one of the following values:2034

• Reset – the SequenceNumber is reset as shown in 1 or 2 above2035

• Continue – the SequenceNumber continues sequentially (including 3 above)2036

When the SequenceNumber is set to “0" because of 1 or 2 above, the Sending MSH MUST set the2037
status attribute of the message to Reset. In all other cases, including 3 above, the status attribute2038
MUST be set to Continue. The default value of the status attribute is Continue.2039

A Sending MSH MUST wait before resetting the SequenceNumber of a conversation until it has received2040
confirmation of all the messages previously sent for the conversation. Only when all the sent Messages2041
are accounted for, can the Sending MSH reset the SequenceNumber.2042

9.1.2 MessageOrder Sample2043
An example of the MessageOrder element is given below:2044

<eb:MessageOrder eb:version="2.0" SOAP:mustUnderstand="1">2045
<eb:SequenceNumber>00000010</eb:SequenceNumber>2046

</eb:MessageOrder>2047

9.2 MessageOrder Element Interaction2048

For this version of the ebXML Messaging Specification, the MessageOrder element MUST NOT be2049
present with the SyncReply element. If these two elements are received in the same message, the2050
Receiving MSH SHOULD report an error (see section 4.1.5) with errorCode set to Inconsistent and2051
severity set to Error.2052

10 Multi-Hop Module2053

Multi-hop is the process of passing the message through one or more intermediary nodes or MSH's. An2054
Intermediary is any node or MSH where the message is received, but is not the Sending or Receiving2055
MSH. This node is called an Intermediary.2056

Intermediaries may be for the purpose of Store-and-Forward or may be involved in some processing2057
activity such as a trusted third-party timestamp service. For the purposes of this version of this2058
specification, Intermediaries are considered only as Store-and-Forward entities.2059

Intermediaries MAY be involved in removing and adding SOAP extension elements or modules targeted2060
either to the Next SOAP node or the NextMSH. SOAP rules specify, the receiving node must remove2061
any element or module targeted to the Next SOAP node. If the element or module needs to continue to2062
appear on the SOAP message destined to the Next SOAP node, or in this specification the NextMSH, it2063
must be reapplied. This deleting and adding of elements or modules poses potential difficulties for signed2064
ebXML messages. Any Intermediary node or MSH MUST NOT change, format or in any way modify any2065
element not targeted to the Intermediary. Any such change may invalidate the signature.2066

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 52 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

10.1 Multi-hop Reliable Messaging2067

Multi-hop (hop-to-hop) Reliable Messaging is accomplished using the AckRequested element (section2068
6.3.1) and an Acknowledgment Message containing an Acknowledgment element (section 6.3.1.4) each2069
with a SOAP actor of Next MSH (section 2.3.10) between the Sending MSH and the Receiving MSH.2070
This MAY be used in store-and-forward multi-hop situations.2071

The use of the duplicate elimination is not required for Intermediate nodes. Since duplicate elimination by2072
an intermediate MSH can interfere with End-to-End Reliable Messaging Retries, the intermediate MSH2073
MUST know it is an intermediate and MUST NOT perform duplicate elimination tasks.2074

At this time, the values of Retry and RetryInterval between Intermediate MSHs remains implementation2075
specific. See section 6.4 for more detail on Reliable Messaging.2076

10.1.1 AckRequested Sample2077
An example of the AckRequested element targeted at the NextMSH is given below:2078

<eb:AckRequested SOAP:mustUnderstand="1" eb:version="2.0" eb:signed="false"2079
SOAP:actor="urn:oasis:names:tc:ebxml-msg:actor:nextMSH"/>2080

In the preceding example, an Acknowledgment Message is requested of the next ebXML MSH node (see2081
section 2.3.10) in the message. The Acknowledgment element generated MUST be targeted at the next2082
ebXML MSH node along the reverse message path (the Sending MSH) using the SOAP actor with a2083
value of NextMSH (section 2.3.10).2084

Any Intermediary receiving an AckRequested with SOAP actor of NextMSH MUST remove the2085
AckRequested element before forwarding to the next MSH. Any Intermediary MAY insert a single2086
AckRequested element into the SOAP Header with a SOAP actor of NextMSH. There SHALL NOT be2087
two AckRequested elements targeted at the next MSH.2088

When the SyncReply element is present, an AckRequested element with SOAP actor of NextMSH2089
MUST NOT be present. If the SyncReply element is not present, the Intermediary MAY return the2090
Intermediate Acknowledgment Message synchronously with a synchronous transport protocol. If these2091
two elements are received in the same message, the Receiving MSH SHOULD report an error (see2092
section 4.1.5) with errorCode set to Inconsistent and severity set to Error.2093

10.1.2 Acknowledgment Sample2094
An example of the Acknowledgment element targeted at the NextMSH is given below:2095

<eb:Acknowledgment SOAP:mustUnderstand="1" eb:version="2.0"2096
SOAP:actor="urn:oasis:names:tc:ebxml-msg:actor:nextMSH">2097

<eb:Timestamp>2001-03-09T12:22:30</eb:Timestamp>2098
<eb:RefToMessageId>323210:e52151ec74:-7ffc@xtacy</eb:RefToMessageId>2099
<eb:From> <eb:PartyId>uri:www.example.com</eb:PartyId> </eb:From>2100

</eb:Acknowledgment>2101

10.1.3 Multi-Hop Acknowledgments2102
There MAY be two AckRequested elements on the same message. An Acknowledgement MUST be2103
sent for each AckRequested using an identical SOAP actor attribute as the AckRequested element.2104

If the Receiving MSH is the To Party MSH, then see section 6.5.2. If the Receiving MSH is the To Party2105
MSH and there is an AckRequested element targeting the Next MSH (the To Party MSH is acting in both2106
roles), then perform both procedures (this section and section 6.5.2) for generating Acknowledgment2107
Messages. This MAY require sending two Acknowledgment elements, possibly on the same message,2108
one targeted for the Next MSH and one targeted for the To Party MSH.2109

There MAY be multiple Acknowledgements elements, on the same message or on different messages,2110
returning from either the Next MSH or from the To Party MSH. A MSH supporting Multi-hop MUST2111
differentiate, based upon the actor, which Acknowledgment is being returned and act accordingly.2112

If this is an Acknowledgment Message as defined in section 6 then:2113

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 53 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

1 Look for a message in persistent storage with a MessageId the same as the value of2114
RefToMessageId on the received Message.2115

2 If a message is found in persistent storage then mark the persisted message as delivered.2116

If an AckRequested element is present (not an Acknowledgment Message) then generate an2117
Acknowledgment Message in response (this may be as part of another message). The Receiving MSH2118
MUST NOT send an Acknowledgment Message until the message has been persisted or delivered to the2119
Next MSH.2120

10.1.4 Signing Multi-Hop Acknowledgments2121
When a signed Intermediate Acknowledgment Message is requested (i.e. a signed Acknowledgment2122
Message with a SOAP actor of NextMSH), it MUST be sent by itself and not bundled with any other2123
message. The XML Signature [XMLDSIG] Signature element with Transforms, as described in section2124
4.1.3, will exclude this Acknowledgment element. To send a signed Acknowledgment Message with2125
SOAP actor of NextMSH, create a message with no payloads, including a single Acknowledgment2126
element (see section 6.3.2.6), and a [XMLDSIG] Signature element with the following Transforms:2127

<Transforms>2128
<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>2129
<Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>2130

</Transforms>2131

10.1.5 Multi-Hop Security Considerations2132
SOAP messaging allows intermediaries to add or remove elements targeted to the intermediary node.2133
This has potential conflicts with end-to-end signatures since the slightest change in any character of the2134
SOAP Envelope or to a payload will invalidate the ds:Signature by changing the calculated digest.2135
Intermediaries MUST NOT add or remove elements unless they contain a SOAP actor of next or2136
nextMSH. Intermediaries MUST NOT disturb white space – line terminators (CR/LF), tabs, spaces, etc. –2137
outside those elements being added or removed.2138

10.2 Message Ordering and Multi-Hop2139

Intermediary MSH nodes MUST NOT participate in Message Order processing as specified in section 9.2140

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 54 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

Part III. Normative Appendices2141

Appendix A The ebXML SOAP Extension Elements Schema2142

The OASIS ebXML Messaging Technical Committee has provided a version of the SOAP 1.1 envelope2143
schema specified using the schema vocabulary that conforms to the W3C XML Schema2144
Recommendation specification [XMLSchema].2145

SOAP1.1- http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd2146

It was necessary to craft a schema for the XLINK [XLINK] attribute vocabulary to conform to the W3C2147
XML Schema Recommendation [XMLSchema]. This schema is referenced from the ebXML SOAP2148
extension elements schema and is available from the following URL:2149

Xlink - http://www.oasis-open.org/committees/ebxml-msg/schema/xlink.xsd2150

<?xml version="1.0" encoding="UTF-8"?>2151
<!-- Some parsers may require explicit declaration of xmlns:xml="http://www.w3.org/XML/1998/namespace".2152

In that case, a copy of this schema augmented with the above declaration should be cached and used2153
for the purpose of schema validation on ebXML messages. -->2154

<schema targetNamespace="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"2155
xmlns:tns="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"2156
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"2157
xmlns:xlink="http://www.w3.org/1999/xlink"2158
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"2159
xmlns="http://www.w3.org/2001/XMLSchema"2160
elementFormDefault="qualified"2161
attributeFormDefault="qualified"2162
version="1.0">2163
<import namespace="http://www.w3.org/2000/09/xmldsig#"2164
schemaLocation="http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd"/>2165

<import namespace="http://www.w3.org/1999/xlink"2166
schemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/xlink.xsd"/>2167

<import namespace="http://schemas.xmlsoap.org/soap/envelope/"2168
schemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd"/>2169

<import namespace="http://www.w3.org/XML/1998/namespace"2170
schemaLocation="http://www.w3.org/2001/03/xml.xsd"/>2171

<!-- MANIFEST, for use in soap:Body element -->2172
<element name="Manifest">2173
<complexType>2174
<sequence>2175
<element ref="tns:Reference" maxOccurs="unbounded"/>2176
<any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>2177

</sequence>2178
<attributeGroup ref="tns:bodyExtension.grp"/>2179

</complexType>2180
</element>2181
<element name="Reference">2182
<complexType>2183
<sequence>2184
<element ref="tns:Schema" minOccurs="0" maxOccurs="unbounded"/>2185
<element ref="tns:Description" minOccurs="0" maxOccurs="unbounded"/>2186
<any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>2187

</sequence>2188
<attribute ref="tns:id"/>2189
<attribute ref="xlink:type" fixed="simple"/>2190
<attribute ref="xlink:href" use="required"/>2191
<attribute ref="xlink:role"/>2192
<anyAttribute namespace="##other" processContents="lax"/>2193

</complexType>2194
</element>2195
<element name="Schema">2196
<complexType>2197
<attribute name="location" type="anyURI" use="required"/>2198
<attribute name="version" type="tns:non-empty-string"/>2199

</complexType>2200

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 55 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

</element>2201
<!-- MESSAGEHEADER, for use in soap:Header element -->2202
<element name="MessageHeader">2203
<complexType>2204
<sequence>2205
<element ref="tns:From"/>2206
<element ref="tns:To"/>2207
<element ref="tns:CPAId"/>2208
<element ref="tns:ConversationId"/>2209
<element ref="tns:Service"/>2210
<element ref="tns:Action"/>2211
<element ref="tns:MessageData"/>2212
<element ref="tns:DuplicateElimination" minOccurs="0"/>2213
<element ref="tns:Description" minOccurs="0" maxOccurs="unbounded"/>2214
<any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>2215

</sequence>2216
<attributeGroup ref="tns:headerExtension.grp"/>2217

</complexType>2218
</element>2219
<element name="CPAId" type="tns:non-empty-string"/>2220
<element name="ConversationId" type="tns:non-empty-string"/>2221
<element name="Service">2222
<complexType>2223
<simpleContent>2224
<extension base="tns:non-empty-string">2225
<attribute name="type" type="tns:non-empty-string"/>2226

</extension>2227
</simpleContent>2228

</complexType>2229
</element>2230
<element name="Action" type="tns:non-empty-string"/>2231
<element name="MessageData">2232
<complexType>2233
<sequence>2234
<element ref="tns:MessageId"/>2235
<element ref="tns:Timestamp"/>2236
<element ref="tns:RefToMessageId" minOccurs="0"/>2237
<element ref="tns:TimeToLive" minOccurs="0"/>2238

</sequence>2239
</complexType>2240

</element>2241
<element name="MessageId" type="tns:non-empty-string"/>2242
<element name="TimeToLive" type="dateTime"/>2243
<element name="DuplicateElimination">2244
</element>2245
<!-- SYNC REPLY, for use in soap:Header element -->2246
<element name="SyncReply">2247
<complexType>2248
<sequence>2249
<any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>2250

</sequence>2251
<attributeGroup ref="tns:headerExtension.grp"/>2252
<attribute ref="soap:actor" use="required"/>2253

</complexType>2254
</element>2255
<!-- MESSAGE ORDER, for use in soap:Header element -->2256
<element name="MessageOrder">2257
<complexType>2258
<sequence>2259
<element ref="tns:SequenceNumber"/>2260
<any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>2261

</sequence>2262
<attributeGroup ref="tns:headerExtension.grp"/>2263

</complexType>2264
</element>2265
<element name="SequenceNumber" type="tns:sequenceNumber.type"/>2266
<!-- ACK REQUESTED, for use in soap:Header element -->2267
<element name="AckRequested">2268
<complexType>2269
<sequence>2270
<any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>2271

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 56 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

</sequence>2272
<attributeGroup ref="tns:headerExtension.grp"/>2273
<attribute ref="soap:actor"/>2274
<attribute name="signed" type="boolean" use="required"/>2275

</complexType>2276
</element>2277
<!-- ACKNOWLEDGMENT, for use in soap:Header element -->2278
<element name="Acknowledgment">2279
<complexType>2280
<sequence>2281
<element ref="tns:Timestamp"/>2282
<element ref="tns:RefToMessageId"/>2283
<element ref="tns:From" minOccurs="0"/>2284
<element ref="ds:Reference" minOccurs="0" maxOccurs="unbounded"/>2285
<any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>2286

</sequence>2287
<attributeGroup ref="tns:headerExtension.grp"/>2288
<attribute ref="soap:actor"/>2289

</complexType>2290
</element>2291
<!-- ERROR LIST, for use in soap:Header element -->2292
<element name="ErrorList">2293
<complexType>2294
<sequence>2295
<element ref="tns:Error" maxOccurs="unbounded"/>2296
<any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>2297

</sequence>2298
<attributeGroup ref="tns:headerExtension.grp"/>2299
<attribute name="highestSeverity" type="tns:severity.type" use="required"/>2300

</complexType>2301
</element>2302
<element name="Error">2303
<complexType>2304
<sequence>2305
<element ref="tns:Description" minOccurs="0"/>2306
<any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>2307

</sequence>2308
<attribute ref="tns:id"/>2309
<attribute name="codeContext" type="anyURI"2310

default="urn:oasis:names:tc:ebxml-msg:service:errors"/>2311
<attribute name="errorCode" type="tns:non-empty-string" use="required"/>2312
<attribute name="severity" type="tns:severity.type" use="required"/>2313
<attribute name="location" type="tns:non-empty-string"/>2314
<anyAttribute namespace="##other" processContents="lax"/>2315

</complexType>2316
</element>2317
<!-- STATUS RESPONSE, for use in soap:Body element -->2318
<element name="StatusResponse">2319
<complexType>2320
<sequence>2321
<element ref="tns:RefToMessageId"/>2322
<element ref="tns:Timestamp" minOccurs="0"/>2323
<any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>2324

</sequence>2325
<attributeGroup ref="tns:bodyExtension.grp"/>2326
<attribute name="messageStatus" type="tns:messageStatus.type" use="required"/>2327

</complexType>2328
</element>2329
<!-- STATUS REQUEST, for use in soap:Body element -->2330
<element name="StatusRequest">2331
<complexType>2332
<sequence>2333
<element ref="tns:RefToMessageId"/>2334
<any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>2335

</sequence>2336
<attributeGroup ref="tns:bodyExtension.grp"/>2337

</complexType>2338
</element>2339
<!-- COMMON TYPES -->2340
<complexType name="sequenceNumber.type">2341
<simpleContent>2342

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 57 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

<extension base="nonNegativeInteger">2343
<attribute name="status" type="tns:status.type" default="Continue"/>2344

</extension>2345
</simpleContent>2346

</complexType>2347
<simpleType name="status.type">2348
<restriction base="NMTOKEN">2349
<enumeration value="Reset"/>2350
<enumeration value="Continue"/>2351

</restriction>2352
</simpleType>2353
<simpleType name="messageStatus.type">2354
<restriction base="NMTOKEN">2355
<enumeration value="UnAuthorized"/>2356
<enumeration value="NotRecognized"/>2357
<enumeration value="Received"/>2358
<enumeration value="Processed"/>2359
<enumeration value="Forwarded"/>2360

</restriction>2361
</simpleType>2362
<simpleType name="non-empty-string">2363
<restriction base="string">2364
<minLength value="1"/>2365

</restriction>2366
</simpleType>2367
<simpleType name="severity.type">2368
<restriction base="NMTOKEN">2369
<enumeration value="Warning"/>2370
<enumeration value="Error"/>2371

</restriction>2372
</simpleType>2373
<!-- COMMON ATTRIBUTES and ATTRIBUTE GROUPS -->2374
<attribute name="id" type="ID"/>2375
<attribute name="version" type="tns:non-empty-string"/>2376
<attributeGroup name="headerExtension.grp">2377
<attribute ref="tns:id"/>2378
<attribute ref="tns:version" use="required"/>2379
<attribute ref="soap:mustUnderstand" use="required"/>2380
<anyAttribute namespace="##other" processContents="lax"/>2381

</attributeGroup>2382
<attributeGroup name="bodyExtension.grp">2383
<attribute ref="tns:id"/>2384
<attribute ref="tns:version" use="required"/>2385
<anyAttribute namespace="##other" processContents="lax"/>2386

</attributeGroup>2387
<!-- COMMON ELEMENTS -->2388
<element name="PartyId">2389
<complexType>2390
<simpleContent>2391
<extension base="tns:non-empty-string">2392
<attribute name="type" type="tns:non-empty-string"/>2393

</extension>2394
</simpleContent>2395

</complexType>2396
</element>2397
<element name="To">2398
<complexType>2399
<sequence>2400
<element ref="tns:PartyId" maxOccurs="unbounded"/>2401
<element name="Role" type="tns:non-empty-string" minOccurs="0"/>2402

</sequence>2403
</complexType>2404

</element>2405
<element name="From">2406
<complexType>2407
<sequence>2408
<element ref="tns:PartyId" maxOccurs="unbounded"/>2409
<element name="Role" type="tns:non-empty-string" minOccurs="0"/>2410

</sequence>2411
</complexType>2412

</element>2413

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 58 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

<element name="Description">2414
<complexType>2415
<simpleContent>2416
<extension base="tns:non-empty-string">2417
<attribute ref="xml:lang" use="required"/>2418

</extension>2419
</simpleContent>2420

</complexType>2421
</element>2422
<element name="RefToMessageId" type="tns:non-empty-string"/>2423
<element name="Timestamp" type="dateTime"/>2424

</schema>2425

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 59 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

Appendix B Communications Protocol Bindings2426

B.1 Introduction2427

One of the goals of this specification is to design a message handling service usable over a variety of2428
network and application level transport protocols. These protocols serve as the "carrier" of ebXML2429
Messages and provide the underlying services necessary to carry out a complete ebXML Message2430
exchange between two parties. HTTP, FTP, Java Message Service (JMS) and SMTP are examples of2431
application level transport protocols. TCP and SNA/LU6.2 are examples of network transport protocols.2432
Transport protocols vary in their support for data content, processing behavior and error handling and2433
reporting. For example, it is customary to send binary data in raw form over HTTP. However, in the case2434
of SMTP it is customary to "encode" binary data into a 7-bit representation. HTTP is equally capable of2435
carrying out synchronous or asynchronous message exchanges whereas it is likely that message2436
exchanges occurring over SMTP will be asynchronous. This section describes the technical details2437
needed to implement this abstract ebXML Message Handling Service over particular transport protocols.2438

This section specifies communications protocol bindings and technical details for carrying ebXML2439
Message Service messages for the following communications protocols:2440

• Hypertext Transfer Protocol [RFC2616], in both asynchronous and synchronous forms of transfer.2441

• Simple Mail Transfer Protocol [RFC2821], in asynchronous form of transfer only.2442

B.2 HTTP2443

B.2.1 Minimum level of HTTP protocol2444

Hypertext Transfer Protocol Version 1.1 [RFC2616] is the minimum level of protocol that MUST be used.2445

B.2.2 Sending ebXML Service messages over HTTP2446

Even though several HTTP request methods are available, this specification only defines the use of HTTP2447
POST requests for sending ebXML Message Service messages over HTTP. The identity of the ebXML2448
MSH (e.g. ebxmlhandler) may be part of the HTTP POST request:2449

POST /ebxmlhandler HTTP/1.12450

Prior to sending over HTTP, an ebXML Message MUST be formatted according to ebXML Message2451
Service Specification. Additionally, the messages MUST conform to the HTTP specific MIME canonical2452
form constraints specified in section 19.4 of RFC 2616 [RFC2616] specification.2453

HTTP protocol natively supports 8-bit and Binary data. Hence, transfer encoding is OPTIONAL for such2454
parts in an ebXML Service Message prior to sending over HTTP. However, content-transfer-encoding of2455
such parts (e.g. using base64 encoding scheme) is not precluded by this specification.2456

The rules for forming an HTTP message containing an ebXML Service Message are as follows:2457

• The Content-Type: Multipart/Related MIME header with the associated parameters, from the2458
ebXML Service Message Envelope MUST appear as an HTTP header.2459

• All other MIME headers that constitute the ebXML Message Envelope MUST also become part of the HTTP2460
header.2461

• The mandatory SOAPAction HTTP header field must also be included in the HTTP header and MAY have2462
a value of "ebXML"2463

SOAPAction: "ebXML"2464

• Other headers with semantics defined by MIME specifications, such as Content-Transfer-Encoding, SHALL2465
NOT appear as HTTP headers. Specifically, the "MIME-Version: 1.0" header MUST NOT appear as an2466
HTTP header. However, HTTP-specific MIME-like headers defined by HTTP 1.1 MAY be used with the2467
semantic defined in the HTTP specification.2468

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 60 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

• All ebXML Service Message parts that follow the ebXML Message Envelope, including the MIME boundary2469
string, constitute the HTTP entity body. This encompasses the SOAP Envelope and the constituent ebXML2470
parts and attachments including the trailing MIME boundary strings.2471

The example below shows an example instance of an HTTP POST ebXML Service Message:2472

POST /servlet/ebXMLhandler HTTP/1.12473
Host: www.example2.com2474
SOAPAction: "ebXML"2475
Content-type: multipart/related; boundary="BoundarY"; type="text/xml";2476

start="<ebxhmheader111@example.com>"2477
2478

--BoundarY2479
Content-ID: <ebxhmheader111@example.com>2480
Content-Type: text/xml2481

2482
<?xml version="1.0" encoding="UTF-8"?>2483
<SOAP:Envelope xmlns:xlink="http://www.w3.org/1999/xlink"2484

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"2485
xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"2486
xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"2487

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/2488
http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd2489
http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd2490
http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">2491

<SOAP:Header>2492
<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">2493
<eb:From>2494
<eb:PartyId>urn:duns:123456789</eb:PartyId>2495

</eb:From>2496
<eb:To>2497
<eb:PartyId>urn:duns:912345678</eb:PartyId>2498

</eb:To>2499
<eb:CPAId>20001209-133003-28572</eb:CPAId>2500
<eb:ConversationId>20001209-133003-28572</eb:ConversationId>2501
<eb:Service>urn:services:SupplierOrderProcessing</eb:Service>2502
<eb:Action>NewOrder</eb:Action>2503
<eb:MessageData>2504
<eb:MessageId>20001209-133003-28572@example.com</eb:MessageId>2505
<eb:Timestamp>2001-02-15T11:12:12</eb:Timestamp>2506

</eb:MessageData>2507
</eb:MessageHeader>2508

</SOAP:Header>2509
<SOAP:Body>2510
<eb:Manifest eb:version="2.0">2511
<eb:Reference xlink:href="cid:ebxmlpayload111@example.com"2512

xlink:role="XLinkRole" xlink:type="simple">2513
<eb:Description xml:lang="en-US">Purchase Order 1</eb:Description>2514

</eb:Reference>2515
</eb:Manifest>2516

</SOAP:Body>2517
</SOAP:Envelope>2518

2519
--BoundarY2520
Content-ID: <ebxmlpayload111@example.com>2521
Content-Type: text/xml2522

2523
<?xml version="1.0" encoding="UTF-8"?>2524
<purchase_order>2525
<po_number>1</po_number>2526
<part_number>123</part_number>2527
<price currency="USD">500.00</price>2528

</purchase_order>2529
2530

--BoundarY––2531

B.2.3 HTTP Response Codes2532

In general, semantics of communicating over HTTP as specified in the [RFC2616] MUST be followed, for2533
returning the HTTP level response codes. A 2xx code MUST be returned when the HTTP Posted2534

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 61 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

message is successfully received by the receiving HTTP entity. However, see exception for SOAP error2535
conditions below. Similarly, other HTTP codes in the 3xx, 4xx, 5xx range MAY be returned for conditions2536
corresponding to them. However, error conditions encountered while processing an ebXML Service2537
Message MUST be reported using the error mechanism defined by the ebXML Message Service2538
Specification (see section 4.1.5).2539

B.2.4 SOAP Error conditions and Synchronous Exchanges2540

The SOAP 1.1 specification states:2541

"In case of a SOAP error while processing the request, the SOAP HTTP server MUST issue an HTTP2542
500 "Internal Server Error" response and include a SOAP message in the response containing a SOAP2543
Fault element indicating the SOAP processing error. "2544

However, the scope of the SOAP 1.1 specification is limited to synchronous mode of message exchange2545
over HTTP, whereas the ebXML Message Service Specification specifies both synchronous and2546
asynchronous modes of message exchange over HTTP. Hence, the SOAP 1.1 specification MUST be2547
followed for synchronous mode of message exchange, where the SOAP Message containing a SOAP2548
Fault element indicating the SOAP processing error MUST be returned in the HTTP response with a2549
response code of "HTTP 500 Internal Server Error". When asynchronous mode of message exchange is2550
being used, a HTTP response code in the range 2xx MUST be returned when the message is received2551
successfully and any error conditions (including SOAP errors) must be returned via separate HTTP Post.2552

B.2.5 Synchronous vs. Asynchronous2553

When a synchronous transport is in use, the MSH response message(s) SHOULD be returned on the2554
same HTTP connection as the inbound request, with an appropriate HTTP response code, as described2555
above. When the syncReplyMode parameter is set to values other than none, the application response2556
messages, if any, are also returned on the same HTTP connection as the inbound request, rather than2557
using an independent HTTP Post request. If the syncReplyMode has a value of none, an HTTP2558
response with a response code as defined in section B.2.3 above and with an empty HTTP body MUST2559
be returned in response to the HTTP Post.2560

B.2.6 Access Control2561

Implementers MAY protect their ebXML Message Service Handlers from unauthorized access through the2562
use of an access control mechanism. The HTTP access authentication process described in "HTTP2563
Authentication: Basic and Digest Access Authentication" [RFC2617] defines the access control2564
mechanisms allowed to protect an ebXML Message Service Handler from unauthorized access.2565

Implementers MAY support all of the access control schemes defined in [RFC2617] including support of2566
the Basic Authentication mechanism, as described in [RFC2617] section 2, when Access Control is used.2567

Implementers that use basic authentication for access control SHOULD also use communications2568
protocol level security, as specified in the section titled "Confidentiality and Transport Protocol Level2569
Security" in this document.2570

B.2.7 Confidentiality and Transport Protocol Level Security2571

An ebXML Message Service Handler MAY use transport layer encryption to protect the confidentiality of2572
ebXML Messages and HTTP transport headers. The IETF Transport Layer Security specification TLS2573
[RFC2246] provides the specific technical details and list of allowable options, which may be used by2574
ebXML Message Service Handlers. ebXML Message Service Handlers MUST be capable of operating in2575
backwards compatibility mode with SSL [SSL3], as defined in Appendix E of TLS [RFC2246].2576

ebXML Message Service Handlers MAY use any of the allowable encryption algorithms and key sizes2577
specified within TLS [RFC2246]. At a minimum ebXML Message Service Handlers MUST support the key2578
sizes and algorithms necessary for backward compatibility with [SSL3].2579

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 62 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

The use of 40-bit encryption keys/algorithms is permitted, however it is RECOMMENDED that stronger2580
encryption keys/algorithms SHOULD be used.2581

Both TLS [RFC2246] and SSL [SSL3] require the use of server side digital certificates. Client side2582
certificate based authentication is also permitted. All ebXML Message Service handlers MUST support2583
hierarchical and peer-to-peer or direct-trust trust models.2584

B.3 SMTP2585

The Simple Mail Transfer Protocol (SMTP) [RFC2821] specification is commonly referred to as Internet2586
Electronic Mail. This specifications has been augmented over the years by other specifications, which2587
define additional functionality "layered on top" of this baseline specifications. These include:2588

Multipurpose Internet Mail Extensions (MIME) [RFC2045], [RFC2046], [RFC2387]2589

SMTP Service Extension for Authentication [RFC2554]2590

SMTP Service Extension for Secure SMTP over TLS [RFC2487]2591

Typically, Internet Electronic Mail Implementations consist of two "agent" types:2592

Message Transfer Agent (MTA): Programs that send and receive mail messages with other MTA's on2593
behalf of MUA's. Microsoft Exchange Server is an example of a MTA2594

Mail User Agent (MUA): Electronic Mail programs are used to construct electronic mail messages and2595
communicate with an MTA to send/retrieve mail messages. Microsoft Outlook is an example of a MUA.2596

MTA's often serve as "mail hubs" and can typically service hundreds or more MUA's.2597

MUA's are responsible for constructing electronic mail messages in accordance with the Internet2598
Electronic Mail Specifications identified above. This section describes the "binding" of an ebXML2599
compliant message for transport via eMail from the perspective of a MUA. No attempt is made to define2600
the binding of an ebXML Message exchange over SMTP from the standpoint of a MTA.2601

B.3.1 Minimum Level of Supported Protocols2602

Simple Mail Transfer Protocol [RFC2821]2603

MIME [RFC2045] and [RFC2046]2604

Multipart/Related MIME [RFC2387]2605

B.3.2 Sending ebXML Messages over SMTP2606

Prior to sending messages over SMTP an ebXML Message MUST be formatted according to the ebXML2607
Message Service Specification. Additionally the messages must also conform to the syntax, format and2608
encoding rules specified by MIME [RFC2045], [RFC2046] and [RFC2387].2609

Many types of data that a party might desire to transport via email are represented as 8bit characters or2610
binary data. Such data cannot be transmitted over SMTP [RFC2821], which restricts mail messages to2611
7bit US-ASCII data with lines no longer than 1000 characters including any trailing CRLF line separator. If2612
a sending Message Service Handler knows that a receiving MTA, or ANY intermediary MTA's, are2613
restricted to handling 7-bit data then any document part that uses 8 bit (or binary) representation must be2614
"transformed" according to the encoding rules specified in section 6 of MIME [RFC2045]. In cases where2615
a Message Service Handler knows that a receiving MTA and ALL intermediary MTA's are capable of2616
handling 8-bit data then no transformation is needed on any part of the ebXML Message.2617

The rules for forming an ebXML Message for transport via SMTP are as follows:2618

• If using SMTP [RFC2821] restricted transport paths, apply transfer encoding to all 8-bit data that will be2619
transported in an ebXML message, according to the encoding rules defined in section 6 of MIME2620
[RFC2045]. The Content-Transfer-Encoding MIME header MUST be included in the MIME envelope portion2621
of any body part that has been transformed (encoded).2622

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 63 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

• The Content-Type: Multipart/Related MIME header with the associated parameters, from the2623
ebXML Message Envelope MUST appear as an eMail MIME header.2624

• All other MIME headers that constitute the ebXML Message Envelope MUST also become part of the eMail2625
MIME header.2626

• The SOAPAction MIME header field must also be included in the eMail MIME header and MAY have the2627
value of ebXML:2628

SOAPAction: "ebXML"2629

• The "MIME-Version: 1.0" header must appear as an eMail MIME header.2630

• The eMail header "To:" MUST contain the SMTP [RFC2821] compliant eMail address of the ebXML2631
Message Service Handler.2632

• The eMail header "From:" MUST contain the SMTP [RFC2821] compliant eMail address of the senders2633
ebXML Message Service Handler.2634

• Construct a "Date:" eMail header in accordance with SMTP [RFC2821]2635

• Other headers MAY occur within the eMail message header in accordance with SMTP [RFC2821] and2636
MIME [RFC2045], however ebXML Message Service Handlers MAY choose to ignore them.2637

The example below shows a minimal example of an eMail message containing an ebXML Message:2638

From: ebXMLhandler@example.com2639
To: ebXMLhandler@example2.com2640
Date: Thu, 08 Feb 2001 19:32:11 CST2641
MIME-Version: 1.02642
SOAPAction: "ebXML"2643
Content-type: multipart/related; boundary="BoundarY"; type="text/xml";2644

start="<ebxhmheader111@example.com>"2645
2646

This is an ebXML SMTP Example2647
2648

--BoundarY2649
Content-ID: <ebxhmheader111@example.com>2650
Content-Type: text/xml2651

2652
<?xml version="1.0" encoding="UTF-8"?>2653
<SOAP:Envelope xmlns:xlink="http://www.w3.org/1999/xlink"2654
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"2655
xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"2656
xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/2657

http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd">2658
<SOAP:Header xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"2659

xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd2660
http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">2661

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">2662
<eb:From>2663
<eb:PartyId>urn:duns:123456789</eb:PartyId>2664

</eb:From>2665
<eb:To>2666
<eb:PartyId>urn:duns:912345678</eb:PartyId>2667

</eb:To>2668
<eb:CPAId>20001209-133003-28572</eb:CPAId>2669
<eb:ConversationId>20001209-133003-28572</eb:ConversationId>2670
<eb:Service>urn:services:SupplierOrderProcessing</eb:Service>2671
<eb:Action>NewOrder</eb:Action>2672
<eb:MessageData>2673
<eb:MessageId>20001209-133003-28572@example.com</eb:MessageId>2674
<eb:Timestamp>2001-02-15T11:12:12</eb:Timestamp>2675

</eb:MessageData>2676
<eb:DuplicateElimination/>2677

</eb:MessageHeader>2678
</SOAP:Header>2679
<SOAP:Body xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"2680

xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd2681
http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">2682

<eb:Manifest eb:version="2.0">2683
<eb:Reference xlink:href="cid:ebxmlpayload111@example.com"2684

xlink:role="XLinkRole"2685
xlink:type="simple">2686

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 64 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

<eb:Description xml:lang="en-US">Purchase Order 1</eb:Description>2687
</eb:Reference>2688

</eb:Manifest>2689
</SOAP:Body>2690
</SOAP:Envelope>2691

2692
--BoundarY2693
Content-ID: <ebxhmheader111@example.com>2694
Content-Type: text/xml2695

2696
<?xml version="1.0" encoding="UTF-8"?>2697
<purchase_order>2698
<po_number>1</po_number>2699
<part_number>123</part_number>2700
<price currency="USD">500.00</price>2701

</purchase_order>2702
2703

--BoundarY--2704

B.3.3 Response Messages2705

All ebXML response messages, including errors and acknowledgments, are delivered asynchronously2706
between ebXML Message Service Handlers. Each response message MUST be constructed in2707
accordance with the rules specified in the section B.3.2.2708

All ebXML Message Service Handlers MUST be capable of receiving a delivery failure notification2709
message sent by an MTA. A MSH that receives a delivery failure notification message SHOULD examine2710
the message to determine which ebXML message, sent by the MSH, resulted in a message delivery2711
failure. The MSH SHOULD attempt to identify the application responsible for sending the offending2712
message causing the failure. The MSH SHOULD attempt to notify the application that a message2713
delivery failure has occurred. If the MSH is unable to determine the source of the offending message the2714
MSH administrator should be notified.2715

MSH's which cannot identify a received message as a valid ebXML message or a message delivery2716
failure SHOULD retain the unidentified message in a "dead letter" folder.2717

A MSH SHOULD place an entry in an audit log indicating the disposition of each received message.2718

B.3.4 Access Control2719

Implementers MAY protect their ebXML Message Service Handlers from unauthorized access through the2720
use of an access control mechanism. The SMTP access authentication process described in "SMTP2721
Service Extension for Authentication" [RFC2554] defines the ebXML recommended access control2722
mechanism to protect a SMTP based ebXML Message Service Handler from unauthorized access.2723

B.3.5 Confidentiality and Transport Protocol Level Security2724

An ebXML Message Service Handler MAY use transport layer encryption to protect the confidentiality of2725
ebXML messages. The IETF "SMTP Service Extension for Secure SMTP over TLS" specification2726
[RFC2487] provides the specific technical details and list of allowable options, which may be used.2727

B.3.6 SMTP Model2728

All ebXML Message Service messages carried as mail in an SMTP [RFC2821] Mail Transaction as2729
shown in Figure B1.2730

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 65 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

Receiver

MSH

SMTP Handler

Sender

MSH
SMTP Handler

ebXML Message

Mail Transaction

Sender
Party

Payload Data

Receiver
Party

Payload Data

Payload Data Payload Data

ebXML Message

Mail Transaction

2731

Figure B-1 SMTP Mail Depiction2732

B.4 Communication Errors during Reliable Messaging2733

When the Sender or the Receiver detects a communications protocol level error (such as an HTTP,2734
SMTP or FTP error) and Reliable Messaging is being used then the appropriate transport recovery2735
handler will execute a recovery sequence. Only if the error is unrecoverable, does Reliable Messaging2736
recovery take place (see section 6).2737

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 66 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

Appendix C Supported Security Services2738

The general architecture of the ebXML Message Service Specification is intended to support all the2739
security services required for electronic business. The following table combines the security services of2740
the Message Service Handler into a set of security profiles. These profiles, or combinations of these2741
profiles, support the specific security policy of the ebXML user community. Due to the immature state of2742
XML security specifications, this version of the specification requires support for profiles 0 and 1 only.2743
This does not preclude users from employing additional security features to protect ebXML exchanges;2744
however, interoperability between parties using any profiles other than 0 and 1 cannot be guaranteed.2745

2746

Pr
es

en
t i

n
ba

se
lin

e
M

SH

Pe
rs

is
te

nt
 d

ig
ita

l s
ig

na
tu

re

N
on

-p
er

si
st

en
t a

ut
he

nt
ic

at
io

n

Pe
rs

is
te

nt
 s

ig
ne

d
re

ce
ip

t

N
on

-p
er

si
st

en
t i

nt
eg

rit
y

Pe
rs

is
te

nt
 c

on
fid

en
tia

lit
y

N
on

-p
er

si
st

en
t c

on
fid

en
tia

lit
y

Pe
rs

is
te

nt
 a

ut
ho

riz
at

io
n

N
on

-p
er

si
st

en
t a

ut
ho

riz
at

io
n

Tr
us

te
d

tim
es

ta
m

p
Description of Profile

" Profile 0 no security services are applied to data

"
Profile 1 "

Sending MSH applies XML/DSIG structures to
message

Profile 2 " "
Sending MSH authenticates and Receiving MSH
authorizes sender based on communication channel
credentials.

Profile 3 " "
Sending MSH authenticates and both MSHs negotiate
a secure channel to transmit data

Profile 4 " "
Sending MSH authenticates, the Receiving MSH
performs integrity checks using communications
protocol

Profile 5 "
Sending MSH authenticates the communication
channel only (e.g., SSL 3.0 over TCP/IP)

Profile 6 " "
Sending MSH applies XML/DSIG structures to
message and passes in secure communications
channel

Profile 7 " "
Sending MSH applies XML/DSIG structures to
message and Receiving MSH returns a signed receipt

Profile 8 " " " combination of profile 6 and 7

Profile 9 " " Profile 5 with a trusted timestamp applied

Profile 10 " " " Profile 9 with Receiving MSH returning a signed receipt

Profile 11 " " "
Profile 6 with the Receiving MSH applying a trusted
timestamp

Profile 12 " " " "
Profile 8 with the Receiving MSH applying a trusted
timestamp

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 67 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

Pr
es

en
t i

n
ba

se
lin

e
M

SH

Pe
rs

is
te

nt
 d

ig
ita

l s
ig

na
tu

re

N
on

-p
er

si
st

en
t a

ut
he

nt
ic

at
io

n

Pe
rs

is
te

nt
 s

ig
ne

d
re

ce
ip

t

N
on

-p
er

si
st

en
t i

nt
eg

rit
y

Pe
rs

is
te

nt
 c

on
fid

en
tia

lit
y

N
on

-p
er

si
st

en
t c

on
fid

en
tia

lit
y

Pe
rs

is
te

nt
 a

ut
ho

riz
at

io
n

N
on

-p
er

si
st

en
t a

ut
ho

riz
at

io
n

Tr
us

te
d

tim
es

ta
m

p

Description of Profile

Profile 13 " "
Sending MSH applies XML/DSIG structures to
message and applies confidentiality structures (XML-
Encryption)

Profile 14 " " " Profile 13 with a signed receipt

Profile 15 " " "
Sending MSH applies XML/DSIG structures to
message, a trusted timestamp is added to message,
Receiving MSH returns a signed receipt

Profile 16 " " " Profile 13 with a trusted timestamp applied

Profile 17 " " " " Profile 14 with a trusted timestamp applied

Profile 18 " "
Sending MSH applies XML/DSIG structures to
message and forwards authorization credentials
[SAML]

Profile 19 " " "
Profile 18 with Receiving MSH returning a signed
receipt

Profile 20 " " " "
Profile 19 with the a trusted timestamp being applied to
the Sending MSH message

Profile 21 " " " " "
Profile 19 with the Sending MSH applying
confidentiality structures (XML-Encryption)

Profile 22 "
Sending MSH encapsulates the message within
confidentiality structures (XML-Encryption)

2747

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 68 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

References2748

Normative References2749
[RFC2119] Key Words for use in RFCs to Indicate Requirement Levels, Internet Engineering Task2750

Force, March 19972751

[RFC2045] Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message2752
Bodies, N Freed & N Borenstein, Published November 19962753

[RFC2046] Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types. N. Freed, N.2754
Borenstein. November 1996.2755

[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol", January 1999.2756

[RFC2387] The MIME Multipart/Related Content-type. E. Levinson. August 1998.2757

[RFC2392] Content-ID and Message-ID Uniform Resource Locators. E. Levinson, August 19982758

[RFC2396] Uniform Resource Identifiers (URI): Generic Syntax. T Berners-Lee, August 19982759

[RFC2402] IP Authentication Header. S. Kent, R. Atkinson. November 1998. RFC2406 IP2760
Encapsulating Security Payload (ESP). S. Kent, R. Atkinson. November 1998.2761

[RFC2487] SMTP Service Extension for Secure SMTP over TLS. P. Hoffman, January 1999.2762

[RFC2554] SMTP Service Extension for Authentication. J. Myers. March 1999.2763

[RFC2821] Simple Mail Transfer Protocol, J. Klensin, Editor, April 2001 Obsoletes RFC 8212764

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and T. Berners-Lee,2765
"Hypertext Transfer Protocol, HTTP/1.1", June 1999.2766

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., Sink,2767
E. and L. Stewart, "HTTP Authentication: Basic and Digest Access Authentication", June2768
1999.2769

[RFC2817] Khare, R. and S. Lawrence, "Upgrading to TLS Within HTTP/1.1", May 2000.2770

[RFC2818] Rescorla, E., "HTTP Over TLS", May 2000 [SOAP] Simple Object Access Protocol2771

[SOAP] W3C-Draft-Simple Object Access Protocol (SOAP) v1.1, Don Box, DevelopMentor; David2772
Ehnebuske, IBM; Gopal Kakivaya, Andrew Layman, Henrik Frystyk Nielsen, Satish2773
Thatte, Microsoft; Noah Mendelsohn, Lotus Development Corp.; Dave Winer, UserLand2774
Software, Inc.; W3C Note 08 May 2000,2775
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/2776

[SOAPAttach] SOAP Messages with Attachments, John J. Barton, Hewlett Packard Labs; Satish Thatte2777
and Henrik Frystyk Nielsen, Microsoft, Published Oct 09 20002778
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-200012112779

[SSL3] A. Frier, P. Karlton and P. Kocher, "The SSL 3.0 Protocol", Netscape Communications2780
Corp., Nov 18, 1996.2781

[UTF-8] UTF-8 is an encoding that conforms to ISO/IEC 10646. See [XML] for usage conventions.2782

[XLINK] W3C XML Linking Recommendation, http://www.w3.org/TR/2001/REC-xlink-20010627/2783

[XML] W3C Recommendation: Extensible Markup Language (XML) 1.0 (Second Edition),2784
October 2000, http://www.w3.org/TR/2000/REC-xml-200010062785

[XMLC14N] W3C Recommendation Canonical XML 1.0,2786
http://www.w3.org/TR/2001/REC-xml-c14n-200103152787

http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc2045.txt
http://www.rfc-editor.org/rfc/rfc2046.txt
http://www.rfc-editor.org/rfc/rfc2246.txt
http://www.rfc-editor.org/rfc/rfc2387.txt
http://www.rfc-editor.org/rfc/rfc2392.txt
http://www.rfc-editor.org/rfc/rfc2396.txt
http://www.rfc-editor.org/rfc/rfc2402.txt
http://www.rfc-editor.org/rfc/rfc2487.txt
http://www.rfc-editor.org/rfc/rfc2554.txt
http://www.rfc-editor.org/rfc/rfc2821.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2617.txt
http://www.rfc-editor.org/rfc/rfc2817.txt
http://www.rfc-editor.org/rfc/rfc2818.txt
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2001/REC-xml-c14n-20010315

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 69 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

 [XMLNS] W3C Recommendation for Namespaces in XML, World Wide Web Consortium, 142788
January 1999, http://www.w3.org/TR/1999/REC-xml-names-19990114/2789

[XMLDSIG] Joint W3C/IETF XML-Signature Syntax and Processing specification,2790
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/Error! Hyperlink reference2791
not valid..2792

[XMLMedia] RFC 3023, XML Media Types. M. Murata, S. St. Laurent, January 20012793

[XPointer] XML Pointer Language (XPointer) Version 1.0, W3C Candidate Recommendation 112794
September 2001, http://www.w3.org/TR/2001/CR-xptr-20010911/2795

2796

Non-Normative References2797
[ebCPP] ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0,2798

published 10 May, 2001, http://www.ebxml.org/specs/ebCCP.doc2799

[ebBPSS] ebXML Business Process Specification Schema, version 1.0, published 27 April 2001,2800
http://www.ebxml.org/specs/ebBPSS.pdf.2801

[ebTA] ebXML Technical Architecture, version 1.04 published 16 February, 2001,2802
http://www.ebxml.org/specs/ebTA.doc2803

[ebRS] ebXML Registry Services Specification, version 2.0, published 6 December 20012804
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf, 2805
published, 5 December 2001.2806
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrim.pdf2807

[ebREQ] ebXML Requirements Specification, http://www.ebxml.org/specs/ebREQ.pdf,2808
published 8 May 2001.2809

[ebGLOSS] ebXML Glossary, http://www.ebxml.org/specs/ebGLOSS.doc, published 11 May, 2001.2810

[PGP/MIME] RFC2015, "MIME Security with Pretty Good Privacy (PGP)", M. Elkins. October 1996.2811

[SAML] Security Assertion Markup Language,2812
http://www.oasis-open.org/committees/security/docs/draft-sstc-use-strawman-03.html2813

[S/MIME] RFC 2311, "S/MIME Version 2 Message Specification", S. Dusse, P. Hoffman, B.2814
Ramsdell, L. Lundblade, L. Repka. March 1998.2815

[S/MIMECH] RFC 2312, "S/MIME Version 2 Certificate Handling", S. Dusse, P. Hoffman, B. Ramsdell,2816
J. Weinstein. March 1998.2817

[S/MIMEV3] RFC 2633 S/MIME Version 3 Message Specification. B. Ramsdell, Ed June 1999.2818

[secRISK] ebXML Technical Architecture Risk Assessment Technical Report, version 0.362819
published 20 April 20012820

[XMLSchema] W3C XML Schema Recommendation,2821
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/2822
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/2823
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/2824

[XMTP] XMTP - Extensible Mail Transport Protocol2825
http://www.openhealth.org/documents/xmtp.htm2826

http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.rfc-editor.org/rfc/rfc3023.txt
http://www.w3.org/TR/2001/CR-xptr-20010911/
http://www.ebxml.org/specs/ebCCP.doc
http://www.ebxml.org/specs/bpOVER.doc
http://www.ebxml.org/specs/ebBPSS.pdf
http://www.ebxml.org/specs/ebTA.doc
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrim.pdf
http://www.ebxml.org/specs/ebREQ.pdf
http://www.ebxml.org/specs/ebGLOSS.doc
http://www.rfc-editor.org/rfc/rfc2015.txt
http://www.oasis-open.org/committees/security/docs/draft-sstc-use-strawman-03.html
http://www.rfc-editor.org/rfc/rfc2311.txt
http://www.rfc-editor.org/rfc/rfc2312.txt
http://www.rfc-editor.org/rfc/rfc2633.txt
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.openhealth.org/documents/xmtp.htm

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 70 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

Contact Information2827

Team Leader2828
Name Ian Jones
Company British Telecommunications
Address Enterprise House, 84-85 Adam Street

Cardiff, CF24 2XF United Kingdom
Phone: +44 29 2072 4063
EMail: ian.c.jones@bt.com

Vice Team Leader2829
Name Brian Gibb
Company Sterling Commerce
Address 750 W. John Carpenter Freeway

Irving, Texas 75039 USA
Phone: +1 (469) 524.2628
EMail: brian_gibb@stercomm.com

Team Editor2830
Name David Fischer
Company Drummond Group, Inc
Address P.O. Box 101567

Fort Worth, Texas 76105 USA
Phone +1 (817) 294-7339
EMail david@drummondgroup.com

OASIS ebXML Messaging Services February 2002

Message Service Specification 2.0c Page 71 of 71
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

Acknowledgments2831

The OASIS ebXML-MS Technical Committee would like to thank the members of the original joint2832
UN/CEFACT-OASIS ebXML Messaging Team for their work to produce v1.0 of this specification.2833

2834
Ralph Berwanger bTrade.com
Jonathan Borden Author of XMTP
Jon Bosak Sun Microsystems
Marc Breissinger webMethods
Dick Brooks Group 8760
Doug Bunting Ariba
David Burdett Commerce One
David Craft VerticalNet
Philippe De Smedt Viquity
Lawrence Ding WorldSpan
Rik Drummond Drummond Group
Andrew Eisenberg Progress Software
Colleen Evans Sonic Software
David Fischer Drummond Group
Christopher Ferris Sun Microsystems
Robert Fox Softshare
Brian Gibb Sterling Commerce
Maryann Hondo IBM
Jim Hughes Fujitsu
John Ibbotson IBM
Ian Jones British Telecommunications

Ravi Kacker Kraft Foods
Henry Lowe OMG
Jim McCarthy webXI
Bob Miller GXS
Dale Moberg Sterling Commerce
Joel Munter Intel
Shumpei Nakagaki NEC Corporation
Farrukh Najmi Sun Microsystems
Akira Ochi Fujitsu
Martin Sachs IBM
Saikat Saha Commerce One
Masayoshi Shimamura Fujitsu
Prakash Sinha Netfish Technologies
Rich Salz Zolera Systems
Tae Joon Song eSum Technologies, Inc.
Kathy Spector Extricity
Nikola Stojanovic Encoda Systems, Inc.
David Turner Microsoft
Gordon Van Huizen Progress Software
Martha Warfelt DaimlerChrysler Corporation
Prasad Yendluri Web Methods

Disclaimer2835

The views and specification expressed in this document are those of the authors and are not necessarily2836
those of their employers. The authors and their employers specifically disclaim responsibility for any2837
problems arising from correct or incorrect implementation or use of this design.2838

Copyright Statement2839

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]2840
January 2002. All Rights Reserved.2841

This document and translations of it may be copied and furnished to others, and derivative works that2842
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published2843
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice2844
and this paragraph are included on all such copies and derivative works. However, this document itself2845
may not be modified in any way, such as by removing the copyright notice or references to OASIS,2846
except as needed for the purpose of developing OASIS specifications, in which case the procedures for2847
copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to2848
translate it into languages other than English.2849

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors2850
or assigns.2851

This document and the information contained herein is provided on an "AS IS" basis and OASIS2852
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY2853
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR2854
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."2855

	Status of this Document
	ebXML Participants
	Introduction
	Summary of Contents of this Document
	
	Document Conventions
	Audience
	Caveats and Assumptions
	Related Documents

	Concept of Operation
	Scope
	Background and Objectives
	Operational Policies and Constraints
	Modes of Operation

	Minimal Requirements for Conformance

	Part I. Core Functionality
	ebXML with SOAP
	Packaging Specification
	SOAP Structural Conformance
	Message Package
	Header Container
	Content-Type
	charset attribute
	Header Container Example

	Payload Container
	Example of a Payload Container

	Additional MIME Parameters
	Reporting MIME Errors

	XML Prolog
	XML Declaration
	Encoding Declaration

	ebXML SOAP Envelope extensions
	Namespace pseudo attribute
	xsi:schemaLocation attribute
	SOAP Header Element
	SOAP Body Element
	ebXML SOAP Extensions
	SOAP Header extensions:
	SOAP Body extension:
	Core ebXML Modules:

	#wildcard Element Content
	id attribute
	version attribute
	SOAP mustUnderstand attribute
	ebXML "Next MSH" actor URI
	ebXML "To Party MSH" actor URI

	Core Extension Elements
	MessageHeader Element
	From and To Elements
	PartyId Element
	Role Element

	CPAId Element
	ConversationId Element
	Service Element
	type attribute

	Action Element
	MessageData Element
	MessageId Element
	Timestamp Element
	RefToMessageId Element
	TimeToLive Element

	DuplicateElimination Element
	Description Element
	MessageHeader Sample

	Manifest Element
	Reference Element
	Schema Element
	Description Element

	Manifest Validation
	Manifest Sample

	Core Modules
	Security Module
	Signature Element
	Security and Management
	Collaboration Protocol Agreement

	Signature Generation
	Countermeasure Technologies
	Persistent Digital Signature
	Persistent Signed Receipt
	Non-persistent Authentication
	Non-persistent Integrity
	Persistent Confidentiality
	Non-persistent Confidentiality
	Persistent Authorization
	Non-persistent Authorization
	Trusted Timestamp

	Security Considerations

	Error Handling Module
	
	Definitions:

	Types of Errors
	ErrorList Element
	highestSeverity attribute
	Error Element
	id attribute
	codeContext attribute
	errorCode attribute
	severity attribute
	location attribute
	Description Element

	ErrorList Sample
	errorCode values
	Reporting Errors in the ebXML Elements
	Non-XML Document Errors

	Implementing Error Reporting and Handling
	When to Generate Error Messages
	Identifying the Error Reporting Location
	Service and Action Element Values

	SyncReply Module
	SyncReply Element

	Combining ebXML SOAP Extension Elements
	
	MessageHeader Element Interaction
	Manifest Element Interaction
	Signature Element Interaction
	ErrorList Element Interaction
	SyncReply Element Interaction

	Part II. Additional Features
	Reliable Messaging Module
	Persistent Storage and System Failure
	Methods of Implementing Reliable Messaging
	Reliable Messaging SOAP Header Extensions
	AckRequested Element
	SOAP actor attribute
	signed attribute
	AckRequested Sample
	AckRequested Element Interaction

	Acknowledgment Element
	SOAP actor attribute
	Timestamp Element
	RefToMessageId Element
	From Element
	[XMLDSIG] Reference Element
	Acknowledgment Sample
	Sending an Acknowledgment Message by Itself
	Acknowledgment Element Interaction

	Reliable Messaging Parameters
	DuplicateElimination
	AckRequested
	Retries
	RetryInterval
	TimeToLive
	PersistDuration
	syncReplyMode

	ebXML Reliable Messaging Protocol
	Sending Message Behavior
	Receiving Message Behavior
	Generating an Acknowledgment Message
	Resending Lost Application Messages
	Resending Acknowledgments
	Duplicate Message Handling
	Failed Message Delivery

	Reliable Messaging Combinations

	Message Status Service
	Message Status Messages
	Message Status Request Message
	Message Status Response Message
	Security Considerations

	StatusRequest Element
	RefToMessageId Element
	StatusRequest Sample
	StatusRequest Element Interaction

	StatusResponse Element
	RefToMessageId Element
	Timestamp Element
	messageStatus attribute
	StatusResponse Sample
	StatusResponse Element Interaction

	Message Service Handler Ping Service
	Message Service Handler Ping Message
	Message Service Handler Pong Message
	Security Considerations

	MessageOrder Module
	MessageOrder Element
	SequenceNumber Element
	MessageOrder Sample

	MessageOrder Element Interaction

	Multi-Hop Module
	Multi-hop Reliable Messaging
	AckRequested Sample
	Acknowledgment Sample
	Multi-Hop Acknowledgments
	Signing Multi-Hop Acknowledgments
	Multi-Hop Security Considerations

	Message Ordering and Multi-Hop

	Part III. Normative Appendices
	The ebXML SOAP Extension Elements Schema
	Communications Protocol Bindings
	Introduction
	HTTP
	Minimum level of HTTP protocol
	Sending ebXML Service messages over HTTP
	HTTP Response Codes
	SOAP Error conditions and Synchronous Exchanges
	Synchronous vs. Asynchronous
	Access Control
	Confidentiality and Transport Protocol Level Security
	SMTP
	Minimum Level of Supported Protocols
	Sending ebXML Messages over SMTP
	Response Messages
	Access Control
	Confidentiality and Transport Protocol Level Security
	SMTP Model
	Communication Errors during Reliable Messaging

	Supported Security Services
	References
	
	Normative References
	Non-Normative References

	Contact Information
	Acknowledgments
	D
	Disclaimer
	Copyright Statement

