
[image: image39.png]

[image: image40.png]Btihe.
¢ T
ACCELERATINGELECTRONIC ’JSIH.ESS\

2\ |

OASIS

Election and Voter Services Technical Committee

ELECTION MARK-UP LANGUAGE (EML): XML Schemas

Version 2

5 September 2002
[image: image41.png]

Document Control

Abstract

This document contains the schemas that make up the election markup language (EML). These schemas comprise a core set of elements and data types (the EML vocabulary) and a separate message schema for each message in the EML message set.

Date
Version
Status
Editor/ Author

5 Spet 02
2.0
Committee Specification

15 July 02
2.0B Final
Draft Committee Specification for TC approval
Paul Spencer

13 June 02
2.0A (draft)
Revised draft accommodating committee’s comments
Paul Spencer

John Ross

Date
Version
Status
Editor/ Author

13 May 02
1.0
Committee Specification
Paul Spencer

29 April 02
1.0
Committee Specification for TC approval
Paul Spencer

18 April 02
0.4
Draft Committee Specification version 2
Paul Spencer

22 Mar 02
0.3a
Draft e-Voting Schemas for public consultation

Paul Spencer

13 Feb 02
0.2a
Draft e-Voting Schemas for internal comment
Paul Spencer

07 Feb 02
0.1a
Draft e-Voting Schemas for internal comment
Paul Spencer

NOTICES

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright (C) OASIS Open (6 March 2002). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

CONTENTS

1
Introduction
7
1.1
Compliance
7
1.2
Conformance
7
2
Schema Outline
8
2.1
Structure
8
2.2
IDs
8
2.3
Displaying Messages
9
2.4
Namespaces
12
2.5
Extensibility
12
2.6
Conventions
12
3
Schema Descriptions
13
3.1
Core
13
3.1.1
Simple Data Types
14
3.1.1.1
ElectionRuleIdType
14
3.1.1.2
EmailType
14
3.1.1.3
TelephoneNumberType
14
3.1.1.4
VotingChannelType
14
3.1.1.5
VotingMethodType
15
3.1.1.6
YesNoType
15
3.1.2
Complex Data Types
15
3.1.2.1
AuditInformationStructure
15
3.1.2.2
BallotNameStructure
15
3.1.2.3
CandidateNameStructure
15
3.1.2.4
ContactDetailsStructure
16
3.1.2.5
ContestNameStructure
16
3.1.2.6
ElectionEventNameStructure
16
3.1.2.7
EmailStructure
16
3.1.2.8
IncomingGenericCommunicationStructure
17
3.1.2.9
MessagesStructure
17
3.1.2.10
OptionNameStructure
18
3.1.2.11
OutgoingGenericCommunicationStructure
18
3.1.2.12
ProposerStructure
18
3.1.2.13
ScrutinyRequirementStructure
19
3.1.2.14
SealStructure
19
3.1.2.15
TelephoneStructure
20
3.1.2.16
VoterIdentificationStructure
20
3.1.2.17
VoterInformationStructure
20
3.1.2.18
VoterName
21
3.1.2.19
VTokenStructure
21
3.1.2.20
VTokenQualifiedStructure
22
3.1.3
Elements
22
3.1.3.1
Affiliation
23
3.1.3.2
ElectionName
23
3.1.3.3
ElectionStatement
23
3.1.3.4
EML
23
3.1.3.5
EventEnd
23
3.1.3.6
EventStart
23
3.1.3.7
LocationName
23
3.1.3.8
MaxVotes
24
3.1.3.9
MinVotes
24
3.1.3.10
Profile
24
3.2
110 - Election Event
24
3.3
210 - Nomination
25
3.4
220 - Nomination Response
26
3.5
230 - Candidate List
27
3.6
310 - Voter Registration
27
3.7
320 - Inter Database Communications
28
3.8
330 - Election List
29
3.9
340 - Polling Information
30
3.10
350 - Generic Communication
31
3.11
360 - Channel Options
31
3.12
410 - Ballots
32
3.13
420 - Authentication
33
3.14
430 - Authentication Reply
34
3.15
440 - Cast Vote
34
3.16
450 - Vote Confirmation
35
3.17
460 - Votes
35
3.18
470 – VToken Log
36
3.19
480 Seal Log
36
3.20
510 - Count
37
4
References
38
Appendix A.
The Timestamp Schema
39
Appendix B.
W3C XML Digital Signature
43
1 Introduction

This document describes the Election Markup Language (EML) being developed under the auspices of the OASIS Election and Voter Services Technical Committee.

1.1 Compliance

The schemas covered by this document comply with the provisions of the Voting Process models [1] and meet the requirements of the scenarios [2].

1.2 Conformance

To conform to this specification, a system must implement all parts of this specification that are relevant to the interfaces for which conformance is claimed. The required schema set will normally be part of the purchasing criteria and should indicate schema version numbers. For example, in the future, the specification for an election list system might specify that a conforming system must accept and generate XML messages conforming to the following schemas:

Schema
Accept
Generate

EML110
v1.0

EML310
v2.0, v2.1

EML320
v1.0, v2.0
v2.0

EML330

v1.1

EML340

v1.0

EML350

v1.0

EML360

v1.3

A conforming system will thus conform both to the relevant parts of this specification and to the accompanying schemas.

2 Schema Outline

2.1 Structure

The Election Markup Language specification defines a vocabulary (the EML core) and a message syntax (the individual message schemas). Thus most voting-related terms are defined as elements in the core with the message schemas referencing these definitions. The core also contains data type definitions so that types can be re-used with different names (for example, there is a common type to allow messages in different channel formats), or used as bases for deriving new definitions.

There is a third category of schema document within EML - the EML externals. This schema document contains definitions that are expected to be changed on a national basis. Currently this comprises the name and address elements, which are based on the OASIS Extensible Name and Address Language [3], but may be replaced by national standards such as those contained in the UK Government Address & Personal Details schemas []. Such changes can be made by replacing just this single file.

As well as these, several external schemas are used. The W3C has defined standard schemas for XML [4], XLink [6] and XML signature [7]. OASIS has defined schemas for the extensible Name and Address Language (xNAL) [3]. As part of the definition of EML, the E&VSTC of OASIS has defined a schema for the Timestamp used within EML. All these schemas use their appropriate namespaces, and are accessed using xsd:import directives.

Each message (or message group) type is specified within a separate a schema document. All messages use the EML element from the election core as their document element. Elements declared in the individual schema documents are as descendents of the EML element. The example instance messages in the scenarios document demonstrate this structure.

2.2 IDs

XML elements may have an identifier which is represented as an Id attribute.

Each schema element has an Id attribute that relates to the message numbering scheme in the Process document. Each message also carries this number.

Some items will have identifiers related to the voting process. For example, a voter might be associated with an electoral roll number or a reference on a company share register. These identifiers are coded as elements.

Other identifiers exist purely because of the various channels that can be used for voting (e.g. Internet, phone, postal, etc). In this case the identifiers are likely to be system generated and are coded as attributes.

Some identifiers in certain elements are mandatory as shown here:

Element
ID Opt/Man

BallotName
O

CandidateName
M

ContestName
M

ElectionEventName
M

ElectionName
M

LocationName
O

OptionName
M

ReportingUnitName
O

VoterName
O

Note that this needs further consideration. For example, is it reasonable for the Election ID to be mandatory when a voter indicates a preferred voting channel?

2.3 Displaying Messages

Many e-voting messages are intended for some form of presentation to a user, be it through a browser, a mobile device, a telephone or another mechanism. These messages need to combine highly structured information (such as a list of the names of candidates in an election) with more loosely structured, often channel-dependent information (such as voting instructions).

Such messages start with one or more Display elements, such as:

<?xml version="1.0" encoding="UTF-8"?>

<EML

 Id="410"

 SchemaVersion="0.1"

 xml:lang="en"

 xmlns="http://www.govtalk.gov.uk/temp/voting"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.govtalk.gov.uk/temp/voting

 ..\schemas\ballot.xsd">

 <Display Format="html">

 <Stylesheet Type="text/xsl">../stylesheets/ballot.xsl</Stylesheet>

 <Stylesheet Type="text/css">../stylesheets/eml.css</Stylesheet>

 </Display>

 <Ballots>

 ...

This example shows a Display element providing information to the receiving application about an XSL stylesheet which transforms the message into HTML for displaying the ballot in a Web browser. The xml:lang attribute on the EML element indicates that the message content is in English. Other Display elements can be added to cover other formats. In the Display element in the example, the XSLT stylesheet reference is followed by a CSS stylesheet reference. In this case, the XSLT stylesheet referenced will pick up the reference to the CSS stylesheet as it transforms the message, and generate appropriate output to enable the displaying browser to apply that cascading stylesheet to the resulting HTML.

Not all information in a message will need to be displayed, and the creator of the message might have views on the order of display of the information. To allow stylesheets to remain generic, many elements in the schemas can have a DisplayOrder attribute. The values of these attributes determine the layout of the display (or the spoken voice if transforming to, for example, VoiceXML[6]), even when using a generic stylesheet.

When displaying messages in HTML, the expectation is that generic stylesheets will cover most cases, with the stylesheet output being embedded in a web page generated from an application-specific template. Similarly, voice applications might have specific welcome and sign-off messages, while using a generic stylesheet to provide the bulk of the variable data.

The three screen shots show the effect of using the same XSL stylesheet on the ballots for scenarios 2, 3 and 4 defined in the scenarios document [2]. In the first picture, clicking on the name of a candidate has popped up a window with additional details.

[image: image1.png]“Back ¥

@ A af | Qsearch GiFavorites @Meda 3|~ S =i v HE B

=lolx|

Voting Paper
National Executive Committee & International Liason Committee
Elections 2001-2003

PLEASE READ THE VOTING INSTRUCTIONS BELOW BEFORE VOTING
The count for this election will be conducted by means of the Single Transferable Vote.

To cast your vote you should enter the number "1" against your first preference and the number "2" against

your next preference.
Please do not use an "X"". You may vote in both elections.
National Executive Committee

one to be elected

Option Number| Name |Order of Preference

101 J Chahal |1 >
102 S Ruston |1 >

International Liason Committee

one to be elected

Option Number| Name Order of Preference
121 IN Goodman|[1
122 IMarcos |1 =

If you opt to cast your vote by post, please refurn your voting paper in the pre paid envelope provided to
reach the Independent Scrutineer, election.com, PO Box 648, Wembley, HAO 1FA.

Your paper should arrive not later than midday on FRIDAY 23RD MARCH 2001.

If you vote using more than one method (internet, telephone or postal), your vote will be declared invalid.

L]

El

=1olx|

Name: J Chahal

I have worked within various organisations within our trade
for fifteen years, gradually working my way up from the
bottom. I have worked all over the country for these roles and
have gained a good knowledge of what is involved with this
committee.

Currently T provide a supporting role to the people on the
National Executive Committee, this means that T have a
working knowledge of what must be done and not just a
theoretical understanding,

Inmy spare time I like to watch motor racing and enjoy
keeping fit in general. T have always been extrovert and am not
aftaid to expressing opinions, both those of my own and of
others. Also I like to make time to relax with my family and
can often be found playing football with my son.

]

[]

Screen shot of the ballot for scenario 2

[image: image2.png]Re -osoft Internet Explorer —|of x|

Fle Edt View Favorites Toos Hep |

wBack v & v @ [| Qseach GiFavorites @Media B| D B 7

Voting Paper

Vote For Your Favourite Soccer Team

Please select your favourite favourite soccer team.

‘Option Number Name Select
1 \Arsenal s
2 Chelsea s
3 Leeds c
4 Liverpool s
5 Manchester United | ©

Screen shot of the ballot for scenario 3

[image: image3.png]A em rosoft Internet Explorer —|of x|
Fle Edt View Favorites Toos Hep |

wBack v & - @ [&| Qsearch GiFavorites @media ¥ B S =i v 5

Voting Paper

A company's AGM 2002.

PLEASE READ THE VOTING INSTRUCTIONS BELOW BEFORE VOTING
To cast your vote you should choose the option which represents your view of the election.

Ordinary Business:

To receive the report... For: Against:

To declare a final dividend... For: \Against:

To re-elect the director... For: \Against:

BRI
BRI

To re-appoint the auditors... For: Against:

Special Business:

To increase the maximum ... For: |C |Against:|©

To authorise the company... For: |C |Against:|C

Name: Richard Bruin

Account number: 1234567

Address: alphaXML, Limited
Dalton House
Newtown Road
Henley on Thames
Oxfordshire
RGY 1HG

PIN: 1234567 Password:

Screen shot of the ballot for scenario 4

2.4 Namespaces

The message schemas and the core schema are associated with the namespace urn:oasis:names:tc:evs:schema:eml. Use is also made of the external namespaces for XLink and xNAL, identified here using the prefixes xlink: and xnal:.

Version 2 of xNAL will have a namespace when it is released, and this will be used here. Currently, an invalid namespace is being used and the elementFormDefault has been set to "qualified" so that references to it can be qualified.
2.5 Extensibility

Various elements allow extensibility through the use of the xsd:any element. This is used both for display information (for example, allowing the sending of HTML in a message) and for local extensibility. Note that careless use of this extensibility mechanism could reduce interoperability.

2.6 Conventions

Within this specification, the following conventions are used throughout:

· Element and attribute names are shown in Courier font.

· Editorial comments are shown like this.

· Diagrams are shown as generated by XML Spy v4.3, which was also used to generate the schemas and samples. Note that XML Spy will cross out an element that has a as the result of an xsd:restriction. It does not do the same where an xsd:choice has a maxOccurs value of zero. This has been reported as a bug to Altova. This affects diagrams where the VoterIdentificationStructure is restricted by not allowing either a VToken or VTokenQualified. In these cases, this restriction of the maxOccurs is mentioned in the accompanying text.

· Elements and attributes in schemas are identified by partial XPath expressions. Enough of a path is used to identify the item without putting in a full path.

3 Schema Descriptions

This section describes the schemas that make up EML. For data types and elements with complex content, diagrams of the structure are shown. These are expanded to show the complete structure other than where an element is accessed by reference or corresponds to a data type described elsewhere. If the element is derived from a type (rather than being an exact correspondence), the derived structure is shown.

3.1 Core

The core schema contains elements and data types that are used throughout the e-voting schemas.

The choice between defining an element or a data type for a reusable message component is a significant design issue. It is widely accepted as good practice to use element declarations when there is good reason to always refer to an element by the same name and there is no expectation of a need to derive new definitions. In all other cases, data type declarations are preferable. The term schema component is used to refer to elements and data types collectively.

When defining a complete markup language, limiting the use of elements and types can restrict further development of the language. For that reason, both data types and elements are defined in EML. Only where an element is an example of a primitive or derived data type defined in XML Schema part 2 [9] is no explicit data type defined within EML.

In use, it is expected that, for example:

· a voting token will always have an element name VToken and so will use the element name;

· an address might be an ElectoralAddress or a MailingAddress, and so will specify a new element based on the data type; and

· within voter identification some elements will usually need to be made mandatory and so a schema will specify a new element based on the VoterIdentificationStructure data type.

Currently, the name and address data types are taken from the xNAL schemas as mentioned previously. Investigation is needed to evaluate other schemas for inclusion, embodying agreed definitions for widely used data types such as email addresses and telephone numbers.

The following schema components are defined in emlcore.xsd. In the descriptions that follow, element definitions are not shown where they are an example of an obviously-named data type.

Elements
Complex Data Types

Simple Data Types

Affiliation

BallotName

CandidateName

ContestName

ElectionEventName

ElectionName

ElectionRuleId

ElectionStatement

EML

EventEnd

EventStart

LocationName

MaxVotes

MinVotes

OptionName

Profile

Proposer

ReportingUnitName

ScrutinyRequirement

Seal

VoterName

VotingChannel

VotingMethod

VToken

VTokenQualified
AuditInformationStructure

BallotNameStructure

CandidateNameStructure

ContactDetailsStructure

ContestNameStructure

ElectionEventNameStructure

ElectionNameStructure

EmailStructure

IncomingGenericCommunicationStructure

LocationNameStructure

MessagesStructure

OptionNameStructure

OutgoingGenericCommunicationStructure

ProcessingUnitStructure

ProposerStructure

ReportingUnitStructure

ScrutinyRequirementStructure

SealStructure

TelephoneStructure

VoterIdentificationStructure

VoterInformationStructure

VoterNameStructure

VTokenQualifiedStructure

VTokenStructure

ElectionRuleIdType

EmailType

TelephoneNumberType

VotingChannelType

VotingMethodType

YesNoType

3.1.1 Simple Data Types

3.1.1.1 ElectionRuleIdType

The election rule ID is used to identify a rule governing an election. For example, a professional society may have a rule that, within a single election event, only a certain class of membership is entitled to vote in one election. The ID can be described as either an xsd:NMTOKEN (intended when it references a known document or database) or a URI.

3.1.1.2 EmailType

This is a string with a maximum length of 129 characters and a pattern [^@]+@[^@]+. This allows any characters except the @ symbol, followed by an @ symbol and another set of characters excluding this symbol.

3.1.1.3 TelephoneNumberType

Since this must allow for various styles of international telephone number, the pattern has been kept simple. The pattern is \+?[0-9\(\)\-\s]{1,35}. This allows an optional plus sign, then between 1 and 35 characters with a combination of digits, brackets, the dash symbol and white space.

3.1.1.4 VotingChannelType

This type exists to hold the possible enumerations for the channel through which a vote is cast. These are:

· SMS

· WAP

· digitalTV

· internet

· kiosk

· polling

· postal

· telephone

· other
If other is used, it is assumed that those managing the election will have a common understanding of the channel in use.

3.1.1.5 VotingMethodType

The VotingMethod type holds the enumerated values for the type of election (such as first past the post or single transferable vote). The full set of enumerations is:

· FPP

· OPV

· SPV

· STV

· additonalmember

· approval

· block

· partylist

· supplementary

· other
3.1.1.6 YesNoType

This is a simple enumeration of yes and no and is used for elements and attributes that can only take these binary values.

3.1.2 Complex Data Types

3.1.2.1 AuditInformationStructure

This data type contains information that might be required for auditing a cast vote. This comprises information regarding the channel used for the casting of the vote and IDs for devices used n the voting process (for example, a phone number for an SMS vote or the IP address of a gateway). All the fields are optional, and the intention is that elements will be derived from this data type by just including the information relevant to a specific part of the voting process.

Each named device type device has a mandatory Id and an optional Name. There is also provision for a device type Other. As well as the Name and Id, this has a Type attribute. This allows devices other than those shown in the generic voting process to be identified.

An any element is included for extensibility.

[image: image4.png]{VotingChannel
~4iype[VotingChannelType

OriginatingDevice

(o)

-4 Processingunits

3.1.2.2 BallotNameStructure

The ballot name structure defines a string with two optional attributes: Id and DisplayOrder.

3.1.2.3 CandidateNameStructure

The candidate name structure defines a string with a mandatory Id and optional DisplayOrder attribute.

3.1.2.4 ContactDetailsStructure

This data type allows for a set of contact details. Each can be qualified through attributes as shown in the descriptions of e.g. EmailStructure below. The PreferredContact is an XLink to a definition of the preferred means of contact. The destination of this link could be part of this structure or could be elsewhere in this or another document. The use of this mechanism is illustrated in the scenario for voter registration for a UK Parliamentary Election.

As an example of the use of PreferredContact and the Preferred attributes on email addresses and phone and fax numbers, consider the case of an election officer needing to contact a person. The officer should take note of the preferred method of contact. If this is unsuitable, for example the preferred method is by post, but the need for contact is urgent, the officer might decide that the telephone is the appropriate contact method, see several phone numbers and use the one whose Preferred attribute has a value of yes. Thus the PreferredContact takes precedence over the Preferred attribute, the latter only being used when the former does not indicate a suitable contact method.

[image: image5.png]ContactetailsStructure B~ | Teiephone

- [ephonesicte

L PreferredContact

3.1.2.5 ContestNameStructure

The contest name structure defines a string with a mandatory Id and optional DisplayOrder attribute.

3.1.2.6 ElectionEventNameStructure

The election event name structure defines a string with a mandatory Id and optional DisplayOrder attribute.

3.1.2.7 ElectionName

The election name is a string with a mandatory Id and optional DisplayOrder attribute.

3.1.2.8 EmailStructure

This is an extension of the EmailType and adds a Preferred attribute of type YesNoType. This indicates which of several email addresses is preferred.

3.1.2.9 IncomingGenericCommunicationStructure

This data type provides a common structure for incoming communications. Individual message types, such as that used for selecting a preferred voting channel (schema 360b) are based on extensions of this schema.

The TransactionId is used to reference an outgoing message to which this is a response or to provide a reference for a response.

The voter must always provide a name and might provide one or more identifiers. These are shown as a restriction of the VoterIdentificationStructure. Contact details are also required, and it is expected that at least one of the allowed contact methods will be included.

The names of the election event, election and contest are optional. There is then an element in which a message can be placed in any of several different formats according to the channel being used.

[image: image6.png]ransactionid
[0z basting

VoterName

o [Nemesiuctre
jerveay [extenson |

Thi the e that g
he voter the right 10 vte

Voterldentification

lps_[Voterisertificaonstructure
[ier 2y [restrction

(o B

ncomngGaercCommunicati: -~}

type
iderivedEy

VoterContact
|02 [ContactbetaisSiructure

ElectionEventName
~dlypsJxsustring

ElectionName

edstring

jame

edstring
e

| [Messages
[0 [essagesstructure

3.1.2.10 MessagesStructure

This data type is used for general display information. The Messages element contains a DisplayOrder attribute. The Message element contains a Format attribute indicating the type of output intended (HTML, WAP, VoiceXML etc.).

[image: image7.png](Fesssoessiructure B[Mossaoe B (o o)

3.1.2.11 OptionNameStructure

The option name structure defines the name of a candidate (when a person) or choice (when a resolution) and is a string with a mandatory Id and optional DisplayOrder attribute.

3.1.2.12 OutgoingGenericCommunicationStructure

This data type provides a common structure for outgoing communications. Individual message types, such as that used for requesting the selection of a preferred voting channel (schema 360a) are based on extensions of this data type.

Unlike the schema for incoming communications, messages to multiple voters are allowed to enable this schema to be used to describe messages being sent to a distributor (such as a printer or email bureau).

The TransactionId is used to provide a reference to be used in a response or to reference an incoming message to which this is a response

Each voter must have a name and one or more identifiers. These are shown as a restriction of the VoterIdentificationStructure. Contact details are also required, and it is expected that at least one of the allowed contact methods will be included.

The names of the election event, election and contest are optional. There may also be contact information provided to allow a reply. There is then an element in which a message can be placed in any of several different formats according to the channel being used.

[image: image8.png]OugongGenencCommunicat, B~}

N that thi a0 ek il votes 1o
Sl commumeation wih 3 dartor,

ransactionid
[0z basting

ElectionEventName
~dlypsJxsustring

ElectionName
edstring

ontestiame

edstring
exension

§ ReturnContact

| [Messages

[0 [essagesstructure

Voterldentification

lps_[Voterisertificaonstructure

[ier 2y [restrction

VoterName

o [Nemesiuctre
jerveay [extenson |

Thi the e that g
he voter the right 10 vte

VoterContact
|02 [ContactbetaisSiructure

(s [sdsirng
[deriveciEy [exension

1=

3.1.2.13 ProcessingUnitStructure

This is an internal type used by the AuditInformationStructure. It is described in section 3.1.2.1.

3.1.2.14 ProposerStructure

A proposer proposes, seconds or endorses an option. A name is always required, and additional information might be needed.

[image: image9.png]Name

izee.

Proposerstructure Et

3.1.2.15 ReportingUnitNameStructure

The reporting name structure defines a string with an optional Id and optional DisplayOrder attribute.

3.1.2.16 ScrutinyRequirementStructure

A scrutiny requirement has two parts, a Type attribute and a text value. The Type specifies a condition that a candidate must meet, such as an age or membership requirement or the payment of a fee. The text describes how that condition has been met. For example:

<ScrutinyRequirement Type="dateofbirth">8 June 1955</ScrutinyRequirement>

3.1.2.17 SealStructure

The seal is used to protect information such as a vote, voting token or complete message. The seal provides the means of proving that no alterations have been made to a message or individual parts of a message such as a vote or collection of votes, from when they were originally created by the voter. The seal may also be used to authenticate the identity of the system that collected a vote, and provide proof of the time at which the vote was cast.

If a message is to be divided, each part must be separately sealed to protect the integrity of the data. For example, if votes in several elections are entered on a single ballot, and these votes are being counted in separate locations, each vote must be separately sealed.

A seal may be any structure which provides the required integrity characteristics, including:

· an XML signature (as defined in http://www.w3.org/2000/09/xmldsig)

· a time-stamp (see Appendix A)

· other mechanisms

The XML signature created by the voting system provides integrity and authentication of the identity of the system that collected the vote. The time-stamp provides integrity of the vote and proof of the time that the vote was cast.

The other mechanism may be used, for example a combinations of an authentication mechanism and timestamps that will provid integrity of the vote, authentication of the identity of the system that collected the vote, and proof of the time that the vote was cast.

[image: image10.png][ts:Signature

102 [ds SignatureType

[tsTimestamp

[0z [TimestampType

3.1.2.18 TelephoneStructure

This is an extension of the TelephoneType and adds the two attributes Preferred and Mobile of YesNoType. The Preferred attribute indicates which of several phone numbers or fax numbers is preferred.

3.1.2.19 VoterIdentificationStructure

This is used wherever identification of a voter is required. It contains the voter's name and electoral address (using definitions from xNAL), the voting token (either normal or qualified (see section 3.1.2.22) and a number of identifiers (such as an electoral roll number). It may also include a previous electoral address if this is required (for example, because a voter has not been at his or her current address for more than a predefined period).

This has been produced as a complex data type rather than an element since it is expected that it will usually be restricted (for example, many uses will make the VoterName mandatory).

[image: image11.png]| Votertiame

Thi i the drecs that s
he voter the right t0 vt

Frovioustiotoraiddress
e [AdarsssSiruchre

Voteridentificationstructure E1-{~~— 1+

[¥Token

o= [VTokentructure

[¥Tokenaualifiea

o= [V TokenGuaitiedSiructure

3.1.2.20 VoterInformationStructure

This contains more information about the voter. It contains all the information that would typically be included on an electoral roll other than that used for identification of the voter. It contains an xsd:any element for extensibility. This has been produced as a complex data type rather than an element since it is expected that it will usually be restricted.

[image: image12.png]Votertormationstructure E-{~—}

hpe[xsdsting
HrervedBy | restrction

[FSpecialRequest

{3 Hany

1 SpeciaiRequests E-(=—)=H]

[0z basting

1=

3.1.2.21 VoterName

The voter name structure defines a string with two optional attributes: Id and DisplayOrder.

3.1.2.22 VTokenQualifiedStructure

There are occasions when a normal VToken cannot be used. For example, if a voter is challenged, or an election officer claims the voter has already voted. In these circumstances a qualified VToken can be used and treated appropriately by the election system according to the election rules. For example, challenged votes might be ignored unless there were sufficient to alter the result of the election, in which case each vote would be investigated and counted if deemed correct to do so.

The VTokenQualifiedStructure is therefore an extension of the VTokenStructrue to add the additional information required. This additional information comprises a reason for qualification (as a Reason element with a Type attribute and textual description) and possibly an original VToken.

[image: image13.png]e ——— — -
| vrokenstructure

- oompone

1

(onaedsradra B

Freason

(e [sdsirng
[eriveciEy [exension

oz VTokenSiructure.

3.1.2.23 VTokenStructure

The VToken contains the information required to authenticate the voter’s right to vote in a specific election or contest. A VToken can consist of a continuous string of encoded or encrypted data, alternatively it may be constructed from several data components that a user may input a various stages during the voting process (such as PIN, password and other coded data elements). The totality of the VToken data proves that a person with the right to vote in the specific election has cast the vote.

Depending on the type of election, the voter may need to cast their votes anonymously, thus not providing a link to the voter’s true identity. In this case the VToken data will not identify the actual person casting the vote, it just proves that the vote was cast by a person with the right to do so. Other election rules require a link to be maintained between a vote and a voter, in which case a link is maintained between the VToken data and the voter’s identity.

The components of the VToken are identified by a Type attribute and may contain text or any markup from any namespace depending on the token type. The content could be defined further in separate schemas for specific types of token.

[image: image14.png](ToveStsture B~ Component B (7 #7am)

1=

3.1.3 Elements

Elements are defined here if:

· their type is a generic EML type such as MessagesStructure rather than a specific type such as AuditInformationStructure;

· they are derived from an EML data type by extension or restriction; or

· they are of a data type defined in XML Schema part 2 [9].

3.1.3.1 Affiliation

This is a text string used to identify the affiliation (e.g. political party) of a candidate in an election.

3.1.3.2 ElectionStatement

This is the candidate's message to voters and is an extension of the MessagesStructure to allow multiple languages.

3.1.3.3 EML

This element is used as the document element for all Election Markup Language messages. It has three attributes: an Id that relates to the Id of the associated message in the Process document, a SchemaVersion that indicates the full version number of the schema with which the message was designed to comply, and an xml:lang that indicates the language of the message content.

The EML element can contain multiple Display elements. These contain Stylesheet elements that indicate a MIME type (using the Type attribute) and a URI as the element value. The Display element has a Format attribute that indicates the target channel for the display (such as HTML). The reason for having multiple Display elements is to allow the same message to be presented appropriately through different channels.

The EML element can also contain a Seal element. This is used to seal the complete message so that any tampering can be detected.

In general, there will only be a single Stylesheet element per Display element. More are allowed so that the output of an XSLT transformation to HTML can contain a reference to a CSS stylesheet to be used to display the transformed message.

Finally, the EML element can contain any other element from the EML namespace. These will be elements such as Ballots and VoterRegistration defined in the other schema documents that form the Election Markup Language.

[image: image15.png]Stylesheet

lbpe[sanyur

[deriveciEy [exension

1=

"y #itargetNamespace

3.1.3.4 EventEnd

This is the end date/time of the election event in xsd:dateTime format.

3.1.3.5 EventStart

This is the start date/time of the election event in xsd:dateTime format.

3.1.3.6 LocationName

The location name is a string with two optional attributes: Id and DisplayOrder.

3.1.3.7 MaxVotes

The maximum number of votes allowed (also known as the vote limit). This is an xsd:positiveInteger and defaults to a value of 1.

3.1.3.8 MinVotes

The minimum number of votes allowed. This is an xsd:nonNegativeInteger and defaults to a value of 0.

3.1.3.9 Profile

This is the candidate's profile statement and is an extension of the MessagesStructure to allow multiple languages.

3.2 110 - Election Event

[image: image16.png]_[FectionEventiame,
[[Bectonevertianesiruchre

Languages

lectioname
(= [Bectontanesiruchre

iy [MessagesStructure

[, ContestName
[[Cortestiamesiruchure

bz MessagesSiructurs

Ele

e (=)

[yotingMethod

o[VofinghtethodlType

[erur [FPP OPY SPY STV adtonaime.

Maxvotes

o= [xsdposiivelnteger
[geteut 1

Minvotes

o= |xstnontlegativelntoger
[ceraut fo

-4 AllowedChannels

| [Feventstart
(o2 Prsadstetine

| FEventend
(o2 Prsaastetine

This schema is used for messages providing information about an election or set of elections. An event has a start and end date and time, a list of allowed voting channels, a list of the languages in which information is to be available and a set of one or more elections. Each election may have multiple contests, each of which can have a different voting method (e.g. first past the post or single transferable vote). Some voting methods will specify the maximum and minimum numbers of votes, but if these are omitted, they default to sensible values.

3.3 210 - Nomination

[image: image17.png]Eloctiontame
(52 [Bectonvanesiruchre

ontosthiame
[[Cortestiamesiruchure

andidatetiame
(52 [Cantastenanesiruchre

MailingAddress

[0 [BctressSiructure

CandidateContact
(= |ContacibetaisSiructure
[ier =By [restriction

Telophons
o2 TelphoneSiuciue

o 2=

[, SerutinyRequirement
o2 [SonfinyResmrenentSinciure

I3

This schema is used for messages nominating candidates in an election. Note that it does not cover other forms of option nomination - only human candidates.

The election and contest must be specified as well as information about the candidate and one or more proposers. The candidate must supply name and contact information. The contact data is derived from the standard data type by making the address mandatory. Optionally, the candidate can provide an affiliation (e.g. a political party) and textual profiles and election statements. These two items extend the MessagesStructure to allow text in multiple languages. There is also scope to add additional information defined by the election organiser.

The proposers use the standard proposer declaration with a mandatory name and optional contact information and job title. Again, additional information can be required.

The scrutiny requirements indicate how the candidate has met any conditions for standing in this election.

Finally, there is scope to extend the schema by adding additional information to the nomination.

3.4 220 - Nomination Response

[image: image18.png][, ElectionName
(= [Bectontanesiruchre

[, ContestName
[[Cortestiamesiruchure

[, CandidateName
[z [Candiastenanesiruchure

CandidateContact

NominationResponse L3

Faccented

e [VestioType
[erum o yes

L7 Hdany

(X3

This message is sent from the election organiser to the candidate to say whether the nomination has been accepted. Along with the acceptance information and the basic information of election, contest and candidate names, the candidates contact details and affiliation can be included and a remark explaining the decision.

3.5 230 - Candidate List

[image: image19.png]Fetectiontiame
ElecliontemeStructure

[contestiiame.

Cortestamestructure

Description
MessagesStucture

CandidateList £

andidatetiame
CanateameSirucur |

This schema is used for messages transferring candidate lists for a specified contests. It has the election event name, contest name (with its ID), optionally a contest description and then a list of candidates, each with a name and optional affiliation.

3.6 310 - Voter Registration

[image: image20.png]| Votertiame

Thi i the drecs that s
he voter the right t0 vt

Provioustlectorainddress -

e A0

[¥Token

o= [VTokentructure

| [p¥Tokenauatiiea

o= [V TokenGuaitiedSiructure

Voterldentiication

(b= [Voterisertifiationstructure
[ier =By [restrction

edstring

exension

Voterinformation

[0 [Voterinformationstructure

VoterRegistration L}

This schema is used for messages registering voters. It uses the VoterIdentificationStructure described in section 3.1.2.19, with the exception that no VToken or VTokenQualified is allowed. The VoterInformationStructure is used unchanged.

There is the facility to add a proof of ID and for the transmission channel (for example a trusted web site) to add the time of transmission.

This schema allows any additional data to be added to the message for appropriate local extensions.

3.7 320 - Inter Database Communications

[image: image21.png]Transactionid
[0z basting

[ActionDateTime
[z [sadstetine

Source

Fesworse B-(=2)

[z basting

FDestation
[z basting

. [Fransactionia

[0z basting

[z basting

estination
[z basting

FSuccess

(o= [vestioType

[erum o yes

Remark

oz basting

This schema is used for messages requesting services from other electoral list databases. This can, for example, be used to de-dupe databases. The schema is in two parts, so a message will be either a request or a response.

A request starts with an Action code and a TransactionId that can be used to correlate the response with the original request. The ActionDateTime is used to specify when the action should be carried out. The Source and Destination are used as identifiers (either string or URI) and then there is an optional list of voters. The message can also be extended through the xsd:any element.

A response has a similar structure. It could be that the Action code is no longer required, so this is now optional. The TransactionID must match that given in the request. The Result is either a binary Success flag or a remark or both. Again, there is a date and time, but in this case it is the date and time at which the action took place.

3.8 330 - Election List

[image: image22.png]| EeclionEverntaneSiructure

*ElectionName

ElectionList B~}

This schema is used for messages communicating the list of eligible voters for an election event or election within the event. This choice is allowed as frequently the same population will be able to vote at all elections within an event, but on other occasions the elections will have different lists.

One choice is therefore to send in one message a sequence of the election event name and ID, followed by an election rule ID and a list of voter registrations. The election rule indicates which voters in the register will be able to vote in this election event.

The other choice is to indicate the election, and optionally an individual contest, to which the voter list applies.

3.9 340 - Polling Information

[image: image23.png]ectionEventiame
(52 [Bectonevertianesiruchre

Ftart
[0z badatetine

VotingPeriod L=}

Ena
oz [adatetine

Thi i the drecs that e
he voter the right t0 vt

~ipe [Votereniicatonsiruchre GH=w— -

o= [VTokentructure

| [p¥Tokenauatiiea

Folingntormation B H Poting 2

T
kil Stz oFpling
it sl 9 slow
e 0 3 priner Thers
Haz b na Stan o
aveid upleaton o dta
e have gons forsplety.

Eloctiontame
(52 [Bectonvanesiruchre

Contosthame
[[Cortestiamesiruchure

Election B~ Deseription

e Wessaesie ¢

1. Contest B-{—)3

e Wessasie ¢

The polling information messages defined by this schema are sent to voters to provide them with details of how to vote. It can also be sent to a distributor, so multiple sets of information are allowed.

One set of polling information may be sent to each voter for any election event, so the election event name is included, with the polling start and end time. Some information about the voter may be included, for example to print on a polling card.

The ElectionRuleId can be included, and contact information for the benefit of a distributor.

Information about the elections and contests is included for the benefit of the voter, and further messages might be added. Use of the DisplayOrder attribute on these allows the display or printing of information to be tailored from within the XML message.

3.10 350 - Generic Communication

These two schemas (350a and 350b) extend the two corresponding data types by allowing any additional element to be appended.

3.11 360 - Channel Options

[image: image24.png]| OwtgoingGenericCommunicationSiructure

OutgoingChannelOptions

l5pe

GuigoingGenericCommun L

__Firansactionia
[0z basting

[erivedy

|
|
|
|
|
|
|
extension ill
|
|
|
|
|
|

_ RefurnContact
12 | ContaciDetaSiructure

| [Messages

0= [essagesstructure

[image: image25.png][IncomingGenericCommunicationstructure

__Firansactionia
[0z basting

ncommpoteotiaton |

5= [ncomingGenericConmuric £

[0 Lentension]

eferredvotingChannel

o[VefingChannelType
[[SMS WiaP gty iternet o

360a - Outgoing
360b - Incoming

These two schemas are used for messages offering a set of voting channels to the voter and to indicate a preferred channel. 360b may be sent as an unsolicited message if this is supported within the relevant jurisdiction.

Both are extensions of the corresponding generic communications data type. The outgoing message includes a list of allowed channels, and the incoming provides a single channel.

Either message can be extended in the normal way.

3.12 410 - Ballots

[image: image26.png]iectionEventiame
EectonEveriNameSirucire

Fectiontiame
EectonneneSinciure

_Description

Contesthiame

CortesttaneSinciure

" ipe [MessagesSiructure

VotingMethod
~4iype [VotinghethodType

e xsanenhegeiteger

piontame.

options B-(=)5

Description

Messages
e MessesesSiuctue

s

Thi i the drecs that e
the voter the right t0 vt

Voterdentestion
e velsnmiteaSas ()P
ey egiin

[¥Token

[[VTokenauatiied
VTokenaualiiedSinctire

VoterContact

CortactbelsisSinture

This schema is used for messages presenting the ballot to the voter or providing a distributor with the information required to print or display multiple ballots.

In the simplest case, a distributor can be sent information about the election event and a ballot ID to indicate the ballot to print.

In other cases, the full information about the elections will be sent with either an election rule ID to identify the voters to whom that election applies or a set of voter names and contact information. If the ballot is being sent directly to the voter, this information is not required.

The election information starts with the election event name and description. This is followed by information related to the contest and any other messages and information required. Note that each voter can only vote in a single contest per election, so only a single iteration of the Contest element is required.

A contest must have its name and ID and a list of options for which the voter can vote. There is also a set of optional information that will be required in some circumstances. Some of this is for display to the voter (VotingInformation and Messages) and some controls the ballot and voting process (Rotation, VotingMethod, MaxVotes, MinVotes, MaxWriteIn).

3.13 420 - Authentication

[image: image27.png]Firansactionid ;

{20007 [SMS AP digtally iferret ..

[¥Token

o= [VTokenStructure

[¥Tokenaualifiea

02 [V TokenGuaitiedSiructure

The authentication message defined by this schema may be used to authenticate a user during the voting process. Depending on the type of election, a voter's authentication may be required; the precise mechanism used may be channel and implementation specific. In some public elections the voter must be anonymous, in which case the prime method used for authentication is the voting token. The voting token can contain the information required to authenticate the voter's right to vote in a specific election or contest, without revealing the identity of the person voting. Either the VToken or the VTokenQualified must always be present in an authenticated message.

The other authentication elements are optional. The TransactionId is used to collate an authentication message with an authentication reply, the VotingChannel identifies the channel by which the voter has been authenticated, the LoginMethod allows additional information to be added about any channel specific authentication method used. Language and corresponds to the general description of that element.

3.14 430 - Authentication Reply

[image: image28.png]Authenticated

(o= [vestioType
[erum o yes

e [Messagessiructurs

[EtectionEventName

[[Bectonevertianesiruchre

AuthenticationReply [

EventDescription
(e [MessagesSiructure

{3 Hany

{3 Hany

The authentication reply is a response to message 420. It indicates whether authentication succeeded using the Authenticated element, and might also present the ballot to the user. This is a restriction of the previous Ballots element to allow only a single ballot per reply.

3.15 440 - Cast Vote

[image: image29.png]oo 2

VTokenstructure

VTokenQualiied
3
VTokenaualfidSinctire

[FetectionEventiiame
EectonEveriNameSirucire

Ftectiontiame
EectonneneSinciure

ElectionEvent [

Feontesthiame

CortesttaneSinciure

[Firiteinoptioname

[¥Tokenaualifiea

VTokenaualfidSinctire

$IReportingunitame

£ VotingChannel
o= |VefingChannelType
117, [SHS WP gy iterret

OriginatingDevice

{ Auditinformation
AudtinformatinStructure

=G0

{20 any

This message represents a cast vote, which comprises an optional voting token (which may be qualified) to ensure authorisation, information about the votes themselves, the name and ID of the reporting unit if applicable and a set of optional audit information.

The election event is identified, together with a set of elections (if multiple elections were included on the same ballot). For each election, the contest is identified, with a set of, possibly sealed, votes. The votes are sealed at this level if there is a chance that the message will be divided, for example so that votes in different elections can be counted in different locations.

For each contest, one or more options is listed. For each of these, either the option name and ID is provided or a write-in option name for elections where this is allowed. This is accompanied by the value of the vote for that option, with an optional voting token (which, again, may be qualified). In some elections where it is only possible to vote for a single candidate, different voting tokens may be provided for each option. In this case, only the voting token is required.

3.16 450 - Vote Confirmation

[image: image30.png]Messages,

[0 [essagesstructure

[¥Token

o= [VTokentructure

VeteConfirmation {3 [¥Tokenaualifiea

o= [V TokenGuaitiedSiructure

[ConfirmationReference
[0z [sting

o wany

The vote confirmation message can be used to show that a vote has been accepted and provide a reference number in case of future queries. Display information can also be provided as well as additional structured information using xsd:any.

3.17 460 - Votes

[image: image31.png]{ Auditinformation
AudtinformatinStructure
restrict

This schema is used to define a message comprising a set of votes being transferred for counting. It is a set of CastVote elements from schema 440 with the addition of audit information for the voting system.

3.18 470 – VToken Log

[image: image32.png]VolingChannelType
SIS AP dighalTy rternet

Vioken

pe [Vickenshusire
jervedy [extension |

VTokenQualiicd

i [VickenGuaifieasirucie)
117208 extension i

AudtinformatinStructure

The message defined by this schema is used to add a voting token (which may be qualified) to an audit log. The VToken or VTokenQualified is extended by the addition of a Status attribute with a value of voted or unvoted. In addition to sending single tokens as they are used, the schema can be used to validate a message sending multiple tokens optionally grouped by voting channel. This might be used instead of sending tokens as they used or, for example, to send the unused tokens at the end of an election. The logging system can also be identified for audit purposes.

3.19 480 Seal Log

[image: image33.png]Flectiontame
(52 [Bectonvanesiruchre

Sealstructure

| [Lds:Signature

102 [ds SignatureType

|
|
|
[ts:Timestamp |
|
|

[seal

=
o= [Seatsiructure

[0z [TimestampType

Seallog {1}

{ Auditinformation [
AudtinformatinStructure
restrict

-4 Processinglnits

The message defined by this schema is used to log the use of each seal for audit purposes. There must be one message per seal, so, if multiple votes are sealed individually in one cast vote message, twp seal log messages must be generated.

The message contains the name and ID of the election, the seal itself and possibly additional audit information as defined in section 3.1.2.1.

3.20 510 - Count

[image: image34.png]oo &)

nEventiiame

:

uditinformation

[Contestiome
CortesttaneSinciure

ssdposiiverteger

ReportingUnitvotes [}

i Countingsystem

oz Precessngtnisius

G

[Reportingnitiome
ReporingLniNmeSivucire

[Reportingnitiome
ReporingLniNmeSivucire

The count message defined by this schema is used to communicate the results of the sets of contests that makes up one or more elections within an election event. It may also be used to communicate the result of a single reporting unit for amalgamation into a complete result.

The message therefore includes the election event name and ID, and for each election, the election ID, a reference to the election rule being used and information concerning the set of contests. The counting system is may also be identified for audit purposes.

In some cases, reporting for a contest may be required at a lower level (for example, for each county in a state). For this reason, reporting may be done at the level of the reporting unit, the total votes, or for a total vote and the breakdown according to the multiple reporting units.

Each contest indicates its name and ID, the maximum number of votes that each voter could cast, information about the votes cast for each option and the numbers of abstentions and rejected votes. The RejectedVotes element has Reason (optional) and ReasonCode (mandatory) attributes to indicate why the votes were rejected. The former is a textual description, and the latter a code.

For each option, the name, ID and number of valid votes is mandatory. These are optionally supplemented by an affiliation when the option is a (human) candidate.

4 References

Voting Process and EML (v1.0b) Election and Voter Services Technical Committee OASIS 1 March 2002
EML Scenarios (v0.1) Election and Voter Services Committee OASIS 7 March 2002
eXtensible Name and Address (XNAL) Specifications and Description Document (v1.0) Customer Information Quality Technical Committee OASIS 8 May 2001 http://www.oasis-open.org/committees/ciq/xnal/xnal_spec.zip
UK Online – Information Architecture – Address and Personal Details Fragment v1.1 Adrian Kent (ed) Office of the e-Envoy 1 March 2002 http://www.govtalk.gov.uk/interoperability/draftschema_schema.asp?schemaid=92
Extensible Markup Language (XML) 1.0 (Second Edition) Tim Bray et al Worldwide Web Consortium 6 October 2000 http://www.w3.org/TR/REC-xml
XML Linking Language (XLink) (v1.0) Steve DeRose et al Worldwide Web Consortium 27 June 2001 http://www.w3.org/TR/xlink/
XML-Signature Syntax and Processing Donald Eastlake et al Worldwide Web Consortium 12 February 2002 http://www.w3.org/TR/xmldsig-core/
Voice Extensible Markup Language (VoiceXML) Version 2.0 Scott McGlashan et al Worldwide Web Consortium 23 October 2001 http://www.w3.org/TR/voicexml20
XML Schema Part 2: Datatypes Paul V Biron et al Worldwide Web Consortium 2 May 2001 http://www.w3.org/TR/xmlschema-2/
Appendix A. The Timestamp Schema

Although used as part of EML, this schema has been put in a separate namespace as it is not an integral part of the language.

A time-stamp binds a date and time to the sealed data. The time-stamp seal also protects the integrity of the data.

The structure of the time-stamp is similar to the structure of an XML Signature. The structure of the Timestamp element is shown here, followed by the detail of two of the four data types that are used to define its child elements.

[image: image35.png][, Timestampedinfo

0= [TmestampedinfoType

[SignatureorTsvalue

Timestamp L

[[TimestampType.

o2 [SrctueortsTvaietype

[Fobject

102 [OtiectType

[image: image36.png]_[Canonicatizationttetiod

[0 [CanaricatzatiortrethacType

[, SignatureOr TS TMethod
K U

,,,,,,,,,,,,,,,, -
———————— |
| Transtormype | |

- G |
Fivanstorm Lo | I
e [Transfommirype Fpatn |
ks foledsmg ||
_

TimestampedntoTyps B~}

Reference
! =

o= [ReferenceType.

1= o2 xsastring

[TransformTyne |

! (G mother), |
ransforms ransform ‘ - — ‘

[[teanstormirype | [Fxpatn |

1

TSTMLinfoReference -
e [ReferenesTyee

stMethod

10 [DigestiethonType

|, Digestvalue
o= [igestvatuetyee

[image: image37.png]rTSTXMLImn 'yne

_ Fuersion
oz [xstecima

e [ertertype

|
| Fidentiier
|
|

Description

|| wolicy

&
|02 [ObjectidentifierType _—_
[ot ‘
| [
e |

| FseriaiNumber
oz [xstecima

| FyenTime
[z badatetine
TSTRMLInfo
fove AccuracyType

‘seconds

\
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

7777777 |
i |
3 |

|

|

|

|

|

|

|

©etmme (-2 }
|

|

|

|

|

|

|

The timestamp structure may be used in one of two ways either:

a) Using Internet RFC 3161 binary encoded time-stamp token with the time-stamp information repeated in XML,

b) Using a pure XML encoded time-stamp.

In the case of the RFC 3161 based time-stamp, the Timestamp structure is used as follows:

· within TimestampedInfo:

· TSTOrSignatureMethod identifies RFC 3161.

· Reference contains the URI reference of the voting data being time-stamped. The DigestValue sub element contains the digest of the voting data being time-stamped.

· TSTXMLInfoReference is not present in this case.

· SignatureOrTSTValue holds the RFC 3161 time-stamp token applied to the digest of TimestampedInfo. The TimestampedInfo is transformed to a canonical form using the method identified in CanonicalizationMethod before the digest algorithm is applied.

· KeyInfo contains any relevant certificate or key information.

· Object contains the TSTXMLInfo element which is a copy of the information in SignatureOrTSTValue converted from RFC 3161 to XML encoding. The TSTXMLInfo element contains:

· version of time-stamp token format. This would be set to version 1

· the time-stamping policy applied by the authority issuing the time-stamp,

· the time-stamp token serial number,

· the time that the token was issued, the contents of this element indicate the time of the timestamp.

· optionally an indication as to whether the time-stamps are always issued in the order that requests are received

· optionally a nonce
 given in the request for the time-stamp token,

· optionally the identity of the time-stamping authority

In the case of a pure XML encoded time-stamp, the Timestamp structure is used as follows:

· within TimestampedInfo,

· TSTOrSignatureMethod identifies the algorithm used to create the signature value.

· Reference contains the URI reference of the voting data being time-stamped. The DigestValue sub element contains the digest of the voting data being time-stamped.

· TSTXMLInfoReference must be present, and contains the URI reference of TSTXMLInfo as contained within the Object element. The DigestValue sub element contains the digest of the TSTXMLInfo.
· SignatureOrTSTValue contains the signature value calculated over the TimestampedInfo using the signature algorithm identified in TSTOrSignatureMethod having been transformed to a canonical form using the method identified in CanonicalizationMethod. This signature is created by the time-stamping authority.

· KeyInfo contains any relevant certificate or key information.

· Object contains the XML encoded time-stamp information in an TSTXMLInfo element. The contents of TSTXMLInfo is the simular as for the case described above. However, in this case the information is directly signed by the time-stamping authority. The TSTXMLInfo element contains:

· version of time-stamp token format: This would be set to version 2

· the time-stamping policy applied by the authority issuing the time-stamp,

· the time-stamp token serial number,

· the time that the token was issued, this is the time of the timestamp.

· optionally an indication as to whether the time-stamps are always issued in the order that requests were received

· optionally a nonce given in the request for the time-stamp token,

· optionally the identity of the time-stamping authority

Appendix B. W3C XML Digital Signature

Some information on the digital signature is included here, but for full information refer to the Recommendation at [7].

An XML Signature consists of:

· SignedInfo which includes a sequence of references to the data being signed with the digest (eg. SHA-1 hash) of the data being signed

· SignatureValue which contains the signature value calculated over the SignedInfo using the signature algorithm identified in SignatureMethod having been transformed to a canonical form using the method identified in CanonicalizationMethod
· KeyInfo contains any relevant certificate or key information.

· Object can contain any other information relevant to the signature

[image: image38.png]ds:SignatureType

ds:SignedinfoType.

|
FasCanonioatzationbiethod |
|

777777777 |
-

| deReferenceType

|
deoterence B+(=—
E Fastigestiatue

|
I |

} |

|

[Sionoare 2 \L L = N

Fassignaturevalue

[dsSignedinfo

is:DigestMethod

Generated with XMLSpy Schema Editor @™ T "

� A nonce is a parameter that varies over time and is used as a defence against a replay attack.

2

Page 1 of 47

