Editors Notes:

Throughout this document the editor has placed working comments and reminders. These comments are also available or part of any review. Very often they outline what will be the contact of a particular section so they too are open for comment and review.
Changes in this draft:

· Added summary glossary

· Background section completed. Please review.

· The non-normative description for core operations are fairly solid.

· Added separate NN sections to describe operationalAttributes and error handling – please review
· Created Normative & NN sections for Schema schema – nothing in them yet

· Amended the conformance table as discussed on the list. Needs to be considered by all

General Notes:
1. Conformance for BatchRequest/response stuff falls in the bindings doc: think it’s a must support one of them.

[image: image1.png]OASIS

OASIS Service Provisioning Markup Language (SPML)

Draft Committee Specification 0.0, 21 February 2003
Document identifier: ds-spml-specification-1.0.doc

Location: http://www.oasis-open.org/committees/provision/docs/

Send comments to: pstc-comment@lists.oasis-open.org
Editor:

Darran Rolls (Darran.Rolls@waveset.com)

Contributors:

Doron Cohen, BMC
Gavenraj Sodhi, Business Layers
Hal Lockhart, Entegrity Solutions
Jeff Bohren, OpenNetwork Technologies
Matthias Leibmann, Microsoft
Mike Polan, IBM
Rami Elron, BMC
Tim Moses, Entrust
Tony Gallotta, Access360
Yoav Kirsh, Business Layers
Abstract:

This specification defines the concepts, operations deployment and XML schema for an XML based provisioning request and response protocol.
Status:

This version of the specification is a working draft of the committee. As such, it is expected to change prior to adoption as an OASIS standard.
If you are on the provision list for committee members, send comments there. If you are not on that list, subscribe to the provision-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to provision-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

Copyright (C) OASIS Open 2002. All Rights Reserved.

Table of contents
75.
Introduction (non-normative)

5.1.
Glossary
7
5.1.1
Preferred terms
7
5.2.
Notation
9
5.3.
Schema organization and namespaces
10
6.
Background (non-normative)
10
6.1.
What does service provisioning mean?
10
6.2.
What is a provisioning system?
10
6.3.
Why do we need a common service provisioning standard?
11
6.4.
Requirements
12
6.5.
Use Cases
13
7.
Models (non-normative)
13
7.1.
Protocol Overview
13
7.2.
Domain Model
13
7.2.1
Introduction to RA’s
14
7.2.2
Introduction to PSP’s
14
7.2.3
Introduction to PST’s
14
7.2.4
Introduction to PSO-ID’s
14
7.2.5
An Introduction to PSTD-ID’s
15
7.3.
Operations Overview
15
7.3.1
SPML Add Operations
16
7.3.2
SPML Modify Operations
17
7.3.3
SPML Delete Operations
17
7.3.4
SPML Search Operations
17
7.3.5
SPML Extended Operations
18
7.4.
SPML Identifiers
18
7.5.
Request / Response Model Overview
19
7.5.1
SPML Requests
19
7.5.2
SPML Responses
19
8.
Examples (non-normative)
19
8.1.
Example one
19
8.2.
Example two
19
9.
SPML Operations (normative, with the exception of the schema fragments)
20
9.1.
Element <Identifier>
20
9.2.
Element <AddRequest>
20
9.3.
Element <AddResponse>
21
9.4.
Element <ModifyRequest>
21
9.5.
Element <ModifyResponse>
21
9.6.
Element <DeleteRequest>
21
9.7.
Element <DeleteRespose>
22
9.8.
Element <SearchRequest>
22
9.9.
Element <SearchResponse>
22
9.10.
Element <ExtendedRequest>
23
9.11.
Element <ExtendedResposne>
23
10.
SPML Request / Response (normative, with the exception of the schema fragments)
23
10.1.
Element <BatchRequest>
23
10.2.
Element <BatchResponse>
24
10.3.
Element <BatchCancelRequest>
24
10.4.
Element <BatchCancelResponse>
25
10.5.
Element <BatchStatusRequest>
25
10.6.
Element <BatchStatusResponse>
25
11.
Functional requirements (normative)
26
11.1.
Requesting Authority
27
11.2.
Provisioning Service Point
27
11.3.
Provisioning Request ID’s
27
11.4.
Provisioning Service Objects
27
11.5.
Provisioning Service Target Identifiers
27
12.
SPML extensibility points (non-normative)
27
8.1.
Extended SPML Requests
27
9.
Security and privacy considerations (non-normative)
27
9.1.
Threat model
28
9.1.1.
Unauthorized disclosure
28
9.1.2.
Message replay
28
9.1.3.
Message insertion
28
9.1.4.
Message deletion
28
9.1.5.
Message modification
29
9.2.
Safeguards
29
1.1.1
Authentication
29
1.1.2
Confidentiality
29
1.1.3
Trust model
29
1.1.4
Privacy
30
10. Conformance (normative)
30
10.1. Introduction
30
10.2. Conformance tables
30
10.3.1.
Data Types
31
Appendix A. References
32
Appendix B. Acknowledgments
33
Appendix C. Revision history
34
Appendix D. Notices
35

5. Introduction (non-normative)

5.1. Glossary

5.1.1 Preferred terms

	5.1.1.1
	Account
	The set of attributes that together define a user’s access to a given service. Each service may define a unique set of attributes to define an account. An account defines user or systems access to a resource or service.

	5.1.1.2
	Access Rights
	A description of the type of authorized interactions a subject can have with a resource. Examples include read, write, execute, add, modify, and delete.

	5.1.1.3
	Administrator
	A person who installs or maintains a system (e.g. a SPML-based provisioning system) or who uses it to manage system entities, users, and/or content (as opposed to application purposes. See also End User). An administrator is typically affiliated with a particular administrative domain and may be affiliated with more than one administrative domain.

	5.1.1.4
	Attribute
	A distinct characteristic of an object. An object’s attributes are said to describe the object. Objects’ attributes are often specified in terms of their physical traits, such as size, shape, weight, and color, etc., for real-world objects. Objects in cyberspace might have attributes describing size, type of encoding, network address, etc. Which attributes of an object are salient is decided by the beholder.

	5.1.1.5
	Authentication
	To confirm a system entity’s asserted principal identity with a specified, or understood, level of confidence.

	5.1.1.6
	Authorization
	The process of determining which types of activities are permitted. Usually, authorization is in the context of authentication. Once you have authenticated an entity, the entity may be authorized different types of access or activity.

The (act of) granting of access rights to a subject (for example, a user, or program).

	5.1.1.7
	Credential
	Data that is transferred to establish a claimed principal identity.

	5.1.1.8
	End User
	A natural person who makes use of resources for application purposes (as opposed to system management purposes. See Administrator, User).

	5.1.1.9
	External Enterprise
	Environment which may contain many or all of the following:

Managed Services, contractors, temporary employees, multiple organizations, private to public registry systems.

	5.1.1.10
	Identity
	The unique identifier for a person, resource or service.

	5.1.1.11
	Login
Logon
Signon
	The process of presenting credentials to an authentication authority, establishing a simple session, and optionally establishing a rich session.

	5.1.1.12
	Principal
	A system entity whose identity can be authenticated

	5.1.1.13
	Provisioning
	The process of managing attributes and accounts within the scope of a defined business process or interaction. Provisioning an account or service may involve the Creation, modification, deletion, suspension, restoration of a defined set or accounts or attributes.

The process of provisioning an account or service may involve the execution of a defined business or system process.

	5.1.1.14
	Provisioning service (PS)
	Any system entity that supports the receipt and processing of SPML artifacts

	5.1.1.15
	Provisioning Service Point (PSP)
	Reference to a given Provisioning Service

	5.1.1.16
	Provisioning Service Target (PST)
	A resource managed by a PSP. Example PST's are directories, NIS instances, NT domains, individual machines, applications or groups of application and settings that together denote a service offering, appliances or any provisioning target.

	5.1.1.17
	Requesting Authority (RA)
	Party or system that is authorized to request a resource for the party.

	5.1.1.18
	Resource
	An application or service supporting the provisioning or account or attribute data.

	5.1.1.19
	Session
	A lasting interaction between system entities, often involving a user, typified by the maintenance of some state of the interaction for the duration of the interaction.

	5.1.1.20
	Subject
	A principal, in the context of a security domain, about which a given provisioning request is made or requested.

	5.1.1.21
	System
	An active element of a computer/network system--e.g., an automated process or set of processes, a subsystem, a person or group of persons—that incorporates a distinct set of functionality.

	5.1.1.22
	Service
	A specific type of resource that is not physically obtained by a user, but is accessed periodically by the user

	5.1.1.23
	Security
	Security refers to a collection of safeguards that ensure the confidentiality of information, protect the system(s) or network(s) used to process it, and control access to it (them). Security typically encompasses the concepts/topics/themes of secrecy, confidentiality, integrity, and availability. It is intended to ensure that a system resists potentially correlated attacks.

	5.1.1.24
	SPML
	Service Provisioning Markup Language. The name for the XML framework proposed by the OASIS PSTC

	5.1.1.25
	User
	A natural person that makes use of a system and its resources for any purpose See also Administrator, End User.

5.2. Notation

This specification contains schema conforming to W3C XML Schema and normative text to describe the syntax and semantics of XML-encoded policy statements.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as described in IETF RFC 2119 [RFC2119]
"they MUST only be used where it is actually required for interoperation or to limit behavior which has potential for causing harm (e.g., limiting retransmissions)"

These keywords are thus capitalized when used to unambiguously specify requirements over protocol and application features and behavior that affect the interoperability and security of implementations. When these words are not capitalized, they are meant in their natural-language sense.

Listings of SPMLL schemas appear like this.

Example code listings appear like this.

Conventional XML namespace prefixes are used throughout the listings in this specification to stand for their respective namespaces as follows, whether or not a namespace declaration is present in the example:

· The prefix dsml: stands for the Directory Services Markup Lanuage namespace [DSML].

· The prefix saml: stands for the SAML assertion namespace [SAML].

· The prefix ds: stands for the W3C XML Signature namespace [DS].

· The prefix xs: stands for the W3C XML Schema namespace [XS].

This specification uses the following typographical conventions in text: <SPMLElement>, <ns:ForeignElement>, Attribute, Datatype, OtherCode. Terms in italic bold-face are intended to have the meaning defined in the Glossary.

5.3. Schema organization and namespaces

The SPML core operations schema syntax is defined in a schema associated with the following XML namespace:

urn:oasis:names:tc:spml:1.0:operation

The SPML request/response schema syntax is defined in a schema associated with the following XML namespace:

urn:oasis:names:tc:spml:1.0:request
6. Background (non-normative)

In late 2001, the OASIS Provisioning Services Technical Committee (PSTC) was formed to define an XML-based framework for exchanging user, resource, and service provisioning information. This section is intended to provide a high level definition of provisioning within the context of the PSTC and an overview of the scope of the SPML specification.

6.1. What does service provisioning mean?

Service provisioning means many different things to many different people. In the context of this specification it refers to the “preparation beforehand” of IT systems’ “materials or supplies” required to carry out some defined activity. It goes further than the initial “contingency” of providing resources, to the onward management lifecycle of these resources as managed items. This could include the provisioning of purely digital services like user accounts and access privileges on systems, networks and applications. It could also include the provisioning of non-digital or “physical” resources like the requesting of office space, cell phones and credit cards.

The following short definition has been adopted by the Provisioning Services Technical Committee as its forma definition of the general term “provisioning”:

"Provisioning is the automation of all the steps required to manage (setup, amend & revoke) user or system access entitlements or data relative to electronically published services".

6.2. What is a provisioning system?

At this stage it is not necessary to define the implementation or physical makeup of a serice provisioning system. Simply assume the existence of a network service whose sole purpose is the execution and management of provisioning requests. A given Requesting Authority (client) sends the provisioning service a set of requests in the form of a well formed SPML document. Based on a pre-defined service execution model, the provisioning service takes the operations specified within the SPML document and executes provisioning actions against pre-defined service targets or resources.

Figure 1 shows a high-level schematic of the operational components of an SPML model system. In SPML request flow A the Requesting Authority (client) construct an SPML document subscribing to a pre-defined service offered by Provisioning System One. System One takes the data passed in this SPML document, constructs it’s own SPML document and sends it to PST One (SPML request flow B). PST One represents an independent resource that provides an SPML compliant service interface. In order to fully service the initial Requesting Authorities request, Provisioning System One then forwards a provisioning request (SPML request flow C) to a second network service called Provisioning System Two. System Two is autonomously offering a provisioning service it refers to as Resource E. In this case Resource E is a relational database within which System Two creates some data set. Having successfully received Provisioning System One’s request, Provisioning System Two carries out the implementation of its service by opening a JDBC connection to Resource E and adding the relevant data.
In this example, the SPML document flows follow a simple request/response protocol flow that supports both synchronous and asynchronous operations. Importantly, these SPML flows are initiated unidirectional. When System One made a request of System two, it assumed the role of a Requesting Authority and initiated it’s own request/response flow with it’s chosen service point. When System Two implemented its service at Resource E, it DID NOT use an SPML protocol message.

[image: image2]
Figure 1. Provisioning Systems.

6.3. Why do we need service provisioning standards?

There are several areas of provisioning systems that would benefit from standardization. XRPM [XRPM] and ADPr [ADPR] both addressed the business needs and possible benefits for establishing standardization in this space. Each initiative identified this need at opposite ends of the provisioning scenario depicted in Figure 1. XRPM set out to define a standard for interoperability and functioning between Provisioning Systems. ADPr set out to define a standard for interoperability and functioning between the Provisioning System and the managed resource.

The PSTC and was formed to address the specification of a single XML-based framework for the exchange of information at all levels. This is achieved at the protocol level by allowing a Provisioning Service Target (resource) to adopt the role of a Provisioning Service Point (a server), respond to client requests and operate as a full service point responsible for a single service or resource, itself.

6.4. Requirements

The following requirements contributed to the generation of this specification. There source can be found in the committee mail list archive [ARCHIVE-1] and in the official SPML requirements document [SPML-REQ].
6.4.1 To define an extensive set of use cases that model the functional requirements of the proposed protocol and to see these use cases operable by implementing the resulting specification.

6.4.2 To define an XML Schema based protocol for exchanging provisioning requests between a Requesting Authority (RA) and a Provisioning Service Point (PSP).

6.4.3 To define an XML Schema based protocol for exchanging requests provisioning requests between a PSP and a Provisioning Service Target (PST) AND if possible to implement this and requirement 1 (above) in a single protocol.

6.4.4 To provide a query model that MAY allow a RA to discover details about those provisioning elements it is authorized to see and act upon at a given PSP. Implicitly, the “decision" on what services to display to what RA’s lies with the implementation and authorization model of the PSP provider.

6.4.5 To provide a model that allows a RA and a PSP to dynamically discover the required data values for a given provisioning action.

6.4.6 To provide consideration for the security and general operational concerns of such an exchange system.

6.4.7 To provide guidelines on binding SPML to the SOAP and HTTP protocols.

6.4.8 To provide an open extensible solution that is independent of any one vendors implementation or solutions model.

6.4.9 To provide a transactional element to the request/response model that allows for the exchange of ordered batches of requests.

6.4.10 To deliver a solution in a timely manor.

6.4.11 To where possible and reasonable to re-use and extend existing standards efforts for the benefit of the SPML solution.

6.4.12 To provide a standard suitable for use both inside a single organization or enterprise and between multiple separate organizations/enterprises operating on separate network infrastructures.

6.4.13 To provide an open protocol that does not dictate the underlying infrastructure or technology used by the implementer of RA, PSP or PST entities to support that protocol.

6.5. Use Cases

The PSTC has produced a number of use cases that define the operational requirements of the SPML V1.0 specification. The SPML v.10 use cases [PSTC-UC] can be found on the PSTC web site. Section eight of this document provides a two working examples taken from several of these use cases.

7. Models (non-normative)

The following sections describe the general object model and operational model for an SPML system are described in the following sub-sections.

7.1. Protocol Overview

The general model adopted by this protocol is one of clients performing protocol operations against servers. In this model, a client issues an SPML request describing the operation to be performed at a given service point. The service point is then responsible for performing the necessary operation(s) to constitute the implementation of the requested service. Upon completion of the operation(s), the service point returns to the client an SPML response detailing any results or errors pertinent to that request.

In order to promote standardization of the service subscription and provisioning interface, it is an active goal of this protocol to minimize the complexity of the client interface in order to promote widespread deployment of applications capable of issuing standardized service provisioning requests.
It should be noted that although SPML provides both synchronous and asynchronous batch request models, there is no requirement for a blocking synchronous behavior on the part of either clients or servers. Requests and responses for multiple operations may be freely exchanged between a client and server in any order, provided the client eventually receives a response for every request that requires one.

It should also be noted that where as the basic protocol operations of SPML are similar to those found in DSML v.2 [DSML-2] and hence to LDAP V3 [LDAP-3], operations are not mapped one-to-one and the general LDAP model has been extended to cope with the specification of operational control data required for the execution of service requests.

7.2. Domain Model
The following section introduces the main conceptual elements of the SPML domain model. The ERD in Figure 2 shows the basic relationships between these elements.
[image: image3.jpg]PSP

Bl

Figure 2. Conceptual system elements
7.2.1 Introduction to RA’s
[Editors note: Describe here more details on the types of things that would be RA’s and how a downstream PSP-PSP call (use case number) is implemented as an RA-PSP call]
7.2.2 Introduction to PSP’s
[Editors note: Describe here more details on who will be a PSP and why and describe how an ADPr type resource call would be modeled as an RA-PSP call]
7.2.3 Introduction to PST’s
[Editors note: Describe the types of things that are PST’s and relate this back to the ADPr use cases and a resource centric view. Make a clear point that a PST (and hence the target for a provisioning request) does not have to be account or identity based. Re state that his model concept is not reflected in the protocol specification and why]
7.2.4 Introduction to PSO-ID’s
SPML introduces the concept of a Provisioning Service Object Identifier (PSO-ID). A PSO-ID represented a unique identifier for a collection of individual provisioning requests. An example explains this best.
Consider the provisioning of IT resource accounts for a new corporate user. The new user requires an account on a Windows NT domain, a Lotus Notes server, a corporate directory server and a UNIX file server. In this example the RA would present the PSP with it’s own unique identifier for the “corporate user”, say a full name, a list of the PSTD-ID’s it would like to create on the target systems (see below) and the set of attributes required to complete the provisioning request. In this example, the PSO-ID would be the full name specified by the RA. The PSO-ID would be used to relate the created PSTD-ID’s together. This relationship could be maintained by both the RA and the PSP, the details of which is deliberately left un-defined in the SPML protocol.
PSO-ID’s can be defined by the RA. It is therefore the responsibility of the PSP implementation to guarantee this. This subject is discussed in more detail in section 6 of this document. PSO-ID’s can also be generated by the PSP at provisioning time and reported back to the RA as part of the response element.

The PSO-ID therefore represents the unique identification for a set of provisioned data throughout the life cycle of that PSP.
Figure 3 shows some of the possible relationships between a RA, PSP, PSO-ID, PST and PSTD-ID.

[image: image4.jpg]PSP PSO-ID

PST PSTD-ID.

Figure 3. High-level system element relationships
The PSO-ID relationship represents one on many possible relationships that could be modeled behind an SPML compliant service interface. In the context of enterprise IT resource provisioning it is an important one and hence is explicitly called out in the SPML domain model. Note that although important, this relationship is not implicitly bound into the SPML protocol. In order to accurately model these relationships, the definition of concepts like the PSO-ID are dropped to the data schema layer and are hence modeled by service providers in the definition of service data schema.

7.2.5 An Introduction to PSTD-ID’s

SPML introduces the concept of a Provisioning Service Target Data Identifier or PSTD-ID. A PSTD-ID is a unique identifier for a data set (account or managed data) on a PST. An example of a PSTD-ID on a UNIX/Linux server would be the UID; an example of a PSTD-ID for a directory entry would be a Distinguished Name (DN). In some cases PSTD-ID’s are specified by the RA issuing the SPML request. In others the PSTD-ID is set by the PSP/PST.
It is assumed that a PSTD-ID is unique to a PST (if not implemented by the native resource then implemented by the functioning PST/PSP implementation through some custom namespace mechanism).
The simple ERD shown in Figure 3 shows some of the possible relationships between a RA, PSP, PSO-ID, PST and PSTD-ID. Remember that these relations are not always directly reflected in the SPML 1.0 protocol; often they explain the model behavior of the entire system.

7.3. Operations Overview
This section provides a non-normative discussion of the specific operations defined in SPML version 1.0 and describes them in relative terms to the overall design and purpose of SPML.
SPML is modeled around the operations and general semantics of an LDAP like interface to provisioning actions. Based on the outline of an LDAP 3.0 client/server model, SPML attempts to expand this recognized and well understood standard by adding support for an XML based expression that is more suited to a highly diversified subscription and general service provisioning application domain.

SPML is built upon the concepts of the generalized XML abstraction of LDAP defined in the Directory Services Markup Language v2.0 (DSML) [DSML-2]. SPML 1.0 expands the DSML model to include a more concise expression of operations relative to an “owning” principal and focuses more on the types or operational parameters and execution directives required in the more application specific realm like service provisioning. It should however be duly notes that where ever possible, SMPML v1.0 has tried to build upon DSML concepts and implement physical schema re-use where ever possible.
7.3.1 SPML Add Operations

The <spml:addRequest> element allows the RA to request the addition of an instance of a given service. The <spml:attributes> element is used to envelope the set of name=value pairs requires to subscribe to a given published service. Note the use of the special attribute “objectClass”. As in the basic DSML protocol and the general LDAP data model, this attribute is used to define the target service schema the RA wishes to create an instance of. The example below shows a request to “create” an instance of the “emailUser” service. The functioning RA supplies the “cn” “gn” and “sn” attributes required to subscribe to this service. By issuing this request, the RA hopes to create a new email account for the “cn” Jane Doe.

	<spml:addRequest>

<spml:attributes>

<attr name="objectClass">

 <value>emailUser</value>

</attr>

<attr name="cn">

<value>Jane Doe</value>

</attr>

<attr name="gn">

<value>Jane</value>

</attr>

<attr name="sn">

<value>Doe</value>

</attr>

</spml:attributes>
</spml:addRequest>

The resulting <spml:addResponse> element returned by the PSP supplies the RA with a result code attribute to indicate that the add request was successfully processed. In this example, the functioning PSP returns an <sml:identifier> element containing the primary record identifier for the newly created service instance. This value will be required for subsequent operations on this newly created PSTD-ID. The response element also includes an optional <spml:attributes> element to envelope a set of data generated by the functioning PST. In this example, the functioning PSP uses these returned attributes to notify the functioning RA that the “mailBoxLimit” attribute was automatically set to “50MB”.

	<spml:addResponse resultCode = “urn:oasis:names:tc:SPML:1.0:core#success">

<spml:identifier identifierType = "urn:oasis:names:tc:SPML:1.0:core#EMailAddress">

<spml:id>Jane.Doe@acme.com</spml:id>

</spml:identifier>

<spml:attributes>

<attr name="mailBoxLimit">

<value>50MB</value>

</attr>

</spml:attributes>
</spml:addResponse>

7.3.2 SPML Modify Operations

The <spml:modifyRequest> element is used by a functioning RA to specify a change request to a PSP or PST. Implicit in the modification of a service instance is the identification of the exact PSTD-ID to be modified. In this example, the functioning RA specifies an <spml:identifierType> of EmailAddress and uniquely identifies the PSTD via the <spml:id> of Jane.Doe@acme.com. The <spml:modifications> element is used to envelope the set of modified attributes for this PSTD. Here the RA requests the modification of the “mailBoxLimit” attribute to the value of “100MB”.

	<spml:modifyRequest>

<spml:identifier identifierType = "urn:oasis:names:tc:SPML:1.0#:coreEMailAddress">

<spml:id>Jane.Doe@acme.com</spml:id>

</spml:identifier>

<spml:modifications>

<modification name="mailBoxLimit" operation="replace">

<value>100MB</value>

</modification>

</spml:modifications>
</spml:modifyRequest>

Using the <spml:modifyResponse> element, the functioning PSP returns the status of the <spml:modifyRequest> as shown below.
	<spml:modifyResponse resultCode = "urn:oasis:names:tc:SPML:1.0:core#success" />

SPML V1.0 provides for a number of resultCode values as show blow:

[Editors note: Check this list is final]
	<xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#success"/>
<xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#failure"/>
<xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#pending"/>
<xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#malformedRequest"/>

7.3.3 SPML Delete Operations

The <spml:deleteRequest> element is used by a functioning RA to request the deletion of a specific PSTD-ID. Implicit in the deletion of a service instance is the identification of the exact PSTD-ID to be deleted. In this example, the functioning RA specifies an <spml:identifierType> of EmailAddress and uniquely identifies the PSTD via the <spml:id> of Jane.Doe@acme.com.

	<spml:deleteRequest>

<spml:identifier identifierType = "urn:oasis:names:tc:SPML:1.0:core#EMailAddress">

<spml:id>Jane.Doe@acme.com</spml:id>

</spml:identifier>
</spml:deleteRequest>

Using the <spml:deleteResponse> element, the functioning PSP returns the status of the <spml:deleteRequest>.

	<spml:deleteResponse resultCode = "urn:oasis:names:tc:SPML:1.0:core#success" />

7.3.4 SPML Search Operations

The <spml:searchRequest> element

[Editors note: Add text & example here]
	

The <spml:searchResponse> element

[Editors note: Add text & example here]
	

7.3.5 Operational Attributes

SPML V1.0 provides a convenient way for requestors and responders to provide additional operational attributes when issuing and responding to SPML requests. The <spmlRequets> and <spmlResponse> elements both provide an <spml:operationalAttributes> sequence element that allows either functioning party to specify additional information pertinent to the execution of a given operation. In the example below, the functioning RA issues the delete request as defined in section 7.3.3 or this document. Notice that in this example, the RA adds <spml:operationalAttributes> to the delete request specifying an archival policy for the deleted mail box and a time at which the request should be executed.

	<spml:deleteRequest>
 <spml:identifier identifierType = "urn:oasis:names:tc:SPML:1.0:core#EMailAddress">
 <spml:id>Jane.Doe@acme.com</spml:id>
 </spml:identifier>
 <spml:operationalAttributes>
 <attr name="retainMailbox">
 <value>true</value>
 </attr>
 <attr name="executeJulianDate">
 <value>2452842</value>
 </attr>
 </spml:operationalAttributes>
</spml:deleteRequest>

7.3.6 Error Conditions

There are two basic core protocol errors defined by SPML V1.0, syntax errors and request failures. Syntax errors are when a functioning RA issues what is fundamentally a malformed SPML request. In these cases, rather than simply disregarding the request, the functioning PSP sends a response back to the client with a specific <spml:resultCode> that aids the debugging and re-issuance of the bad request.

	<spml:deleteResponse resultCode = "urn:oasis:names:tc:SPML:1.0:core#malformedRequest" />

An SPML V1.0 RA may also produce a request document that is syntactically correct but that contains a request that fails when the functioning PSP executes it. When a request execution fails, the execution behavior of other requests within the same <spml:BatchRequest> envelope is defined by the attributes of the batch document (see section 7.5 of this document). The SPML V1.0 service simply returns notification of the request failure in response element using the resultCode modifier as shown below.

	<spml:deleteResponse resultCode = "urn:oasis:names:tc:SPML:1.0:core#failuret" />

7.3.7 SPML Extended Operations
An extension mechanism has been added to the SPML v1.0 specification to allow additional operations to be defined for services not available elsewhere in this protocol. The extended operation allows clients to make requests and receive responses with predefined syntaxes and semantics. Extended request operations may be defined by other standards bodies or may be private to particular vendor implementation. A functioning RA uses the <spml:extendedRequest> element to request an extended SPML operation.

Each new extended request operation defines a unique operationID. In the example below, the functioning PSP has provided an extended operation “urn:acme.com.mailservice.ops:purge” to allow its clients to request the purging of a defined mail box. In this implementation, no service schema attributes are required when requesting this operation. The RA simply provides the unique <spml:identifier> for the PSTD-ID it wished to operate against.
	<spml:extendedRequest>

<spml:identifier operationIDType = "urn:oasis:names:tc:SPML:1.0:core#URN">

<spml:operationID>urn:acme.com.mailservice.ops:purge</spml:operationID>

</spml:identifier>

<spml:identifier identifierType = "urn:oasis:names:tc:SPML:1.0:core#EMailAddress">

<spml:id>Jane.Doe@acme.com</spml:id>

</spml:identifier>
</spml:extendedRequest>

Using the <spml:deleteRequest> element, the functioning PSP returns the status of the <spml:extendedRequest> as shown below.

	<spml:extendedResponse resultCode = "urn:oasis:names:tc:SPML:1.0:core#success" />

SPML V1.0 also defines an optional providerID sub-element that allows an extended request provider to annotate their new request type and provide an aggregation mechanism such that a set of extended requests can been correlated back to a specific provider. In the examples below, the <spml:poviderID> “1.3.6.1.4.868.2.4.1.2.1.1.1.3.3562” is used to collect together two new operations purge and compress.
For a full explanation of providerID and operationID see the <spml:identifier> section of this document.
	<spml:extendedRequest>

<spml:identifier providerIDType = "urn:oasis:names:tc:SPML:1.0:core#OID">

<spml:providerID>1.3.6.1.4.868.2.4.1.2.1.1.1.3.3562</spml:providerID>

</spml:identifier>
 <spml:identifier operationIDType = "urn:oasis:names:tc:SPML:1.0:core#URN">

<spml:operationID>urn:acme.com.mailservice.ops:purge</spml:operationID>

</spml:identifier>

<spml:identifier identifierType = "urn:oasis:names:tc:SPML:1.0:core#EMailAddress">

<spml:id>Jane.Doe@acme.com</spml:id>

</spml:identifier>
</spml:extendedRequest>

	<spml:extendedRequest>

<spml:identifier providerIDType = "urn:oasis:names:tc:SPML:1.0:core#OID">

<spml:providerID>1.3.6.1.4.868.2.4.1.2.1.1.1.3.3562</spml:providerID>

</spml:identifier>
 <spml:identifier operationIDType = "urn:oasis:names:tc:SPML:1.0:core#URN">

<spml:operationID>urn:acme.com.mailservice.ops:compress</spml:operationID>

</spml:identifier>

<spml:identifier identifierType = "urn:oasis:names:tc:SPML:1.0:core#EMailAddress">

<spml:id>John.Doe@acme.com</spml:id>

</spml:identifier>
</spml:extendedRequest>

7.4. SPML Identifiers

[Editors note: Explain the entire SPML identifier concepts. Start at the use of a spml:identifier and explain the different types. Also explain providerID and operationID]

	 <xsd:simpleType name="IdentifierType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#EMailAddress"/>
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#DN"/>
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#UserIDAndOrDomainName"/>
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#LibertyUniqueID"/>
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#PassportUniqueID"/>
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#GUID"/>
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#URN"/>
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#GenericString"/>
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#SAMLSubject"/>
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#OID"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="Identifier">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="id" type="xsd:anyType" minOccurs="0"/>
 <xsd:element name="subject" type="saml:SubjectStatement" minOccurs="0"/>
 </xsd:choice>
 <xsd:element name="attr" type="dsml:DsmlAttr" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="type" type="spml:IdentifierType" use="required"/>
 </xsd:complexType>

7.5. Request / Response Model Overview

[Editors note: Describe basic model; outline that conversations are always initiated by an RA. Introduce sync/async models and why we have both – provide examples of which would be used when. Explain that everything is a batch. Introduce operational parameters and return data on response elements and provide an exapmle. Pull out most of the big “this is different from DSML here” points here too].

7.5.1 SPML Requests

[Editors note: Describe requests, typically who makes them and give an example based on our spec-use-data. Show sample XML for a sync and async request.]
7.5.2 SPML Responses

[Editors note: Describe responses, and give an example based on our spec-use-data]. Describe why responses can return data and provide an example. Show sample XML for a sync and async responses.]
7.6. SPML Schema Overview

[Editors note: Describe the schema definition model for 1.0. Explain attribute and object references, explain extended requests in context of schema. Give a good example.

	

8. Examples (non-normative)

The following two examples build of the SPML use cases [PSTC-UC]. Example 1 describes a simple synchronous flow in which the Requesting Authority asks for the creation of a new service instance. Example 2 describes a more complex asynchronous request as described in Figure 1.

8.1. Example one
[Editors note: Example to define:

Detailed description

Protocol flow

Schema examples]
8.2. Example two

[Editors note: Example to define:

Detailed description

Protocol flow

Schema examples]

9. SPML Operations (normative, with the exception of the schema fragments)
9.1. Element <Identifier>

[Editors note: Update with latest. Normative description goes here]
	<xsd:complexType name="Identifier">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="id" type="xsd:anyType" minOccurs="0"/>
 </xsd:choice>
 <xsd:element name="attr" type="dsml:DsmlAttr" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="type" type="spml:IdentifierType" use="required"/>
 </xsd:complexType>

 <xsd:simpleType name="IdentifierType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#EMailAddress"/>
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#DN"/>
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#UserIDAndOrDomainName"/>
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#LibertyUniqueID"/>
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#PassportUniqueID"/>
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#GUID"/>
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#URN"/>
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#GenericString"/>
 <xsd:enumeration value="urn:oasis:names:tc:SPML:1.0:core#SAMLSubject"/>
 </xsd:restriction>
 </xsd:simpleType>

9.2. Element <AddRequest>

[Editors note: Update with latest Normative description goes here]
	
<xsd:complexType name="AddRequest">
 <xsd:complexContent>
 <xsd:extension base="spml:SpmlRequest">
 <xsd:sequence>
 <xsd:element name="identifier" type="spml:Identifier"/>
 <xsd:element name="attr" type="dsml:DsmlAttr" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

9.3. Element <AddResponse>

[Editors note: Update with latest Normative description goes here]
	 <xsd:complexType name="AddResponse">
 <xsd:complexContent>
 <xsd:extension base="spml:SpmlResponse">
 <xsd:sequence>
 <xsd:element name="identifier" type="spml:Identifier" minOccurs="0"/>
 <xsd:element name="attr" type="dsml:DsmlAttr" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

9.4. Element <ModifyRequest>

[Editors note: Update with latest Normative description goes here]

	 <xsd:complexType name="ModifyRequest">
 <xsd:complexContent>
 <xsd:extension base="spml:SpmlRequest">
 <xsd:sequence>
 <xsd:element name="identifier" type="spml:Identifier"/>
 <xsd:element name="modification" type="dsml:DsmlModification" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

9.5. Element <ModifyResponse>

[Editors note: Update with latest Normative description goes here]
	 <xsd:complexType name="ModifyResponse">
 <xsd:complexContent>
 <xsd:extension base="spml:SpmlRequest">
 <xsd:sequence>
 <xsd:element name="modification" type="dsml:DsmlModification" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

9.6. Element <DeleteRequest>

[Editors note: Update with latest Normative description goes here]

	 <xsd:complexType name="DelRequest">
 <xsd:complexContent>
 <xsd:extension base="spml:SpmlRequest">
 <xsd:sequence>
 <xsd:element name="identifier" type="spml:Identifier"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

9.7. Element <DeleteRespose>

[Editors note: Update with latest Normative description goes here]

	 <xsd:complexType name="DeleteResponse">
 <xsd:complexContent>
 <xsd:extension base="spml:SpmlResponse"/>
 </xsd:complexContent>
 </xsd:complexType>

9.8. Element <SearchRequest>

[Editors note: Update with latest Normative description goes here]
	 <xsd:complexType name="SearchRequest">
 <xsd:complexContent>
 <xsd:extension base="spml:SpmlRequest">
 <xsd:sequence>
 <xsd:element name="searchBase" type="spml:Identifier"/>
 <xsd:element name="filter" type="dsml:Filter"/>
 <xsd:element name="attributes" type="dsml:AttributeDescriptions" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

9.9. Element <SearchResponse>

[Editors note: Update with latest Normative description goes here]
	 <xsd:complexType name="SearchResponse">
 <xsd:complexContent>
 <xsd:extension base="spml:SpmlResponse">
 <xsd:sequence>
 <xsd:element name="searchResultEntry" type="dsml:SearchResultEntry" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

9.10. Element <ExtendedRequest>

[Editors note: Update with latest Normative description goes here]
	 <xsd:complexType name="ExtendedRequest">
 <xsd:complexContent>
 <xsd:extension base="spml:SpmlRequest">
 <xsd:sequence>
 <xsd:element name="operationIdentifier" type="spml:Identifier"/>
 <xsd:element name="identifier" type="spml:Identifier"/>
 <xsd:element name="attr" type="dsml:DsmlAttr" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

9.11. Element <ExtendedResposne>

[Editors note: Update with latest Normative description goes here]
	 <xsd:complexType name="ExtendedResponse">
 <xsd:complexContent>
 <xsd:extension base="spml:SpmlResponse">
 <xsd:sequence>
 <xsd:element name="attr" type="dsml:DsmlAttr" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

10. SPML Request / Response (normative, with the exception of the schema fragments)
10.1. Element <BatchRequest>

[Editors note: Update with latest Normative description goes here]
	<xsd:complexType name="BatchRequest">
 <xsd:sequence>
 <xsd:group ref="BatchRequests" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="requestID" type="dsml:RequestID" use="optional"/>
 <xsd:attribute name="processing" use="optional" default="sequential">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="sequential"/>
 <xsd:enumeration value="parallel"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="execution" use="optional" default="synchronous ">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="synchronous "/>
 <xsd:enumeration value="asynchronous"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="onError" use="optional" default="exit">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="resume"/>
 <xsd:enumeration value="exit"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>

10.2. Element <BatchResponse>

[Editors note: Update with latest Normative description goes here]
	 <xsd:complexType name="BatchResponse">
 <xsd:sequence>
 <xsd:group ref="BatchResponses" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="requestID" type="dsml:RequestID" use="optional"/>
 </xsd:complexType>

10.3. Element <BatchCancelRequest>

[Editors note: Update with latest Normative description goes here]
	 <xsd:complexType name="BatchCancelRequest">
 <xsd:attribute name="requestID" type="dsml:RequestID" use="required"/>
 <xsd:attribute name="returnType" use="optional" default="none">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="response"/>
 <xsd:enumeration value="status"/>
 <xsd:enumeration value="none"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>

10.4. Element <BatchCancelResponse>

[Editors note: Update with latest Normative description goes here]
	 <xsd:complexType name="BatchCancelResponse">
 <xsd:sequence>
 <xsd:group ref="BatchResponses" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="requestID" type="dsml:RequestID" use="required"/>
 <xsd:attribute name="cancelResults">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="nosuchRequest "/>
 <xsd:enumeration value="canceled"/>
 <xsd:enumeration value="couldnotcancel"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>

10.5. Element <BatchStatusRequest>

[Editors note: Update with latest Normative description goes here]
	 <xsd:complexType name="BatchStatusRequest">
 <xsd:attribute name="requestID" type="dsml:RequestID" use="required"/>
 <xsd:attribute name="returnType" use="optional" default="status">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="response"/>
 <xsd:enumeration value="status"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>

10.6. Element <BatchStatusResponse>

[Editors note: Update with latest Normative description goes here]
	 <xsd:complexType name="BatchStatusResponse">
 <xsd:sequence>
 <xsd:group ref="BatchResponses" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="requestID" type="dsml:RequestID" use="required"/>
 <xsd:attribute name="statusResults">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="nosuchRequest "/>
 <xsd:enumeration value="success"/>
 <xsd:enumeration value="pending"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>

11. SPML Schema Schema (normative, with the exception of the schema fragments)
11.1. Element <schema>

[Editors note: Update with latest Normative description goes here]
	<xsd:complexType name="Schema">
 <xsd:sequence>
 <xsd:element name="providerIdentifier" type="spml:ProviderIdentifier"/>
 <xsd:element name="schemaIdentifier" type="spml:SchemaIdentifier"/>
 <xsd:element name="objectClassDefinition" type="ObjectClassDefinition" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="attributeDefinition" type="AttributeDefinition" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="extendedRequestDefinition" type="ExtendedRequestDefinition" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="majorVersion" type="xsd:string"/>
 <xsd:attribute name="minorVersion" type="xsd:string"/>
</xsd:complexType>

11.2. Element <schemaRequest>

[Editors note: Update with latest Normative description goes here]
	<xsd:complexType name="SchemaRequest">
 <xsd:complexContent>
 <xsd:extension base="spml:SpmlRequest"/>
 </xsd:complexContent>
</xsd:complexType>

11.3. Element <schemaResponse>

[Editors note: Update with latest Normative description goes here]
	 <xsd:complexType name="SchemaResponse">
 <xsd:complexContent>
 <xsd:extension base="spml:SpmlResponse">
 <xsd:sequence>
 <xsd:element name="schema" type="Schema"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

12. Functional requirements (normative)

This section specifies certain functional requirements that are not directly associated with the production or consumption of a particular SPML elements but define the functioning nature of te SPML actors..

12.1. Requesting Authority
This section describes the requirements for the RA.

[Editors note: Things to note….]
12.2. Provisioning Service Point
This section describes the requirements for the PSP.

[Editors note: Things to note….]
12.3. Provisioning Request ID’s
This section describes the requirements for Provisioning Request ID’s.
[Editors note: Things to note….]
12.4. Provisioning Service Objects
This section describes the requirements for the PSO.
[Editors note: Things to note….]
12.5. Provisioning Service Target Identifiers

This section describes the requirements for the PSD-ID’s.
[Editors note: Things to note….]
13. SPML extensibility points (non-normative)

This section describes the points within the SPML model and schema where extensions can be added

8.1. Extended SPML Requests
[Editors note: Describe here why you might need an ExtendedRequest. Provide an example with description and sample XML]
9. Security and privacy considerations (non-normative)

This section identifies possible security and privacy compromise scenarios that should be considered when implementing an SPML-based system. The section is informative only. It is left to the implementer to decide whether these compromise scenarios are practical in their environment and to select appropriate safeguards.

9.1. Threat model

We assume here that the adversary has access to the communication channel between the SPML actors and is able to interpret, insert, delete and modify messages or parts of messages.

9.1.1. Unauthorized disclosure

SPML does not specify any inherent mechanisms for confidentiality of the messages exchanged between actors. Therefore, an adversary could observe the messages in transit. Under certain security policies, disclosure of this information is a violation. Disclosure of provisioning data may have significant repercussions. In the commercial sector, the consequences of unauthorized disclosure of personal data may range from embarrassment to the custodian to imprisonment and large fines in the case of medical or financial data.

Unauthorized disclosure is addressed by confidentiality mechanisms.

9.1.2. Message replay

A message replay attack is one in which the adversary records and replays legitimate messages between SPML actors. This attack may lead to denial of service, the use of out-of-date information or impersonation.

Prevention of replay attacks requires the use of message freshness mechanisms.

Note that encryption of the message does not mitigate a replay attack since the message is just replayed and does not have to be understood by the adversary.

9.1.3. Message insertion

A message insertion attack is one in which the adversary inserts messages in the sequence of messages between SPML actors.

The solution to a message insertion attack is to use mutual authentication and a message sequence integrity mechanism between the actors. It should be noted that just using SSL mutual authentication is not sufficient. This only proves that the other party is the one identified by the subject of the X.509 certificate. In order to be effective, it is necessary to confirm that the certificate subject is authorized to send the message.
9.1.4. Message deletion

A message deletion attack is one in which the adversary deletes messages in the sequence of messages between SPML actors. Message deletion may lead to denial of service. However, a properly designed SPML system should not trigger false provisioning on as the result of a message deletion attack.
The solution to a message deletion attack is to use a message integrity mechanism between the actors.

9.1.5. Message modification

If an adversary can intercept a message and change its contents, then they may be able to alter a provisioning request. Message integrity mechanisms can prevent a successful message modification attack.

9.2. Safeguards

1.1.1 Authentication

Authentication provides the means for one party in a transaction to determine the identity of the other party in the transaction. Authentication may be in one direction, or it may be bilateral.

Given the sensitive nature of many provisioning requests and systems it is important for an RA to authenticate the identity of the PSP to which it issues SPML requests. Otherwise, there is a risk that an adversary could provide false or invalid PSP, leading to a possible security violation.

It is equally important for a PDP to authenticate the identity of the RA and assess the level of trust and to determine if the RA is authorized to request this service/operation.
Many different techniques may be used to provide authentication, such as co-located code, a private network, a VPN or digital signatures. Authentication may also be performed as part of the communication protocol used to exchange the requests. In this case, authentication may be performed at the message level or at the session level.

1.1.2 Confidentiality

Confidentiality mechanisms ensure that the contents of a message can be read only by the desired recipients and not by anyone else who encounters the message while it is in transit. The primary concern is confidentiality during transmission.

1.1.2.1 Communication confidentiality

In some environments it is deemed good practice to treat all data within a provisioning domain as confidential. In other environments certain parts of the service schema and required attributes may b openly published. Regardless of the approach chosen, the security of the provisioning system as a whole should not be in any way dependant on the secrecy of the service, it’s provider or it’s request data schema.
Any security concerns or requirements related to transmitting or exchanging SPML documents lies outside the scope of the SPML standard. While it is often important to ensure that the integrity and confidentiality of provisioning requests, it is left to the implementers to determine the appropriate mechanisms for their environment.

Communications confidentiality can be provided by a confidentiality mechanism, such as SSL. Using a point-to-point scheme like SSL may lead to other vulnerabilities when one of the end-points is compromised.

1.1.3 Trust model

Discussions of authentication, integrity and confidentiality mechanisms necessarily assume an underlying trust model: how can one actor come to believe that a given key is uniquely associated with a specific, identified actor so that the key can be used to encrypt data for that actor or verify signatures (or other integrity structures) from that actor? Many different types of trust model exist, including strict hierarchies, distributed authorities, the Web, the bridge and so on.

1.1.4 Privacy

It is important to be aware that any transactions that occur in an SPML model system may contain private and secure information about the actors. Selection and use of privacy mechanisms appropriate to a given environment are outside the scope of this specification. The decision regarding whether, how and when to deploy such mechanisms is left to the implementers associated with the environment.

10. Conformance (normative)

10.1. Introduction

The OASIS procedure for ratification of a committee specification as an OASIS standard requires that three independent implementers attest that they are "successfully using" the committee specification.
10.2. Conformance tables

This section lists those portions of the specification that MUST be included in an implementation of an SPML client or an SPML service that claims to conform with SPML v1.0.

Note: "M" means mandatory to implement. "O" means optional to implement. “O* means optional to implement but must implement one of either AddRequest, ModifyRequest or DeleteRequest . “NA” means does not apply.

The implementation MUST support ALL those schema elements that are marked “M” and MUST support one of either AddRequest, ModifyRequest or DeleteRequests in the columns marked “O*”

	Element name
	RA

	PSP Server
	PSP
Client
	PST

	spml:AddRequest
	O*
	M
	O*
	O*

	
	
	
	
	

	spml:ModifyRequest
	O*
	M
	O*
	O*

	
	
	
	
	

	spml:DeleteRequest
	O*
	M
	O*
	O*

	
	
	
	
	

	spml:SearchRequest
	O
	O
	O
	O

	
	
	
	
	

	spml:ExtendedRequest
	O
	O
	O
	O

	
	
	
	
	

	Support for the synchronous SPML operations model (requires support for spml:BatchRequest)
	M
	M
	M
	M

	
	
	
	
	

	Support for the asynchronous SPML operations model (requires support for spml:BatchStatus and spml:BatchCancel)
	O
	O
	O
	O

	
	
	
	
	

	Provide an spml:Schema compliant definition of all published services
	NA
	M
	NA
	M

	
	
	
	
	

	Support the spml:SchemaRequest operation for all published service
	O
	O
	O
	O

10.3.1. Data Types

The implementation MUST support the data types associated with the following identifiers marked "M".

	Data-type
	M/O

	http://www.w3.org/2001/XMLSchema#string
	M

	http://www.w3.org/2001/XMLSchema#boolean
	M

	http://www.w3.org/2001/XMLSchema#integer
	M

	http://www.w3.org/2001/XMLSchema#double
	M

	http://www.w3.org/2001/XMLSchema#date
	M

	http://www.w3.org/2001/XMLSchema#dateTime
	M

	http://www.w3.org/2001/XMLSchema#anyURI
	M

	http://www.w3.org/2001/XMLSchema#hexBinary
	M

	http://www.w3.org/2001/XMLSchema#base64Binary
	M

Appendix A. References

[ref]
Author., XMLTitle, http://www.link.com, Publisher

[ref]
Author., XMLTitle, http://www.link.com, Publisher

[ref]
Author., XMLTitle, http://www.link.com, Publisher

[ref]
Author., XMLTitle, http://www.link.com, Publisher

[ref]
Author., XMLTitle, http://www.link.com, Publisher

Appendix B. Acknowledgments

The following individuals were voting members of the Provisioning Services committee at the time that this version of the specification was issued:

List Members Here:

Appendix C. Revision history

	Rev
	Date
	By whom
	What

	D-01
	1 Nov 2002
	Editor
	Layout and basic structure.

	D-02
	22 December
	Editor
	Sections filled in and editorial notes

	
	
	
	

	
	
	
	

	
	
	
	

Appendix D. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS has been notified of intellectual property rights claimed in regard to some or all of the contents of this specification. For more information consult the online list of claimed rights.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright (C) OASIS Open 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Provisioning System One

PST One

Requesting�Authority

Resource F

Provisioning System Two

Resource E

Resource D

Resource C

(A)

(B)

(D)

(C)

Resource B

Draft-pstc-spml-core-05.doc

1
37
cs-spml-specification-1.0.doc

