
 Conformance Requirements for Specifications 1

2

3
4
5
6
7

Version 0.5
March 1, 2002

Editors:
Lynne Rosenthal (lynne.rosenthal@nist.gov)
Mark Skall (mark.skall@nist.gov) 8

9
10
11

Contributors:
Lofton Henderson (lofton@rockynet.com)
David Marston (david marston@lotus.com) 12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Abstract
Document describes how to specify software conformance to a specification and
identifies the conformance requirements that must to be included and addressed in
specifications. Target audience is primarily specification developers, followed by
conformance test suite developers and implementation developers.

Status of this Document
Working Draft – v0.5

Document Version History
28 Feb 2002 updated based on Feb 15 Telcon and issues on capitalization and
deprecation; italicize terms that are being defined
30 Dec 2001 updated based on Dec 13 F2F, Telcon
21 Nov 2001 updated based on input from QAWG
25 Oct 2001 updated based on Sept 13 Telecon
22 Aug 2001 updated based on Aug 16 Telecon.
2 Aug 2001 initial draft

Reference Documents
ISO Guide 2: Standardization and related activities – General vocabulary.
ISO/IEC Directives Part 3: Rules for the structure and drafting of International Standards

35 ebXML Technical Architecture Specification, Conformance Clause
OASIS/ebXML Registry Services Specification 36

37
38

W3C WAI Guidelines
W3C XSLT/Xpath Recommendation
UNICODE 39
SAML specifications 40

41

 1

mailto:mark.skall@nist.gov
mailto:david marston@lotus.com
http://www.ebxml.org/specs/index.htm
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf
http://www.unicode.org/unicode/standard/standard.html
http://www.oasis-open.org/committees/security/

TABLE of CONTENTS 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

1. Introduction
2. Scope and Audience
3. Conformance
4. Normative references
5. Informative references
6. Terms and definitions
7. Conformance Clause

7.1. Rationale for a conformance clause
7.2. Conformance keywords
7.3. General principles

8. What to Address in a Conformance Clause
8.1. What needs to conform

8.1.1. Modularity of (software)
8.1.2. Specifying conformance claims

8.2. Profiles and Levels
8.3. Extensions

8.3.1. Disallow Extensions
8.3.2. Allow Extensions

8.4. Discretionary Items
8.4.1. Implementation dependent values
8.4.2. Alternate approaches

8.5. Internationalization – Languages and Character sets
9. Additional Issues to Address

9.1. Implementation conformance statement (questionnaire)
9.2. Test Assertions
9.3. Specify a testing methodology or program

10 Conformance Claim
Appendix A: Sample Conformance Claims
Appendix B: Profiles
Appendix C: Extensions

C.1 Mechanism to allow extensions –
C.2 Registration of implementer extensions or implementation defined values

 2

1. Introduction 77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

The objective of this document is to provide guidance on how to specify conformance
and communicate requirements for claiming conformance in specifications. A primary
goal is to improve the quality of specifications and resulting implementations. Good
specifications lead to better implementations and foster the development of conformance
test suites and tools. The document identifies the conformance requirements that shall be
included or addressed in specifications. Conformance requirements are the expression
that conveys the criteria to be fulfilled in an implementation of a specification [ISO
Guide 2]. The conformance requirements are stated in a conformance clause or
statements within the specification. This document describes the purpose and scope of a
conformance clause, associated issues that a conformance clause shall address as well as
issues that a conformance clause may address. Where ever possible, sample text and
examples will be given.

The information contained is produced as the result of extensive experience in the
development and implementation of conformance clauses and test suites for consensus
standards and specifications. It is based on the principles and requirements prescribed by
international standards (e.g., ISO/IEC and IEEE) as well as extractions from ebXML,
OASIS and W3C specifications.

2. Scope and Audience

This document specifies the general requirements and definitions concerning
conformance and related issues. It is intended to fundamentally contribute towards
mutual understanding amongst developers of specifications and conformance test suites
and tools. It is also intended to provide a suitable source for teaching and for reference,
briefly covering basic theoretical and practical principles of conformance.

This document will not define specific conformance requirements for any specific
specification – this is the responsibility of committees chartered to develop specifications.

This document is intended primarily for the developers of specifications to help enable
them to develop conformance requirements within their specification and to create a
testable, unambiguous specification. Secondary audiences include, but are not limited to:
developers of conformance test suites, software implementers, international standards
bodies, and other industry organizations.

3. Conformance

A specification that conforms to this document SHALL:

�� contain a conformance clause,
�� use the conformance keywords (section 7.2),
�� address all issues (topics) in section 8 and indicate the applicability and means

for achieving conformance to each issue,

 3

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

�� examine the issues in section 9, determine if each issue is applicable and define
the conformance requirements for applicable items.

The location of the conformance clause SHALL be clearly identifiable from the table of
contents and any relevant index. The conformance clause SHOULD exist as a separate
section within the specification, so that it is clearly identifiable, allowing a reader to find
all conformance provisions from a single starting point.

Each issue in section 8 SHALL be addressed by the specification. When alternate
approaches are allowed, the specification SHALL clearly describe the disposition of each
issue. For example, if a specification does not contain levels it should be clear to the
reader that levels are not supported. One method to ensure this clarity is to explicitly
state that levels are not supported.

4. Normative references

The following normative documents contain provisions, which through reference in this
text constitute provisions of this document. At the time of publications, the editions
indicated below were valid. All standards are subject to revision, and parties to
agreements based on this document are encouraged to investigate the possibility of
applying the most recent editions of the standards indicated below.

ISO/IEC Guide 2: Standardization and related activities – General vocabulary
ISO/IEC Directives Part 3: Rules for the structure and drafting of International Standards.
RFC 2119: Keywords for use in RFC’s to Indicate Requirement Levels 146
UNICODE Standard, version 3.0, Addison Wesley, Reading MA, 2000, ISBN: 0-201-
61633-5

147
148
149
150
151
152
153
154
155
156
157
158

5. Informative references

Carnahan, Rosenthal, Skall, Conformance Testing and Certification Model for Software
Specifications, ISACC Conference 1998, March 1998.

Glossary of Conformance Terminology, http://www.oasis-
open.org/committees/ioc/glossary.htm.

Rosenthal, Brady, What is this thing called conformance?, NIST/ITL Bulletin, January
2001, http://www.itl.nist.gov/div897/ctg/conformance/bulletin-conformance.htm. 159

160
161
162
163
164
165

Rosenthal, Skall, Software Validation, Encyclopedia of Software Engineering, edited by
J. Marciniak, Wiley, December 2001.

6. Terms and definitions

 4

http://www.ietf.org/rfc/rfc2119.txt
http://www.unicode.org/unicode/standard/standard.html
http://www.itl.nist.gov/div897/ctg/conformance/bulletin-conformance.htm

For the purposes of this document and specifications implementing this document, the
following relevant terms and definitions SHALL apply:

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

197
198

��199
200

��201
��202
��203
��204
��205

206
207
208
209

Accreditation – procedure by which an authoritative body gives formal recognition that
a body or person is competent to carry out specific tasks.
Certification – the acknowledgement that a validation has been completed and the
criteria established by the certifying organization has been met.
Conformance – the fulfillment of a product, process, or service of specified
requirements.
Conformance Testing – a method of verifying implementations of a specification to
determine whether or not deviations from the specification exist.
Implementation – the realization of a specification – it can be a software product,
system, program, protocol, application, or document instance.
Strict Conformance – conformance of an implementation that employs only the
requirements and/or functionality defined in the specification and no more (i.e., no
extensions to the specification are implemented).
Validation – the process of testing software for conformance to a specific specification.

7. Conformance Clause

Every specification SHALL contain a conformance clause.

The conformance clause is a part or collection of parts of a specification that defines the
requirements, criteria, or conditions that must be satisfied by an implementation in order
to claim conformance. The conformance clause identifies what must conform and how
conformance can be met. Typically the conformance clause is a high-level description of
what is required of implementers and applications. It may refer to other parts of the
standard. It may specify sets of functions, which may take the form of profiles, levels, or
other structures. It may specify minimal requirements for certain functions and for
implementation-dependent values. Additionally, it may specify the permissibility of
extensions, options, and alternative approaches and how they are to be handled.

7.1. Rationale for a conformance clause
A conformance clause:

promotes a common understanding of conformance and what is required to claim
conformance to a specification,

facilitates consistent application of conformance within a specification,
facilitates consistent application of conformance across related specifications,
promotes interoperability and open interchange,
encourages the use of applicable conformance test suites,
promotes uniformity in the development of conformance test suites.

7.2. Conformance keywords
There are specific words that are used throughout the specification to denote whether or
not requirements are mandatory, optional, or suggested. Using these keywords helps to
identify the testable statements in a specification. Although the keywords used within the

 5

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

ISO/IEC community differ from the keywords used within the IETF communities, they
achieve the same results. Use of these keywords SHOULD be consistent (i.e., use the
ISO keywords or the IETF keywords, but do not use both).

ISO Keywords:

SHALL – to indicate requirements strictly to be followed in order to conform to
the standard and in which no deviation is permitted. Equivalent expressions
include: is to, is required to, has to, it is necessary. Do not use MUST as an
alternative for shall.
SHALL NOT - converse of SHALL.
SHOULD – to indicate that among several possibilities one is recommended as
particularly suitable, without mentioning or excluding others.
SHOULD NOT – converse of SHOULD.
MAY – to indicate a course of action permissible within the limits of the standard.
Equivalent expressions include: is permitted, is allowed.
NEED NOT – to indicate a course of action is not required.
CAN – statement of possibility and capability, whether material, physical or
causal. Equivalent expressions include: be able to, it is possible to.
CANNOT – converse of CAN.

IETF Keywords (RCF2119)

MUST - the requirement is an absolute requirement of the specification.
 MUST NOT – the requirement is an absolute prohibition of the specification.
 REQUIRED – see MUST.
 SHALL – see MUST.
 SHALL NOT – see MUST NOT.

SHOULD – there may exist valid reasons in particular circumstances to ignore a
particular item, but the full implications must be understood and carefully
weighed before choosing a difference course.
SHOULD NOT – there may exist valid reasons in particular circumstances when
the particular behavior is acceptable or even useful, but the full implications
should be understood and the case carefully weighed before implementing any
behavior described with this label.

 REOMMENDED – see SHOULD.
MAY - the item is truly optional. One vendor may choose to include the item
because a particular marketplace requires it or because the vendor feels that it
enhances the product while another vendor may omit the same item. An
implementation that does not include a particular option MUST be prepared to
interoperate with another implementation that does include the option, though
perhaps with reduced functionality. In the same vein an implementation, which
does include a particular option MUST be prepared to interoperate with another
implementation that does not include the option (except, of course, for the feature
the option provides.)

Additionally keywords include:

 6

255
256
257
258
259
260
261
262

263
264
265
266

��267
268

��269
270

��271
272
273
274

275
276
277
278
279
280
281
282
283

NORMATIVE – statements provided for the prescriptive parts of the
specification, providing that which is necessary in order to be able to claim
conformance to the specification. Note: the conformance scheme of a
specification can allow claimants to exempt certain normative provisions as long
as the claim discloses the exemption.
INFORMATIVE (NON-NORMATIVE) –statements provided for informational
purposes, intended to assist the understanding or use of the specification and shall
not contain provisions that are required for conformance.

7.3. General principles
An objective of any conformance clause and its related conformance statements is to
provide clear and unambiguous statements, so that the reader knows what is required in
order to claim conformance and what is optional. To achieve this objective:

normative and informative sections SAHLL be evident and if necessary, labeled
accordingly,

uniformity of structure, of style, and terminology SHALL be maintained within the
specification,

identical wording SHALL be used to express identical provisions and analogous
wording SHALL be used to express analogous provisions.

8. What to Address in a Conformance Clause
8.1. What needs to conform
The conformance clause identifies the “class of products” (i.e., object of the claim) that
will be developed, where “class of product” may be an implementation, application,
service, and/or protocol (e.g., content, user agent, authoring tool). Additionally, the
clause specifies the conditions that SHALL be satisfied in order to claim conformance for
that class of product (i.e., make a valid claim). It may also specify that which is not a
requirement. There may be several classes of products that are identified, each with its
own conformance statement or set of conformance criteria.

Example 1: The OASIS/ebXML Registry Services Specification (December
2001) defines conformance for ebXML Registry Client implementations and
ebXML Registry implementations.

284
285
286
287

Example 2: The W3C XSLT Recommendation defines conformance for XSLT
processors. It does not define conformance for editors or generators that create
stylesheets.

288
289
290
291
292
293
294
295
296
297
298

8.1.1. Modularity
A class of product may consist of several integrated components rather than a single
piece of software (e.g., browser). Conformance may be defined in terms of the integrated
components (system) and/or for each component. Any restrictions or constraints on the
number or types of components that make up the “subject of a conformance claim”
SHALL be specified.

 7

http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf
http://www.w3.org/TR/1999/REC-xslt-19991116

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

337
338
339
340
341
342
343

For systems that are comprised of several components, it may be sufficient to state that
conformance to the system is equivalent to conformance to all the required components
considered individually, and the system satisfies at least the minimum conformance
requirements for each of those components.

For example, the conformance clause in the ebXML Technical Architecture
states, “ebXML conformance is defined as conformance to an ebXML system that
is comprised of all the architectural components of the ebXML infrastructure and
satisfies at least the minimum conformance requirements for each of the ebXML
technical specifications.”

8.1.2. Specifying conformance claims
A specification may differentiate conformance claims by designating different degrees of
conformance in order to apply and group requirements according to profiles or levels or
to indicate the permissibility of extensions. When a conformance claim is linked to
functionality, impact and/or incremental degrees of implementation, the term
conformance level is often used to indicate the varying degrees of conformance. When a
conformance claim is linked to extensions, the term strict conformance is often used.
Strict conformance is defined as conformance of an implementation that employs only
the requirements of the specification and no more.

The conformance clause SHALL identify and define all designations of conformance.

For example, the W3C Web Accessibility Guideline designates three
conformance levels (Level A, Double-A and Triple A) based on the checkpoint
priority levels satisfied. Conformance Level A: all Priority 1 checkpoints are
satisfied; Conformance Level Double-A: all Priority 1 and 2 checkpoints are
satisfied; and Conformance Level Triple-A: all Priority 1, 2, and 3 checkpoints
are satisfied.

The specification MAY provide the specific wording of the claim (Appendix A provides
sample conformance claims). It MAY also require specific information to be contained in
the claim, such as name/date/version of the specification, test suite, and tested product.

The specification SHALL impose no restrictions about who can make a conformance
claim (e.g., vendor, user, third party) or where the claims may be published. It MAY
provide additional information regarding the responsibility of claimants.

8.2. Profiles and Levels
Often implementations do not use all the features within a specification. In order to
accommodate these implementations it may be desirable to divide a specification into sets
of functions. Implementers would still be conforming if they implemented one or more
of these sets rather than the entire standard. These sets are commonly implemented as
profiles or levels.

 8

Profiles are used as a method for defining subsets of a specification by identifying the
functionality, parameters, options, and/or implementation requirements necessary to
satisfy the requirements of a particular community of users. Specifications that explicitly
recognize profiles should provide rules for profile creation, maintenance, registration and
applicability. Appendix B provides additional information on profiles.

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

Levels are used to indicate nested subsets of functionality, ranging from minimal or core
functionality to full or complete functionality. Typically, level 1 is the minimal or core
of the specification that must be implemented by all products. Level 2 includes all of
level 1 and also additional functionality. This nesting continues until level n, which
consists of the entire specification.

It is possible for a specification to have both profiles and levels. If profiles and/or levels
are defined, the conformance clause specifies which (if any) of these profiles and/or
levels is mandatory. Additionally, any conditions associated with a particular profile,
level or combination of these needs to be specified.

If profiles and/or levels exist, the specification SHALL indicate the conditions for
claiming conformance to a specific profile and/or level. In particular, consider whether
or not a claim of conformance to a particular profile/level can include functionality or
features of a higher profile/level. Typically, implementations that purport to conform to a
specific level of a specification MAY include functionality defined within one of the
higher levels.

Caution should be exercised in creating of profiles and/or levels. Experience has shown
that having too many profiles and/or levels can inhibit interoperability as well as add
confusion to the marketplace.

8.3. Extensions
An extension to a specification is a mechanism to incorporate functionality beyond what
is defined in the specification. Allowing extensions affects how conformance is defined
as well as what conformance claims may be made. Care should be exercised in
determining the extent to which extensions are allowed or not allowed. Since extensions
can seriously compromise interoperability, specification writers should carefully consider
whether extensions should be allowed. Appendix C provides additional information
about extensions.

8.3.1. Disallow Extensions
If a specification disallows extensions, then the conformance clause SHALL specify that
extensions are not allowed and that implementations of the specification SHALL
precisely implement the complete specification. This is strict conformance. Strict
conformance is often imposed on applications or content of a specification (e.g., a
software program or XML document instance). Strict conformance may also be imposed
on implementations (e.g., as in Ada). Note, that this prohibition of extensions could be
applied to a specific profile or level rather than to the entire specification.

 9

8.3.2. Allow Extensions 389
390
391
392
393
394
395

��396
397

��398
399
400
401
402

��403
404
405

��406
407
408

��409
410
411

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

If specification allows extensions, then the conformance clause SHALL state the
conditions under which extensions are allowed, the applicability of the extensions, their
affect on conformance claims, and any limitations or restrictions on the use of the
extension.

The conformance clause SHALL include the following statements or their equivalent:

Each implementation SHALL fully support all required functionality of the
specification exactly as specified.

The use of extensions SHALL NOT contradict nor cause the non-conformance of
functionality defined in the specification.

Depending on the specification, specification developers MAY want to include the
following additional requirements:

Extensions SHALL follow the principles and guidelines of the specification they
extend, that is, the specifications MUST be extended in a standard manner (see section
below).

For implementations and/or applications that contain extensions, extensions SHALL
be clearly described in supporting documentation and the extensions SHALL be marked
as such within the implementation/application.

For implementations that contain extensions, there SHALL be a mode under which
the implementation can be directed to produce only conformant files (documents) or to
operate in a strictly conformant manner.

8.4. Discretionary Items
Specifications SHALL define or allow discretionary behavior by explicitly stating those
cases and conditions where discretion is allowed and/or expected. Discretionary items
may be warranted because of environmental conditions (e.g., hardware limitations or
software configuration, external systems), locality (e.g., time zone or language), optional
choices providing flexibility of implementation, dependence on other specifications, etc.
Two types of discretionary items are discussed below.

8.4.1. Implementation dependent values
In some instances, it may not be possible to define the behavior or values of a function.
Implementation dependent means that an implementation may determine the effect
(rather than having the effect mandated by the specification). However, the specification
SHALL make it clear that such effects shall be consistent within a single implementation
(e.g., a browser’s rendering of a XSL-FO shall be the same for every invocation
regardless of the document instance).

Details in a specification MAY deliberately be omitted (i.e., not specified), so as to
provide freedom to adapt implementations to different environments and different
requirements. In general this is not a recommended practice. Caution should be exercised
if details are omitted and used only in a limited number of instances.

 10

Specifications SHALL indicate implementation dependencies and where applicable,
address allowable differences between implementations, including,

433
434

��435
��436

437
��438
��439

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

implementation dependent ranges, data, minimum or maximum values, etc.,
Values that may be different for different conforming implementations of the

standard,
environmental resources (e.g., memory or disk limitations),
environmental values (i.e., language and local settings).

For example, a specification for a process that generates a numbered list with
roman numerals may specify a minimum range that shall be supported, but allow
implementations to generate larger numbers.

8.4.2. Alternate approaches
Specifications may describe several different ways to accomplish its operation (e.g., a
choice of file formats, protocols, or encodings). In such a case, the conformance clause
SHALL specify the conditions under which an implementation is considered to be
conformant. Some possible ways to define conformance include mandating that an
implementation shall:

1. implement only one approach,
2. implement every approach,
3. be allowed to implement none of the approaches.

Note: if the specification doesn’t describe the different approaches, this becomes an
implementation detail irrelevant to conformance.

For example, the W3C XSLT Recommendation limits the set of situations under
which an attribute node is allowed to be produced on the output tree. If an
attempt is made to produce an attribute node in any other situation, the
Recommendation allows only two course of action: raise an error or ignore the
attribute. No other behavior is considered conformant, but either of the
enumerated behaviors is equally conformant.

458
459
460
461
462
463

464
465
466
467
468
469
470
471
472
473
474
475
476

8.5. Deprecation
After the initial publication of a specification, specification developers may be
considering the deprecation of a feature (i.e., element or attribute) defined in the
specification. A deprecated feature is a feature whose use is discouraged because it has
been outdated by newer constructs or is no longer viable. Deprecated features may
become obsolete and no longer defined in future versions of the specification.
Deprecated features warn implementers that the feature was a bad idea and it may be
withdrawn in the future.

Specification developers need to consider the affect of deprecation on all the classes of
products that implement the specification (e.g., authoring tools, user agents) as well as
the conformance consequences on each class of product For the purpose of backward
compatibility, it may be necessary to specify different requirements for the support of

 11

lsr
DS

http://www.w3.org/TR/1999/REC-xslt-19991116

477
478
479
480
481
482
483
484
485
486

deprecated features for each class of product. For example: authoring tools shall not use
the deprecated feature, whereas user agents shall support the deprecated feature.

If a specification contains deprecated features, the specification SHALL identify and
clearly mark each deprecated feature. Additionally, the specification SHALL specify, for
each class of products, the level of support required for the deprecated feature and the
conformance consequences of the deprecation. The specification MAY include a note
describing the rationale for the deprecation. The specification MAY include examples
that illustrate how to avoid using deprecated features.

Example 1: SMIL 2.0 addresses deprecated features in the SMIL profiles (SMIL
Language, XHTML+SMIL, etc.). SMIL 2.0 Language user agents must support
all deprecated features. This ensures backward compatibility with SMIL 1.0
content. Since there are no user agents that support XHTML+SMIL 1.0 and very
little content, there is no requirement for backward compatibility to this profile.
Thus, there is no requirement to support deprecated features.

487
488
489
490
491
492
493

Example 2: MathML 2.0 defines what it means for a feature to be deprecated as
follows: (a) In order to be MathML-output-compliant, authoring tools may not
generate MathML markup containing deprecated features. (b) In order to be
MathML-input-compliant, rendering/reading tools must support deprecated
features if they are to be MathML 1.x compliant. They do not have to support
deprecated features to be considered MathML 2.0 compliant. However, all tools
are encouraged to support the old forms as much as possible. (c) In order to be
MathML-roundtrip compliant, a processor need only preserve MathML
equivalence on expressions containing no deprecated features.

494
495
496
497
498
499
500
501
502

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

518
519
520

8.6. Internationalization – Languages and Character sets
Every specification SHALL identify, either by default or explicitly, a single natural
language or a more formal specification language (e.g., IDL, UML) edition as the
normative version.

Every specification SHALL specify whether it permits multiple or alternative natural
languages, language bindings and/or character encodings. If it permits these, it SHALL
specify the languages and encodings that SHALL be supported by conforming
implementations. Additionally, the error conditions and/or behavior to handle situations
in which unsupported languages or encodings are encountered SHALL be defined.

When specifying characters, the Unicode Standard [ISO 10646] SHALL be used.

9. Additional Issues to Address
9.1. Implementation Conformance Statement (questionnaire)
A specification MAY include an Implementation Conformance Statement (ICS) or
questionnaire and require its completion as part of a conformance claim. An ICS is

 12

http://www.w3.org/TR/smil20/
http://www.w3.org/TR/MathML2/

useful in clarifying and declaring optional functionality and discretionary behavior and
values. The results of the ICS can be used to identify the subset of test cases from a
conformance test suite that are applicable to the implementation to be tested. This will
allow the implementation to be tested for conformance against only the relevant
requirements. The ICS is also helpful in describing the expected interoperability to be
achieved with other implementations or applications of the specification.

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

537
538
539
540
541
542
543
544
545
546

��547
548

��549
��550

551
��552

553
��554

555
��556

557
��558

559
560
561
562
563

If an ICS is included as part of the specification, it SHALL be explicitly identified as
either a normative or informative part of the specification.

For example, a specification that allows the implementation to perform locale-
aware processing for locales of the implementor’s choosing, could use an ICS to
obtain a list of the implemented locales from the implementor. Similarly, a
specification that allows an implementation to choose from an enumerated list of
behaviors could use an ICS to find out which behavior is implemented.

9.2. Test Assertions
A specification MAY include test assertions as part of the specification. A test assertion
is a statement of behavior, action or condition that can be measured or tested. It is
derived from the specification’s requirements and bridges the gap between the narrative
of the specification and the test cases. Each test assertion is an independent, complete,
testable statement for requirements in the specification. Each test assertion results in one
or more test cases.

Including test assertions as part of the specification facilitates and promotes the
development of conformance test suites and tools. Specific benefits include:

helping to uncover inconsistencies, ambiguities, gaps, and non-testable statements in
the specification by developing test assertions in parallel with the specification,

ensuring consistency between the specification and assertions,
allowing test assertions to be reviewed and accepted by the specification developers

and the public,
providing a common set of assertions (and thus interpretation of the requirements)

from which test developers can develop conformance tests,
encouraging the early development of conformance tests that can be used by

implementers during the development of their implementation,
achieving comparability between the results of corresponding tests developed by

different organizations,
achieving confidence in the resulting tests as a measure of conformance.

Examples of specifications that included test assertions as part of their specification
include several IEEE and ISO standards, most notably IEEE POSIX and ISO 10303
(STEP).

 13

9.3. Specify a testing methodology or program 564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608

A specification MAY provide a test framework, methodology and/or procedures for
testing to the specification. This type of information ensures consistency between testing
programs and organizations, and provides confidence in those testing programs. If any of
this information is provided, it SHALL be explicitly identified as either normative or
informative guidelines.

The test methodology MAY describe the conformance testing approach – the use of
methods involving rigorous proofs of correctness in which conformance can be
conclusively and exhaustively demonstrated (e.g., the syntactic validators for HTML,
CSS, accessibility of content) or the use of methods involving falsification testing.

The test method MAY specify the use of XML equivalence mechanisms such as XML
Information Sets or Cannonical form when comparing test results to expected results.

The test methodology MAY describe the different types of conformance tests and tools
that need to be developed, the type of test materials that need to accompany the tests, and
the type of information contained in a test report.

The procedures for testing MAY describe the organizational structure, activities and
responsibilities for external organizations that establish and operate a testing service for
the specification.

The procedures for testing MAY prescribe how testing is conducted (e.g., self-declaration
or third party testing laboratories). It MAY also provide a step-by-step guide for using
the tests or tools correctly so that the results are repeatable and reproducible.

This type of information is provided as normative sections in several standards, e.g., ISO
10303 (STEP) and ISO 15046 (Geographic Information), and as part of several consortia
specifications, e.g., RosettaNet.

10. Conformance Claim

This section is the conformance claim for how this document conforms to itself. This
document conforms to the OASIS Conformance Requirements for Specifications version
0.5, 1 March 2002. (ed note: update this as appropriate).

The conformance issues in section 8 apply to this document as follows:

1. This document is applicable to all specifications. In order to claim conformance
to this document, all the requirements in section 3.1 SHALL be met.

2. This document SHALL be implemented in its entirety. It defines no profiles and
no levels.

3. This document allows extensions. Extensions included in a conforming
specification would address additional conformance issues and/or contain

 14

609
610
611
612
613
614
615

additional statements contributing to a clearer, more measurable, less ambiguous,
specification.

4. This document contains no discretionary items.
5. This document’s normative language is English. Translation into other languages

is permitted.

 15

615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

Appendix A: Sample Conformance Claims

Informative

In general, a conformance claim should contain the name and version of the tested
implementation, the name and version of the specification, name and version of the test
suite, date testing was completed, conformance level (or profile) satisfied, and the results
of the testing. For example:

Name of Implementation and version has been tested for Level L conformance to
Name of Specification and version using the Name of Test suite, ver X.X on YY-
MM-DD and no nonconformities were found.

This Name of Implementation (fully specified) has been tested for conformance to
Name of Specification, in accordance with the XXX Validation Procedures using
the Test Suite and testing environment listed below:
-Name of Certificate Holder:
-Implementation Identification:
-Testing Environment (hardware/software):
-Test Suite name and version
-Level of Conformance:
-Nonconformities:
-Test Report: provide a URI

Specific Examples

The Web Content Accessibility Guideline requires a claim to contain the title of the
guidelines document, its URI, the conformance level satisfied, and the scope covered by
the claim (e.g., page, site), for example:

This page conforms to W3C’s “Web Content Accessibility Guidelines 1.0”,
available at http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505, level
Double-A

Appendix B: Profiles
Informative

The following is extracted from ISO 8632 Computer Graphics Metafile Standard

A profile of a specification defines the options, elements, and parameters necessary to
accomplish a particular function and maximize the probability of interchange between
systems implementing the profile. Profiles are defined to meet the requirements of
application constituencies who are asked to adhere to the same subset of the specification.

 16

A profile may be a subset of a single specification or may be part of the set of interrelated
standards and profiles assembled for the purpose of accomplishing a larger functional
purpose. A profile shall not specify any requirement that would contradict or cause non-
conformance to its specification.

661
662
663
664
665
666

��667
��668
��669

670
��671
��672

673
674

��675
676

��677
��678

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

A profile may:

give the meaning of implementation dependent semantics of some elements,
enforce common resolution of ambiguous semantics,
ensure that identical use of identical elements and parameter values have the same

meaning,
specify subsets or groupings of publicly defined extensions,
prohibit undefined or ill-defined elements or parameter values.

Profiles provide a means to:

improve interoperability between implementations by inhibiting the proliferation of
private subsets of a specification,

provide a foundation for testing and promote uniformity of conformance tests,
enhance the availability of consistent implementations of a profile.

Appendix C: Extensions
Informative

An extension may be private (often vendor specific) or may be public (a full description
of the extension is public). Private extensions are usually truly private, i.e., valid for a
specific implementation or are only known by prior agreement between implementations.
Public extensions are extensions in which the syntax, semantics, identifiers, etc are
defined and published allowing anyone to implement the extended functionality.

C.1 Mechanism to allow extensions
One mechanism to allow extensions within a specification is to provide a standard way of
defining the extension or a “standard way of being non-standard”. This helps to ensure
predictable handling of extensions, that is, its recognition as such and the appropriate
action (i.e., to ignore or to implement). The nature of the extension may dictate the
method for defining the extension. It may be possible to define a generic function or
mechanism that indicates external (from the specification) functionality. This external
function/mechansim may take the form of an escape or control character or be an
identifier, which whenever invoked indicates an extension follows. Another method,
especially when extending a list of numeric parameters is to use a scheme where positive
values represent standardized values and negative values are reserved for private use.

Another mechanism that minimizes interoperability problems when extensions are
allowed is to have a register for extensions. This document, distinct from the official
specification, contains a list of recognized extensions to the standard. See section below.

 17

706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750

In a language that supports qualified names, like XML with its namespaces, extensions
may be required to use names from namespaces other than the one used in the
specification. The specification can then define a mechanism by which certain
namespaces are denoted to contain extensions rather than any other type of syntactic
element.

For example, the W3C XSLT Recommendation specifies that the outer element of
a stylesheet may contain an attribute extension-element-prefixes =
“prefix1prefix2prefix3…” and that the given prefixes are mapped to namespaces.
All elements in those namespaces are designated as extension elements, as
opposed to other uses of elements with qualified names that are described
elsewhere in the Recommendation. The namespace for XSLT sylesheets shall not
be on the list, and an implementor is also prohibited from adding any elements to
the XSLT namespace. (This designation applies locally within the stylesheet and
is a “totally private extension”.)

C.2 Registration of implementer extensions or implementation defined values
Registration is a procedure that allows extensions to be acknowledged and made
available to the public. Registration provides for a degree of rigor and technical review
for any proposed extension. Typically, the committee developing the specification is
responsible for processing the registration of an extension, thus ensuring adequate quality
of a proposed extension and a technical description sufficient to be uniformly
implementable. Often, registered extensions may migrate into a later version of the
specification

C.3 Caution: proceed with care when using extensions
Specifications may allow extensions for various reasons. Extensions allow implementers
to include features that are in demand by their customers. Also, extensions, often times,
define new features that may migrate into future versions of the specifications. However,
the use of extensions can have a severe negative impact on interoperability. Some
methods for enabling extensions have less impact on interoperability than other methods.
For example, a specification that allows private extensions (e.g., proprietary) is more
likely to impede interoperability than a specification that requires extensions to be
registered. The table below illustrates various methods for implementing extensions and
their impact on interoperability.

 18

Impact on
Interoperability

Method of Implementing
Extension

Examples of specifications containing
extensions

Greatest Negative
Impact

Totally private extensions Unknown function references in XSLT

 Totally private extensions, but
contained within a standard
template

ISO 8632: CGM’s Escape or GDP
function

 Private, but with ability to
inquire

???

Least Impact

Registered extension ISO Register of International Character
Sets (in accordance with ISO 2375)

ISO 9973: Procedures of Registration
of Graphical Items.

751
752

Table 1: Extensions and their impact on interoperability

 19

	Status of this Document
	Document Version History
	Reference Documents
	Introduction
	Scope and Audience
	Conformance
	Normative references
	Informative references
	Terms and definitions
	Conformance Clause
	Rationale for a conformance clause
	Conformance keywords
	General principles

	What to Address in a Conformance Clause
	What needs to conform
	Modularity
	Specifying conformance claims

	Profiles and Levels
	Extensions
	Disallow Extensions
	Allow Extensions

	Discretionary Items
	Implementation dependent values
	Alternate approaches

	Deprecation
	Internationalization – Languages and Character se

	Additional Issues to Address
	Implementation Conformance Statement (questionnaire)
	Test Assertions
	Specify a testing methodology or program

	Conformance Claim
	Appendix A: Sample Conformance Claims
	
	
	Specific Examples

	Appendix B: Profiles
	Appendix C: Extensions
	
	C.1 Mechanism to allow extensions
	C.2 Registration of implementer extensions or implementation defined values
	
	
	C.3 Caution: proceed with care when using extensions

