
OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved  

 1 

 

OASIS/ebXML Registry Services Specification v2.0 
-Approved OASIS Standard 

OASIS/ebXML Registry Technical Committee 
April 2002 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 2 of 128 

This page intentionally left blank. 2 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 3 of 128 

1 Status of this Document 3 

This document is an Approved OASIS Standard - April 2002. 4 

Distribution of this document is unlimited. 5 

The document formatting is based on the Internet Society’s Standard RFC format. 6 

This version:  7 

http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebRS.pdf 8 

Latest version: 9 

http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebRS.pdf  10 

http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebRS.pdf
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebRS.pdf


OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 4 of 128 

2 OASIS/ebXML Registry Technical Committee 11 

Prior to submission to the OASIS membership, the OASIS/ebXML Registry Technical 12 

Committee approved this document in its current form in December 2001.  At the time of this 13 

approval the following were members of the OASIS/ebXML Registry Technical Committee. 14 

Kathryn Breininger, Boeing 15 

Lisa Carnahan, NIST 16 

Joseph M. Chiusano, LMI 17 

Suresh Damodaran, Sterling Commerce 18 

Mike DeNicola, Fujitsu 19 

Anne Fischer, Drummond Group, Inc. 20 

Sally Fuger, AIAG 21 

Jong Kim, InnoDigital 22 

Kyu-Chul Lee, Chungnam National University 23 

Joel Munter, Intel 24 

Farrukh Najmi, Sun Microsystems 25 

Joel Neu, Vitria Technologies 26 

Sanjay Patil, IONA 27 

Neal Smith, Chevron 28 

Nikola Stojanovic, Encoda Systems, Inc. 29 

Prasad Yendluri, webmethods 30 

Yutaka Yoshida, Sun Microsystems 31 

2.1 Contributors 32 

The following persons contributed to the content of this document, but are not voting members 33 

of the OASIS/ebXML Registry Technical Committee. 34 

Len Gallagher, NIST  35 

Sekhar Vajjhala, Sun Microsystems 36 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 5 of 128 

Table of Contents 37 

1 Status of this Document........................................................................................................ 3 38 

2 OASIS/ebXML Registry Technical Committee ................................................................. 4 39 

2.1 Contributors .......................................................................................................4 40 

Table of Contents .......................................................................................................................... 5 41 

Table of Figures............................................................................................................................. 9 42 

Table of Tables ............................................................................................................................ 10 43 

3 Introduction......................................................................................................................... 11 44 

3.1 Summary of Contents of Document ................................................................11 45 

3.2 General Conventions........................................................................................11 46 

3.3 Audience ..........................................................................................................11 47 

4 Design Objectives ................................................................................................................ 12 48 

4.1 Goals ................................................................................................................12 49 

4.2 Caveats and Assumptions ................................................................................12 50 

5 System Overview................................................................................................................. 13 51 

5.1 What The ebXML Registry Does ....................................................................13 52 

5.2 How The ebXML Registry Works...................................................................13 53 

5.2.1 Schema Documents Are Submitted .....................................................13 54 

5.2.2 Business Process Documents Are Submitted ......................................13 55 

5.2.3 Seller’s Collaboration Protocol Profile Is Submitted...........................13 56 

5.2.4 Buyer Discovers The Seller .................................................................13 57 

5.2.5 CPA Is Established ..............................................................................14 58 

5.3 Registry Users..................................................................................................14 59 

5.4 Where the Registry Services May Be Implemented ........................................15 60 

5.5 Implementation Conformance .........................................................................15 61 

5.5.1 Conformance as an ebXML Registry ..................................................16 62 

5.5.2 Conformance as an ebXML Registry Client........................................16 63 

6 ebXML Registry Architecture ........................................................................................... 17 64 

6.1 Registry Service Described..............................................................................17 65 

6.2 Abstract Registry Service ................................................................................18 66 

6.3 Concrete Registry Services ..............................................................................18 67 

6.3.1 SOAP Binding .....................................................................................19 68 

6.3.2 ebXML Message Service Binding .......................................................20 69 

6.4 LifeCycleManager Interface ............................................................................21 70 

6.5 QueryManager Interface ..................................................................................22 71 

6.6 Registry Clients................................................................................................22 72 

6.6.1 Registry Client Described ....................................................................22 73 

6.6.2 Registry Communication Bootstrapping..............................................23 74 

6.6.3 RegistryClient Interface .......................................................................24 75 

6.6.4 Registry Response................................................................................24 76 

6.7 Interoperability Requirements .........................................................................24 77 

6.7.1 Client Interoperability..........................................................................24 78 

6.7.2 Inter-Registry Cooperation ..................................................................25 79 

7 Life Cycle Management Service ........................................................................................ 26 80 

7.1 Life Cycle of a Repository Item.......................................................................26 81 

7.2 RegistryObject Attributes ................................................................................26 82 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 6 of 128 

7.3 The Submit Objects Protocol ...........................................................................27 83 

7.3.1 Universally Unique ID Generation ......................................................27 84 

7.3.2 ID Attribute And Object References....................................................28 85 

7.3.3 Audit Trail............................................................................................28 86 

7.3.4 Submitting Organization......................................................................28 87 

7.3.5 Error Handling .....................................................................................28 88 

7.3.6 Sample SubmitObjectsRequest ............................................................29 89 

7.4 The Update Objects Protocol ...........................................................................32 90 

7.4.1 Audit Trail............................................................................................33 91 

7.4.2 Submitting Organization......................................................................33 92 

7.4.3 Error Handling .....................................................................................33 93 

7.5 The Add Slots Protocol....................................................................................34 94 

7.6 The Remove Slots Protocol .............................................................................34 95 

7.7 The Approve Objects Protocol.........................................................................35 96 

7.7.1 Audit Trail............................................................................................35 97 

7.7.2 Submitting Organization......................................................................36 98 

7.7.3 Error Handling .....................................................................................36 99 

7.8 The Deprecate Objects Protocol ......................................................................36 100 

7.8.1 Audit Trail............................................................................................37 101 

7.8.2 Submitting Organization......................................................................37 102 

7.8.3 Error Handling .....................................................................................37 103 

7.9 The Remove Objects Protocol .........................................................................38 104 

7.9.1 Deletion Scope DeleteRepositoryItemOnly.........................................38 105 

7.9.2 Deletion Scope DeleteAll ....................................................................38 106 

7.9.3 Error Handling .....................................................................................39 107 

8 Query Management Service............................................................................................... 40 108 

8.1 Ad Hoc Query Request/Response....................................................................40 109 

8.1.1 Query Response Options......................................................................41 110 

8.2 Filter Query Support ........................................................................................42 111 

8.2.1 FilterQuery...........................................................................................44 112 

8.2.2 RegistryObjectQuery ...........................................................................46 113 

8.2.3 RegistryEntryQuery .............................................................................59 114 

8.2.4 AssociationQuery.................................................................................62 115 

8.2.5 AuditableEventQuery ..........................................................................64 116 

8.2.6 ClassificationQuery..............................................................................67 117 

8.2.7 ClassificationNodeQuery.....................................................................69 118 

8.2.8 ClassificationSchemeQuery.................................................................74 119 

8.2.9 RegistryPackageQuery.........................................................................75 120 

8.2.10 ExtrinsicObjectQuery ..........................................................................77 121 

8.2.11 OrganizationQuery...............................................................................78 122 

8.2.12 ServiceQuery........................................................................................82 123 

8.2.13 Registry Filters.....................................................................................84 124 

8.2.14 XML Clause Constraint Representation ..............................................88 125 

8.3 SQL Query Support .........................................................................................92 126 

8.3.1 SQL Query Syntax Binding To [ebRIM].............................................92 127 

8.3.2 Semantic Constraints On Query Syntax ..............................................94 128 

8.3.3 SQL Query Results ..............................................................................94 129 

8.3.4 Simple Metadata Based Queries ..........................................................95 130 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 7 of 128 

8.3.5 RegistryObject Queries........................................................................95 131 

8.3.6 RegistryEntry Queries..........................................................................95 132 

8.3.7 Classification Queries ..........................................................................95 133 

8.3.8 Association Queries .............................................................................97 134 

8.3.9 Package Queries...................................................................................97 135 

8.3.10 ExternalLink Queries ...........................................................................98 136 

8.3.11 Audit Trail Queries ..............................................................................98 137 

8.4 Content Retrieval .............................................................................................98 138 

8.4.1 Identification Of Content Payloads......................................................98 139 

8.4.2 GetContentResponse Message Structure .............................................99 140 

9 Registry Security............................................................................................................... 100 141 

9.1 Security Concerns ..........................................................................................100 142 

9.2 Integrity of Registry Content .........................................................................100 143 

9.2.1 Message Payload Signature ...............................................................100 144 

9.2.2 Payload Signature Requirements .......................................................101 145 

9.3 Authentication................................................................................................103 146 

9.3.1 Message Header Signature.................................................................103 147 

9.4 Key Distribution and KeyInfo Element .........................................................105 148 

9.5 Confidentiality ...............................................................................................106 149 

9.5.1 On-the-wire Message Confidentiality................................................106 150 

9.5.2 Confidentiality of Registry Content...................................................106 151 

9.6 Authorization .................................................................................................106 152 

9.6.1 Actions ...............................................................................................107 153 

9.7 Access Control ...............................................................................................107 154 

Appendix A Web Service Architecture .......................................................................... 109 155 

A.1 Registry Service Abstract Specification ........................................................109 156 

A.2 Registry Service SOAP Binding....................................................................109 157 

Appendix B ebXML Registry Schema Definitions........................................................ 110 158 

B.1 RIM Schema ..................................................................................................110 159 

B.2 Query Schema................................................................................................110 160 

B.3 Registry Services Interface Schema...............................................................110 161 

B.4 Examples of Instance Documents..................................................................110 162 

Appendix C Interpretation of UML Diagrams.............................................................. 111 163 

C.1 UML Class Diagram......................................................................................111 164 

C.2 UML Sequence Diagram ...............................................................................111 165 

Appendix D SQL Query................................................................................................... 112 166 

D.1 SQL Query Syntax Specification...................................................................112 167 

D.2 Non-Normative BNF for Query Syntax Grammar ........................................112 168 

D.3 Relational Schema For SQL Queries .............................................................114 169 

Appendix E Non-normative Content Based Ad Hoc Queries ...................................... 115 170 

E.1 Automatic Classification of XML Content....................................................115 171 

E.2 Index Definition .............................................................................................115 172 

E.3 Example Of Index Definition.........................................................................115 173 

E.4 Proposed XML Definition .............................................................................116 174 

E.5 Example of Automatic Classification ............................................................116 175 

Appendix F Security Implementation Guideline .......................................................... 117 176 

F.1 Security Concerns ..........................................................................................117 177 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 8 of 128 

F.2 Authentication................................................................................................118 178 

F.3 Authorization .................................................................................................118 179 

F.4 Registry Bootstrap .........................................................................................118 180 

F.5 Content Submission – Client Responsibility .................................................118 181 

F.6 Content Submission – Registry Responsibility .............................................119 182 

F.7 Content Delete/Deprecate – Client Responsibility ........................................119 183 

F.8 Content Delete/Deprecate – Registry Responsibility ....................................119 184 

F.9 Using ds:KeyInfo Field..................................................................................119 185 

Appendix G Native Language Support (NLS) ............................................................... 121 186 

G.1 Definitions......................................................................................................121 187 

G.1.1 Coded Character Set (CCS): ..............................................................121 188 

G.1.2 Character Encoding Scheme (CES): ..................................................121 189 

G.1.3 Character Set (charset):......................................................................121 190 

G.2 NLS And Request / Response Messages .......................................................121 191 

G.3 NLS And Storing of RegistryObject..............................................................121 192 

G.3.1 Character Set of LocalizedString .......................................................122 193 

G.3.2 Language Information of LocalizedString .........................................122 194 

G.4 NLS And Storing of Repository Items...........................................................122 195 

G.4.1 Character Set of Repository Items .....................................................122 196 

G.4.2 Language information of repository item ..........................................122 197 

Appendix H Registry Profile............................................................................................ 123 198 

10 References................................................................................................................ 124 199 

11 Disclaimer ................................................................................................................ 126 200 

12 Contact Information ............................................................................................... 127 201 

13 Copyright Statement............................................................................................... 128 202 

 203 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 9 of 128 

Table of Figures 204 

  Figure 1: Actor Relationships ................................................................................................ 15 205 

  Figure 2: ebXML Registry Service Architecture ................................................................... 17 206 

  Figure 3: The Abstract ebXML Registry Service .................................................................. 18 207 

  Figure 4: A Concrete ebXML Registry Service..................................................................... 19 208 

  Figure 5: Registry Architecture Supports Flexible Topologies ............................................. 23 209 

  Figure 6: Life Cycle of a Repository Item ............................................................................. 26 210 

  Figure 7: Submit Objects Sequence Diagram ........................................................................ 27 211 

  Figure 8: Update Objects Sequence Diagram ........................................................................ 33 212 

  Figure 9: Add Slots Sequence Diagram ................................................................................. 34 213 

  Figure 10: Remove Slots Sequence Diagram......................................................................... 35 214 

  Figure 11: Approve Objects Sequence Diagram.................................................................... 35 215 

  Figure 12: Deprecate Objects Sequence Diagram.................................................................. 37 216 

  Figure 13: Remove Objects Sequence Diagram .................................................................... 39 217 

  Figure 14: Submit Ad Hoc Query Sequence Diagram........................................................... 41 218 

  Figure 15: Example ebRIM Binding...................................................................................... 43 219 

  Figure 16: ebRIM Binding for RegistryObjectQuery ............................................................ 46 220 

  Figure 17: ebRIM Binding for RegistryEntryQuery.............................................................. 59 221 

  Figure 18: ebRIM Binding for AssociationQuery ................................................................. 62 222 

  Figure 19: ebRIM Binding for AuditableEventQuery ........................................................... 64 223 

  Figure 20: ebRIM Binding for ClassificationQuery .............................................................. 67 224 

  Figure 21: ebRIM Binding for ClassificationNodeQuery...................................................... 69 225 

  Figure 22: ebRIM Binding for ClassificationSchemeQuery.................................................. 74 226 

  Figure 23: ebRIM Binding for RegistryPackageQuery ......................................................... 75 227 

  Figure 24: ebRIM Binding for ExtrinsicObjectQuery ........................................................... 77 228 

  Figure 25: ebRIM Binding for OrganizationQuery ............................................................... 79 229 

  Figure 26: ebRIM Binding for ServiceQuery ........................................................................ 83 230 

  Figure 27: The Clause Structure............................................................................................. 88 231 

 232 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 10 of 128 

Table of Tables 233 

  Table 1: Registry Users .......................................................................................................... 14 234 

  Table 2: LifeCycle Manager Summary.................................................................................. 21 235 

  Table 3: Query Manager ........................................................................................................ 22 236 

  Table 4: RegistryClient Summary.......................................................................................... 24 237 

  Table 5 Submit Objects Error Handling................................................................................. 28 238 

  Table 6: Update Objects Error Handling................................................................................ 34 239 

  Table 7: Approve Objects Error Handling ............................................................................. 36 240 

  Table 8: Deprecate Objects Error Handling........................................................................... 37 241 

  Table 9: Remove Objects Error Handling.............................................................................. 39 242 

  Table 10: Path Filter Expressions for Use Cases ................................................................... 72 243 

  Table 11: Default Access Control Policies .......................................................................... 107 244 

 245 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 11 of 128 

3 Introduction 246 

3.1 Summary of Contents of Document 247 

This document defines the interface to the ebXML Registry Services as well as interaction 248 

protocols, message definitions and XML schema.  249 

A separate document, ebXML Registry Information Model [ebRIM], provides information on 250 

the types of metadata that are stored in the Registry as well as the relationships among the 251 

various metadata classes.  252 

3.2 General Conventions 253 

The following conventions are used throughout this document: 254 

UML diagrams are used as a way to concisely describe concepts. They are not intended to 255 

convey any specific Implementation or methodology requirements. 256 

The term “repository item” is used to refer to an object that has resides in a repository for storage 257 

and safekeeping (e.g., an XML document or a DTD). Every repository item is described in the 258 

Registry by a RegistryObject instance.  259 

The term "RegistryEntry" is used to refer to an object that provides metadata about a repository 260 

item. 261 

Capitalized Italic words are defined in the ebXML Glossary. 262 

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD 263 

NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be 264 

interpreted as described in RFC 2119 [Bra97]. 265 

3.3 Audience 266 

The target audience for this specification is the community of software developers who are: 267 

• Implementers of ebXML Registry Services 268 

• Implementers of ebXML Registry Clients 269 

 Related Documents 270 

The following specifications provide some background and related information to the reader:  271 

a) ebXML Registry Information Model  [ebRIM]  272 

b) ebXML Message Service Specification  [ebMS] 273 

c) ebXML Business Process Specification Schema  [ebBPSS] 274 

d) ebXML Collaboration-Protocol Profile and Agreement Specification  [ebCPP]  275 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 12 of 128 

4 Design Objectives 276 

4.1 Goals 277 

The goals of this version of the specification are to: 278 

• Communicate functionality of Registry services to software developers 279 

• Specify the interface for Registry clients and the Registry 280 

• Provide a basis for future support of more complete ebXML Registry requirements 281 

• Be compatible with other ebXML specifications  282 

4.2 Caveats and Assumptions 283 

This version of the Registry Services Specification is the second in a series of phased 284 

deliverables. Later versions of the document will include additional capability as deemed 285 

appropriate by the OASIS/ebXML Registry Technical Committee.  It is assumed that: 286 

Interoperability requirements dictate that at least one of the normative interfaces as referenced in 287 

this specification must be supported. 288 

1. All access to the Registry content is exposed via the interfaces defined for the Registry 289 

Services. 290 

2. The Registry makes use of a Repository for storing and retrieving persistent information 291 

required by the Registry Services. This is an implementation detail that will not be 292 

discussed further in this specification. 293 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 13 of 128 

5 System Overview 294 

5.1 What The ebXML Registry Does 295 

The ebXML Registry provides a set of services that enable sharing of information between 296 

interested parties for the purpose of enabling business process integration between such parties 297 

based on the ebXML specifications. The shared information is maintained as objects in a 298 

repository and managed by the ebXML Registry Services defined in this document.  299 

5.2 How The ebXML Registry Works 300 

This section describes at a high level some use cases illustrating how Registry clients may make 301 

use of Registry Services to conduct B2B exchanges. It is meant to be illustrative and not 302 

prescriptive. 303 

The following scenario provides a high level textual example of those use cases in terms of 304 

interaction between Registry clients and the Registry. It is not a complete listing of the use cases 305 

that could be envisioned. It assumes for purposes of example, a buyer and a seller who wish to 306 

conduct B2B exchanges using the RosettaNet PIP3A4 Purchase Order business protocol. It is 307 

assumed that both buyer and seller use the same Registry service provided by a third party. Note 308 

that the architecture supports other possibilities (e.g. each party uses its own private Registry). 309 

5.2.1 Schema Documents Are Submitted 310 

A third party such as an industry consortium or standards group submits the necessary schema 311 

documents required by the RosettaNet PIP3A4 Purchase Order business protocol with the 312 

Registry using the LifeCycleManager service of the Registry described in Section 7.3. 313 

5.2.2 Business Process Documents Are Submitted 314 

A third party, such as an industry consortium or standards group, submits the necessary business 315 

process documents required by the RosettaNet PIP3A4 Purchase Order business protocol with 316 

the Registry using the LifeCycleManager service of the Registry described in Section 7.3. 317 

5.2.3 Seller’s Collaboration Protocol Profile Is Submitted 318 

The seller publishes its Collaboration Protocol Profile or CPP as defined by [ebCPP] to the 319 

Registry. The CPP describes the seller, the role it plays, the services it offers and the technical 320 

details on how those services may be accessed. The seller classifies their Collaboration Protocol 321 

Profile using the Registry’s flexible Classification capabilities. 322 

5.2.4 Buyer Discovers The Seller 323 

The buyer browses the Registry using Classification schemes defined within the Registry using a 324 

Registry Browser GUI tool to discover a suitable seller. For example the buyer may look for all 325 

parties that are in the Automotive Industry, play a seller role, support the RosettaNet PIP3A4 326 

process and sell Car Stereos. 327 

The buyer discovers the seller’s CPP and decides to engage in a partnership with the seller. 328 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 14 of 128 

5.2.5 CPA Is Established 329 

The buyer unilaterally creates a Collaboration Protocol Agreement or CPA as defined by 330 

[ebCPP] with the seller using the seller’s CPP and their own CPP as input. The buyer proposes a 331 

trading relationship to the seller using the unilateral CPA. The seller accepts the proposed CPA 332 

and the trading relationship is established. 333 

Once the seller accepts the CPA, the parties may begin to conduct B2B transactions as defined 334 

by [ebMS]. 335 

5.3 Registry Users 336 

We describe the actors who use the registry from the point of view of security and analyze the 337 

security concerns of the registry below. This analysis leads up to the security requirements for 338 

version 2.0. Some of the actors are defined in Section 9.7. Note that the same entity may 339 

represent different actors. For example, a Registration Authority and Registry Administrator may 340 

have the same identity. 341 

  Table 1: Registry Users 342 

Actor Function ISO/IEC 
11179 Comments 

RegistrationAuthority  Hosts the RegistryObjects Registration 
Authority (RA) 

 

Registry 
Administrator 

Evaluates and enforces 
registry security policy. 
Facilitates definition of the 
registry security policy. 

 MAY have the same 
identity as 
Registration 
Authority 

Registered User Has a contract with the 
Registration Authority and 
MUST be authenticated by 
Registration Authority. 

 The contract could 
be a ebXML CPA or 
some other form of 
contract.  

Registry Guest Has no contract with 
Registration Authority. Does 
not have to be authenticated 
for Registry access. Cannot 
change contents of the 
Registry (MAY be permitted 
to read some 
RegistryObjects.) 

 Note that a Registry 
Guest is not a 
Registry Reader. 

Submitting 
Organization 

A Registered User who does 
lifecycle operations on 
permitted RegistryObjects. 

Submitting 
Organization 
(SO) 

 

Registry Reader A Registered User who has 
only read access 

  

Responsible 
Organization 

Creates Registry Objects Responsible 
Organization 

RO MAY have the 
same identity as SO 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 15 of 128 

(RO) 
Registry Client Registered User or Registered 

Guest 
  

 343 
  Figure 1: Actor Relationships 344 

Note: 345 

In the current version of the specification the following are true. 346 

A Submitting Organization and a Responsible Organization are the same. 347 

Registration of a user happens out-of-band, i.e, by means not specified in this specification.  348 

A Registry Administrator and Registration Authority are the same. 349 

5.4 Where the Registry Services May Be Implemented 350 

The Registry Services may be implemented in several ways including, as a public web site, as a 351 

private web site, hosted by an ASP or hosted by a VPN provider. 352 

5.5 Implementation Conformance 353 

An implementation is a conforming ebXML Registry if the implementation meets the conditions 354 

in Section 5.5.1.  An implementation is a conforming ebXML Registry Client if the 355 

implementation meets the conditions in Section 5.5.2.  An implementation is a conforming 356 

ebXML Registry and a conforming ebXML Registry Client if the implementation conforms to 357 

the conditions of Section 5.5.1 and Section 5.5.2.  An implementation shall be a conforming 358 

ebXML Registry, a conforming ebXML Registry Client, or a conforming ebXML Registry and 359 

Registry Client. 360 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 16 of 128 

5.5.1 Conformance as an ebXML Registry  361 

An implementation conforms to this specification as an ebXML Registry if it meets the 362 

following conditions: 363 

1. Conforms to the ebXML Registry Information Model [ebRIM]. 364 

2. Supports the syntax and semantics of the Registry Interfaces and Security Model. 365 

3. Supports the defined ebXML Registry Schema (Appendix B). 366 

4. Optionally supports the syntax and semantics of Section 8.3, SQL Query Support. 367 

5.5.2 Conformance as an ebXML Registry Client 368 

An implementation conforms to this specification, as an ebXML Registry Client if it meets the 369 

following conditions: 370 

1. Supports the ebXML CPA and bootstrapping process. 371 

2. Supports the syntax and the semantics of the Registry Client Interfaces. 372 

3. Supports the defined ebXML Error Message DTD. 373 

4. Supports the defined ebXML Registry Schema (Appendix B). 374 

 375 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 17 of 128 

6 ebXML Registry Architecture 376 

The ebXML Registry architecture consists of an ebXML Registry Service and ebXML Registry 377 

Clients.   The ebXML Registry Service provides the methods for managing a repository.  An 378 

ebXML Registry Client is an application used to access the Registry. 379 

 380 
  Figure 2: ebXML Registry Service Architecture 381 

6.1 Registry Service Described 382 

The ebXML Registry Service is comprised of a robust set of interfaces designed to 383 

fundamentally manage the objects and inquiries associated with the ebXML Registry.  The two 384 

primary interfaces for the Registry Service consist of:  385 

• A Life Cycle Management interface that provides a collection of methods for managing 386 

objects within the Registry. 387 

• A Query Management Interface that controls the discovery and retrieval of information from 388 

the Registry.     389 

A registry client program utilizes the services of the registry by invoking methods on one of the 390 

above interfaces defined by the Registry Service.  This specification defines the interfaces 391 

exposed by the Registry Service (Sections 6.4 and 6.5) as well as the interface for the Registry 392 

Client (Section 6.6).  393 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 18 of 128 

6.2 Abstract Registry Service 394 

The architecture defines the ebXML Registry as an abstract registry service that is defined as: 395 

1. A set of interfaces that must be supported by the registry. 396 

2. The set of methods that must be supported by each interface. 397 

3. The parameters and responses that must be supported by each method. 398 

The abstract registry service neither defines any specific implementation for the ebXML 399 

Registry, nor does it specify any specific protocols used by the registry. Such implementation 400 

details are described by concrete registry services that realize the abstract registry service. 401 

The abstract registry service (Figure 3) shows how an abstract ebXML Registry must provide 402 

two key functional interfaces called QueryManager1 (QM) and LifeCycleManager2 403 

(LM).   404 

 405 
  Figure 3: The Abstract ebXML Registry Service 406 

Appendix A provides hyperlinks to the abstract service definition in the Web Service Description 407 

Language (WSDL) syntax. 408 

6.3 Concrete Registry Services 409 

The architecture allows the abstract registry service to be mapped to one or more concrete 410 

registry services defined as: 411 

• Implementations of the interfaces defined by the abstract registry service. 412 

• Bindings of these concrete interfaces to specific communication protocols. 413 

This specification describes two concrete bindings for the abstract registry service: 414 

• A SOAP binding using the HTTP protocol 415 

• An ebXML Messaging Service (ebMS) binding 416 

A registry may implement one or both of the concrete bindings for the abstract registry service as 417 

shown in Figure 4. 418 

 419 

                                                 
1 Known as ObjectQueryManager in V1.0 
2 Known as ObjectManager in V1.0 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 19 of 128 

   420 

  Figure 4: A Concrete ebXML Registry Service 421 

Figure 4 shows a concrete implementation of the abstract ebXML Registry (RegistryService) on 422 

the left side. The RegistryService provides the QueryManager and LifeCycleManager interfaces 423 

available with multiple protocol bindings (SOAP and ebMS).  424 

Figure 4 also shows two different clients of the ebXML Registry on the right side. The top client 425 

uses SOAP interface to access the registry while the lower client uses ebMS interface. Clients 426 

use the appropriate concrete interface within the RegistryService service based upon their 427 

protocol preference. 428 

6.3.1 SOAP Binding 429 

6.3.1.1 WSDL Terminology Primer 430 

This section provides a brief introduction to Web Service Description Language (WSDL) since 431 

the SOAP binding is described using WSDL syntax.  WSDL provides the ability to describe a 432 

web service in abstract as well as with concrete bindings to specific protocols.  In WSDL, an 433 

abstract service consists of one or more port types or end-points.  Each port type consists 434 

of a collection of operations. Each operation is defined in terms of messages that define 435 

what data is exchanged as part of that operation. Each message is typically defined in terms of 436 

elements within an XML Schema definition. 437 

An abstract service is not bound to any specific protocol (e.g. SOAP). In WSDL, an abstract 438 

service may be used to define a concrete service by binding it to a specific protocol. This binding 439 

is done by providing a binding definition for each abstract port type that defines additional 440 

protocols specific details.  Finally, a concrete service definition is defined as a collection of 441 

ports, where each port simply adds address information such as a URL for each concrete port. 442 

6.3.1.2 Concrete Binding for SOAP 443 

This section assumes that the reader is somewhat familiar with SOAP and WSDL.  The SOAP 444 

binding to the ebXML Registry is defined as a web service description in WSDL as follows:  445 

• A single service element with name “RegistryService” defines the concrete SOAP binding 446 

for the registry service.   447 

• The service element includes two port definitions, where each port corresponds with one of 448 

the interfaces defined for the abstract registry service. Each port includes an HTTP URL for 449 

accessing that port.  450 

• Each port definition also references a binding element, one for each interface defined in the 451 

WSDL for the abstract registry service.  452 
 453 
<service name = "RegistryService">         454 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 20 of 128 

 <port name = "QueryManagerSOAPBinding" binding = "tns:QueryManagerSOAPBinding">           455 
  <soap:address location = "http://your_URL_to_your_QueryManager"/>         456 
 </port>     457 
  458 
 <port name = "LifeCycleManagerSOAPBinding" binding = "tns:LifeCycleManagerSOAPBinding">   459 
  <soap:address location = "http://your_URL_to_your_QueryManager"/>     460 
 </port>     461 
</service> 462 
 463 

The complete WSDL description for the SOAP binding can be obtained via a hyperlink in 464 

Appendix A. 465 

6.3.2 ebXML Message Service Binding 466 

6.3.2.1 Service and Action Elements 467 

When using the ebXML Messaging Services Specification, ebXML Registry Service elements 468 

correspond to Messaging Service elements as follows:  469 

• The value of the Service element in the MessageHeader is an ebXML Registry Service 470 

interface name (e.g., “LifeCycleManager”). The type attribute of the Service element should 471 

have a value of “ebXMLRegistry”. 472 

• The value of the Action element in the MessageHeader is an ebXML Registry Service 473 

method name (e.g., “submitObjects”). 474 
 475 

 <eb:Service eb:type=”ebXMLRegistry”>LifeCycleManger</eb:Service> 476 

 <eb:Action>submitObjects</eb:Action> 477 

 478 

Note that the above allows the Registry Client only one interface/method pair per message. This 479 

implies that a Registry Client can only invoke one method on a specified interface for a given 480 

request to a registry. 481 

6.3.2.2 Synchronous and Asynchronous Responses 482 

All methods on interfaces exposed by the registry return a response message.   483 

Asynchronous response  484 

When a message is sent asynchronously, the Registry will return two response messages.  The 485 

first message will be an immediate response to the request and does not reflect the actual 486 

response for the request.  This message will contain: 487 

• MessageHeader;  488 

• RegistryResponse element with empty content (e.g., NO AdHocQueryResponse); 489 

− status attribute with value Unavailable.   490 

The Registry delivers the actual Registry response element with non-empty content 491 

asynchronously at a later time. The delivery is accomplished by the Registry invoking the 492 

onResponse method on the RegistryClient interface as implemented by the registry client 493 

application. The onResponse method includes a RegistryResponse element as shown below:  494 

• MessageHeader; 495 

• RegistryResponse element including;  496 

− Status attribute (Success, Failure); 497 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 21 of 128 

− Optional RegistryErrorList. 498 

Synchronous response  499 

When a message is sent synchronously, the Message Service Handler will hold open the 500 

communication mechanism until the Registry returns a response.  This message will contain: 501 

• MessageHeader; 502 

• RegistryResponse element including;  503 

− Status attribute (Success, Failure); 504 

− Optional RegistryErrorList. 505 

6.3.2.3 ebXML Registry Collaboration Profiles and Agreements 506 

The ebXML CPP specification [ebCPP] defines a Collaboration-Protocol Profile (CPP) and a 507 

Collaboration-Protocol Agreement (CPA) as mechanisms for two parties to share information 508 

regarding their respective business processes. That specification assumes that a CPA has been 509 

agreed to by both parties in order for them to engage in B2B interactions.   510 

This specification does not mandate the use of a CPA between the Registry and the Registry 511 

Client.  However if the Registry does not use a CPP, the Registry shall provide an alternate 512 

mechanism for the Registry Client to discover the services and other information provided by a 513 

CPP. This alternate mechanism could be a simple URL.  514 

The CPA between clients and the Registry should describe the interfaces that the Registry and 515 

the client expose to each other for Registry-specific interactions.  The definition of the Registry 516 

CPP template and a Registry Client CPP template are beyond the scope of this document.    517 

6.4 LifeCycleManager Interface 518 

This is the interface exposed by the Registry Service that implements the object life cycle 519 

management functionality of the Registry. Its methods are invoked by the Registry Client. For 520 

example, the client may use this interface to submit objects, to classify and associate objects and 521 

to deprecate and remove objects. For this specification the semantic meaning of submit, classify, 522 

associate, deprecate and remove is found in [ebRIM].  523 

  Table 2: LifeCycle Manager Summary 524 

Method Summary of LifeCycleManager 
 RegistryResponse approveObjects(ApproveObjectsRequest req)  

Approves one or more previously submitted objects. 
 RegistryResponse deprecateObjects(DeprecateObjectsRequest req)  

Deprecates one or more previously submitted objects. 
 RegistryResponse removeObjects(RemoveObjectsRequest req)  

Removes one or more previously submitted objects from 
the Registry. 

 RegistryResponse submitObjects(SubmitObjectsRequest req)  
Submits one or more objects and possibly related 
metadata such as Associations and Classifications. 

 RegistryResponse updateObjects(UpdateObjectsRequest req)  



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 22 of 128 

Updates one or more previously submitted objects. 
 RegistryResponse addSlots(AddSlotsRequest req)  

Add slots to one or more registry entries. 
 RegistryResponse removeSlots(RemoveSlotsRequest req)  

Remove specified slots from one or more registry entries. 

6.5 QueryManager Interface 525 

This is the interface exposed by the Registry that implements the Query management service of 526 

the Registry. Its methods are invoked by the Registry Client. For example, the client may use this 527 

interface to perform browse and drill down queries or ad hoc queries on registry content. 528 

  Table 3: Query Manager 529 

Method Summary of QueryManager 
 RegistryResponse submitAdhocQuery(AdhocQueryRequest req)  

Submit an ad hoc query request. 

6.6 Registry Clients 530 

6.6.1 Registry Client Described 531 

The Registry Client interfaces may be local to the registry or local to the user. Figure 5 depicts 532 

the two possible topologies supported by the registry architecture with respect to the Registry 533 

and Registry Clients.  The picture on the left side shows the scenario where the Registry provides 534 

a web based “thin client” application for accessing the Registry that is available to the user using 535 

a common web browser. In this scenario the Registry Client interfaces reside across the Internet 536 

and are local to the Registry from the user’s view.  The picture on the right side shows the 537 

scenario where the user is using a “fat client” Registry Browser application to access the registry. 538 

In this scenario the Registry Client interfaces reside within the Registry Browser tool and are 539 

local to the Registry from the user’s view. The Registry Client interfaces communicate with the 540 

Registry over the Internet in this scenario. 541 

A third topology made possible by the registry architecture is where the Registry Client 542 

interfaces reside in a server side business component such as a Purchasing business component. 543 

In this topology there may be no direct user interface or user intervention involved. Instead, the 544 

Purchasing business component may access the Registry in an automated manner to select 545 

possible sellers or service providers based on current business needs. 546 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 23 of 128 

 547 
  Figure 5: Registry Architecture Supports Flexible Topologies 548 

6.6.2 Registry Communication Bootstrapping 549 

Before a client can access the services of a Registry, there must be some communication 550 

bootstrapping between the client and the registry. The most essential aspect of this bootstrapping 551 

process is for the client to discover addressing information (e.g. an HTTP URL) to each of the 552 

concrete service interfaces of the Registry. The client may obtain the addressing information by 553 

discovering the ebXML Registry in a public registry such as UDDI or within another ebXML 554 

Registry. 555 

• In case of SOAP binding, all the info needed by the client (e.g. Registry URLs) is available 556 

in a WSDL desription for the registry. This WSDL conforms to the template WSDL 557 

description in Appendix A.1. This WSDL description may be discovered in a public registry 558 

such as UDDI. 559 

• In case of ebMS binding, the information exchange between the client and the registry may 560 

be accomplished in a registry specific manner, which may involve establishing a CPA 561 

between the client and the registry. Once the information exchange has occurred the Registry 562 

and the client will have addressing information (e.g. URLs) for the other party. 563 

6.6.2.1 Communication Bootstrapping for SOAP Binding 564 

Each ebXML Registry must provide a WSDL description for its RegistryService as defined by 565 

Appendix A.1. A client uses the WSDL description to determine the address information of the 566 

RegistryService in a protocol specific manner. For example the SOAP/HTTP based ports of the 567 

RegistryService may be accessed via a URL specified in the WSDL for the registry. 568 

The use of WSDL enables the client to use automated tools such as a WSDL compiler to 569 

generate stubs that provide access to the registry in a language specific manner.  570 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 24 of 128 

At minimum, any client may access the registry over SOAP/HTTP using the address information 571 

within the WSDL, with minimal infrastructure requirements other than the ability to make 572 

synchronous SOAP call to the SOAP based ports on the RegistryService.  573 

6.6.2.2 Communication Bootstrapping for ebXML Message Service 574 

Since there is no previously established CPA between the Registry and the RegistryClient, the 575 

client must know at least one Transport-specific communication address for the Registry. This 576 

communication address is typically a URL to the Registry, although it could be some other type 577 

of address such as an email address.  For example, if the communication used by the Registry is 578 

HTTP, then the communication address is a URL. In this example, the client uses the Registry’s 579 

public URL to create an implicit CPA with the Registry. When the client sends a request to the 580 

Registry, it provides a URL to itself. The Registry uses the client’s URL to form its version of an 581 

implicit CPA with the client. At this point a session is established within the Registry.  For the 582 

duration of the client’s session with the Registry, messages may be exchanged bidirectionally as 583 

required by the interaction protocols defined in this specification. 584 

6.6.3 RegistryClient Interface 585 

This is the principal interface implemented by a Registry client. The client provides this interface 586 

when creating a connection to the Registry. It provides the methods that are used by the Registry 587 

to deliver asynchronous responses to the client. Note that a client need not provide a 588 

RegistryClient interface if the [CPA] between the client and the registry does not support 589 

asynchronous responses. 590 

The registry sends all asynchronous responses to operations via the onResponse method. 591 

  Table 4: RegistryClient Summary 592 

Method Summary of RegistryClient 
 void onResponse(RegistryResponse resp)  

Notifies client of the response sent by registry to previously submitted request. 

6.6.4 Registry Response  593 

The RegistryResponse is a common class defined by the Registry interface that is used by the 594 

registry to provide responses to client requests. 595 

6.7 Interoperability Requirements 596 

6.7.1 Client Interoperability 597 

The architecture requires that any ebXML compliant registry client can access any ebXML 598 

compliant registry service in an interoperable manner. An ebXML Registry may implement any 599 

number of protocol bindings from the set of normative bindings (currently ebXML TRP and 600 

SOAP/HTTP) defined in this proposal. The support of additional protocol bindings is optional. 601 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 25 of 128 

6.7.2 Inter-Registry Cooperation 602 

This version of the specification does not preclude ebXML Registries from cooperating with 603 

each other to share information, nor does it preclude owners of ebXML Registries from 604 

registering their ebXML registries with other registry systems, catalogs, or directories. 605 

Examples include: 606 

• An ebXML Registry that serves as a registry of ebXML Registries. 607 

• A non-ebXML Registry that serves as a registry of ebXML Registries.  608 

• Cooperative ebXML Registries, where multiple ebXML registries register with each other in 609 

order to form a federation. 610 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 26 of 128 

7 Life Cycle Management Service 611 

This section defines the LifeCycleManagement service of the Registry. The Life Cycle 612 

Management Service is a sub-service of the Registry service. It provides the functionality 613 

required by RegistryClients to manage the life cycle of repository items (e.g.  XML documents 614 

required for ebXML business processes). The Life Cycle Management Service can be used with 615 

all types of repository items as well as the metadata objects specified in [ebRIM] such as 616 

Classification and Association.   617 

The minimum-security policy for an ebXML registry is to accept content from any client if a 618 

certificate issued by a Certificate Authority recognized by the ebXML registry digitally signs the 619 

content. 620 

7.1 Life Cycle of a Repository Item 621 

The main purpose of the LifeCycleManagement service is to manage the life cycle of repository 622 

items.  Figure 6 shows the typical life cycle of a repository item. Note that the current version of 623 

this specification does not support Object versioning. Object versioning will be added in a future 624 

version of this specification 625 

 626 
  Figure 6: Life Cycle of a Repository Item 627 

7.2 RegistryObject Attributes 628 

A repository item is associated with a set of standard metadata defined as attributes of the 629 

RegistryObject class and its sub-classes as described in [ebRIM]. These attributes reside outside 630 

of the actual repository item and catalog descriptive information about the repository item. XML 631 

elements called ExtrinsicObject and other elements (See Appendix B.1 for details) encapsulate 632 

all object metadata attributes defined in [ebRIM] as XML attributes.  633 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 27 of 128 

7.3 The Submit Objects Protocol 634 

This section describes the protocol of the Registry Service that allows a RegistryClient to submit 635 

one or more repository items to the repository using the LifeCycleManager on behalf of a 636 

Submitting Organization. It is expressed in UML notation as described in Appendix C.  637 

 638 
  Figure 7: Submit Objects Sequence Diagram 639 

For details on the schema for the Business documents shown in this process refer to Appendix B. 640 

The SubmitObjectRequest message includes a LeafRegistryObjectList element.  641 

The LeafRegistryObjectList element specifies one or more ExtrinsicObjects or other 642 

RegistryEntries such as Classifications, Associations, ExternalLinks, or Packages.  643 

An ExtrinsicObject element provides required metadata about the content being submitted to the 644 

Registry as defined by [ebRIM]. Note that these standard ExtrinsicObject attributes are separate 645 

from the repository item itself, thus allowing the ebXML Registry to catalog objects of any 646 

object type. 647 

7.3.1 Universally Unique ID Generation 648 

As specified by [ebRIM], all objects in the registry have a unique id. The id must be a 649 

Universally Unique Identifier  (UUID) and must conform to the to the format of a URN that 650 

specifies a DCE 128 bit UUID as specified in [UUID]. 651 

(e.g. urn:uuid:a2345678-1234-1234-123456789012) 652 

The registry usually generates this id. The client may optionally supply the id attribute for 653 

submitted objects. If the client supplies the id and it conforms to the format of a URN that 654 

specifies a DCE 128 bit UUID then the registry assumes that the client wishes to specify the id 655 

for the object. In this case, the registry must honour a client-supplied id and use it as the id 656 

attribute of the object in the registry. If the id is found by the registry to not be globally unique, 657 

the registry must raise the error condition: InvalidIdError. 658 

If the client does not supply an id for a submitted object then the registry must generate a 659 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 28 of 128 

universally unique id. Whether the client generates the id or whether the registry generates it, it 660 

must be generated using the DCE 128 bit UUID generation algorithm as specified in [UUID]. 661 

7.3.2 ID Attribute And Object References 662 

The id attribute of an object may be used by other objects to reference the first object. Such 663 

references are common both within the SubmitObjectsRequest as well as within the registry. 664 

Within a SubmitObjectsRequest, the id attribute may be used to refer to an object within the 665 

SubmitObjectsRequest as well as to refer to an object within the registry. An object in the 666 

SubmitObjectsRequest that needs to be referred to within the request document may be assigned 667 

an id by the submitter so that it can be referenced within the request. The submitter may give the 668 

object a proper uuid URN, in which case the id is permanently assigned to the object within the 669 

registry.  Alternatively, the submitter may assign an arbitrary id (not a proper uuid URN) as long 670 

as the id is unique within the request document. In this case the id serves as a linkage mechanism 671 

within the request document but must be ignored by the registry and replaced with a registry 672 

generated id upon submission. 673 

When an object in a SubmitObjectsRequest needs to reference an object that is already in the 674 

registry, the request must contain an ObjectRef element whose id attribute is the id of the object 675 

in the registry. This id is by definition a proper uuid URN. An ObjectRef may be viewed as a 676 

proxy within the request for an object that is in the registry. 677 

7.3.3 Audit Trail 678 

The RS must create AuditableEvents object with eventType Created for each RegistryObject 679 

created via a SubmitObjects request.  680 

7.3.4 Submitting Organization 681 

The RS must create an Association of type SubmitterOf between the submitting organization and 682 

each RegistryObject created via a SubmitObjects request.  (Submitting organization is 683 

determined from the organization attribute of the User who submits a SubmitObjects request.) 684 

7.3.5 Error Handling 685 

A SubmitObjects request is atomic and either succeeds or fails in total. In the event of success, 686 

the registry sends a RegistryResponse with a status of “Success” back to the client. In the event 687 

of failure, the registry sends a RegistryResponse with a status of “Failure” back to the client. In 688 

the event of an immediate response for an asynchronous request, the registry sends a 689 

RegistryResponse with a status of “Uavailable” back to the client. Failure occurs when one or 690 

more Error conditions are raised in the processing of the submitted objects.  Warning messages 691 

do not result in failure of the request.  The following business rules apply: 692 

  Table 5 Submit Objects Error Handling 693 

Business Rule Applies To Error/Warning 
ID not unique All Classes Error 

Not authorized All Classes Error 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 29 of 128 

Referenced object not found. Association, 
Classification, 
ClassificationNode, 
Organization 

Error 

Associations not allowed to connect 
to deprecated objects. 

Association Error 

Object status, majorVersion and 
minorVersion are set by the RS, and 
ignored if supplied. 

All Classes Warning 

7.3.6 Sample SubmitObjectsRequest 694 

The following example shows several different use cases in a single SubmitObjectsRequest. It 695 

does not show the complete SOAP or [ebMS] Message with the message header and additional 696 

payloads in the message for the repository items. 697 

A SubmitObjectsRequest includes a RegistryObjectList which contains any number of objects 698 

that are being submitted. It may also contain any number of ObjectRefs to link objects being 699 

submitted to objects already within the registry. 700 
 701 
<?xml version = "1.0" encoding = "UTF-8"?> 702 
<SubmitObjectsRequest  703 
 xmlns = "urn:oasis:names:tc:ebxml-regrep:registry:xsd:2.0"  704 
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"  705 
 xsi:schemaLocation = "urn:oasis:names:tc:ebxml-regrep:rim:xsd:2.0 file:///C:/osws/ebxmlrr-706 
spec/misc/schema/rim.xsd urn:oasis:names:tc:ebxml-regrep:registry:xsd:2.0 707 
file:///C:/osws/ebxmlrr-spec/misc/schema/rs.xsd" 708 
 xmlns:rim = "urn:oasis:names:tc:ebxml-regrep:rim:xsd:2.0" 709 
 xmlns:rs = "urn:oasis:names:tc:ebxml-regrep:registry:xsd:2.0"     710 
 >   711 
 712 
 <rim:LeafRegistryObjectList>     713 
 714 
  <!-- 715 
   The following 3 objects package specified ExtrinsicObject in specified  716 
     RegistryPackage, where both the RegistryPackage and the ExtrinsicObject are  717 
     being  submitted  718 
     --> 719 
      720 
  <rim:RegistryPackage id = "acmePackage1" > 721 
   <rim:Name> 722 
    <rim:LocalizedString value = "RegistryPackage #1"/> 723 
   </rim:Name> 724 
   <rim:Description> 725 
    <rim:LocalizedString value = "ACME's package #1"/> 726 
   </rim:Description> 727 
  </rim:RegistryPackage>     728 
 729 
  <rim:ExtrinsicObject id = "acmeCPP1"  > 730 
   <rim:Name> 731 
    <rim:LocalizedString value = "Widget Profile" /> 732 
   </rim:Name> 733 
   <rim:Description> 734 
    <rim:LocalizedString value = "ACME's profile for selling widgets" /> 735 
   </rim:Description> 736 
  </rim:ExtrinsicObject>     737 
 738 
  <rim:Association id = "acmePackage1-acmeCPP1-Assoc" associationType = "Packages" sourceObject 739 
= "acmePackage1" targetObject = "acmeCPP1" />     740 
 741 
  <!-- 742 
     The following 3 objects package specified ExtrinsicObject in specified RegistryPackage,  743 
     Where the RegistryPackage is being submitted and the ExtrinsicObject is  744 
     already in registry  745 
     --> 746 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 30 of 128 

       747 
  <rim:RegistryPackage id = "acmePackage2" > 748 
   <rim:Name> 749 
    <rim:LocalizedString value = "RegistryPackage #2"/> 750 
   </rim:Name> 751 
   <rim:Description> 752 
    <rim:LocalizedString value = "ACME's package #2"/> 753 
   </rim:Description> 754 
  </rim:RegistryPackage>     755 
 756 
  <rim:ObjectRef id = "urn:uuid:a2345678-1234-1234-123456789012"/>     757 
 758 
  <rim:Association id = "acmePackage2-alreadySubmittedCPP-Assoc" associationType = "Packages" 759 
sourceObject = "acmePackage2" targetObject = "urn:uuid:a2345678-1234-1234-123456789012"/>     760 
   761 
  <!-- 762 
     The following 3 objects package specified ExtrinsicObject in specified RegistryPackage,  763 
     where the RegistryPackage and the ExtrinsicObject are already in registry  764 
     --> 765 
       766 
  <rim:ObjectRef id = "urn:uuid:b2345678-1234-1234-123456789012"/>     767 
  <rim:ObjectRef id = "urn:uuid:c2345678-1234-1234-123456789012"/>     768 
   769 
  <!-- id is unspecified implying that registry must create a uuid for this object --> 770 
       771 
  <rim:Association associationType = "Packages" sourceObject = "urn:uuid:b2345678-1234-1234-772 
123456789012" targetObject = "urn:uuid:c2345678-1234-1234-123456789012"/>     773 
   774 
  <!-- 775 
     The following 3 objects externally link specified ExtrinsicObject using  776 
     specified ExternalLink, where both the ExternalLink and the ExtrinsicObject  777 
     are being submitted  778 
     --> 779 
       780 
  <rim:ExternalLink id = "acmeLink1" >     781 
   <rim:Name> 782 
    <rim:LocalizedString value = "Link #1"/> 783 
   </rim:Name> 784 
   <rim:Description> 785 
    <rim:LocalizedString value = "ACME's Link #1"/> 786 
   </rim:Description> 787 
  </rim:ExternalLink> 788 
 789 
  <rim:ExtrinsicObject id = "acmeCPP2"  >     790 
   <rim:Name> 791 
    <rim:LocalizedString value = "Sprockets Profile" /> 792 
   </rim:Name> 793 
   <rim:Description> 794 
    <rim:LocalizedString value = "ACME's profile for selling sprockets"/> 795 
   </rim:Description> 796 
  </rim:ExtrinsicObject> 797 
 798 
  <rim:Association id = "acmeLink1-acmeCPP2-Assoc" associationType = "ExternallyLinks" 799 
sourceObject = "acmeLink1" targetObject = "acmeCPP2"/>     800 
   801 
  <!-- 802 
     The following 2 objects externally link specified ExtrinsicObject using specified 803 
     ExternalLink, where the ExternalLink is being submitted and the ExtrinsicObject 804 
     is already in registry. Note that the targetObject points to an ObjectRef in a 805 
     previous line  806 
     --> 807 
       808 
  <rim:ExternalLink id = "acmeLink2"> 809 
   <rim:Name> 810 
    <rim:LocalizedString value = "Link #2"/> 811 
   </rim:Name> 812 
   <rim:Description> 813 
    <rim:LocalizedString value = "ACME's Link #2"/> 814 
   </rim:Description> 815 
  </rim:ExternalLink> 816 
       817 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 31 of 128 

  <rim:Association id = "acmeLink2-alreadySubmittedCPP-Assoc" associationType = 818 
"ExternallyLinks" sourceObject = "acmeLink2" targetObject = "urn:uuid:a2345678-1234-1234-819 
123456789012"/>     820 
   821 
  <!-- 822 
     The following 3 objects externally identify specified ExtrinsicObject using specified 823 
     ExternalIdentifier, where the ExternalIdentifier is being submitted and the  824 
     ExtrinsicObject is already in registry. Note that the targetObject points to an   825 
     ObjectRef in a previous line  826 
     --> 827 
       828 
  <rim:ClassificationScheme id = "DUNS-id" isInternal="false" nodeType="UniqueCode" > 829 
   <rim:Name> 830 
    <rim:LocalizedString value = "DUNS"/> 831 
   </rim:Name> 832 
 833 
   <rim:Description> 834 
    <rim:LocalizedString value = "This is the DUNS scheme"/> 835 
   </rim:Description> 836 
  </rim:ClassificationScheme> 837 
   838 
  <rim:ExternalIdentifier id = "acmeDUNSId"  identificationScheme="DUNS-id" value = 839 
"13456789012">     840 
   <rim:Name> 841 
    <rim:LocalizedString value = "DUNS" /> 842 
   </rim:Name> 843 
   <rim:Description> 844 
    <rim:LocalizedString value = "DUNS ID for ACME"/> 845 
   </rim:Description> 846 
  </rim:ExternalIdentifier> 847 
 848 
  <rim:Association id = "acmeDUNSId-alreadySubmittedCPP-Assoc" associationType = 849 
"ExternallyIdentifies" sourceObject = "acmeDUNSId" targetObject = "urn:uuid:a2345678-1234-1234-850 
123456789012"/>     851 
   852 
  <!-- 853 
     The following show submission of a brand new classification scheme in its entirety 854 
     --> 855 
  <rim:ClassificationScheme id = "Geography-id" isInternal="true" nodeType="UniqueCode" > 856 
   <rim:Name> 857 
    <rim:LocalizedString value = "Geography"/> 858 
   </rim:Name> 859 
 860 
   <rim:Description> 861 
    <rim:LocalizedString value = "This is a sample Geography scheme"/> 862 
   </rim:Description> 863 
 864 
   <rim:ClassificationNode id = "NorthAmerica-id" parent = "Geography-id" code = 865 
"NorthAmerica" >  866 
    <rim:ClassificationNode id = "UnitedStates-id" parent = "NorthAmerica-id" code = 867 
"UnitedStates" />  868 
    <rim:ClassificationNode id = "Canada-id" parent = "NorthAmerica-id" code = "Canada" />  869 
   </rim:ClassificationNode> 870 
 871 
   <rim:ClassificationNode id = "Asia-id" parent = "Geography-id" code = "Asia" >  872 
    <rim:ClassificationNode id = "Japan-id" parent = "Asia-id" code = "Japan" > 873 
     <rim:ClassificationNode id = "Tokyo-id" parent = "Japan-id" code = "Tokyo" /> 874 
    </rim:ClassificationNode> 875 
   </rim:ClassificationNode> 876 
  </rim:ClassificationScheme> 877 
       878 
     879 
  <!-- 880 
     The following show submission of a Automotive sub-tree of ClassificationNodes that 881 
     gets added to an existing classification scheme named 'Industry'  882 
     that is already in the registry 883 
     --> 884 
       885 
  <rim:ObjectRef id = "urn:uuid:d2345678-1234-1234-123456789012"/>     886 
  <rim:ClassificationNode id = "automotiveNode" parent = "urn:uuid:d2345678-1234-1234-887 
123456789012">     888 
   <rim:Name> 889 
    <rim:LocalizedString value = "Automotive" /> 890 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 32 of 128 

   </rim:Name> 891 
   <rim:Description> 892 
    <rim:LocalizedString value = "The Automotive sub-tree under Industry scheme"/> 893 
   </rim:Description> 894 
  </rim:ClassificationNode> 895 
 896 
  <rim:ClassificationNode id = "partSuppliersNode" parent = "automotiveNode">     897 
   <rim:Name> 898 
    <rim:LocalizedString value = "Parts Supplier" /> 899 
   </rim:Name> 900 
   <rim:Description> 901 
    <rim:LocalizedString value = "The Parts Supplier node under the Automotive node" /> 902 
   </rim:Description> 903 
  </rim:ClassificationNode> 904 
 905 
  <rim:ClassificationNode id = "engineSuppliersNode" parent = "automotiveNode">     906 
   <rim:Name> 907 
    <rim:LocalizedString value = "Engine Supplier" /> 908 
   </rim:Name> 909 
   <rim:Description> 910 
    <rim:LocalizedString value = "The Engine Supplier node under the Automotive node" /> 911 
   </rim:Description> 912 
  </rim:ClassificationNode> 913 
   914 
  <!-- 915 
     The following show submission of 2 Classifications of an object  that is already in 916 
     the registry using 2 ClassificationNodes. One ClassificationNode 917 
     is being submitted in this request (Japan) while the other is already in the registry. 918 
     --> 919 
       920 
  <rim:Classification id = "japanClassification" classifiedObject = "urn:uuid:a2345678-1234-921 
1234-123456789012" classificationNode = "Japan-id">     922 
   <rim:Description> 923 
    <rim:LocalizedString value = "Classifies object by /Geography/Asia/Japan node"/> 924 
   </rim:Description> 925 
  </rim:Classification> 926 
 927 
  <rim:Classification id = "classificationUsingExistingNode" classifiedObject = 928 
"urn:uuid:a2345678-1234-1234-123456789012" classificationNode = "urn:uuid:e2345678-1234-1234-929 
123456789012">     930 
   <rim:Description> 931 
    <rim:LocalizedString value = "Classifies object using a node in the registry" /> 932 
   </rim:Description> 933 
  </rim:Classification> 934 
 935 
  <rim:ObjectRef id = "urn:uuid:e2345678-1234-1234-123456789012"/>   936 
 </rim:LeafRegistryObjectList> 937 
</SubmitObjectsRequest> 938 
 939 

7.4 The Update Objects Protocol 940 

This section describes the protocol of the Registry Service that allows a Registry Client to update 941 

one or more existing Registry Items in the registry on behalf of a Submitting Organization.  It is 942 

expressed in UML notation as described in Appendix C. 943 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 33 of 128 

 944 
  Figure 8: Update Objects Sequence Diagram 945 

For details on the schema for the Business documents shown in this process refer to Appendix B.  946 

The UpdateObjectsRequest message includes a LeafRegistryObjectList element.  The 947 

LeafRegistryObjectList element specifies one or more RegistryObjects. Each object in the list 948 

must be a current RegistryObject.  RegistryObjects must include all attributes, even those the 949 

user does not intend to change.  A missing attribute is interpreted as a request to set that attribute 950 

to NULL. 951 

7.4.1 Audit Trail 952 

The RS must create AuditableEvents object with eventType Updated for each RegistryObject 953 

updated via an UpdateObjects request.  954 

7.4.2 Submitting Organization 955 

The RS must maintain an Association of type SubmitterOf between the submitting organization 956 

and each RegistryObject updated via an UpdateObjects request. If an UpdateObjects request is 957 

accepted from a different submitting organization, then the RS must delete the original 958 

association object and create a new one.  Of course, the AccessControlPolicy may prohibit this 959 

sort of update in the first place. (Submitting organization is determined from the organization 960 

attribute of the User who submits an UpdateObjects request.) 961 

7.4.3 Error Handling 962 

An UpdateObjects request is atomic and either succeeds or fails in total. In the event of success, 963 

the registry sends a RegistryResponse with a status of “Success” back to the client. In the event 964 

of failure, the registry sends a RegistryResponse with a status of “Failure” back to the client. In 965 

the event of an immediate response for an asynchronous request, the registry sends a 966 

RegistryResponse with a status of “Uavailable” back to the client. Failure occurs when one or 967 

more Error conditions are raised in the processing of the updated objects.  Warning messages do 968 

not result in failure of the request. The following business rules apply: 969 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 34 of 128 

  Table 6: Update Objects Error Handling 970 

Business Rule Applies To Error/Warning 
Object not found All Classes Error 

Not authorized All Classes Error 

Referenced object not found. Association, 
Classification, 
ClassificationNode, 
Organization 

Error 

Associations not allowed to connect 
to deprecated objects. 

Association Error 

Object status, majorVersion and 
minorVersion cannot be changed via 
the UpdateObjects protocol, ignored 
if supplied. 

All Classes Warning 

RegistryEntries with stability = 
“Stable” should not be updated. 

All Classes Warning 

7.5 The Add Slots Protocol 971 

This section describes the protocol of the Registry Service that allows a client to add slots to a 972 

previously submitted registry entry using the LifeCycleManager. Slots provide a dynamic 973 

mechanism for extending registry entries as defined by [ebRIM].  974 

 975 
  Figure 9: Add Slots Sequence Diagram 976 

In the event of success, the registry sends a RegistryResponse with a status of “success” back to 977 

the client.  In the event of failure, the registry sends a RegistryResponse with a status of “failure” 978 

back to the client. 979 

7.6 The Remove Slots Protocol 980 

This section describes the protocol of the Registry Service that allows a client to remove slots to 981 

a previously submitted registry entry using the LifeCycleManager. 982 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 35 of 128 

 983 
  Figure 10: Remove Slots Sequence Diagram 984 

7.7 The Approve Objects Protocol 985 

This section describes the protocol of the Registry Service that allows a client to approve one or 986 

more previously submitted repository items using the LifeCycleManager. Once a repository item 987 

is approved it will become available for use by business parties (e.g. during the assembly of new 988 

CPAs and Collaboration Protocol Profiles). 989 

 990 
  Figure 11: Approve Objects Sequence Diagram 991 

For details on the schema for the business documents shown in this process refer to Appendix B. 992 

7.7.1 Audit Trail 993 

The RS must create AuditableEvents object with eventType Approved for each RegistryObject 994 

approved via an Approve Objects request.  995 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 36 of 128 

7.7.2 Submitting Organization 996 

The RS must maintain an Association of type SubmitterOf between the submitting organization 997 

and each RegistryObject updated via an ApproveObjects request. If an ApproveObjects request 998 

is accepted from a different submitting organization, then the RS must delete the original 999 

association object and create a new one.  Of course, the AccessControlPolicy may prohibit this 1000 

sort of ApproveObjects request in the first place. (Submitting organization is determined from 1001 

the organization attribute of the User who submits an ApproveObjects request.) 1002 

7.7.3 Error Handling 1003 

An ApproveObjects request is atomic and either succeeds or fails in total. In the event of success, 1004 

the registry sends a RegistryResponse with a status of “Success” back to the client. In the event 1005 

of failure, the registry sends a RegistryResponse with a status of “Failure” back to the client. In 1006 

the event of an immediate response for an asynchronous request, the registry sends a 1007 

RegistryResponse with a status of “Uavailable” back to the client. Failure occurs when one or 1008 

more Error conditions are raised in the processing of the object reference list.  Warning messages 1009 

do not result in failure of the request. The following business rules apply: 1010 

  Table 7: Approve Objects Error Handling 1011 

Business Rule Applies To Error/Warning 
Object not found All Classes Error 

Not authorized RegistryEntry 
Classes 

Error 

Only RegistryEntries may be 
"approved". 

All Classes other 
than RegistryEntry 
classes 

Error 

Object status is already 
"Approved". 

RegistryEntry 
Classes 

Warning 

7.8 The Deprecate Objects Protocol 1012 

This section describes the protocol of the Registry Service that allows a client to deprecate one or 1013 

more previously submitted repository items using the LifeCycleManager. Once an object is 1014 

deprecated, no new references (e.g. new Associations, Classifications and ExternalLinks) to that 1015 

object can be submitted. However, existing references to a deprecated object continue to function 1016 

normally. 1017 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 37 of 128 

 1018 
  Figure 12: Deprecate Objects Sequence Diagram 1019 

For details on the schema for the business documents shown in this process refer to Appendix B. 1020 

7.8.1 Audit Trail 1021 

The RS must create AuditableEvents object with eventType Deprecated for each RegistryObject 1022 

deprecated via a Deprecate Objects request.  1023 

7.8.2 Submitting Organization 1024 

The RS must maintain an Association of type SubmitterOf between the submitting organization 1025 

and each RegistryObject updated via a Deprecate Objects request. If a Deprecate Objects request 1026 

is accepted from a different submitting organization, then the RS must delete the original 1027 

association object and create a new one.  Of course, the AccessControlPolicy may prohibit this 1028 

sort of Deprecate Objects request in the first place. (Submitting organization is determined from 1029 

the organization attribute of the User who submits a Deprecate Objects request.) 1030 

7.8.3 Error Handling 1031 

A DeprecateObjects request is atomic and either succeeds or fails in total. In the event of 1032 

success, the registry sends a RegistryResponse with a status of “Success” back to the client. In 1033 

the event of failure, the registry sends a RegistryResponse with a status of “Failure” back to the 1034 

client. In the event of an immediate response for an asynchronous request, the registry sends a 1035 

RegistryResponse with a status of “Uavailable” back to the client. Failure occurs when one or 1036 

more Error conditions are raised in the processing of the object reference list.  Warning messages 1037 

do not result in failure of the request. The following business rules apply: 1038 

  Table 8: Deprecate Objects Error Handling 1039 

Business Rule Applies To Error/Warning 
Object not found All Classes Error 

Not authorized RegistryEntry Error 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 38 of 128 

Classes 

Only RegistryEntries may be 
"deprecated". 

All Classes other 
than RegistryEntry 
classes 

Error 

Object status is already 
"Deprecated". 

RegistryEntry 
Classes 

Warning 

7.9 The Remove Objects Protocol 1040 

This section describes the protocol of the Registry Service that allows a client to remove one or 1041 

more RegistryObject instances and/or repository items using the LifeCycleManager. 1042 

The RemoveObjectsRequest message is sent by a client to remove RegistryObject instances 1043 

and/or repository items. The RemoveObjectsRequest element includes an XML attribute called 1044 

deletionScope which is an enumeration that can have the values as defined by the following 1045 

sections. 1046 

7.9.1 Deletion Scope DeleteRepositoryItemOnly 1047 

This deletionScope specifies that the request should delete the repository items for the specified 1048 

registry entries but not delete the specified registry entries. This is useful in keeping references to 1049 

the registry entries valid. 1050 

7.9.2 Deletion Scope DeleteAll 1051 

This deletionScope specifies that the request should delete both the RegistryObject and the 1052 

repository item for the specified registry entries. Only if all references (e.g. Associations, 1053 

Classifications, ExternalLinks) to a RegistryObject have been removed, can that RegistryObject 1054 

then be removed using a RemoveObjectsRequest with deletionScope DeleteAll. Attempts to 1055 

remove a RegistryObject while it still has references raises an error condition: 1056 

InvalidRequestError.    1057 

The remove object protocol is expressed in UML notation as described in Appendix C. 1058 

 1059 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 39 of 128 

  Figure 13: Remove Objects Sequence Diagram 1060 

For details on the schema for the business documents shown in this process refer to Appendix B. 1061 

7.9.3 Error Handling 1062 

A Remove Objects request is atomic and either succeeds or fails in total. In the event of success, 1063 

the registry sends a RegistryResponse with a status of “Success” back to the client. In the event 1064 

of failure, the registry sends a RegistryResponse with a status of “Failure” back to the client. In 1065 

the event of an immediate response for an asynchronous request, the registry sends a 1066 

RegistryResponse with a status of “Uavailable” back to the client. Failure occurs when one or 1067 

more Error conditions are raised in the processing of the object reference list.  Warning messages 1068 

do not result in failure of the request.  The following business rules apply: 1069 

  Table 9: Remove Objects Error Handling 1070 

Business Rule Applies To Error/Warning 
Object not found All Classes Error 

Not authorized RegistryObject 
Classes 

Error 

 1071 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 40 of 128 

8 Query Management Service 1072 

This section describes the capabilities of the Registry Service that allow a client 1073 

(QueryManagerClient) to search for or query different kind of registry objects in the ebXML 1074 

Registry using the QueryManager interface of the Registry.  The Registry supports the following 1075 

query capabilities: 1076 

• Filter Query 1077 

• SQL Query 1078 

The Filter Query mechanism in Section 8.2 SHALL be supported by every Registry 1079 

implementation. The SQL Query mechanism is an optional feature and MAY be provided by a 1080 

registry implementation. However, if a vendor provides an SQL query capability to an ebXML 1081 

Registry it SHALL conform to this document. As such this capability is a normative yet optional 1082 

capability. 1083 

In a future version of this specification, the W3C XQuery syntax may be considered as another 1084 

query syntax. 1085 

The Registry will hold a self-describing capability profile that identifies all supported 1086 

AdhocQuery options. This profile is described in Appendix H. 1087 

8.1 Ad Hoc Query Request/Response 1088 

A client submits an ad hoc query to the QueryManager by sending an AdhocQueryRequest. The 1089 

AdhocQueryRequest contains a subelement that defines a query in one of the supported Registry 1090 

query mechanisms. 1091 

The QueryManager sends an AdhocQueryResponse either synchronously or asynchronously 1092 

back to the client. The AdhocQueryResponse returns a collection of objects whose element type 1093 

depends upon the responseOption attribute of the AdhocQueryRequest. These may be objects 1094 

representing leaf classes in [ebRIM], references to objects in the registry as well as intermediate 1095 

classes in [ebRIM] such as RegistryObject and RegistryEntry.  1096 

Any errors in the query request messages are indicated in the corresponding query response 1097 

message. 1098 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 41 of 128 

   1099 

  Figure 14: Submit Ad Hoc Query Sequence Diagram 1100 

For details on the schema for the business documents shown in this process refer to Appendix 1101 

B.2.  1102 

Definition 1103 
 1104 
<element name="AdhocQueryRequest"> 1105 
 <complexType> 1106 
  <sequence> 1107 
   <element ref="tns:ResponseOption" minOccurs="1" maxOccurs="1" />  1108 
   <choice minOccurs="1" maxOccurs="1"> 1109 
    <element ref="tns:FilterQuery" />  1110 
    <element ref="tns:SQLQuery" />  1111 
   </choice> 1112 
  </sequence> 1113 
 </complexType> 1114 
</element> 1115 
 1116 
<element name="AdhocQueryResponse"> 1117 
 <complexType> 1118 
  <choice minOccurs="1" maxOccurs="1”> 1119 
   <element ref="tns:FilterQueryResult" />  1120 
   <element ref="tns:SQLQueryResult" /> 1121 
  </choice> 1122 
 </complexType> 1123 
</element> 1124 
 1125 

8.1.1 Query Response Options 1126 

Purpose 1127 

A QueryManagerClient may specify what an ad hoc query must return within an 1128 

AdhocQueryResponse using the ResponseOption element of the AdHocQueryRequest. 1129 

ResponseOption element has an attribute "returnType” and its values are: 1130 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 42 of 128 

• ObjectRef - This option specifies that the AdhocQueryResponse may contain a collection of 1131 

ObjectRef XML elements as defined in [ebRIM Schema]. Purpose of this option is to return 1132 

just the identifiers of the registry objects. 1133 

• RegistryObject - This option specifies that the AdhocQueryResponse may contain a 1134 

collection of RegistryObject XML elements as defined in [ebRIM Schema]. In this case all 1135 

attributes of the registry objects are returned (objectType, name, description, …) in addition 1136 

to id attribute. 1137 

• RegistryEntry - This option specifies that the AdhocQueryResponse may contain a collection 1138 

of RegistryEntry or RegistryObject XML elements as defined in [ebRIM Schema], which 1139 

correspond to RegistryEntry or RegistryObject attributes. 1140 

• LeafClass - This option specifies that the AdhocQueryResponse may contain a collection of 1141 

XML elements that correspond to leaf classes as defined in [ebRIM Schema]. 1142 

• LeafClassWithRepositoryItem - This option specifies that the AdhocQueryResponse may 1143 

contain a collection of ExtrinsicObject XML elements as defined in [ebRIM Schema] 1144 

accompanied with their repository items or RegistryEntry or RegistryObject and their 1145 

attributes. Linking of ExtrinsicObject and its repository item is done via contentURI as 1146 

explained in Section 8.4 -Content Retrieval.  1147 

ResponseOption element also has an attribute “returnComposedObjects”. It specifies whether or 1148 

not the whole hierarchy of composed objects are returned with the registry objects. 1149 

If “returnType” is higher then the RegistryObject option, then the highest option that satisfies the 1150 

query is returned. This can be illustrated with a case when OrganizationQuery is asked to return 1151 

LeafClassWithRepositoryItem. As this is not possible, QueryManager will assume LeafClass 1152 

option instead. If OrganizationQuery is asked to retrieve a RegistryEntry as a return type then 1153 

RegistryObject metadata will be returned. 1154 

Definition 1155 
 1156 
<complexType name="ResponseOptionType"> 1157 
 <attribute name="returnType" default="RegistryObject"> 1158 
  <simpleType> 1159 
   <restriction base="NMTOKEN"> 1160 
    <enumeration value="ObjectRef" />  1161 
    <enumeration value="RegistryObject" />  1162 
    <enumeration value="RegistryEntry" />  1163 
    <enumeration value="LeafClass" />  1164 
    <enumeration value="LeafClassWithRepositoryItem" />  1165 
   </restriction> 1166 
  </simpleType> 1167 
 </attribute> 1168 
 <attribute name="returnComposedObjects" type="boolean" default="false" />  1169 
</complexType> 1170 
<element name="ResponseOption" type="tns:ResponseOptionType" />  1171 
 1172 

8.2 Filter Query Support 1173 

FilterQuery is an XML syntax that provides simple query capabilities for any ebXML 1174 

conforming Registry implementation. Each query alternative is directed against a single class 1175 

defined by the ebXML Registry Information Model (ebRIM).  There are two types of filter 1176 

queries depending on which classes are queried on. 1177 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 43 of 128 

• Firstly, there are RegistryObjectQuery and RegistryEntryQuery. They allow for generic 1178 

queries that might return different subclasses of the class that is queried on. The result of 1179 

such a query is a set of XML elements that correspond to instances of any class that satisfies 1180 

the responseOption defined previously in Section 8.1.1. An example might be that 1181 

RegistryObjectQuery with responseOption LeafClass will return all attributes of all instances 1182 

that satisfy the query. This implies that response might return XML elements that correspond 1183 

to classes like ClassificationScheme, RegistryPackage, Organization and Service. 1184 

• Secondly, FilterQuery supports queries on selected ebRIM classes in order to define the exact 1185 

traversals of these classes. Responses to these queries are accordingly constrained. 1186 

A client submits a FilterQuery as part of an AdhocQueryRequest. The QueryManager sends an 1187 

AdhocQueryResponse back to the client, enclosing the appropriate FilterQueryResult specified 1188 

herein. The sequence diagrams for AdhocQueryRequest and AdhocQueryResponse are specified 1189 

in Section 8.1. 1190 

Each FilterQuery alternative is associated with an ebRIM Binding that identifies a hierarchy of 1191 

classes derived from a single class and its associations with other classes as defined by ebRIM.  1192 

Each choice of a class pre-determines a virtual XML document that can be queried as a tree.  For 1193 

example, let C be a class, let Y and Z be classes that have direct associations to C, and let V be a 1194 

class that is associated with Z.  The ebRIM Binding for C might be as in Figure 15 1195 

 1196 
  Figure 15: Example ebRIM Binding 1197 

Label1 identifies an association from C to Y, Label2 identifies an association from C to Z, and 1198 

Label3 identifies an association from Z to V. Labels can be omitted if there is no ambiguity as to 1199 

which ebRIM association is intended. The name of the query is determined by the root class, i.e. 1200 

this is an ebRIM Binding for a CQuery. The Y node in the tree is limited to the set of Y instances 1201 

that are linked to C by the association identified by Label1. Similarly, the Z and V nodes are 1202 

limited to instances that are linked to their parent node by the identified association.  1203 

Each FilterQuery alternative depends upon one or more class filters, where a class filter is a 1204 

restricted predicate clause over the attributes of a single class. Class methods that are defined in 1205 

ebRIM and that return simple types constitute “visible attributes” that are valid choices for 1206 

predicate clauses. Names of those attributes will be same as name of the corresponding method 1207 

just without the prefix ‘get’. For example, in case of “getLevelNumber” method the 1208 

corresponding visible attribute is “levelNumber”. The supported class filters are specified in 1209 

Section 8.2.13 and the supported predicate clauses are defined in Section 8.2.14.  A FilterQuery 1210 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 44 of 128 

will be composed of elements that traverse the tree to determine which branches satisfy the 1211 

designated class filters, and the query result will be the set of instances that support such a 1212 

branch. 1213 

In the above example, the CQuery element will have three subelements, one a CFilter on the C 1214 

class to eliminate C instances that do not satisfy the predicate of the CFilter, another a YFilter on 1215 

the Y class to eliminate branches from C to Y where the target of the association does not satisfy 1216 

the YFilter, and a third to eliminate branches along a path from C through Z to V. The third 1217 

element is called a branch element because it allows class filters on each class along the path 1218 

from C to V. In general, a branch element will have subelements that are themselves class filters, 1219 

other branch elements, or a full-blown query on the class in the path.  1220 

If an association from a class C to a class Y is one-to-zero or one-to-one, then at most one 1221 

branch, filter or query element on Y is allowed. However, if the association is one-to-many, then 1222 

multiple branch, filter or query elements are allowed. This allows one to specify that an instance 1223 

of C must have associations with multiple instances of Y before the instance of C is said to 1224 

satisfy the branch element. 1225 

The FilterQuery syntax is tied to the structures defined in ebRIM. Since ebRIM is intended to be 1226 

stable, the FilterQuery syntax is stable. However, if new structures are added to the ebRIM, then 1227 

the FilterQuery syntax and semantics can be extended at the same time. Also, FilterQuery syntax 1228 

follows the inheritance hierarchy of ebRIM, which means that subclass queries inherit from their 1229 

respective superclass queries.  Structures of XML elements that match the ebRIM classes are 1230 

explained in [ebRIM Schema]. Names of Filters, Queries and Branches correspond to names in 1231 

ebRIM whenever possible. 1232 

The ebRIM Binding paragraphs in Sections 8.2.2 through 8.2.12 below identify the virtual 1233 

hierarchy for each FilterQuery alternative. The Semantic Rules for each query alternative specify 1234 

the effect of that binding on query semantics. 1235 

8.2.1 FilterQuery 1236 

Purpose 1237 
To identify a set of queries that traverse specific registry class. Each alternative assumes a 1238 

specific binding to ebRIM. The status is a success indication or a collection of warnings and/or 1239 

exceptions. 1240 

Definition 1241 
 1242 
<element name="FilterQuery"> 1243 
 <complexType> 1244 
  <choice minOccurs="1" maxOccurs="1"> 1245 
   <element ref="tns:RegistryObjectQuery" />  1246 
   <element ref="tns:RegistryEntryQuery" /> 1247 
   <element ref=”tns:AssociationQuery” />  1248 
   <element ref="tns:AuditableEventQuery" /> 1249 
   <element ref=”tns:ClassificationQuery” />  1250 
   <element ref="tns:ClassificationNodeQuery" />  1251 
   <element ref="tns:ClassificationSchemeQuery" />  1252 
   <element ref="tns:RegistryPackageQuery" />  1253 
   <element ref="tns:ExtrinsicObjectQuery" />  1254 
   <element ref="tns:OrganizationQuery" />  1255 
   <element ref="tns:ServiceQuery" />  1256 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 45 of 128 

  </choice> 1257 
 </complexType> 1258 
</element> 1259 
 1260 
<element name="FilterQueryResult"> 1261 
 <complexType> 1262 
  <choice minOccurs="1" maxOccurs="1"> 1263 
   <element ref="tns:RegistryObjectQueryResult" />  1264 
   <element ref="tns:RegistryEntryQueryResult" /> 1265 
   <element ref=”tns:AssociationQueryResult” />  1266 
   <element ref="tns:AuditableEventQueryResult" /> 1267 
   <element ref=”tns:ClassificationQueryResult” />  1268 
   <element ref="tns:ClassificationNodeQueryResult" />  1269 
   <element ref="tns:ClassificationSchemeQueryResult" />  1270 
   <element ref="tns:RegistryPackageQueryResult" />  1271 
   <element ref="tns:ExtrinsicObjectQueryResult" />  1272 
   <element ref="tns:OrganizationQueryResult" />  1273 
   <element ref="tns:ServiceQueryResult" />  1274 
  </choice> 1275 
 </complexType> 1276 
</element> 1277 
 1278 

Semantic Rules 1279 

1. The semantic rules for each FilterQuery alternative are specified in subsequent subsections.  1280 

2. Semantic rules specify the procedure for implementing the evaluation of Filter Queries. 1281 

Implementations do not necessarily have to follow the same procedure provided that the 1282 

same effect is achieved. 1283 

3. Each FilterQueryResult is a set of XML elements to identify each instance of the result set. 1284 

Each XML attribute carries a value derived from the value of an attribute specified in the 1285 

Registry Information Model [ebRIM Schema]. 1286 

4. For each FilterQuery subelement there is only one corresponding FilterQueryResult 1287 

subelement that must be returned as a response. Class name of the FilterQueryResult 1288 

subelement has to match the class name of the FilterQuery subelement. 1289 

5. If a Filter, Branch or Query element for a class has no sub-elements then every persistent 1290 

instance of that class satisfies the Filter, Branch or Query. 1291 

6. If an error condition is raised during any part of the execution of a FilterQuery, then the 1292 

status attribute of the XML RegistryResult is set to “failure” and no AdHocQueryResult 1293 

element is returned; instead, a RegistryErrorList element must be returned with its 1294 

highestSeverity element set to “error”.  At least one of the RegistryError elements in the 1295 

RegistryErrorList will have its severity attribute set to “error”. 1296 

7. If no error conditions are raised during execution of a FilterQuery, then the status attribute of 1297 

the XML RegistryResult is set to “success” and an appropriate FilterQueryResult element 1298 

must be included. If a RegistryErrorList is also returned, then the highestSeverity attribute of 1299 

the RegistryErrorList is set to “warning” and the serverity attribute of each RegistryError is 1300 

set to “warning”. 1301 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 46 of 128 

8.2.2 RegistryObjectQuery 1302 

Purpose 1303 

To identify a set of registry object instances as the result of a query over selected registry 1304 

metadata. 1305 

ebRIM Binding 1306 

  Figure 16: ebRIM Binding for RegistryObjectQuery 1307 

Definition 1308 
<complexType name="RegistryObjectQueryType"> 1309 
 <sequence> 1310 
  <element ref="tns:RegistryObjectFilter" minOccurs="0" maxOccurs="1" />  1311 
  <element ref="tns:ExternalIdentifierFilter" minOccurs="0" maxOccurs="unbounded" />  1312 
  <element ref="tns:AuditableEventQuery" minOccurs="0" maxOccurs="unbounded" />  1313 
  <element ref="tns:NameBranch" minOccurs="0" maxOccurs="1" />  1314 
  <element ref="tns:DescriptionBranch" minOccurs="0" maxOccurs="1" />  1315 
  <element ref="tns:ClassifiedByBranch" minOccurs="0" maxOccurs="unbounded" /> 1316 
  <element ref="tns:SlotBranch" minOccurs="0" maxOccurs="unbounded" />  1317 
  <element ref="tns:SourceAssociationBranch" minOccurs="0" maxOccurs="unbounded" />  1318 
  <element ref="tns:TargetAssociationBranch" minOccurs="0" maxOccurs="unbounded" /> 1319 
 </sequence> 1320 
</complexType> 1321 
<element name="RegistryObjectQuery" type="tns:RegistryObjectQueryType" /> 1322 
 1323 
<complexType name="LeafRegistryObjectListType"> 1324 
 <choice minOccurs="0" maxOccurs="unbounded"> 1325 
  <element ref="tns:ObjectRef" />  1326 
  <element ref="tns:Association" />  1327 
  <element ref="tns:AuditableEvent" />  1328 
  <element ref="tns:Classification" />  1329 
  <element ref="tns:ClassificationNode" />  1330 
  <element ref="tns:ClassificationScheme" />  1331 
  <element ref="tns:ExternalIdentifier" />  1332 
  <element ref="tns:ExternalLink" />  1333 
  <element ref="tns:ExtrinsicObject" />  1334 

Association   Classification Association

Source Targe

Registry Object or its 
subclass 

Classification
Scheme

Targe Source

External 
Identifier 

Slot

Classification 
      Node 

Slot Value 

Registry Object or its 
subclass 

Registry Object 

 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 47 of 128 

  <element ref="tns:Organization" />  1335 
  <element ref="tns:RegistryPackage" />  1336 
  <element ref="tns:Service" />  1337 
  <element ref="tns:ServiceBinding" />  1338 
  <element ref="tns:SpecificationLink" />  1339 
  <element ref="tns:User" />  1340 
 </choice> 1341 
</complexType> 1342 
 1343 
<complexType name="RegistryObjectListType"> 1344 
 <complexContent> 1345 
  <extension base="tns:LeafRegistryObjectListType"> 1346 
   <choice minOccurs="0" maxOccurs="unbounded"> 1347 
    <element ref="tns:RegistryEntry" />  1348 
    <element ref="tns:RegistryObject" />  1349 
   </choice> 1350 
  </extension> 1351 
 </complexContent> 1352 
</complexType> 1353 
<element name="RegistryObjectQueryResult" type="rim:RegistryObjectListType" /> 1354 
 1355 
<complexType name="InternationalStringBranchType"> 1356 
 <sequence> 1357 
  <element ref="tns:LocalizedStringFilter" minOccurs="0" maxOccurs="unbounded" />  1358 
 </sequence> 1359 
</complexType> 1360 
 1361 
<complexType name="AssociationBranchType"> 1362 
 <sequence> 1363 
  <element ref="tns:AssociationFilter" minOccurs="0" maxOccurs="1" />  1364 
  <choice minOccurs="0" maxOccurs="1"> 1365 
   <element ref="tns:ExternalLinkFilter" minOccurs="0" maxOccurs="1" />  1366 
   <element ref="tns:ExternalIdentifierFilter" minOccurs="0" maxOccurs="1" />  1367 
   <element ref="tns:RegistryObjectQuery" minOccurs="0" maxOccurs="1" />  1368 
   <element ref="tns:RegistryEntryQuery" minOccurs="0" maxOccurs="1" /> 1369 
   <element ref=”tns:AssociationQuery” minOccurs=”0” maxOccurs=”1” />  1370 
   <element ref=”tns:ClassificationQuery” minOccurs=”0” maxOccurs=”1” /> 1371 
   <element ref="tns:ClassificationSchemeQuery" minOccurs="0" maxOccurs="1" />  1372 
   <element ref="tns:ClassificationNodeQuery" minOccurs="0" maxOccurs="1" />  1373 
   <element ref="tns:OrganizationQuery" minOccurs="0" maxOccurs="1" />  1374 
   <element ref="tns:AuditableEventQuery" minOccurs="0" maxOccurs="1" />  1375 
   <element ref="tns:RegistryPackageQuery" minOccurs="0" maxOccurs="1" />  1376 
   <element ref="tns:ExtrinsicObjectQuery" minOccurs="0" maxOccurs="1" />  1377 
   <element ref="tns:ServiceQuery" minOccurs="0" maxOccurs="1" />  1378 
   <element ref="tns:UserBranch" minOccurs="0" maxOccurs="1" /> 1379 
   <element ref="tns:ServiceBindingBranch" minOccurs="0" maxOccurs="1" />  1380 
   <element ref="tns:SpecificationLinkBranch" minOccurs="0" maxOccurs="1" /> 1381 
  </choice> 1382 
 </sequence> 1383 
</complexType> 1384 
<element name="SourceAssociationBranch" type="tns:AssociationBranchType" />  1385 
<element name="TargetAssociationBranch" type="tns:AssociationBranchType" /> 1386 
 1387 
<element name="ClassifiedByBranch"> 1388 
 <complexType> 1389 
  <sequence> 1390 
   <element ref="tns:ClassificationFilter" minOccurs="0" maxOccurs="1" />  1391 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 48 of 128 

   <element ref="tns:ClassificationSchemeQuery" minOccurs="0" maxOccurs="1" />  1392 
   <element ref="tns:ClassificationNodeQuery" minOccurs="0" maxOccurs="1" />  1393 
  </sequence> 1394 
 </complexType> 1395 
</element> 1396 
 1397 
<element name="SlotBranch"> 1398 
 <complexType> 1399 
  <sequence> 1400 
   <element ref="tns:SlotFilter" minOccurs="0" maxOccurs="1" />  1401 
   <element ref="tns:SlotValueFilter" minOccurs="0" maxOccurs="unbounded" />  1402 
  </sequence> 1403 
 </complexType> 1404 
</element> 1405 
 1406 
 <element name = "UserBranch"> 1407 
         <complexType> 1408 
                 <sequence> 1409 
                         <element ref = "tns:UserFilter" minOccurs = "0" maxOccurs="1"/> 1410 
                         <element ref = "tns:PostalAddressFilter" minOccurs = "0" maxOccurs="1"/> 1411 
                         <element ref = "tns:TelephoneNumberFilter" minOccurs = "0" maxOccurs="unbounded"/> 1412 
                         <element ref = "tns:EmailAddressFilter" minOccurs = "0" maxOccurs="unbounded"/> 1413 
                         <element ref = "tns:OrganizationQuery" minOccurs = "0" maxOccurs="1"/> 1414 
                 </sequence> 1415 
         </complexType> 1416 
 </element> 1417 
 1418 
<complexType name="ServiceBindingBranchType"> 1419 
 <sequence> 1420 
  <element ref="tns:ServiceBindingFilter" minOccurs="0" maxOccurs="1" />  1421 
  <element ref="tns:SpecificationLinkBranch" minOccurs="0" maxOccurs="unbounded" />  1422 
  <element ref="tns:ServiceBindingTargetBranch" minOccurs="0" maxOccurs="1" /> 1423 
 </sequence> 1424 
</complexType> 1425 
<element name=”ServiceBindingBranch” type=”tns:ServiceBindingBranchType” /> 1426 
<element name=”ServiceBindingTargetBranch” type=”tns:ServiceBindingBranchType” /> 1427 
 1428 
<element name="SpecificationLinkBranch"> 1429 
 <complexType> 1430 
  <sequence> 1431 
   <element ref="tns:SpecificationLinkFilter" minOccurs="0" maxOccurs="1" />  1432 
   <element ref="tns:RegistryObjectQuery" minOccurs="0" maxOccurs="1" />  1433 
   <element ref="tns:RegistryEntryQuery" minOccurs="0" maxOccurs="1" />  1434 
  </sequence> 1435 
 </complexType> 1436 
</element> 1437 
 1438 

Semantic Rules 1439 

1. Let RO denote the set of all persistent RegistryObject instances in the Registry. The 1440 

following steps will eliminate instances in RO that do not satisfy the conditions of the 1441 

specified filters.  1442 

a) If RO is empty then go to number 2  below. 1443 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 49 of 128 

b) If a RegistryObjectFilter is not specified then go to the next step; otherwise, let x be a 1444 

registry object in RO. If x does not satisfy the RegistryObjectFilter, then remove x from 1445 

RO. If RO is empty then continue to the next numbered rule.  1446 

c) If an ExternalIdentifierFilter element is not specified, then go to the next step; otherwise, 1447 

let x be a remaining registry object in RO. If x is not linked to at least one 1448 

ExternalIdentifier instance, then remove x from RO; otherwise, treat each 1449 

ExternalIdentifierFilter element separately as follows: Let EI be the set of 1450 

ExternalIdentifier instances that satisfy the ExternalIdentifierFilter and are linked to x. If 1451 

EI is empty, then remove x from RO. If RO is empty then continue to the next numbered 1452 

rule. 1453 

d) If an AuditableEventQuery is not specified then go to the next step; otherwise, let x be a 1454 

remaining registry object in RO. If x doesn’t have an auditable event that satisfy 1455 

AuditableEventQuery as specified in Section 8.2.5 then remove x from RO. If RO is 1456 

empty then continue to the next numbered rule. 1457 

e) If a NameBranch is not specified then go to the next step; otherwise, let x be a remaining 1458 

registry object in RO. If x does not have a name then remove x from RO. If RO is empty 1459 

then continue to the next numbered rule; otherwise treat NameBranch as follows: If any 1460 

LocalizedStringFilter that is specified is not satisfied by at least one of the 1461 

LocalizedStrings that constitute the name of the registry object then remove x from RO. 1462 

If RO is empty then continue to the next numbered rule. 1463 

f) If a DescriptionBranch is not specified then go to the next step; otherwise, let x be a 1464 

remaining registry object in RO. If x does not have a name then remove x from RO. If 1465 

RO is empty then continue to the next numbered rule; otherwise treat DescriptionBranch 1466 

as follows: If any LocalizedStringFilter that is specified is not satisfied by some of the 1467 

LocalizedStrings that constitute the description of the registry object then remove x from 1468 

RO. If RO is empty then continue to the next numbered rule. 1469 

g) If a ClassifiedByBranch element is not specified, then go to the next step; otherwise, let x 1470 

be a remaining registry object in RO. If x is not the classifiedObject of at least one 1471 

Classification instance, then remove x from RO; otherwise, treat each 1472 

ClassifiedByBranch element separately as follows: If no ClassificationFilter is specified 1473 

within the ClassifiedByBranch, then let CL be the set of all Classification instances that 1474 

have x as the classifiedObject; otherwise, let CL be the set of Classification instances that 1475 

satisfy the ClassificationFilter and have x as the classifiedObject. If CL is empty, then 1476 

remove x from RO and continue to the next numbered rule.  Otherwise, if CL is not 1477 

empty, and if a ClassificationSchemeQuery is specified, then replace CL by the set of 1478 

remaining Classification instances in CL whose defining classification scheme satisfies 1479 

the ClassificationSchemeQuery. If the new CL is empty, then remove x from RO and 1480 

continue to the next numbered rule. Otherwise, if CL remains not empty, and if a 1481 

ClassificationNodeQuery is specified, then replace CL by the set of remaining 1482 

Classification instances in CL for which a classification node exists and for which that 1483 

classification node satisfies the ClassificationNodeQuery. If the new CL is empty, then 1484 

remove x from RO. If RO is empty then continue to the next numbered rule. 1485 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 50 of 128 

h) If a SlotBranch element is not specified, then go to the next step; otherwise, let x be a 1486 

remaining registry object in RO. If x is not linked to at least one Slot instance, then 1487 

remove x from RO. If RO is empty then continue to the next numbered rule; otherwise, 1488 

treat each SlotBranch element separately as follows: If a SlotFilter is not specified within 1489 

the SlotBranch, then let SL be the set of all Slot instances for x; otherwise, let SL be the 1490 

set of Slot instances that satisfy the SlotFilter and are Slot instances for x. If SL is empty, 1491 

then remove x from RO and continue to the next numbered rule. Otherwise, if SL 1492 

remains not empty, and if a SlotValueFilter is specified, replace SL by the set of 1493 

remaining Slot instances in SL for which every specified SlotValueFilter is valid. If SL is 1494 

empty, then remove x from RO. If RO is empty then continue to the next numbered rule. 1495 

i) If a SourceAssociationBranch element is not specified then go to the next step; otherwise, 1496 

let x be a remaining registry object in RO. If x is not the source object of at least one 1497 

Association instance, then remove x from RO. If RO is empty then continue to the next 1498 

numbered rule; otherwise, treat each SourceAssociationBranch element separately as 1499 

follows: 1500 

If no AssociationFilter is specified within the SourceAssociationBranch, then let AF be 1501 

the set of all Association instances that have x as a source object; otherwise, let AF be the 1502 

set of Association instances that satisfy the AssociationFilter and have x as the source 1503 

object. If AF is empty, then remove x from RO. 1504 

 1505 

If RO is empty then continue to the next numbered rule. 1506 

 1507 

If an ExternalLinkFilter is specified within the SourceAssociationBranch, then let ROT 1508 

be the set of ExternalLink instances that satisfy the ExternalLinkFilter and are the target 1509 

object of some element of AF. If ROT is empty, then remove x from RO. If RO is empty 1510 

then continue to the next numbered rule. 1511 

 1512 

If an ExternalIdentifierFilter is specified within the SourceAssociationBranch, then let 1513 

ROT be the set of ExternalIdentifier instances that satisfy the ExternalIdentifierFilter and 1514 

are the target object of some element of AF. If ROT is empty, then remove x from RO. If 1515 

RO is empty then continue to the next numbered rule. 1516 

 1517 

If a RegistryObjectQuery is specified within the SourceAssociationBranch, then let ROT 1518 

be the set of RegistryObject instances that satisfy the RegistryObjectQuery and are the 1519 

target object of some element of AF. If ROT is empty, then remove x from RO. If RO is 1520 

empty then continue to the next numbered rule. 1521 

 1522 

If a RegistryEntryQuery is specified within the SourceAssociationBranch, then let ROT 1523 

be the set of RegistryEntry instances that satisfy the RegistryEntryQuery and are the 1524 

target object of some element of AF. If ROT is empty, then remove x from RO. If RO is 1525 

empty then continue to the next numbered rule. 1526 

 1527 

If a ClassificationSchemeQuery is specified within the SourceAssociationBranch, then let 1528 

ROT be the set of ClassificationScheme instances that satisfy the 1529 

ClassificationSchemeQuery and are the target object of some element of AF. If ROT is 1530 

empty, then remove x from RO. If RO is empty then continue to the next numbered rule. 1531 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 51 of 128 

 1532 

If a ClassificationNodeQuery is specified within the SourceAssociationBranch, then let 1533 

ROT be the set of ClassificationNode instances that satisfy the ClassificationNodeQuery 1534 

and are the target object of some element of AF. If ROT is empty, then remove x from 1535 

RO. If RO is empty then continue to the next numbered rule. 1536 

 1537 

If an OrganizationQuery is specified within the SourceAssociationBranch, then let ROT 1538 

be the set of Organization instances that satisfy the OrganizationQuery and are the target 1539 

object of some element of AF. If ROT is empty, then remove x from RO. If RO is empty 1540 

then continue to the next numbered rule. 1541 

 1542 

If an AuditableEventQuery is specified within the SourceAssociationBranch, then let 1543 

ROT be the set of AuditableEvent instances that satisfy the AuditableEventQuery and are 1544 

the target object of some element of AF. If ROT is empty, then remove x from RO. If RO 1545 

is empty then continue to the next numbered rule. 1546 

 1547 

If a RegistryPackageQuery is specified within the SourceAssociationBranch, then let 1548 

ROT be the set of RegistryPackage instances that satisfy the RegistryPackageQuery and 1549 

are the target object of some element of AF. If ROT is empty, then remove x from RO. If 1550 

RO is empty then continue to the next numbered rule. 1551 

 1552 

If an ExtrinsicObjectQuery is specified within the SourceAssociationBranch, then let 1553 

ROT be the set of ExtrinsicObject instances that satisfy the ExtrinsicObjectQuery and are 1554 

the target object of some element of AF. If ROT is empty, then remove x from RO. If RO 1555 

is empty then continue to the next numbered rule. 1556 

 1557 

If a ServiceQuery is specified within the SourceAssociationBranch, then let ROT be the 1558 

set of Service instances that satisfy the ServiceQuery and are the target object of some 1559 

element of AF. If ROT is empty, then remove x from RO. If RO is empty then continue 1560 

to the next numbered rule. 1561 

 1562 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 52 of 128 

If a UserBranch is specified within the SourceAssociationBranch then let ROT be the set 1563 

of User instances that are the target object of some element of AF. If ROT is empty, then 1564 

remove x from RO. If RO is empty then continue to the next numbered rule. Let u be the 1565 

member of ROT. If a UserFilter element is specified within the UserBranch, and if u does 1566 

not satisfy that filter, then remove u from ROT. If ROT is empty, then remove x from 1567 

RO. If RO is empty then continue to the next numbered rule. If a PostalAddressFilter 1568 

element is specified within the UserBranch, and if the postal address of u does not satisfy 1569 

that filter, then remove u from ROT. If ROT is empty, then remove x from RO. If RO is 1570 

empty then continue to the next numbered rule. If TelephoneNumberFilter(s) are 1571 

specified within the UserBranch and if any of the TelephoneNumberFilters isn’t satisfied 1572 

by at least one of the telephone numbers of u then remove u from ROT. If ROT is empty, 1573 

then remove x from RO. If RO is empty then continue to the next numbered rule. If an 1574 

OrganizationQuery element is specified within the UserBranch, then let o be the 1575 

Organization instance that is identified by the organization that u is affiliated with. If o 1576 

doesn’t satisfy OrganizationQuery as defined in Section 8.2.11 then remove u from ROT. 1577 

If ROT is empty, then remove x from RO. If RO is empty then continue to the next 1578 

numbered rule. 1579 

 1580 

If a ClassificationQuery is specified within the SourceAssociationBranch, then let ROT 1581 

be the set of Classification instances that satisfy the ClassificationQuery and are the 1582 

target object of some element of AF. If ROT is empty, then remove x from RO. If RO is 1583 

empty then continue to the next numbered rule (Rule 2). 1584 

 1585 

If a ServiceBindingBranch is specified within the SourceAssociationBranch, then let 1586 

ROT be the set of ServiceBinding instances that are the target object of some element of 1587 

AF. If ROT is empty, then remove x from RO. If RO is empty then continue to the next 1588 

numbered rule. Let sb be the member of ROT. If a ServiceBindingFilter element is 1589 

specified within the ServiceBindingBranch, and if sb does not satisfy that filter, then 1590 

remove sb from ROT. If ROT is empty then remove x from RO. If RO is empty then 1591 

continue to the next numbered rule. If a SpecificationLinkBranch is specified within the 1592 

ServiceBindingBranch then consider each SpecificationLinkBranch element separately as 1593 

follows: 1594 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 53 of 128 

Let sb be a remaining service binding in ROT. Let SL be the set of all specification link 1595 

instances sl that describe specification links of sb. If a SpecificationLinkFilter element is 1596 

specified within the SpecificationLinkBranch, and if sl does not satisfy that filter, then 1597 

remove sl from SL. If SL is empty then remove sb from ROT. If ROT is empty then 1598 

remove x from RO. If RO is empty then continue to the next numbered rule. If a 1599 

RegistryObjectQuery element is specified within the SpecificationLinkBranch then let sl 1600 

be a remaining specification link in SL. Treat RegistryObjectQuery element as follows: 1601 

Let RO be the result set of the RegistryObjectQuery as defined in Section 8.2.2. If sl is 1602 

not a specification link for at least one registry object in RO, then remove sl from SL. If 1603 

SL is empty then remove sb from ROT. If ROT is empty then remove x from RO. If RO 1604 

is empty then continue to the next numbered rule. If a RegistryEntryQuery element is 1605 

specified within the SpecificationLinkBranch then let sl be a remaining specification link 1606 

in SL. Treat RegistryEntryQuery element as follows: Let RE be the result set of the 1607 

RegistryEntryQuery as defined in Section 8.2.3. If sl is not a specification link for at least 1608 

one registry entry in RE, then remove sl from SL. If SL is empty then remove sb from 1609 

ROT. If ROT is empty then remove x from RO. If RO is empty then continue to the next 1610 

numbered rule. If a ServiceBindingTargetBranch is specified within the 1611 

ServiceBindingBranch, then let SBT be the set of ServiceBinding instances that satisfy 1612 

the ServiceBindingTargetBranch and are the target service binding of some element of 1613 

ROT. If SBT is empty then remove sb from ROT. If ROT is empty, then remove x from 1614 

RO. If RO is empty then continue to the next numbered rule. 1615 

 1616 

If a SpecificationLinkBranch is specified within the SourceAssociationBranch, then let 1617 

ROT be the set of SpecificationLink instances that are the target object of some element 1618 

of AF. If ROT is empty, then remove x from RO. If RO is empty then continue to the 1619 

next numbered rule. Let sl be the member of ROT. If a SpecificationLinkFilter element is 1620 

specified within the SpecificationLinkBranch, and if sl does not satisfy that filter, then 1621 

remove sl from ROT. If ROT is empty then remove x from RO. If RO is empty then 1622 

continue to the next numbered rule. If a RegistryObjectQuery element is specified within 1623 

the SpecificationLinkBranch then let sl be a remaining specification link in ROT. Treat 1624 

RegistryObjectQuery element as follows: Let RO be the result set of the 1625 

RegistryObjectQuery as defined in Section 8.2.2. If sl is not a specification link for some 1626 

registry object in RO, then remove sl from ROT. If ROT is empty then remove x from 1627 

RO. If RO is empty then continue to the next numbered rule. If a RegistryEntryQuery 1628 

element is specified within the SpecificationLinkBranch then let sl be a remaining 1629 

specification link in ROT. Treat RegistryEntryQuery element as follows: Let RE be the 1630 

result set of the RegistryEntryQuery as defined in Section 8.2.3. If sl is not a specification 1631 

link for at least one registry entry in RE, then remove sl from ROT. If ROT is empty then 1632 

remove x from RO. If RO is empty then continue to the next numbered rule. 1633 

 1634 

If an AssociationQuery is specified within the SourceAssociationBranch, then let ROT be 1635 

the set of Association instances that satisfy the AssociationQuery and are the target object 1636 

of some element of AF. If ROT is empty, then remove x from RO. If RO is empty then 1637 

continue to the next numbered rule (Rule 2). 1638 

 1639 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 54 of 128 

j) If a TargetAssociationBranch element is not specified then go to the next step; otherwise, 1640 

let x be a remaining registry object in RO. If x is not the target object of some 1641 

Association instance, then remove x from RO. If RO is empty then continue to the next 1642 

numbered rule; otherwise, treat each TargetAssociationBranch element separately as 1643 

follows: 1644 

 1645 

If no AssociationFilter is specified within the TargetAssociationBranch, then let AF be 1646 

the set of all Association instances that have x as a target object; otherwise, let AF be the 1647 

set of Association instances that satisfy the AssociationFilter and have x as the target 1648 

object. If AF is empty, then remove x from RO. If RO is empty then continue to the next 1649 

numbered rule. 1650 

 1651 

If an ExternalLinkFilter is specified within the TargetAssociationBranch, then let ROS be 1652 

the set of ExternalLink instances that satisfy the ExternalLinkFilter and are the source 1653 

object of some element of AF. If ROS is empty, then remove x from RO. If RO is empty 1654 

then continue to the next numbered rule. 1655 

 1656 

If an ExternalIdentifierFilter is specified within the TargetAssociationBranch, then let 1657 

ROS be the set of ExternalIdentifier instances that satisfy the ExternalIdentifierFilter and 1658 

are the source object of some element of AF. If ROS is empty, then remove x from RO. If 1659 

RO is empty then continue to the next numbered rule. 1660 

 1661 

If a RegistryObjectQuery is specified within the TargetAssociationBranch, then let ROS 1662 

be the set of RegistryObject instances that satisfy the RegistryObjectQuery and are the 1663 

source object of some element of AF. If ROS is empty, then remove x from RO. If RO is 1664 

empty then continue to the next numbered rule. 1665 

 1666 

If a RegistryEntryQuery is specified within the TargetAssociationBranch, then let ROS 1667 

be the set of  1668 

RegistryEntry instances that satisfy the RegistryEntryQuery and are the source object of 1669 

some element of AF. If ROS is empty, then remove x from RO. If RO is empty then 1670 

continue to the next numbered rule. 1671 

 1672 

If a ClassificationSchemeQuery is specified within the TargetAssociationBranch, then let 1673 

ROS be the set of ClassificationScheme instances that satisfy the 1674 

ClassificationSchemeQuery and are the source object of some element of AF. If ROS is 1675 

empty, then remove x from RO. If RO is empty then continue to the next numbered rule. 1676 

 1677 

If a ClassificationNodeQuery is specified within the TargetAssociationBranch, then let 1678 

ROS be the set of ClassificationNode instances that satisfy the ClassificationNodeQuery 1679 

and are the source object of some element of AF. If ROS is empty, then remove x from 1680 

RO. If RO is empty then continue to the next numbered rule. 1681 

 1682 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 55 of 128 

If an OrganizationQuery is specified within the TargetAssociationBranch, then let ROS 1683 

be the set of Organization instances that satisfy the OrganizationQuery and are the source 1684 

object of some element of AF. If ROS is empty, then remove x from RO. If RO is empty 1685 

then continue to the next numbered rule. 1686 

 1687 

If an AuditableEventQuery is specified within the TargetAssociationBranch, then let 1688 

ROS be the set of AuditableEvent instances that satisfy the AuditableEventQuery and are 1689 

the source object of some element of AF. If ROS is empty, then remove x from RO. If 1690 

RO is empty then continue to the next numbered rule. 1691 

 1692 

If a RegistryPackageQuery is specified within the TargetAssociationBranch, then let 1693 

ROS be the set of RegistryPackage instances that satisfy the RegistryPackageQuery and 1694 

are the source object of some element of AF. If ROS is empty, then remove x from RO. If 1695 

RO is empty then continue to the next numbered rule. 1696 

 1697 

If an ExtrinsicObjectQuery is specified within the TargetAssociationBranch, then let 1698 

ROS be the set of ExtrinsicObject instances that satisfy the ExtrinsicObjectQuery and are 1699 

the source object of some element of AF. If ROS is empty, then remove x from RO. If 1700 

RO is empty then continue to the next numbered rule. 1701 

 1702 

If a ServiceQuery is specified within the TargetAssociationBranch, then let ROS be the 1703 

set of Service instances that satisfy the ServiceQuery and are the source object of some 1704 

element of AF. If ROS is empty, then remove x from RO. If RO is empty then continue 1705 

to the next numbered rule. 1706 

 1707 

If a UserBranch is specified within the TargetAssociationBranch then let ROS be the set 1708 

of User instances that are the source object of some element of AF. If ROS is empty, then 1709 

remove x from RO. If RO is empty then continue to the next numbered rule. Let u be the 1710 

member of ROS. If a UserFilter element is specified within the UserBranch, and if u does 1711 

not satisfy that filter, then remove u from ROS. If ROS is empty, then remove x from 1712 

RO. If RO is empty then continue to the next numbered rule. If a PostalAddressFilter 1713 

element is specified within the UserBranch, and if the postal address of u does not satisfy 1714 

that filter, then remove u from ROS. If ROS is empty, then remove x from RO. If RO is 1715 

empty then continue to the next numbered rule. If TelephoneNumberFilter(s) are 1716 

specified within the UserBranch and if any of the TelephoneNumberFilters isn’t satisfied 1717 

by some of the telephone numbers of u then remove u from ROS. If ROS is empty, then 1718 

remove x from RO. If RO is empty then continue to the next numbered rule. If an 1719 

OrganizationQuery element is specified within the UserBranch, then let o be the 1720 

Organization instance that is identified by the organization that u is affiliated with. If o 1721 

doesn’t satisfy OrganizationQuery as defined in Section 8.2.11 then remove u from ROS. 1722 

If ROS is empty, then remove x from RO. If RO is empty then continue to the next 1723 

numbered rule. 1724 

 1725 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 56 of 128 

If a ClassificationQuery is specified within the TargetAssociationBranch, then let ROS be 1726 

the set of Classification instances that satisfy the ClassificationQuery and are the source 1727 

object of some element of AF. If ROS is empty, then remove x from RO. If RO is empty 1728 

then continue to the next numbered rule (Rule 2). 1729 

 1730 

If a ServiceBindingBranch is specified within the TargetAssociationBranch, then let ROS 1731 

be the set of ServiceBinding instances that are the source object of some element of AF. 1732 

If ROS is empty, then remove x from RO. If RO is empty then continue to the next 1733 

numbered rule. Let sb be the member of ROS. If a ServiceBindingFilter element is 1734 

specified within the ServiceBindingBranch, and if sb does not satisfy that filter, then 1735 

remove sb from ROS. If ROS is empty then remove x from RO. If RO is empty then 1736 

continue to the next numbered rule. If a SpecificationLinkBranch is specified within the 1737 

ServiceBindingBranch then consider each SpecificationLinkBranch element separately as 1738 

follows: 1739 

Let sb be a remaining service binding in ROS. Let SL be the set of all specification link 1740 

instances sl that describe specification links of sb. If a SpecificationLinkFilter element is 1741 

specified within the SpecificationLinkBranch, and if sl does not satisfy that filter, then 1742 

remove sl from SL. If SL is empty then remove sb from ROS. If ROS is empty then 1743 

remove x from RO. If RO is empty then continue to the next numbered rule. If a 1744 

RegistryObjectQuery element is specified within the SpecificationLinkBranch then let sl 1745 

be a remaining specification link in SL. Treat RegistryObjectQuery element as follows: 1746 

Let RO be the result set of the RegistryObjectQuery as defined in Section 8.2.2. If sl is 1747 

not a specification link for some registry object in RO, then remove sl from SL. If SL is 1748 

empty then remove sb from ROS. If ROS is empty then remove x from RO. If RO is 1749 

empty then continue to the next numbered rule. If a RegistryEntryQuery element is 1750 

specified within the SpecificationLinkBranch then let sl be a remaining specification link 1751 

in SL. Treat RegistryEntryQuery element as follows: Let RE be the result set of the 1752 

RegistryEntryQuery as defined in Section 8.2.3. If sl is not a specification link for some 1753 

registry entry in RE, then remove sl from SL. If SL is empty then remove sb from ROS. 1754 

If ROS is empty then remove x from RO. If RO is empty then continue to the next 1755 

numbered rule. 1756 

 1757 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 57 of 128 

If a SpecificationLinkBranch is specified within the TargetAssociationBranch, then let 1758 

ROS be the set of SpecificationLink instances that are the source object of some element 1759 

of AF. If ROS is empty, then remove x from RO. If RO is empty then continue to the 1760 

next numbered rule. Let sl be the member of ROS. If a SpecificationLinkFilter element is 1761 

specified within the SpecificationLinkBranch, and if sl does not satisfy that filter, then 1762 

remove sl from ROS. If ROS is empty then remove x from RO. If RO is empty then 1763 

continue to the next numbered rule. If a RegistryObjectQuery element is specified within 1764 

the SpecificationLinkBranch then let sl be a remaining specification link in ROS. Treat 1765 

RegistryObjectQuery element as follows: Let RO be the result set of the 1766 

RegistryObjectQuery as defined in Section 8.2.2. If sl is not a specification link for some 1767 

registry object in RO, then remove sl from ROS. If ROS is empty then remove x from 1768 

RO. If RO is empty then continue to the next numbered rule. If a RegistryEntryQuery 1769 

element is specified within the SpecificationLinkBranch then let sl be a remaining 1770 

specification link in ROS. Treat RegistryEntryQuery element as follows: Let RE be the 1771 

result set of the RegistryEntryQuery as defined in Section 8.2.3. If sl is not a specification 1772 

link for some registry entry in RE, then remove sl from ROS. If ROS is empty then 1773 

remove x from RO. If RO is empty then continue to the next numbered rule. If a 1774 

ServiceBindingTargetBranch is specified within the ServiceBindingBranch, then let SBT 1775 

be the set of ServiceBinding instances that satisfy the ServiceBindingTargetBranch and 1776 

are the target service binding of some element of ROT. If SBT is empty then remove sb 1777 

from ROT. If ROT is empty, then remove x from RO. If RO is empty then continue to the 1778 

next numbered rule. 1779 

 1780 

If an AssociationQuery is specified within the TargetAssociationBranch, then let ROS be 1781 

the set of Association instances that satisfy the AssociationQuery and are the source 1782 

object of some element of AF. If ROS is empty, then remove x from RO. If RO is empty 1783 

then continue to the next numbered rule (Rule 2). 1784 

2. If RO is empty, then raise the warning: registry object query result is empty; otherwise, set 1785 

RO to be the result of the RegistryObjectQuery. 1786 

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList) 1787 

within the RegistryResponse. 1788 

Examples 1789 

A client application needs all items that are classified by two different classification schemes, 1790 

one based on "Industry" and another based on "Geography". Both schemes have been defined by 1791 

ebXML and are registered as "urn:ebxml:cs:industry" and "urn:ebxml:cs:geography", 1792 

respectively. The following query identifies registry entries for all registered items that are 1793 

classified by Industry as any subnode of "Automotive" and by Geography as any subnode of 1794 

"Asia/Japan".  1795 
 1796 

<AdhocQueryRequest> 1797 

 <ResponseOption returnType = "RegistryEntry"/> 1798 

 <FilterQuery> 1799 

  <RegistryObjectQuery> 1800 

   <ClassifiedByBranch> 1801 

    <ClassificationFilter> 1802 

     <Clause> 1803 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 58 of 128 

      <SimpleClause leftArgument = "path"> 1804 

       <StringClause stringPredicate = "Equal">//Automotive</StringClause> 1805 

      </SimpleClause> 1806 

     </Clause> 1807 

    </ClassificationFilter> 1808 

    <ClassificationSchemeQuery> 1809 

     <NameBranch> 1810 

      <LocalizedStringFilter> 1811 

       <Clause> 1812 

        <SimpleClause leftArgument = "value"> 1813 

         <StringClause stringPredicate = "Equal">urn:ebxml:cs:industry</StringClause> 1814 

        </SimpleClause> 1815 

       </Clause> 1816 

      </LocalizedStringFilter> 1817 

     </NameBranch> 1818 

    </ClassificationSchemeQuery> 1819 

   </ClassifiedByBranch> 1820 

   <ClassifiedByBranch> 1821 

    <ClassificationFilter> 1822 

     <Clause> 1823 

      <SimpleClause leftArgument = "path"> 1824 

       <StringClause stringPredicate = "StartsWith">/Geography-id/Asia/Japan</StringClause> 1825 

      </SimpleClause> 1826 

     </Clause> 1827 

    </ClassificationFilter> 1828 

    <ClassificationSchemeQuery> 1829 

     <NameBranch> 1830 

      <LocalizedStringFilter> 1831 

       <Clause> 1832 

        <SimpleClause leftArgument = "value"> 1833 

         <StringClause stringPredicate = "Equal">urn:ebxml:cs:geography</StringClause> 1834 

        </SimpleClause> 1835 

       </Clause> 1836 

      </LocalizedStringFilter> 1837 

     </NameBranch> 1838 

    </ClassificationSchemeQuery> 1839 

   </ClassifiedByBranch> 1840 

  </RegistryObjectQuery> 1841 

 </FilterQuery> 1842 

</AdhocQueryRequest> 1843 

 1844 

A client application wishes to identify all RegistryObject instances that are classified by some 1845 

internal classification scheme and have some given keyword as part of the description of one of 1846 

the classification nodes of that classification scheme. The following query identifies all such 1847 

RegistryObject instances. The query takes advantage of the knowledge that the classification 1848 

scheme is internal, and thus that all of its nodes are fully described as ClassificationNode 1849 

instances. 1850 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 59 of 128 

 1851 

<AdhocQueryRequest> 1852 

 <ResponseOption returnType = "RegistryObject"/> 1853 

 <FilterQuery> 1854 

  <RegistryObjectQuery> 1855 

   <ClassifiedByBranch> 1856 

    <ClassificationNodeQuery> 1857 

     <DescriptionBranch> 1858 

      <LocalizedStringFilter> 1859 

       <Clause> 1860 

        <SimpleClause leftArgument = "value"> 1861 

         <StringClause stringPredicate = "Equal">transistor</StringClause> 1862 

        </SimpleClause> 1863 

       </Clause> 1864 

      </LocalizedStringFilter> 1865 

     </DescriptionBranch> 1866 

    </ClassificationNodeQuery> 1867 

   </ClassifiedByBranch> 1868 

  </RegistryObjectQuery> 1869 

 </FilterQuery> 1870 

</AdhocQueryRequest> 1871 

 1872 

8.2.3 RegistryEntryQuery 1873 

Purpose 1874 

To identify a set of registry entry instances as the result of a query over selected registry 1875 

metadata. 1876 

 1877 

ebRIM Binding 1878 

  Figure 17: ebRIM Binding for RegistryEntryQuery 1879 

Definition 1880 
 1881 
<complexType name="RegistryEntryQueryType"> 1882 
 <complexContent> 1883 
  <extension base="tns:RegistryObjectQueryType"> 1884 
   <sequence> 1885 
    <element ref="tns:RegistryEntryFilter" minOccurs="0" maxOccurs="1" />  1886 
   </sequence> 1887 

Registry Entry 

Registry 
Object 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 60 of 128 

  </extension> 1888 
 </complexContent> 1889 
</complexType> 1890 
<element name="RegistryEntryQuery" type="tns:RegistryEntryQueryType" />  1891 
 1892 
<element name="RegistryEntryQueryResult"> 1893 
 <complexType> 1894 
  <choice minOccurs="0" maxOccurs="unbounded"> 1895 
   <element ref="rim:ObjectRef" />  1896 
   <element ref="rim:ClassificationScheme" />  1897 
   <element ref="rim:ExtrinsicObject" />  1898 
   <element ref="rim:RegistryEntry" />  1899 
   <element ref="rim:RegistryObject" />  1900 
   <element ref="rim:RegistryPackage" />  1901 
  </choice> 1902 
 </complexType> 1903 
</element> 1904 
 1905 

Semantic Rules 1906 

1. Let RE denote the set of all persistent RegistryEntry instances in the Registry. The following 1907 

steps will eliminate instances in RE that do not satisfy the conditions of the specified filters. 1908 

a) If RE is empty then continue to the next numbered rule. 1909 

b) If a RegistryEntryFilter is not specified then go to the next step; otherwise, let x be a 1910 

registry entry in RE. If x does not satisfy the RegistryEntryFilter, then remove x from RE. 1911 

If RE is empty then continue to the next numbered rule. 1912 

c) Let RE be the set of remaining RegistryEntry instances. Evaluate inherited 1913 

RegistryObjectQuery over RE as explained in  Section 8.2.2. 1914 

2. If RE is empty, then raise the warning: registry entry query result is empty; otherwise, set RE 1915 

to be the result of the RegistryEntryQuery. 1916 

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList) 1917 

within the RegistryResponse. 1918 

Examples 1919 

A client wishes to establish a trading relationship with XYZ Corporation and wants to know if 1920 

they have registered any of their business documents in the Registry. The following query 1921 

returns a set of registry entry identifiers for currently registered items submitted by any 1922 

organization whose name includes the string "XYZ". It does not return any registry entry 1923 

identifiers for superseded, replaced, deprecated, or withdrawn items. 1924 
 1925 
<AdhocQueryRequest> 1926 
 <ResponseOption returnType = "ObjectRef"/> 1927 
 <FilterQuery> 1928 
  <RegistryEntryQuery> 1929 
   <TargetAssociationBranch> 1930 
    <AssociationFilter> 1931 
     <Clause> 1932 
      <SimpleClause leftArgument = "associationType"> 1933 
       <StringClause stringPredicate = "Equal">SubmitterOf</StringClause> 1934 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 61 of 128 

      </SimpleClause> 1935 
     </Clause> 1936 
    </AssociationFilter> 1937 
    <OrganizationQuery> 1938 
     <NameBranch> 1939 
      <LocalizedStringFilter> 1940 
        <Clause> 1941 
       <SimpleClause leftArgument = "value"> 1942 
         <StringClause stringPredicate = "Contains">XYZ</StringClause> 1943 
       </SimpleClause> 1944 
        </Clause> 1945 
      </LocalizedStringFilter> 1946 
     </NameBranch> 1947 
    </OrganizationQuery> 1948 
   </TargetAssociationBranch> 1949 
   <RegistryEntryFilter> 1950 
    <Clause> 1951 
     <SimpleClause leftArgument = "status"> 1952 
      <StringClause stringPredicate = "Equal">Approved</StringClause> 1953 
     </SimpleClause> 1954 
    </Clause> 1955 
   </RegistryEntryFilter> 1956 
  </RegistryEntryQuery> 1957 
 </FilterQuery> 1958 
</AdhocQueryRequest> 1959 
 1960 

A client is using the United Nations Standard Product and Services Classification (UNSPSC) 1961 

scheme and wants to identify all companies that deal with products classified as "Integrated 1962 

circuit components", i.e. UNSPSC code "321118". The client knows that companies have 1963 

registered their Collaboration Protocol Profile (CPP) documents in the Registry, and that each 1964 

such profile has been classified by UNSPSC according to the products the company deals with. 1965 

However, the client does not know if the UNSPSC classification scheme is internal or external to 1966 

this registry. The following query returns a set of approved registry entry instances for CPP’s of 1967 

companies that deal with integrated circuit components. 1968 
 1969 
<AdhocQueryRequest> 1970 
 <ResponseOption returnType = "RegistryEntry"/> 1971 
 <FilterQuery> 1972 
  <RegistryEntryQuery> 1973 
   <ClassifiedByBranch> 1974 
    <ClassificationFilter> 1975 
     <Clause> 1976 
      <SimpleClause leftArgument = "code"> 1977 
       <StringClause stringPredicate = "Equal">321118</StringClause> 1978 
      </SimpleClause> 1979 
     </Clause> 1980 
    </ClassificationFilter> 1981 
    <ClassificationSchemeQuery> 1982 
     <NameBranch> 1983 
      <LocalizedStringFilter> 1984 
       <Clause> 1985 
        <SimpleClause leftArgument = "value"> 1986 
         <StringClause stringPredicate = "Equal">urn:org:un:spsc:cs2001</StringClause> 1987 
         </SimpleClause> 1988 
       </Clause> 1989 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 62 of 128 

      </LocalizedStringFilter> 1990 
     </NameBranch> 1991 
    </ClassificationSchemeQuery> 1992 
   </ClassifiedByBranch> 1993 
   <RegistryEntryFilter> 1994 
    <Clause> 1995 
     <CompoundClause connectivePredicate = "And"> 1996 
      <Clause> 1997 
       <SimpleClause leftArgument = "objectType"> 1998 
        <StringClause stringPredicate = "Equal">CPP</StringClause> 1999 
       </SimpleClause> 2000 
      </Clause> 2001 
      <Clause> 2002 
       <SimpleClause leftArgument = "status"> 2003 
        <StringClause stringPredicate = "Equal">Approved</StringClause> 2004 
       </SimpleClause> 2005 
      </Clause> 2006 
     </CompoundClause> 2007 
    </Clause> 2008 
   </RegistryEntryFilter> 2009 
  </RegistryEntryQuery> 2010 
 </FilterQuery> 2011 
</AdhocQueryRequest> 2012 
 2013 

8.2.4 AssociationQuery 2014 

Purpose 2015 

To identify a set of association instances as the result of a query over selected registry metadata. 2016 

 2017 
ebRIM Binding 2018 

  Figure 18: ebRIM Binding for AssociationQuery 2019 

Definition 2020 
 2021 
<complexType name = "AssociationQueryType"> 2022 
 <complexContent> 2023 
  <extension base = "tns:RegistryObjectQueryType"> 2024 
   <sequence> 2025 
    <element ref = "tns:AssociationFilter" minOccurs = "0" maxOccurs = "1"/> 2026 
   </sequence> 2027 
  </extension> 2028 
 </complexContent> 2029 
</complexType> 2030 
<element name = "AssociationQuery" type = "tns:AssociationQueryType"/> 2031 
 2032 
<element name="AssociationQueryResult"> 2033 
 <complexType> 2034 

Association 

Registry 
Object 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 63 of 128 

  <choice minOccurs="0" maxOccurs="unbounded"> 2035 
   <element ref="rim:ObjectRef" />  2036 
   <element ref="rim:RegistryObject" />  2037 
   <element ref="rim:Association" />  2038 
  </choice> 2039 
 </complexType> 2040 
</element> 2041 
 2042 

Semantic Rules 2043 

1. Let A denote the set of all persistent Association instances in the Registry. The following 2044 

steps will eliminate instances in A that do not satisfy the conditions of the specified filters. 2045 

a) If A is empty then continue to the next numbered rule. 2046 

b) If an AssociationFilter element is not directly contained in the AssociationQuery element, 2047 

then go to the next step; otherwise let x be an association instance in A. If x does not 2048 

satisfy the AssociationFilter then remove x from A. If A is empty then continue to the 2049 

next numbered rule. 2050 

c) Let A be the set of remaining Association instances. Evaluate inherited 2051 

RegistryObjectQuery over A as explained in Section 8.2.2. 2052 

2. If A is empty, then raise the warning: association query result is empty; otherwise, set A to 2053 

be the result of the AssociationQuery. 2054 

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList) 2055 

within the RegistryResponse. 2056 

Examples 2057 

A client application wishes to identify a set of associations that are ‘equivalentTo’ a set of other 2058 

associations. 2059 
 2060 
<AdhocQueryRequest"> 2061 
 <ResponseOption returnType="LeafClass" />  2062 
 <FilterQuery> 2063 
  <AssociationQuery> 2064 
   <SourceAssociationBranch> 2065 
    <AssociationFilter> 2066 
     <Clause> 2067 
      <SimpleClause leftArgument="associationType"> 2068 
       <StringClause stringPredicate="Equal">EquivalentTo</StringClause>  2069 
      </SimpleClause> 2070 
     </Clause> 2071 
    </AssociationFilter> 2072 
    <AssociationQuery> 2073 
     <AssociationFilter> 2074 
      <Clause> 2075 
       <SimpleClause leftArgument="associationType"> 2076 
        <StringClause stringPredicate="StartsWith">Sin</StringClause>  2077 
       </SimpleClause> 2078 
      </Clause> 2079 
     </AssociationFilter> 2080 
    </AssociationQuery> 2081 
   </SourceAssociationBranch> 2082 
   <AssociationFilter> 2083 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 64 of 128 

    <Clause> 2084 
     <SimpleClause leftArgument="associationType"> 2085 
      <StringClause stringPredicate="StartsWith">Son</StringClause>  2086 
     </SimpleClause> 2087 
    </Clause> 2088 
   </AssociationFilter> 2089 
  </AssociationQuery> 2090 
 </FilterQuery> 2091 
</AdhocQueryRequest> 2092 
 2093 

8.2.5 AuditableEventQuery 2094 

Purpose 2095 

To identify a set of auditable event instances as the result of a query over selected registry 2096 

metadata. 2097 

ebRIM Binding 2098 

  Figure 19: ebRIM Binding for AuditableEventQuery 2099 

Definition 2100 
 2101 
<complexType name="AuditableEventQueryType"> 2102 
 <complexContent> 2103 
  <extension base="tns:RegistryObjectQueryType"> 2104 
   <sequence> 2105 
    <element ref="tns:AuditableEventFilter" minOccurs="0" />  2106 
    <element ref="tns:RegistryObjectQuery" minOccurs="0" maxOccurs="1" />  2107 
    <element ref="tns:RegistryEntryQuery" minOccurs="0" maxOccurs="1" />  2108 
    <element ref="tns:UserBranch" minOccurs="0" maxOccurs="1" />  2109 
   </sequence> 2110 
  </extension> 2111 
 </complexContent> 2112 
</complexType> 2113 
<element name="AuditableEventQuery" type="tns:AuditableEventQueryType" />  2114 
 2115 
<element name="AuditableEventQueryResult"> 2116 
 <complexType> 2117 

Auditable Event 

Registry 
Object 

Telephone 
Number 

Registry 
Entry 

User 

Postal 
Address 

Organization 

Registry 
Object 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 65 of 128 

  <choice minOccurs="0" maxOccurs="unbounded"> 2118 
   <element ref="rim:ObjectRef" />  2119 
   <element ref="rim:RegistryObject" />  2120 
   <element ref="rim:AuditableEvent" />  2121 
  </choice> 2122 
 </complexType> 2123 
</element> 2124 
 2125 

Semantic Rules 2126 

1. Let AE denote the set of all persistent AuditableEvent instances in the Registry. The 2127 

following steps will eliminate instances in AE that do not satisfy the conditions of the 2128 

specified filters.  2129 

a) If AE is empty then continue to the next numbered rule. 2130 

b) If an AuditableEventFilter is not specified then go to the next step; otherwise, let x be an 2131 

auditable event in AE. If x does not satisfy the AuditableEventFilter, then remove x from 2132 

AE. If AE is empty then continue to the next numbered rule. 2133 

c) If a RegistryObjectQuery element is not specified then go to the next step; otherwise, let 2134 

x be a remaining auditable event in AE. Treat RegistryObjectQuery element as follows: 2135 

Let RO be the result set of the RegistryObjectQuery as defined in Section 8.2.2. If x is 2136 

not an auditable event for some registry object in RO, then remove x from AE. If AE is 2137 

empty then continue to the next numbered rule. 2138 

d) If a RegistryEntryQuery element is not specified then go to the next step; otherwise, let x 2139 

be a remaining auditable event in AE. Treat RegistryEntryQuery element as follows: Let 2140 

RE be the result set of the RegistryEntryQuery as defined in Section 8.2.3. If x is not an 2141 

auditable event for some registry entry in RE, then remove x from AE. If AE is empty 2142 

then continue to the next numbered rule. 2143 

e) If a UserBranch element is not specified then go to the next step; otherwise, let x be a 2144 

remaining auditable event in AE. Let u be the user instance that invokes x. If a UserFilter 2145 

element is specified within the UserBranch, and if u does not satisfy that filter, then 2146 

remove x from AE. If a PostalAddressFilter element is specified within the UserBranch, 2147 

and if the postal address of u does not satisfy that filter, then remove x from AE. If 2148 

TelephoneNumberFilter(s) are specified within the UserBranch and if any of the 2149 

TelephoneNumberFilters isn’t satisfied by some of the telephone numbers of u then 2150 

remove x from AE. If EmailAddressFilter(s) are specified within the UserBranch and if 2151 

any of the EmailAddressFilters isn’t satisfied by some of the email addresses of u then 2152 

remove x from AE. If an OrganizationQuery element is specified within the UserBranch, 2153 

then let o be the Organization instance that is identified by the organization that u is 2154 

affiliated with. If o doesn’t satisfy OrganizationQuery as defined in Section 8.2.11 then 2155 

remove x from AE. If AE is empty then continue to the next numbered rule. 2156 

f) Let AE be the set of remaining AuditableEvent instances. Evaluate inherited 2157 

RegistryObjectQuery over AE as explained in Section 8.2.2. 2158 

2. If AE is empty, then raise the warning: auditable event query result is empty; otherwise set 2159 

AE to be the result of the AuditableEventQuery. 2160 

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList) 2161 

within the RegistryResponse. 2162 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 66 of 128 

Examples 2163 

A Registry client has registered an item and it has been assigned a name "urn:path:myitem".  The 2164 

client is now interested in all events since the beginning of the year that have impacted that item. 2165 

The following query will return a set of AuditableEvent instances for all such events. 2166 
 2167 
<AdhocQueryRequest> 2168 
 <ResponseOption returnType = "LeafClass"/> 2169 
 <FilterQuery> 2170 
  <AuditableEventQuery> 2171 
   <AuditableEventFilter> 2172 
    <Clause> 2173 
     <SimpleClause leftArgument = "timestamp"> 2174 
      <RationalClause logicalPredicate = "GE"> 2175 
       DateTimeClause>2000-01-01T00:00:00-05:00</DateTimeClause> 2176 
      </RationalClause> 2177 
     </SimpleClause> 2178 
    </Clause> 2179 
   </AuditableEventFilter> 2180 
   <RegistryEntryQuery> 2181 
    <NameBranch> 2182 
     <LocalizedStringFilter> 2183 
      <Clause> 2184 
       <SimpleClause leftArgument = "value"> 2185 
        <StringClause stringPredicate = "Equal">urn:path:myitem</StringClause> 2186 
       </SimpleClause> 2187 
      </Clause> 2188 
     </LocalizedStringFilter> 2189 
    </NameBranch> 2190 
   </RegistryEntryQuery> 2191 
  </AuditableEventQuery> 2192 
 </FilterQuery> 2193 
</AdhocQueryRequest 2194 
 2195 

A client company has many registered objects in the Registry. The Registry allows events 2196 

submitted by other organizations to have an impact on your registered items, e.g. new 2197 

classifications and new associations. The following query will return a set of identifiers for all 2198 

auditable events, invoked by some other party, that had an impact on an item submitted by 2199 

“myorg”.  2200 
  2201 
<AdhocQueryRequest> 2202 
 <ResponseOption returnType = "LeafClass"/> 2203 
 <FilterQuery> 2204 
  <AuditableEventQuery> 2205 
   <RegistryEntryQuery> 2206 
    <TargetAssociationBranch> 2207 
     <AssociationFilter> 2208 
      <Clause> 2209 
        <SimpleClause leftArgument = "associationType"> 2210 
       <StringClause stringPredicate = "Equal">SubmitterOf</StringClause> 2211 
        </SimpleClause> 2212 
      </Clause> 2213 
     </AssociationFilter> 2214 
     <OrganizationQuery> 2215 
      <NameBranch> 2216 
       <LocalizedStringFilter> 2217 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 67 of 128 

          <Clause> 2218 
           <SimpleClause leftArgument = "value"> 2219 
        <StringClause stringPredicate = "Equal">myorg</StringClause> 2220 
           </SimpleClause> 2221 
         </Clause> 2222 
       </LocalizedStringFilter> 2223 
      </NameBranch> 2224 
     </OrganizationQuery> 2225 
    </TargetAssociationBranch> 2226 
   </RegistryEntryQuery> 2227 
   <UserBranch> 2228 
    <OrganizationQuery> 2229 
     <NameBranch> 2230 
      <LocalizedStringFilter> 2231 
       <Clause> 2232 
        <SimpleClause leftArgument = "value"> 2233 
         <StringClause stringPredicate = "-Equal">myorg</StringClause> 2234 
        </SimpleClause> 2235 
       </Clause> 2236 
      </LocalizedStringFilter> 2237 
     </NameBranch> 2238 
    </OrganizationQuery> 2239 
   </UserBranch> 2240 
  </AuditableEventQuery> 2241 
 </FilterQuery> 2242 
</AdhocQueryRequest> 2243 
 2244 

8.2.6 ClassificationQuery 2245 

Purpose 2246 

To identify a set of classification instances as the result of a query over selected registry 2247 

metadata. 2248 

ebRIM Binding  2249 

  Figure 20: ebRIM Binding for ClassificationQuery 2250 

Definition 2251 
 2252 
<complexType name = "ClassificationQueryType"> 2253 
 <complexContent> 2254 
  <extension base = "tns:RegistryObjectQueryType"> 2255 
   <sequence> 2256 
    <element ref = "tns:ClassificationFilter" minOccurs = "0" maxOccurs="1"/> 2257 

Classification 

 

Classification 
Scheme 

Registry 
Entry 

Registry Object 

Registry 
Object 

Classification 
Node 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 68 of 128 

    <element ref = "tns:ClassificationSchemeQuery" minOccurs = "0" maxOccurs="1"/> 2258 
    <element ref = "tns:ClassificationNodeQuery" minOccurs = "0" maxOccurs="1"/> 2259 
    <element ref = "tns:RegistryObjectQuery" minOccurs = "0" maxOccurs="1"/> 2260 
    <element ref = "tns:RegistryEntryQuery" minOccurs = "0" maxOccurs="1"/> 2261 
   </sequence> 2262 
  </extension> 2263 
 </complexContent> 2264 
</complexType> 2265 
<element name = "ClassificationQuery" type = "tns:ClassificationQueryType"/> 2266 
 2267 
<element name="ClassificationQueryResult"> 2268 
 <complexType> 2269 
  <choice minOccurs="0" maxOccurs="unbounded"> 2270 
   <element ref="rim:ObjectRef" />  2271 
   <element ref="rim:RegistryObject" />  2272 
   <element ref="rim:Classification" />  2273 
  </choice> 2274 
 </complexType> 2275 
</element> 2276 
 2277 

Semantic Rules 2278 

1. Let C denote the set of all persistent Classification instances in the Registry. The following 2279 

steps will eliminate instances in C that do not satisfy the conditions of the specified filters. 2280 

a) If C is empty then continue to the next numbered rule. 2281 

b) If a ClassificationFilter element is not directly contained in the ClassificationQuery 2282 

element, then go to the next step; otherwise let x be an classification instance in C. If x 2283 

does not satisfy the ClassificationFilter then remove x from C. If C is empty then 2284 

continue to the next numbered rule. 2285 

c) If a ClassificationSchemeQuery is not specified then go to the next step; otherwise, let x 2286 

be a remaining classification in C. If the defining classification scheme of x does not 2287 

satisfy the ClassificationSchemeQuery as defined in Section 8.2.8, then remove x from C. 2288 

If C is empty then continue to the next numbered rule. 2289 

d) If a ClassificationNodeQuery is not specified then go to the next step; otherwise, let x be 2290 

a remaining classification in C. If the classification node of x does not satisfy the 2291 

ClassificationNodeQuery as defined in Section 8.2.7, then remove x from C. If C is 2292 

empty then continue to the next numbered rule. 2293 

e) If a RegistryObjectQuery element is not specified then go to the next step; otherwise, let 2294 

x be a remaining classification in C. Treat RegistryObjectQuery element as follows: Let 2295 

RO be the result set of the RegistryObjectQuery as defined in Section 8.2.2. If x is not a 2296 

classification of at least one registry object in RO, then remove x from C. If C is empty 2297 

then continue to the next numbered rule. 2298 

f) If a RegistryEntryQuery element is not specified then go to the next step; otherwise, let x 2299 

be a remaining classification in C. Treat RegistryEntryQuery element as follows: Let RE 2300 

be the result set of the RegistryEntryQuery as defined in Section 8.2.3. If x is not a 2301 

classification of at least one registry entry in RE, then remove x from C. If C is empty 2302 

then continue to the next numbered rule. 2303 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 69 of 128 

2. If C is empty, then raise the warning: classification query result is empty; otherwise 2304 

otherwise, set C to be the result of the ClassificationQuery. 2305 

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList) 2306 

within the RegistryResponse. 2307 

8.2.7 ClassificationNodeQuery 2308 

Purpose 2309 

To identify a set of classification node instances as the result of a query over selected registry 2310 

metadata. 2311 

ebRIM Binding 2312 

  Figure 21: ebRIM Binding for ClassificationNodeQuery 2313 

Definition 2314 
 2315 
<complexType name="ClassificationNodeQueryType"> 2316 
 <complexContent> 2317 
  <extension base="tns:RegistryObjectQueryType"> 2318 
   <sequence> 2319 
    <element ref="tns:ClassificationNodeFilter" minOccurs="0" maxOccurs="1" />  2320 
    <element ref="tns:ClassificationSchemeQuery" minOccurs="0" maxOccurs="1" />  2321 
    <element name="ClassificationNodeParentBranch" type="ClassificationNodeQueryType" minOccurs="0" 2322 
     maxOccurs="1" />  2323 
    <element name="ClassificationNodeChildrenBranch" type="ClassificationNodeQueryType"  2324 
     minOccurs="0" maxOccurs="unbounded" />  2325 
   </sequence> 2326 
  </extension> 2327 
 </complexContent> 2328 
</complexType> 2329 
<element name="ClassificationNodeQuery" type="tns:ClassificationNodeQueryType" />  2330 
 2331 
<element name="ClassificationNodeQueryResult"> 2332 
 <complexType> 2333 
  <choice minOccurs="0" maxOccurs="unbounded"> 2334 
   <element ref="rim:ObjectRef" />  2335 
   <element ref="rim:RegistryObject" />  2336 
   <element ref="rim:ClassificationNode" />  2337 
  </choice> 2338 

Classification 
Node 

Classification 
Node 

Classification 
Scheme 

Parent Children 

Classification 
Node 

Registry 
Object 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 70 of 128 

 </complexType> 2339 
</element> 2340 
 2341 

Semantic Rules 2342 

1. Let CN denote the set of all persistent ClassificationNode instances in the Registry. The 2343 

following steps will eliminate instances in CN that do not satisfy the conditions of the 2344 

specified filters. 2345 

a) If CN is empty then continue to the next numbered rule. 2346 

b) If a ClassificationNodeFilter is not specified then go to the next step; otherwise, let x be a 2347 

classification node in CN. If x does not satisfy the ClassificationNodeFilter then remove 2348 

x from CN. If CN is empty then continue to the next numbered rule. 2349 

c) If a ClassificationSchemeQuery is not specified then go to the next step; otherwise, let x 2350 

be a remaining classification node in CN. If the defining classification scheme of x does 2351 

not satisfy the ClassificationSchemeQuery as defined in Section 8.2.8, then remove x 2352 

from CN. If CN is empty then continue to the next numbered rule. 2353 

d) If a ClassificationNodeParentBranch element is not specified, then go to the next step; 2354 

otherwise, let x be a remaining classification node in CN and execute the following 2355 

paragraph with n=x.  2356 

Let n be a classification node instance. If n does not have a parent node (i.e. if n is a base 2357 

level node), then remove x from CN and go to the next step; otherwise, let p be the parent 2358 

node of n. If a ClassificationNodeFilter element is directly contained in the 2359 

ClassificationNodeParentBranch and if p does not satisfy the ClassificationNodeFilter, 2360 

then remove x from CN. If CN is empty then continue to the next numbered rule. If a 2361 

ClassificationSchemeQuery element is directly contained in the 2362 

ClassificationNodeParentBranch and if defining classification scheme of p does not 2363 

satisfy the ClassificationSchemeQuery, then remove x from CN. If CN is empty then 2364 

continue to the next numbered rule. 2365 

If another ClassificationNodeParentBranch element is directly contained within this 2366 

ClassificationNodeParentBranch element, then repeat the previous paragraph with n=p. 2367 

e) If a ClassificationNodeChildrenBranch element is not specified, then continue to the next 2368 

numbered rule; otherwise, let x be a remaining classification node in CN. If x is not the 2369 

parent node of some ClassificationNode instance, then remove x from CN and if CN is 2370 

empty continue to the next numbered rule; otherwise, treat each 2371 

ClassificationNodeChildrenBranch element separately and execute the following 2372 

paragraph with n = x. 2373 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 71 of 128 

Let n be a classification node instance. If a ClassificationNodeFilter element is not 2374 

specified within the ClassificationNodeChildrenBranch element then let CNC be the set 2375 

of all classification nodes that have n as their parent node; otherwise, let CNC be the set 2376 

of all classification nodes that satisfy the ClassificationNodeFilter and have n as their 2377 

parent node. If CNC is empty, then remove x from CN and if CN is empty continue to the 2378 

next numbered rule; otherwise, let c be any member of CNC. If a 2379 

ClassificationSchemeQuery element is directly contained in the 2380 

ClassificationNodeChildrenBranch and if the defining classification scheme of c does not 2381 

satisfy the ClassificationSchemeQuery then remove c from CNC. If CNC is empty then 2382 

remove x from CN. If CN is empty then continue to the next numbered rule; otherwise, 2383 

let y be an element of CNC and continue with the next paragraph. 2384 

If the ClassificationNodeChildrenBranch element is terminal, i.e. if it does not directly 2385 

contain another ClassificationNodeChildrenBranch element, then continue to the next 2386 

numbered rule; otherwise, repeat the previous paragraph with the new 2387 

ClassificationNodeChildrenBranch element and with n = y. 2388 

f) Let CN be the set of remaining ClassificationNode instances. Evaluate inherited 2389 

RegistryObjectQuery over CN as explained in Section 8.2.2. 2390 

2. If CN is empty, then raise the warning: classification node query result is empty; otherwise 2391 

set CN to be the result of the ClassificationNodeQuery. 2392 

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList) 2393 

within the RegistryResponse. 2394 

Path Filter Expression usage in ClassificationNodeFilter 2395 

The path filter expression is used to match classification nodes in ClassificationNodeFilter 2396 

elements involving the path attribute of the ClassificationNode class as defied by the getPath 2397 

method in [ebRIM]. 2398 

The path filter expressions are based on a very small and proper sub-set of location path syntax 2399 

of XPath.  2400 

The path filter expression syntax includes support for matching multiple nodes by using wild 2401 

card syntax as follows: 2402 

• Use of ‘*’  as a wildcard in place of any path element in the pathFilter  2403 

• Use of ‘//’ syntax to denote any descendent of a node in the pathFilter 2404 

It is defined by the following BNF grammar: 2405 
 2406 
pathFilter  ::= '/' schemeId nodePath 2407 
nodePath  ::= slashes nodeCode 2408 
  |    slashes ‘*’ 2409 
  |    slashes nodeCode ( nodePath )? 2410 
Slashes ::= ‘/’ | ‘//’  2411 
 2412 

In the above grammer, schemeId is the id attribute of the ClassificationScheme instance. In the 2413 

above grammar nodeCode is defined by NCName production as defined by 2414 

http://www.w3.org/TR/REC-xml-names/#NT-NCName. 2415 

The semantic rules for the ClassificationNodeFilter element allow the use of path attribute as a 2416 

filter that is based on the EQUAL clause. The pattern specified for matching the EQUAL clause 2417 

is a PATH Filter expression.  2418 

http://www.w3.org/TR/REC-xml-names/#NT-NCName


OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 72 of 128 

This is illustrated in the following example that matches all second level nodes in 2419 

ClassificationScheme with id ‘Geography-id’ and with code ‘Japan’: 2420 
 2421 
<ClassificationNodeQuery> 2422 
  <ClassificationNodeFilter> 2423 
    <Clause> 2424 
      <SimpleClause leftArgument = "path"> 2425 
 <StringClause stringPredicate = "Equal">//Geography-id/*/Japan</StringClause> 2426 
      </SimpleClause> 2427 
    </Clause> 2428 
  </ClassificationNodeFilter> 2429 
</ClassificationNodeQuery> 2430 
 2431 

Use Cases and Examples of Path Filter Expressions 2432 

The following table lists various use cases and examples using the sample Geography scheme 2433 

below: 2434 
 2435 
<ClassificationScheme id='Geography-id' name="Geography”/>  2436 
 2437 
<ClassificationNode id="NorthAmerica-id" parent="Geography-id" code=NorthAmerica" />  2438 
<ClassificationNode id="UnitedStates-id" parent="NorthAmerica-id" code="UnitedStates" />  2439 
 2440 
<ClassificationNode id="Asia-id" parent="Geography-id" code="Asia" />  2441 
<ClassificationNode id="Japan-id" parent="Asia-id" code="Japan" /> 2442 
<ClassificationNode id="Tokyo-id" parent="Japan-id" code="Tokyo" /> 2443 
 2444 

  Table 10: Path Filter Expressions for Use Cases 2445 

Use Case PATH Expression Description 
Match all nodes in first 
level that have a specified 
value 

/Geography-id/NorthAmerica Find all first level nodes whose 
code is 'NorthAmerica' 

Find all children of first 
level node whose code is 
“NorthAmerica” 

/Geography-id/NorthAmerica/* 
Match all nodes whose first level 
path element has code 
"NorthAmerica" 

Match all nodes that have 
a specified value 
regardless of level 

/ Geography-id//Japan Find all nodes with code ''Japan”  

Match all nodes in the 
second level that have a 
specified value 

/Geography-id/*/Japan Find all second level nodes with 
code 'Japan'  

Match all nodes in the 
3rd level that have a 
specified value 

/ Geography-id/*/*/Tokyo Find all third level nodes with 
code 'Tokyo'  

Examples 2446 

A client application wishes to identify all of the classification nodes in the first three levels of a 2447 

classification scheme hierarchy. The client knows that the name of the underlying classification 2448 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 73 of 128 

scheme is “urn:ebxml:cs:myscheme”. The following query identifies all nodes at the first three 2449 

levels.  2450 
 2451 
<AdhocQueryRequest> 2452 
 <ResponseOption returnType = "LeafClass"/> 2453 
 <FilterQuery> 2454 
  <ClassificationNodeQuery> 2455 
   <ClassificationNodeFilter> 2456 
    <Clause> 2457 
     <SimpleClause leftArgument = "levelNumber"> 2458 
      <RationalClause logicalPredicate = "LE"> 2459 
        <IntClause>3</IntClause> 2460 
      </RationalClause> 2461 
     </SimpleClause> 2462 
    </Clause> 2463 
   </ClassificationNodeFilter> 2464 
   <ClassificationSchemeQuery> 2465 
    <NameBranch> 2466 
     <LocalizedStringFilter> 2467 
      <Clause> 2468 
         <SimpleClause leftArgument = "value"> 2469 
           <StringClause stringPredicate = "Equal">urn:ebxml:cs:myscheme</StringClause> 2470 
         </SimpleClause> 2471 
      </Clause> 2472 
     </LocalizedStringFilter> 2473 
    </NameBranch> 2474 
   </ClassificationSchemeQuery> 2475 
  </ClassificationNodeQuery> 2476 
 </FilterQuery> 2477 
</AdhocQueryRequest> 2478 
 2479 

If, instead, the client wishes all levels returned, they could simply delete the 2480 

ClassificationNodeFilter element from the query. 2481 

The following query finds all children nodes of a first level node whose code is NorthAmerica. 2482 
 2483 
<AdhocQueryRequest> 2484 
 <ResponseOption returnType = "LeafClass"/> 2485 
 <FilterQuery> 2486 
  <ClassificationNodeQuery> 2487 
   <ClassificationNodeFilter> 2488 
     <Clause> 2489 
    <SimpleClause leftArgument = "path"> 2490 
      <StringClause stringPredicate = "Equal">/Geography-id/NorthAmerica/*</StringClause> 2491 
    </SimpleClause> 2492 
     </Clause> 2493 
   </ClassificationNodeFilter> 2494 
  </ClassificationNodeQuery> 2495 
 </FilterQuery> 2496 
</AdhocQueryRequest> 2497 
 2498 

The following query finds all third level nodes with code of Tokyo. 2499 
 2500 
<AdhocQueryRequest> 2501 
 <ResponseOption returnType = "LeafClass" returnComposedObjects = "True"/> 2502 
 <FilterQuery> 2503 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 74 of 128 

  <ClassificationNodeQuery> 2504 
   <ClassificationNodeFilter> 2505 
    <Clause> 2506 
      <SimpleClause leftArgument = "path"> 2507 
     <StringClause stringPredicate = "Equal">/Geography-id/*/*/Tokyo</StringClause> 2508 
      </SimpleClause> 2509 
    </Clause> 2510 
   </ClassificationNodeFilter> 2511 
  </ClassificationNodeQuery> 2512 
 </FilterQuery> 2513 
</AdhocQueryRequest> 2514 
 2515 

8.2.8 ClassificationSchemeQuery 2516 

Purpose 2517 

To identify a set of classification scheme instances as the result of a query over selected registry 2518 

metadata. 2519 

ebRIM Binding 2520 

  Figure 22: ebRIM Binding for ClassificationSchemeQuery 2521 

Definition 2522 
 2523 
<complexType name="ClassificationSchemeQueryType"> 2524 
 <complexContent> 2525 
  <extension base="tns:RegistryEntryQueryType"> 2526 
   <sequence> 2527 
    <element ref="tns:ClassificationSchemeFilter" minOccurs="0" maxOccurs="1" />  2528 
   </sequence> 2529 
  </extension> 2530 
 </complexContent> 2531 
</complexType> 2532 
<element name="ClassificationSchemeQuery" type="tns:ClassificationSchemeQueryType" />  2533 
 2534 

Semantic Rules 2535 

1. Let CS denote the set of all persistent ClassificationScheme instances in the Registry. The 2536 

following steps will eliminate instances in CS that do not satisfy the conditions of the 2537 

specified filters. 2538 

a) If CS is empty then continue to the next numbered rule. 2539 

b) If a ClassificationSchemeFilter is not specified then go to the next step; otherwise, let x 2540 

be a classification scheme in CS. If x does not satisfy the ClassificationSchemeFilter, 2541 

then remove x from CS. If CS is empty then continue to the next numbered rule. 2542 

Classification Scheme 

Registry 
Entry 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 75 of 128 

c) Let CS be the set of remaining ClassificationScheme instances. Evaluate inherited 2543 

RegistryEntryQuery over CS as explained in Section 8.2.3. 2544 

2. If CS is empty, then raise the warning: classification scheme query result is empty; otherwise, 2545 

set CS to be the result of the ClassificationSchemeQuery. 2546 

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList) 2547 

within the RegistryResponse. 2548 

Examples 2549 

A client application wishes to identify all classification scheme instances in the Registry.  2550 
<AdhocQueryRequest> 2551 
 <ResponseOption returnType = "LeafClass"/> 2552 
 <FilterQuery> 2553 
  <ClassificationSchemeQuery/> 2554 
 </FilterQuery> 2555 
</AdhocQueryRequest> 2556 

 2557 

8.2.9 RegistryPackageQuery 2558 

Purpose 2559 

To identify a set of registry package instances as the result of a query over selected registry 2560 

metadata. 2561 

ebRIM Binding 2562 

  Figure 23: ebRIM Binding for RegistryPackageQuery 2563 

Definition 2564 
 2565 
<complexType name="RegistryPackageQueryType"> 2566 
 <complexContent> 2567 
  <extension base="tns:RegistryEntryQueryType"> 2568 
   <sequence> 2569 
    <element ref="tns:RegistryPackageFilter" minOccurs="0" maxOccurs="1" />  2570 
    <element ref="tns:RegistryObjectQuery" minOccurs="0" maxOccurs="unbounded" />  2571 
    <element ref="tns:RegistryEntryQuery" minOccurs="0" maxOccurs="unbounded" />  2572 
   </sequence> 2573 
  </extension> 2574 
 </complexContent> 2575 
</complexType> 2576 
<element name="RegistryPackageQuery" type="tns:RegistryPackageQueryType" />  2577 
 2578 
<element name="RegistryPackageQueryResult"> 2579 

Registry 
Package 

 

Registry 
Object Registry 

Entry 

Registry 
Entry 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 76 of 128 

 <complexType> 2580 
  <choice minOccurs="0" maxOccurs="unbounded"> 2581 
   <element ref="rim:ObjectRef" />  2582 
   <element ref="rim:RegistryEntry" />  2583 
   <element ref="rim:RegistryObject" />  2584 
   <element ref="rim:RegistryPackage" />  2585 
  </choice> 2586 
 </complexType> 2587 
</element> 2588 
 2589 

Semantic Rules 2590 

1. Let RP denote the set of all persistent RegistryPackage instances in the Registry. The 2591 

following steps will eliminate instances in RP that do not satisfy the conditions of the 2592 

specified filters. 2593 

a) If RP is empty then continue to the next numbered rule. 2594 

b) If a RegistryPackageFilter is not specified, then continue to the next numbered rule; 2595 

otherwise, let x be a registry package instance in RP. If x does not satisfy the 2596 

RegistryPackageFilter then remove x from RP. If RP is empty then continue to the next 2597 

numbered rule. 2598 

c) If a RegistryObjectQuery element is directly contained in the RegistryPackageQuery 2599 

element then treat each RegistryObjectQuery as follows: let RO be the set of 2600 

RegistryObject instances returned by the RegistryObjectQuery as defined in Section 8.2.2 2601 

and let PO be the subset of RO that are members of the package x. If PO is empty, then 2602 

remove x from RP. If RP is empty then continue to the next numbered rule. If a 2603 

RegistryEntryQuery element is directly contained in the RegistryPackageQuery element 2604 

then treat each RegistryEntryQuery as follows: let RE be the set of RegistryEntry 2605 

instances returned by the RegistryEntryQuery as defined in Section 8.2.3 and let PE be 2606 

the subset of RE that are members of the package x. If PE is empty, then remove x from 2607 

RP. If RP is empty then continue to the next numbered rule. 2608 

d) Let RP be the set of remaining RegistryPackage instances. Evaluate inherited 2609 

RegistryEntryQuery over RP as explained in Section 8.2.3. 2610 

2. If RP is empty, then raise the warning: registry package query result is empty; otherwise set 2611 

RP to be the result of the RegistryPackageQuery. 2612 

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList) 2613 

within the RegistryResponse. 2614 

Examples 2615 

A client application wishes to identify all package instances in the Registry that contain an 2616 

Invoice extrinsic object as a member of the package. 2617 
 2618 
<AdhocQueryRequest> 2619 
 <ResponseOption returnType = "LeafClass"/> 2620 
 <FilterQuery> 2621 
  <RegistryPackageQuery> 2622 
   <RegistryEntryQuery> 2623 
    <RegistryEntryFilter> 2624 
     <Clause> 2625 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 77 of 128 

      <SimpleClause leftArgument = "objectType"> 2626 
       <StringClause stringPredicate = "Equal">Invoice</StringClause> 2627 
      </SimpleClause> 2628 
     </Clause> 2629 
    </RegistryEntryFilter> 2630 
   </RegistryEntryQuery> 2631 
  </RegistryPackageQuery> 2632 
 </FilterQuery> 2633 
</AdhocQueryRequest> 2634 
 2635 

A client application wishes to identify all package instances in the Registry that are not empty.  2636 
 2637 
<AdhocQueryRequest> 2638 
 <ResponseOption returnType = "LeafClass"/> 2639 
 <FilterQuery> 2640 
  <RegistryPackageQuery> 2641 
   <RegistryObjectQuery/> 2642 
  </RegistryPackageQuery> 2643 
 </FilterQuery> 2644 
</AdhocQueryRequest> 2645 
 2646 

A client application wishes to identify all package instances in the Registry that are empty. Since 2647 

the RegistryPackageQuery is not set up to do negations, clients will have to do two separate 2648 

RegistryPackageQuery requests, one to find all packages and another to find all non-empty 2649 

packages, and then do the set difference themselves. Alternatively, they could do a more 2650 

complex RegistryEntryQuery and check that the packaging association between the package and 2651 

its members is non-existent.  2652 

Note: A registry package is an intrinsic RegistryEntry instance that is completely determined by 2653 

its associations with its members. Thus a RegistryPackageQuery can always be re-specified as an 2654 

equivalent RegistryEntryQuery using appropriate “Source” and “Target” associations. However, 2655 

the equivalent RegistryEntryQuery is often more complicated to write. 2656 

8.2.10 ExtrinsicObjectQuery 2657 

Purpose 2658 

To identify a set of extrinsic object instances as the result of a query over selected registry 2659 

metadata. 2660 

ebRIM Binding 2661 

  Figure 24: ebRIM Binding for ExtrinsicObjectQuery 2662 

Definition 2663 
 2664 

Extrinsic Object 

Registry 
Entry 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 78 of 128 

<complexType name="ExtrinsicObjectQueryType"> 2665 
 <complexContent> 2666 
  <extension base="tns:RegistryEntryQueryType"> 2667 
   <sequence> 2668 
    <element ref="tns:ExtrinsicObjectFilter" minOccurs="0" maxOccurs="1" />  2669 
   </sequence> 2670 
  </extension> 2671 
 </complexContent> 2672 
</complexType> 2673 
<element name="ExtrinsicObjectQuery" type="tns:ExtrinsicObjectQueryType" />  2674 
 2675 
<element name="ExtrinsicObjectQueryResult"> 2676 
 <complexType> 2677 
  <choice minOccurs="0" maxOccurs="unbounded"> 2678 
   <element ref="rim:ObjectRef" />  2679 
   <element ref="rim:RegistryEntry" />  2680 
   <element ref="rim:RegistryObject" />  2681 
   <element ref="rim:ExtrinsicObject" />  2682 
  </choice> 2683 
 </complexType> 2684 
</element> 2685 
 2686 

Semantic Rules 2687 

1. Let EO denote the set of all persistent ExtrinsicObject instances in the Registry. The 2688 

following steps will eliminate instances in EO that do not satisfy the conditions of the 2689 

specified filters. 2690 

a) If EO is empty then continue to the next numbered rule. 2691 

b) If a ExtrinsicObjectFilter is not specified then go to the next step; otherwise, let x be an 2692 

extrinsic object in EO. If x does not satisfy the ExtrinsicObjectFilter then remove x from 2693 

EO. If EO is empty then continue to the next numbered rule. 2694 

c) Let EO be the set of remaining ExtrinsicObject instances. Evaluate inherited 2695 

RegistryEntryQuery over EO as explained in Section 8.2.3. 2696 

2. If EO is empty, then raise the warning: extrinsic object query result is empty; otherwise, set 2697 

EO to be the result of the ExtrinsicObjectQuery. 2698 

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList) 2699 

within the RegistryResponse. 2700 

8.2.11 OrganizationQuery 2701 

Purpose 2702 

To identify a set of organization instances as the result of a query over selected registry 2703 

metadata. 2704 

ebRIM Binding 2705 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 79 of 128 

  Figure 25: ebRIM Binding for OrganizationQuery 2706 

Definition 2707 
 2708 
<complexType name="OrganizationQueryType"> 2709 
 <complexContent> 2710 
  <extension base="tns:RegistryObjectQueryType"> 2711 
   <sequence> 2712 
    <element ref="tns:OrganizationFilter" minOccurs="0" maxOccurs="1" />  2713 
    <element ref="tns:PostalAddressFilter" minOccurs="0" maxOccurs="1" />  2714 
    <element ref="tns:TelephoneNumberFilter" minOccurs="0" maxOccurs="unbounded" />  2715 
    <element ref="tns:UserBranch" minOccurs="0" maxOccurs="1" />  2716 
    <element name="OrganizationParentBranch" type="tns:OrganizationQueryType" minOccurs="0 2717 
     " maxOccurs="1" />  2718 
    <element name="OrganizationChildrenBranch" type="tns:OrganizationQueryType" minOccurs="0" 2719 
      maxOccurs="unbounded" />  2720 
   </sequence> 2721 
  </extension> 2722 
 </complexContent> 2723 
</complexType> 2724 
<element name="OrganizationQuery" type="tns:OrganizationQueryType" />  2725 
 2726 
<element name="OrganizationQueryResult"> 2727 
 <complexType> 2728 
  <choice minOccurs="0" maxOccurs="unbounded"> 2729 
   <element ref="rim:ObjectRef" />  2730 
   <element ref="rim:RegistryObject" />  2731 
   <element ref="rim:Organization" />  2732 
  </choice> 2733 
 </complexType> 2734 
</element> 2735 
 2736 

Semantic Rules 2737 

1. Let ORG denote the set of all persistent Organization instances in the Registry. The 2738 

following steps will eliminate instances in ORG that do not satisfy the conditions of the 2739 

specified filters. 2740 

a) If ORG is empty then continue to the next numbered rule. 2741 

Organization 

Postal 
Address 

Telephone 
Number 

Telephone 
Number User 

Postal 
Address 

Organization 

Organization Organization 

Parent Children 

Registry 
Object 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 80 of 128 

b) If an OrganizationFilter element is not directly contained in the OrganizationQuery 2742 

element, then go to the next step; otherwise let x be an organization instance in ORG. If x 2743 

does not satisfy the OrganizationFilter then remove x from ORG. If ORG is empty then 2744 

continue to the next numbered rule. 2745 

c) If a PostalAddressFilter element is not directly contained in the OrganizationQuery 2746 

element then go to the next step; otherwise, let x be an extrinsic object in ORG. If postal 2747 

address of x does not satisfy the PostalAddressFilter then remove x from ORG. If ORG is 2748 

empty then continue to the next numbered rule. 2749 

d) If no TelephoneNumberFilter element is directly contained in the OrganizationQuery 2750 

element then go to the next step; otherwise, let x be an extrinsic object in ORG. If any of 2751 

the TelephoneNumberFilters isn’t satisfied by some of the telephone numbers of x then 2752 

remove x from ORG. If ORG is empty then continue to the next numbered rule. 2753 

e) If a UserBranch element is not directly contained in the OrganizationQuery element then 2754 

go to the next step; otherwise, let x be an extrinsic object in ORG. Let u be the user 2755 

instance that is affiliated with x. If a UserFilter element is specified within the 2756 

UserBranch, and if u does not satisfy that filter, then remove x from ORG. If a 2757 

PostalAddressFilter element is specified within the UserBranch, and if the postal address 2758 

of u does not satisfy that filter, then remove x from ORG. If TelephoneNumberFilter(s) 2759 

are specified within the UserBranch and if any of the TelephoneNumberFilters isn’t 2760 

satisfied by some of the telephone numbers of x then remove x from ORG. If 2761 

EmailAddressFilter(s) are specified within the UserBranch and if any of the 2762 

EmailAddressFilters isn’t satisfied by some of the email addresses of x then remove x 2763 

from ORG. If an OrganizationQuery element is specified within the UserBranch, then let 2764 

o be the  Organization instance that is identified by the organization that u is affiliated 2765 

with. If o doesn’t satisfy OrganizationQuery as defined in Section 8.2.11 then remove x 2766 

from ORG. If ORG is empty then continue to the next numbered rule. 2767 

f) If a OrganizationParentBranch element is not specified within the OrganizationQuery, 2768 

then go to the next step; otherwise, let x be an extrinsic object in ORG. Execute the 2769 

following paragraph with o = x: 2770 

Let o be an organization instance. If an OrganizationFilter is not specified within the 2771 

OrganizationParentBranch and if o has no parent (i.e. if o is a root organization in the 2772 

Organization hierarchy), then remove x from ORG; otherwise, let p be the parent 2773 

organization of o. If p does not satisfy the OrganizationFilter, then remove x from ORG. 2774 

If ORG is empty then continue to the next numbered rule. 2775 

If another OrganizationParentBranch element is directly contained within this 2776 

OrganizationParentBranch element, then repeat the previous paragraph with o = p. 2777 

g) If a OrganizationChildrenBranch element is not specified, then continue to the next 2778 

numbered rule; otherwise, let x be a remaining organization in ORG. If x is not the parent 2779 

node of some organization instance, then remove x from ORG and if ORG is empty 2780 

continue to the next numbered rule; otherwise, treat each OrganizationChildrenBranch 2781 

element separately and execute the following paragraph with n = x. 2782 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 81 of 128 

Let n be an organization instance. If an OrganizationFilter element is not specified within 2783 

the OrganizationChildrenBranch element then let ORGC be the set of all organizations 2784 

that have n as their parent node; otherwise, let ORGC be the set of all organizations that 2785 

satisfy the OrganizationFilter and have n as their parent node. If ORGC is empty, then 2786 

remove x from ORG and if ORG is empty continue to the next numbered rule; otherwise, 2787 

let c be any member of ORGC. If a PostalAddressFilter element is directly contained in 2788 

the OrganizationChildrenBranch and if the postal address of c does not satisfy the 2789 

PostalAddressFilter then remove c from ORGC. If ORGC is empty then remove x from 2790 

ORG. If ORG is empty then continue to the next numbered rule. If no 2791 

TelephoneNumberFilter element is directly contained in the OrganizationChildrenBranch 2792 

and if If any of the TelephoneNumberFilters isn’t satisfied by some of the telephone 2793 

numbers of c then remove c from ORGC. If ORGC is empty then remove x from ORG. If 2794 

ORG is empty then continue to the next numbered rule; otherwise, let y be an element of 2795 

ORGC and continue with the next paragraph. 2796 

If the OrganizationChildrenBranch element is terminal, i.e. if it does not directly contain 2797 

another OrganizationChildrenBranch element, then continue to the next numbered rule; 2798 

otherwise, repeat the previous paragraph with the new OrganizationChildrenBranch 2799 

element and with n = y. 2800 

h) Let ORG be the set of remaining Organization instances. Evaluate inherited 2801 

RegistryObjectQuery over ORG as explained in Section 8.2.2. 2802 

2. If ORG is empty, then raise the warning: organization query result is empty; otherwise set 2803 

ORG to be the result of the OrganizationQuery. 2804 

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList) 2805 

within the RegistryResponse. 2806 

Examples 2807 

A client application wishes to identify a set of organizations, based in France, that have 2808 

submitted a PartyProfile extrinsic object this year.  2809 
 2810 
<AdhocQueryRequest> 2811 
 <ResponseOption returnType = "LeafClass" returnComposedObjects = "True”/> 2812 
 <FilterQuery> 2813 
  <OrganizationQuery> 2814 
   <SourceAssociationBranch> 2815 
    <AssociationFilter> 2816 
     <Clause> 2817 
      <SimpleClause leftArgument = "associationType"> 2818 
       <StringClause stringPredicate = "Equal">SubmitterOf</StringClause> 2819 
      </SimpleClause> 2820 
     </Clause> 2821 
    </AssociationFilter> 2822 
    <RegistryObjectQuery> 2823 
     <RegistryObjectFilter> 2824 
      <Clause> 2825 
       <SimpleClause leftArgument = "objectType"> 2826 
        <StringClause stringPredicate = "Equal">CPP</StringClause> 2827 
       </SimpleClause> 2828 
      </Clause> 2829 
     </RegistryObjectFilter> 2830 
     <AuditableEventQuery> 2831 
      <AuditableEventFilter> 2832 
       <Clause> 2833 
        <SimpleClause leftArgument = "timestamp"> 2834 
          <RationalClause logicalPredicate = "GE"> 2835 
            <DateTimeClause>2000-01-01T00:00:00-05:00</DateTimeClause> 2836 
          </RationalClause> 2837 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 82 of 128 

        </SimpleClause> 2838 
       </Clause> 2839 
      </AuditableEventFilter> 2840 
     </AuditableEventQuery> 2841 
     </RegistryObjectQuery> 2842 
   </SourceAssociationBranch> 2843 
   <PostalAddressFilter> 2844 
    <Clause> 2845 
     <SimpleClause leftArgument = "country"> 2846 
      <StringClause stringPredicate = "Equal">France</StringClause> 2847 
     </SimpleClause> 2848 
    </Clause> 2849 
   </PostalAddressFilter> 2850 
  </OrganizationQuery> 2851 
 </FilterQuery> 2852 
</AdhocQueryRequest> 2853 
 2854 

A client application wishes to identify all organizations that have Corporation named XYZ as a 2855 

parent. 2856 
 2857 
<AdhocQueryRequest> 2858 
 <ResponseOption returnType = "LeafClass"/> 2859 
 <FilterQuery> 2860 
  <OrganizationQuery> 2861 
   <OrganizationParentBranch> 2862 
    <NameBranch> 2863 
     <LocalizedStringFilter> 2864 
      <Clause> 2865 
       <SimpleClause leftArgument = "value"> 2866 
        <StringClause stringPredicate = "Equal">XYZ</StringClause> 2867 
       </SimpleClause> 2868 
      </Clause> 2869 
     </LocalizedStringFilter> 2870 
    </NameBranch> 2871 
   </OrganizationParentBranch> 2872 
  </OrganizationQuery> 2873 
 </FilterQuery> 2874 
</AdhocQueryRequest> 2875 
 2876 

8.2.12 ServiceQuery 2877 

Purpose  2878 

 2879 

To identify a set of service instances as the result of a query over selected registry metadata. 2880 

ebRIM Binding 2881 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 83 of 128 

  Figure 26: ebRIM Binding for ServiceQuery 2882 

Definition 2883 
 2884 
<complexType name="ServiceQueryType"> 2885 
 <complexContent> 2886 
  <extension base="tns:RegistryEntryQueryType"> 2887 
   <sequence> 2888 
    <element ref="tns:ServiceFilter" minOccurs="0"  2889 
     maxOccurs="1" />  2890 
    <element ref="tns:ServiceBindingBranch" minOccurs="0"  2891 
     maxOccurs="unbounded" />  2892 
   </sequence> 2893 
  </extension> 2894 
 </complexContent> 2895 
</complexType> 2896 
<element name="ServiceQuery" type="tns:ServiceQueryType" /> 2897 
 2898 
<element name="ServiceQueryResult"> 2899 
 <complexType> 2900 
  <choice minOccurs="0" maxOccurs="unbounded"> 2901 
   <element ref="rim:ObjectRef" />  2902 
   <element ref="rim:RegistryObject" />  2903 
   <element ref="rim:Service" />  2904 
  </choice> 2905 
 </complexType> 2906 
</element> 2907 
 2908 

Semantic Rules 2909 

1. Let S denote the set of all persistent Service instances in the Registry. The following steps 2910 

will eliminate instances in S that do not satisfy the conditions of the specified filters.  2911 

a) If S is empty then continue to the next numbered rule. 2912 

Service Binding 

Specification Link 

Service 

Registry Entry 

Registry 
Object 

Registry 
Entry 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 84 of 128 

b) If a ServicetFilter is not specified then go to the next step; otherwise, let x be a service in 2913 

S. If x does not satisfy the ServiceFilter, then remove x from S. If S is empty then 2914 

continue to the next numbered rule. 2915 

c) If a ServiceBindingBranch is not specified then continue to the next numbered rule; 2916 

otherwise, consider each ServiceBindingBranch element separately as follows: 2917 

Let SB be the set of all ServiceBinding instances that describe binding of x. Let sb be the 2918 

member of SB. If a ServiceBindingFilter element is specified within the 2919 

ServiceBindingBranch, and if sb does not satisfy that filter, then remove sb from SB. If 2920 

SB is empty then remove x from S. If S is empty then continue to the next numbered rule. 2921 

If a SpecificationLinkBranch is not specified within the ServiceBindingBranch then 2922 

continue to the next numbered rule; otherwise, consider each SpecificationLinkBranch 2923 

element separately as follows: 2924 

Let sb be a remaining service binding in SB. Let SL be the set of all specification link 2925 

instances sl that describe specification links of sb. If a SpecificationLinkFilter element is 2926 

specified within the SpecificationLinkBranch, and if sl does not satisfy that filter, then 2927 

remove sl from SL. If SL is empty then remove sb from SB. If SB is empty then remove 2928 

x from S. If S is empty then continue to the next numbered rule. If a RegistryObjectQuery 2929 

element is specified within the SpecificationLinkBranch then let sl be a remaining 2930 

specification link in SL. Treat RegistryObjectQuery element as follows: Let RO be the 2931 

result set of the RegistryObjectQuery as defined in Section 8.2.2. If sl is not a 2932 

specification link for some registry object in RO, then remove sl from SL. If SL is empty 2933 

then remove sb from SB. If SB is empty then remove x from S. If S is empty then 2934 

continue to the next numbered rule. If a RegistryEntryQuery element is specified within 2935 

the SpecificationLinkBranch then let sl be a remaining specification link in SL. Treat 2936 

RegistryEntryQuery element as follows: Let RE be the result set of the 2937 

RegistryEntryQuery as defined in Section 8.2.3. If sl is not a specification link for some 2938 

registry entry in RE, then remove sl from SL. If SL is empty then remove sb from SB. If 2939 

SB is empty then remove x from S. If S is empty then continue to the next numbered rule. 2940 

d) Let S be the set of remaining Service instances. Evaluate inherited RegistryEntryQuery 2941 

over AE as explained in Section 8.2.3. 2942 

2. If S is empty, then raise the warning: service query result is empty; otherwise set S to be the 2943 

result of the ServiceQuery. 2944 

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList) 2945 

within the RegistryResponse. 2946 

Examples 2947 

 2948 

8.2.13 Registry Filters 2949 

Purpose 2950 

To identify a subset of the set of all persistent instances of a given registry class. 2951 

Definition 2952 
 2953 
<complexType name="FilterType"> 2954 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 85 of 128 

 <sequence> 2955 
  <element ref="tns:Clause" />  2956 
 </sequence> 2957 
</complexType> 2958 
<element name="RegistryObjectFilter" type="tns:FilterType" />  2959 
<element name="RegistryEntryFilter" type="tns:FilterType" />  2960 
<element name="ExtrinsicObjectFilter" type="tns:FilterType" />  2961 
<element name="RegistryPackageFilter" type="tns:FilterType" />  2962 
<element name="OrganizationFilter" type="tns:FilterType" />  2963 
<element name="ClassificationNodeFilter" type="tns:FilterType" />  2964 
<element name="AssociationFilter" type="tns:FilterType" />  2965 
<element name="ClassificationFilter" type="tns:FilterType" />  2966 
<element name="ClassificationSchemeFilter" type="tns:FilterType" />  2967 
<element name="ExternalLinkFilter" type="tns:FilterType" />  2968 
<element name="ExternalIdentifierFilter" type="tns:FilterType" />  2969 
<element name="SlotFilter" type="tns:FilterType" />  2970 
<element name="AuditableEventFilter" type="tns:FilterType" />  2971 
<element name="UserFilter" type="tns:FilterType" />  2972 
<element name="SlotValueFilter" type="tns:FilterType" />  2973 
<element name="PostalAddressFilter" type="tns:FilterType" />  2974 
<element name="TelephoneNumberFilter" type="tns:FilterType" />  2975 
<element name="ServiceFilter" type="tns:FilterType" />  2976 
<element name="ServiceBindingFilter" type="tns:FilterType" />  2977 
<element name="SpecificationLinkFilter" type="tns:FilterType" />  2978 
<element name="LocalizedStringFilter" type="tns:FilterType" />  2979 
 2980 

Semantic Rules 2981 

1. The Clause element is defined in Section 8.2.14.  2982 

2. For every RegistryObjectFilter XML element, the leftArgument attribute of any containing 2983 

SimpleClause shall identify a public attribute of the RegistryObject UML class defined in 2984 

[ebRIM]. If not, raise exception: object attribute error. The RegistryObjectFilter returns a set 2985 

of identifiers for RegistryObject instances whose attribute values evaluate to True for the 2986 

Clause predicate. 2987 

3. For every RegistryEntryFilter XML element, the leftArgument attribute of any containing 2988 

SimpleClause shall identify a public attribute of the RegistryEntry UML class defined in 2989 

[ebRIM]. If not, raise exception: registry entry attribute error. The RegistryEntryFilter 2990 

returns a set of identifiers for RegistryEntry instances whose attribute values evaluate to True 2991 

for the Clause predicate.  2992 

4. For every ExtrinsicObjectFilter XML element, the leftArgument attribute of any containing 2993 

SimpleClause shall identify a public attribute of the ExtrinsicObject UML class defined in 2994 

[ebRIM]. If not, raise exception: extrinsic object attribute error. The ExtrinsicObjectFilter 2995 

returns a set of identifiers for ExtrinsicObject instances whose attribute values evaluate to 2996 

True for the Clause predicate.  2997 

5. For every RegistryPackageFilter XML element, the leftArgument attribute of any containing 2998 

SimpleClause shall identify a public attribute of the RegistryPackage UML class defined in 2999 

[ebRIM]. If not, raise exception: package attribute error. The RegistryPackageFilter returns 3000 

a set of identifiers for RegistryPackage instances whose attribute values evaluate to True for 3001 

the Clause predicate.  3002 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 86 of 128 

6. For every OrganizationFilter XML element, the leftArgument attribute of any containing 3003 

SimpleClause shall identify a public attribute of the Organization or PostalAddress UML 3004 

classes defined in [ebRIM]. If not, raise exception: organization attribute error. The 3005 

OrganizationFilter returns a set of identifiers for Organization instances whose attribute 3006 

values evaluate to True for the Clause predicate.  3007 

7. For every ClassificationNodeFilter XML element, the leftArgument attribute of any 3008 

containing SimpleClause shall identify a public attribute of the ClassificationNode UML 3009 

class defined in [ebRIM]. If not, raise exception: classification node attribute error. If the 3010 

leftAttribute is the visible attribute “path” then if stringPredicate of the StringClause is not 3011 

“Equal” then raise exception: classification node path attribute error. The 3012 

ClassificationNodeFilter returns a set of identifiers for ClassificationNode instances whose 3013 

attribute values evaluate to True for the Clause predicate.  3014 

8. For every AssociationFilter XML element, the leftArgument attribute of any containing 3015 

SimpleClause shall identify a public attribute of the Association UML class defined in 3016 

[ebRIM]. If not, raise exception: association attribute error. The AssociationFilter returns a 3017 

set of identifiers for Association instances whose attribute values evaluate to True for the 3018 

Clause predicate.  3019 

9. For every ClassificationFilter XML element, the leftArgument attribute of any containing 3020 

SimpleClause shall identify a public attribute of the Classification UML class defined in 3021 

[ebRIM]. If not, raise exception: classification attribute error. The ClassificationFilter 3022 

returns a set of identifiers for Classification instances whose attribute values evaluate to True 3023 

for the Clause predicate.  3024 

10. For every ClassificationSchemeFilter XML element, the leftArgument attribute of any 3025 

containing SimpleClause shall identify a public attribute of the ClassificationNode UML 3026 

class defined in [ebRIM]. If not, raise exception: classification scheme attribute error. The 3027 

ClassificationSchemeFilter returns a set of identifiers for ClassificationScheme instances 3028 

whose attribute values evaluate to True for the Clause predicate. 3029 

11. For every ExternalLinkFilter XML element, the leftArgument attribute of any containing 3030 

SimpleClause shall identify a public attribute of the ExternalLink UML class defined in 3031 

[ebRIM]. If not, raise exception: external link attribute error. The ExternalLinkFilter returns 3032 

a set of identifiers for ExternalLink instances whose attribute values evaluate to True for the 3033 

Clause predicate.  3034 

12. For every ExternalIdentiferFilter XML element, the leftArgument attribute of any containing 3035 

SimpleClause shall identify a public attribute of the ExternalIdentifier UML class defined in 3036 

[ebRIM]. If not, raise exception: external identifier attribute error. The 3037 

ExternalIdentifierFilter returns a set of identifiers for ExternalIdentifier instances whose 3038 

attribute values evaluate to True for the Clause predicate.  3039 

13. For every SlotFilter XML element, the leftArgument attribute of any containing 3040 

SimpleClause shall identify a public attribute of the Slot UML class defined in [ebRIM]. If 3041 

not, raise exception: slot attribute error. The SlotFilter returns a set of identifiers for Slot 3042 

instances whose attribute values evaluate to True for the Clause predicate.  3043 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 87 of 128 

14. For every AuditableEventFilter XML element, the leftArgument attribute of any containing 3044 

SimpleClause shall identify a public attribute of the AuditableEvent UML class defined in 3045 

[ebRIM]. If not, raise exception: auditable event attribute error. The AuditableEventFilter 3046 

returns a set of identifiers for AuditableEvent instances whose attribute values evaluate to 3047 

True for the Clause predicate.  3048 

15. For every UserFilter XML element, the leftArgument attribute of any containing 3049 

SimpleClause shall identify a public attribute of the User UML class defined in [ebRIM]. If 3050 

not, raise exception: user attribute error. The UserFilter returns a set of identifiers for User 3051 

instances whose attribute values evaluate to True for the Clause predicate. 3052 

16. SlotValue is a derived, non-persistent class based on the Slot class from ebRIM. There is one 3053 

SlotValue instance for each “value” in the “values” list of a Slot instance. The visible 3054 

attribute of SlotValue is“value”. It is a character string. The dynamic instances of SlotValue 3055 

are derived from the “values” attribute defined in ebRIM for a Slot instance. For every 3056 

SlotValueFilter XML element, the leftArgument attribute of any containing SimpleClause 3057 

shall identify the “value” attribute of the SlotValue class just defined.  If not, raise exception: 3058 

slot element attribute error. The SlotValueFilter returns a set of Slot instances whose “value” 3059 

attribute evaluates to True for the Clause predicate. 3060 

17. For every PostalAddressFilter XML element, the leftArgument attribute of any containing 3061 

SimpleClause shall identify a public attribute of the PostalAddress UML class defined in 3062 

[ebRIM]. If not, raise exception: postal address attribute error. The PostalAddressFilter 3063 

returns a set of identifiers for PostalAddress instances whose attribute values evaluate to True 3064 

for the Clause predicate. 3065 

18. For every TelephoneNumberFilter XML element, the leftArgument attribute of any 3066 

containing SimpleClause shall identify a public attribute of the TelephoneNumber UML 3067 

class defined in [ebRIM]. If not, raise exception: telephone number identity attribute error. 3068 

The TelephoneNumberFilter returns a set of identifiers for TelephoneNumber instances 3069 

whose attribute values evaluate to True for the Clause predicate. 3070 

19. For every ServiceFilter XML element, the leftArgument attribute of any containing 3071 

SimpleClause shall identify a public attribute of the Service UML class defined in [ebRIM]. 3072 

If not, raise exception: service attribute error. The ServiceFilter returns a set of identifiers for 3073 

Service instances whose attribute values evaluate to True for the Clause predicate. 3074 

20. For every ServiceBindingFilter XML element, the leftArgument attribute of any containing 3075 

SimpleClause shall identify a public attribute of the ServiceBinding UML class defined in 3076 

[ebRIM]. If not, raise exception: service binding attribute error. The ServiceBindingFilter 3077 

returns a set of identifiers for ServiceBinding instances whose attribute values evaluate to 3078 

True for the Clause predicate. 3079 

21. For every SpecificationLinkFilter XML element, the leftArgument attribute of any 3080 

containing SimpleClause shall identify a public attribute of the SpecificationLink UML class 3081 

defined in [ebRIM]. If not, raise exception: specification link attribute error. The 3082 

SpecificationLinkFilter returns a set of identifiers for SpecificationLink instances whose 3083 

attribute values evaluate to True for the Clause predicate. 3084 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 88 of 128 

22. For every LocalizedStringFilter XML element, the leftArgument attribute of any containing 3085 

SimpleClause shall identify a public attribute of the LocalizedString UML class defined in 3086 

[ebRIM]. If not, raise exception: localized string attribute error. The LocalizedStringFilter 3087 

returns a set of identifiers for LocalizedString instances whose attribute values evaluate to 3088 

True for the Clause predicate. 3089 

8.2.14 XML Clause Constraint Representation 3090 

Purpose 3091 

The simple XML FilterQuery utilizes a formal XML structure based on Predicate Clauses. 3092 

Predicate Clauses are utilized to formally define the constraint mechanism, and are referred to 3093 

simply as Clauses in this specification. 3094 

Conceptual Diagram 3095 

The following is a conceptual diagram outlining the Clause structure. 3096 

 3097 

 3098 
  Figure 27: The Clause Structure 3099 

Semantic Rules 3100 

Predicates and Arguments are combined into a "LeftArgument - Predicate - RightArgument" 3101 

format to form a Clause. There are two types of Clauses: SimpleClauses and CompoundClauses. 3102 

SimpleClauses 3103 

A SimpleClause always defines the leftArgument as a text string, sometimes referred to as the 3104 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 89 of 128 

Subject of the Clause. SimpleClause itself is incomplete (abstract) and must be extended. 3105 

SimpleClause is extended to support BooleanClause, StringClause, and RationalClause 3106 

(abstract). 3107 

BooleanClause implicitly defines the predicate as ‘equal to’, with the right argument as a 3108 

boolean. StringClause defines the predicate as an enumerated attribute of appropriate string-3109 

compare operations and a right argument as the element’s text data. Rational number support is 3110 

provided through a common RationalClause providing an enumeration of appropriate rational 3111 

number compare operations, which is further extended to IntClause and FloatClause, each with 3112 

appropriate signatures for the right argument. 3113 

CompoundClauses 3114 

A CompoundClause contains two or more Clauses (Simple or Compound) and a connective 3115 

predicate. This provides for arbitrarily complex Clauses to be formed. 3116 

Definition 3117 
 3118 
 <element name = "Clause"> 3119 
  <annotation> 3120 
   <documentation xml:lang = "en"> 3121 
The following lines define the XML syntax for Clause. 3122 
 3123 
   </documentation> 3124 
  </annotation> 3125 
  <complexType> 3126 
   <choice> 3127 
    <element ref = "tns:SimpleClause"/> 3128 
    <element ref = "tns:CompoundClause"/> 3129 
   </choice> 3130 
  </complexType> 3131 
 </element> 3132 
 <element name = "SimpleClause"> 3133 
  <complexType> 3134 
   <choice> 3135 
    <element ref = "tns:BooleanClause"/> 3136 
    <element ref = "tns:RationalClause"/> 3137 
    <element ref = "tns:StringClause"/> 3138 
   </choice> 3139 
   <attribute name = "leftArgument" use = "required" type = 3140 
"string"/> 3141 
  </complexType> 3142 
 </element> 3143 
 <element name = "CompoundClause"> 3144 
  <complexType> 3145 
   <sequence> 3146 
    <element ref = "tns:Clause" maxOccurs = "unbounded"/> 3147 
   </sequence> 3148 
   <attribute name = "connectivePredicate" use = "required"> 3149 
    <simpleType> 3150 
     <restriction base = "NMTOKEN"> 3151 
      <enumeration value = "And"/> 3152 
      <enumeration value = "Or"/> 3153 
     </restriction> 3154 
    </simpleType> 3155 
   </attribute> 3156 
  </complexType> 3157 
 </element> 3158 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 90 of 128 

 <element name = "BooleanClause"> 3159 
  <complexType> 3160 
   <attribute name = "booleanPredicate" use = "required" type = 3161 
"boolean"/> 3162 
  </complexType> 3163 
 </element> 3164 
 <element name = "RationalClause"> 3165 
  <complexType> 3166 
   <choice> 3167 
    <element ref = "tns:IntClause"/> 3168 
    <element ref = "tns:FloatClause"/> 3169 
    <element ref = "tns:DateTimeClause"/> 3170 
   </choice> 3171 
   <attribute name = "logicalPredicate" use = "required"> 3172 
    <simpleType> 3173 
     <restriction base = "NMTOKEN"> 3174 
      <enumeration value = "LE"/> 3175 
      <enumeration value = "LT"/> 3176 
      <enumeration value = "GE"/> 3177 
      <enumeration value = "GT"/> 3178 
      <enumeration value = "EQ"/> 3179 
      <enumeration value = "NE"/> 3180 
     </restriction> 3181 
    </simpleType> 3182 
   </attribute> 3183 
  </complexType> 3184 
 </element> 3185 
 <element name = "IntClause" type = "integer"/> 3186 
 <element name = "FloatClause" type = "float"/> 3187 
 <element name = "DateTimeClause" type = "dateTime"/> 3188 
 3189 
 <element name = "StringClause"> 3190 
  <complexType> 3191 
   <simpleContent> 3192 
    <extension base = "string"> 3193 
     <attribute name = "stringPredicate" use = "required"> 3194 
      <simpleType> 3195 
       <restriction base = "NMTOKEN"> 3196 
        <enumeration value = "Contains"/> 3197 
        <enumeration value = "-Contains"/> 3198 
        <enumeration value = "StartsWith"/> 3199 
        <enumeration value = "-StartsWith"/> 3200 
        <enumeration value = "Equal"/> 3201 
        <enumeration value = "-Equal"/> 3202 
        <enumeration value = "EndsWith"/> 3203 
        <enumeration value = "-EndsWith"/> 3204 
       </restriction> 3205 
      </simpleType> 3206 
     </attribute> 3207 
    </extension> 3208 
   </simpleContent> 3209 
  </complexType> 3210 
 </element> 3211 
 3212 

Examples 3213 

Simple BooleanClause: "Smoker" = True 3214 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 91 of 128 

 3215 
<Clause> 3216 
 <SimpleClause leftArgument="Smoker"> 3217 
  <BooleanClause booleanPredicate="True"/> 3218 
 </SimpleClause> 3219 
</Clause> 3220 
 3221 

Simple StringClause: "Smoker" contains "mo" 3222 
 3223 
<Clause> 3224 
 <SimpleClause leftArgument = "Smoker"> 3225 
  <StringClause stringPredicate = "Contains">mo</StringClause> 3226 
 </SimpleClause> 3227 
<Clause> 3228 

Simple IntClause: "Age" >= 7 3229 
 3230 
<Clause> 3231 
 <SimpleClause leftArgument="Age"> 3232 
  <RationalClause logicalPredicate="GE"> 3233 
   <IntClause>7</IntClause> 3234 
  </RationalClause> 3235 
 </SimpleClause> 3236 
</Clause> 3237 
 3238 

Simple FloatClause: "Size" = 4.3 3239 
 3240 
<Clause> 3241 
 <SimpleClause leftArgument="Size"> 3242 
  <RationalClause logicalPredicate="Equal"> 3243 
   <FloatClause>4.3</FloatClause> 3244 
  </RationalClause> 3245 
 </SimpleClause> 3246 
</Clause> 3247 
 3248 

Compound with two Simples (("Smoker" = False)AND("Age" =< 45)) 3249 
 3250 
<Clause> 3251 
 <CompoundClause connectivePredicate="And"> 3252 
  <Clause> 3253 
   <SimpleClause leftArgument="Smoker"> 3254 
    <BooleanClause booleanPredicate="False"/> 3255 
   </SimpleClause> 3256 
  </Clause> 3257 
  <Clause> 3258 
   <SimpleClause leftArgument="Age"> 3259 
    <RationalClause logicalPredicate="LE"> 3260 
     <IntClause>45</IntClause> 3261 
    </RationalClause> 3262 
   </SimpleClause> 3263 
  </Clause> 3264 
 </CompoundClause> 3265 
</Clause> 3266 
 3267 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 92 of 128 

Coumpound with one Simple and one Compound 3268 

( ("Smoker" = False)And(("Age" =< 45)Or("American"=True)) ) 3269 
 3270 
<Clause> 3271 
 <CompoundClause connectivePredicate="And"> 3272 
  <Clause> 3273 
   <SimpleClause leftArgument="Smoker"> 3274 
    <BooleanClause booleanPredicate="False"/> 3275 
   </SimpleClause> 3276 
  </Clause> 3277 
  <Clause> 3278 
   <CompoundClause connectivePredicate="Or"> 3279 
    <Clause> 3280 
     <SimpleClause leftArgument="Age"> 3281 
      <RationalClause logicalPredicate="LE"> 3282 
       <IntClause>45</IntClause> 3283 
      </RationalClause> 3284 
     </SimpleClause> 3285 
    </Clause> 3286 
    <Clause> 3287 
     <SimpleClause leftArgument="American"> 3288 
      <BooleanClause booleanPredicate="True"/> 3289 
     </SimpleClause> 3290 
    </Clause> 3291 
   </CompoundClause> 3292 
  </Clause> 3293 
 </CompoundClause> 3294 
<Clause> 3295 
 3296 

8.3 SQL Query Support 3297 

The Registry may optionally support an SQL based query capability that is designed for Registry 3298 

clients that demand more advanced query capability. The optional SQLQuery element in the 3299 

AdhocQueryRequest allows a client to submit complex SQL queries using a declarative query 3300 

language.   3301 

The syntax for the SQLQuery of the Registry is defined by a stylized use of a proper subset of 3302 

the “SELECT” statement of Entry level SQL defined by ISO/IEC 9075:1992, Database 3303 

Language SQL [SQL], extended to include <sql invoked routines> (also known as 3304 

stored procedures) as specified in ISO/IEC 9075-4 [SQL-PSM] and pre-defined routines defined 3305 

in template form in Appendix D.3. The syntax of the Registry query language is defined by the 3306 

BNF grammar in D.1. 3307 

Note that the use of a subset of SQL syntax for SQLQuery does not imply a requirement to use 3308 

relational databases in a Registry implementation. 3309 

8.3.1 SQL Query Syntax Binding To [ebRIM] 3310 

SQL Queries are defined based upon the query syntax in in Appendix D.1 and a fixed relational 3311 

schema defined in Appendix D.3. The relational schema is an algorithmic binding to [ebRIM] as 3312 

described in the following sections. 3313 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 93 of 128 

8.3.1.1 Class Binding 3314 

A subset of the class names defined in [ebRIM] map to table names that may be queried by an 3315 

SQL query. Appendix D.3 defines the names of the ebRIM classes that may be queried by an 3316 

SQL query. 3317 

The algorithm used to define the binding of [ebRIM] classes to table definitions in Appendix D.3 3318 

is as follows: 3319 

• Classes that have concrete instances are mapped to relational tables. In addition entity classes 3320 

(e.g. PostalAddress and TelephoneNumber) are also mapped to relational tables. 3321 

• The intermediate classes in the inheritance hierarchy, namely RegistryObject and 3322 

RegistryEntry, map to relational views. 3323 

• The names of relational tables and views are the same as the corresponding [ebRIM] class 3324 

name. However, the name binding is case insensitive. 3325 

• Each [ebRIM] class that maps to a table in Appendix D.3 includes column definitions in 3326 

Appendix D.3 where the column definitions are based on a subset of attributes defined for 3327 

that class in [ebRIM]. The attributes that map to columns include the inherited attributes for 3328 

the [ebRIM] class. Comments in Appendix D.3 indicate which ancestor class contributed 3329 

which column definitions. 3330 

An SQLQuery against a table not defined in Appendix D.3 may raise an error condition: 3331 

InvalidQueryException.  3332 

The following sections describe the algorithm for mapping attributes of [ebRIM] to SQLcolumn 3333 

definitions. 3334 

8.3.1.2 Primitive Attributes Binding 3335 

Attributes defined by [ebRIM] that are of primitive types (e.g. String) may be used in the same 3336 

way as column names in SQL. Again the exact attribute names are defined in the class 3337 

definitions in [ebRIM]. Note that while names are in mixed case, SQL-92 is case insensitive. It is 3338 

therefore valid for a query to contain attribute names that do not exactly match the case defined 3339 

in [ebRIM]. 3340 

8.3.1.3 Reference Attribute Binding 3341 

A few of the [ebRIM] class attributes are of type UUID and are a reference to an instance of a 3342 

class defined by [ebRIM]. For example, the accessControlPolicy attribute of the RegistryObject 3343 

class returns a reference to an instance of an AccessControlPolicy object. 3344 

In such cases the reference maps to the id attribute for the referenced object. The name of the 3345 

resulting column is the same as the attribute name in [ebRIM] as defined by 8.3.1.2. The data 3346 

type for the column is VARCHAR(64) as defined in Appendix D.3. 3347 

When a reference attribute value holds a null reference, it maps to a null value in the SQL 3348 

binding and may be tested with the <null specification> (“IS [NOT] NULL” syntax) as defined 3349 

by [SQL]. 3350 

Reference attribute binding is a special case of a primitive attribute mapping. 3351 

8.3.1.4 Complex Attribute Binding 3352 

A few of the [ebRIM] interfaces define attributes that are not primitive types. Instead they are of 3353 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 94 of 128 

a complex type as defined by an entity class in [ebRIM]. Examples include attributes of type 3354 

TelephoneNumber, Contact, PersonName etc. in class Organization and class User. 3355 

The SQL query schema does not map complex attributes as columns in the table for the class for 3356 

which the attribute is defined. Instead the complex attributes are mapped to columns in the table 3357 

for the domain class that represents the data type for the complex attribute (e.g. 3358 

TelephoneNumber). A column links the row in the domain table to the row in the parent table 3359 

(e.g. User). An additional column named ‘attribute_name’ identifies the attribute name in the 3360 

parent class, in case there are multiple attributes with the same complex attribute type.  3361 

This mapping also easily allows for attributes that are a collection of a complex type. For 3362 

example, a User may have a collection of TelephoneNumbers. This maps to multiple rows in the 3363 

TelephoneNumber table (one for each TelephoneNumber) where each row has a parent identifier 3364 

and an attribute_name. 3365 

8.3.1.5 Binding of Methods Returning Collections 3366 

Several of the [ebRIM] classes define methods in addition to attributes, where these methods 3367 

return collections of references to instances of classes defined by [ebRIM].  For example, the 3368 

getPackages method of the ManagedObject class returns a Collection of references to instances 3369 

of Packages that the object is a member of.  3370 

Such collection returning methods in [ebRIM] classes have been mapped to stored procedures in 3371 

Appendix D.3 such that these stored procedures return a collection of id attribute values. The 3372 

returned value of these stored procedures can be treated as the result of a table sub-query in SQL. 3373 

These stored procedures may be used as the right-hand-side of an SQL IN clause to test for 3374 

membership of an object in such collections of references. 3375 

8.3.2 Semantic Constraints On Query Syntax 3376 

This section defines simplifying constraints on the query syntax that cannot be expressed in the 3377 

BNF for the query syntax. These constraints must be applied in the semantic analysis of the 3378 

query. 3379 

1. Class names and attribute names must be processed in a case insensitive manner. 3380 

2. The syntax used for stored procedure invocation must be consistent with the syntax of an 3381 

SQL procedure invocation as specified by ISO/IEC 9075-4 [SQL/PSM].  3382 

3. For this version of the specification, the SQL select column list consists of exactly one 3383 

column, and must always be t.id, where t is a table reference in the FROM clause.  3384 

4. Join operations must be restricted to simple joins involving only those columns that have an 3385 

index defined within the normative SQL schema. This constraint is to prevent queries that 3386 

may be computationally too expensive.  3387 

8.3.3 SQL Query Results 3388 

The result of an SQL query resolves to a collection of objects within the registry. It never 3389 

resolves to partial attributes. The objects related to the result set may be returned as an 3390 

ObjectRef, RegistryObject, RegistryEntry or leaf ebRIM class depending upon the 3391 

responseOption parameter specified by the client on the AdHocQueryRequest. The entire result 3392 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 95 of 128 

set is returned as a SQLQueryResult as defined by the AdHocQueryResponse in Section 8.1.  3393 

8.3.4 Simple Metadata Based Queries 3394 

The simplest form of an SQL query is based upon metadata attributes specified for a single class 3395 

within [ebRIM]. This section gives some examples of simple metadata based queries.  3396 

For example, to get the collection of ExtrinsicObjects whose name contains the word ‘Acme’ 3397 

and that have a version greater than 1.3, the following query must be submitted: 3398 
 3399 
SELECT eo.id from ExtrinsicObject eo, Name nm where nm.value LIKE '%Acme%' AND  3400 
 eo.id = nm.parent AND 3401 
 eo.majorVersion >= 1 AND  3402 
 (eo.majorVersion >= 2 OR  eo.minorVersion > 3); 3403 
 3404 

Note that the query syntax allows for conjugation of simpler predicates into more complex 3405 

queries as shown in the simple example above. 3406 

8.3.5 RegistryObject Queries 3407 

The schema for the SQL query defines a special view called RegistryObject that allows doing a 3408 

polymorphic query against all RegistryObject instances regardless of their actual concrete type or 3409 

table name. 3410 

The following example is the similar to that in Section 8.3.4 except that it is applied against all 3411 

RegistryObject instances rather than just ExtrinsicObject instances. The result set will include id 3412 

for all qualifying RegistryObject instances whose name contains the word ‘Acme’ and whose 3413 

description contains the word “bicycle”. 3414 
 3415 
SELECT ro.id from RegistryObject ro, Name nm, Description d where nm.value LIKE '%Acme%' AND   3416 
 d.value LIKE '%bicycle%' AND 3417 
 ro.id = nm.parent AND ro.id = d.parent; 3418 
 3419 

8.3.6 RegistryEntry Queries 3420 

The schema for the SQL query defines a special view called RegistryEntry that allows doing a 3421 

polymorphic query against all RegistryEntry instances regardless of their actual concrete type or 3422 

table name. 3423 

The following example is the same as Section 8.3.4 except that it is applied against all 3424 

RegistryEntry instances rather than just ExtrinsicObject instances. The result set will include id 3425 

for all qualifying RegistryEntry instances whose name contains the word ‘Acme’ and that have a 3426 

version greater than 1.3. 3427 
 3428 
SELECT re.id from RegistryEntry re, Name nm where nm.value LIKE '%Acme%' AND  3429 
 re.id = nm.parent AND 3430 
 re.majorVersion >= 1 AND  3431 
 (re.majorVersion >= 2 OR  re.minorVersion > 3); 3432 
 3433 

8.3.7 Classification Queries 3434 

This section describes the various classification related queries that must be supported.  3435 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 96 of 128 

8.3.7.1 Identifying ClassificationNodes 3436 

Like all objects in [ebRIM], ClassificationNodes are identified by their ID. However, they may 3437 

also be identified as a path attribute that specifies an XPATH expression [XPT] from a root 3438 

classification node to the specified classification node in the XML document that would 3439 

represent the ClassificationNode tree including the said ClassificationNode. 3440 

8.3.7.2 Getting ClassificationSchemes 3441 

To get the collection of ClassificationSchemes the following query predicate must be supported: 3442 
 3443 
SELECT scheme.id FROM ClassificationScheme scheme; 3444 
 3445 

The above query returns all ClassificationSchemes. Note that the above query may also specify 3446 

additional predicates (e.g. name, description etc.) if desired. 3447 

8.3.7.3 Getting Children of Specified ClassificationNode 3448 

To get the children of a ClassificationNode given the ID of that node the following style of query 3449 

must be supported: 3450 
 3451 
SELECT cn.id FROM ClassificationNode cn WHERE parent = <id> 3452 
 3453 

The above query returns all ClassificationNodes that have the node specified by <id> as their 3454 

parent attribute. 3455 

8.3.7.4 Getting Objects Classified By a ClassificationNode 3456 

To get the collection of ExtrinsicObjects classified by specified ClassificationNodes the 3457 

following style of query must be supported: 3458 
 3459 
SELECT id FROM ExtrinsicObject 3460 
WHERE 3461 
   id IN (SELECT classifiedObject FROM Classification 3462 
   WHERE  3463 
        classificationNode IN (SELECT id FROM ClassificationNode 3464 
  WHERE path = ‘/Geography/Asia/Japan’)) 3465 
  AND 3466 
   id IN (SELECT classifiedObject FROM Classification 3467 
   WHERE  3468 
        classificationNode IN (SELECT id FROM ClassificationNode 3469 
  WHERE path = ‘/Industry/Automotive’)) 3470 
 3471 

The above query gets the collection of ExtrinsicObjects that are classified by the Automotive 3472 

Industry and the Japan Geography. Note that according to the semantics defined for 3473 

GetClassifiedObjectsRequest, the query will also contain any objects that are classified by 3474 

descendents of the specified ClassificationNodes. 3475 

8.3.7.5 Getting Classifications That Classify an Object 3476 

To get the collection of Classifications that classify a specified Object the following style of 3477 

query must be supported: 3478 
 3479 
SELECT id FROM Classification c  3480 
 WHERE c.classifiedObject = <id>; 3481 
 3482 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 97 of 128 

8.3.8 Association Queries 3483 

This section describes the various Association related queries that must be supported. 3484 

8.3.8.1 Getting All Association With Specified Object As Its Source 3485 

To get the collection of Associations that have the specified Object as its source, the following 3486 

query must be supported: 3487 
 3488 
SELECT id FROM Association WHERE sourceObject = <id> 3489 
 3490 

8.3.8.2 Getting All Association With Specified Object As Its Target 3491 

To get the collection of Associations that have the specified Object as its target, the following 3492 

query must be supported: 3493 
 3494 
SELECT id FROM Association WHERE targetObject = <id> 3495 
 3496 

8.3.8.3 Getting Associated Objects Based On Association Attributes 3497 

To get the collection of Associations that have specified Association attributes, the following 3498 

queries must be supported: 3499 

Select Associations that have the specified name. 3500 
 3501 
SELECT id FROM Association WHERE name = <name> 3502 
 3503 

Select Associations that have the specified association type, where association type is a string 3504 

containing the corresponding field name described in [ebRIM]. 3505 
 3506 
SELECT id FROM Association WHERE  3507 
 associationType = <associationType> 3508 
 3509 

8.3.8.4 Complex Association Queries 3510 

The various forms of Association queries may be combined into complex predicates. The 3511 

following query selects Associations that have a specific sourceObject, targetObject and 3512 

associationType: 3513 
 3514 
SELECT id FROM Association WHERE  3515 
 sourceObject = <id1> AND 3516 
 targetObject = <id2> AND 3517 
 associationType = <associationType>; 3518 
 3519 

8.3.9 Package Queries 3520 

To find all Packages that a specified RegistryObject belongs to, the following query is specified: 3521 
 3522 
SELECT id FROM Package WHERE id IN (RegistryObject_packages(<id>)); 3523 
 3524 

8.3.9.1 Complex Package Queries 3525 

The following query gets all Packages that a specified object belongs to, that are not deprecated 3526 

and where name contains "RosettaNet." 3527 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 98 of 128 

 3528 
SELECT id FROM Package p, Name n WHERE  3529 
 p.id IN (RegistryObject_packages(<id>)) AND 3530 
 nm.value LIKE '%RosettaNet%'  AND nm.parent = p.id AND 3531 
 p.status <> ‘Deprecated’ 3532 
 3533 

8.3.10 ExternalLink Queries 3534 

To find all ExternalLinks that a specified ExtrinsicObject is linked to, the following query is 3535 

specified: 3536 
 3537 
SELECT id From ExternalLink WHERE id IN (RegistryObject_externalLinks(<id>)) 3538 
 3539 

To find all ExtrinsicObjects that are linked by a specified ExternalLink, the following query is 3540 

specified: 3541 
 3542 
SELECT id From ExtrinsicObject WHERE id IN (RegistryObject_linkedObjects(<id>)) 3543 
 3544 

8.3.10.1 Complex ExternalLink Queries 3545 

The following query gets all ExternalLinks that a specified ExtrinsicObject belongs to, that 3546 

contain the word ‘legal’ in their description and have a URL for their externalURI. 3547 
 3548 
SELECT id FROM ExternalLink WHERE 3549 
 id IN (RegistryObject_externalLinks(<id>)) AND 3550 
 description LIKE ‘%legal%’ AND 3551 
 externalURI LIKE ‘%http://%’ 3552 
 3553 

8.3.11 Audit Trail Queries 3554 

To get the complete collection of AuditableEvent objects for a specified ManagedObject, the 3555 

following query is specified: 3556 
 3557 
SELECT id FROM AuditableEvent WHERE  registryObject = <id> 3558 
 3559 

8.4 Content Retrieval 3560 

A client retrieves content via the Registry by sending the GetContentRequest to the 3561 

QueryManager. The GetContentRequest specifies a list of Object references for Objects that 3562 

need to be retrieved. The QueryManager returns the specified content by sending a 3563 

GetContentResponse message to the RegistryClient interface of the client. If there are no errors 3564 

encountered, the GetContentResponse message includes the specified content as additional 3565 

payloads within the message. In addition to the GetContentResponse payload, there is one 3566 

additional payload for each content that was requested. If there are errors encountered, the 3567 

RegistryResponse payload includes an error and there are no additional content specific 3568 

payloads. 3569 

8.4.1 Identification Of Content Payloads 3570 

Since the GetContentResponse message may include several repository items as additional 3571 

payloads, it is necessary to have a way to identify each payload in the message. To facilitate this 3572 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 99 of 128 

identification, the Registry must do the following: 3573 

• Use the ID of the ExtrinsicObject, as the value of the Content-ID header field for the mime-3574 

part that contains the corresponding repository item for the ExtrinsicObject 3575 

• In case of [ebMS] transport, use the ID for each RegistryObject instance that describes the 3576 

repository item in the Reference element for that object in the Manifest element of the 3577 

ebXMLHeader.  3578 

8.4.2 GetContentResponse Message Structure 3579 

The following message fragment illustrates the structure of the GetContentResponse Message 3580 

that is returning a Collection of CPPs as a result of a GetContentRequest that specified the IDs 3581 

for the requested objects.  3582 
 3583 
Content-type: multipart/related; boundary="Boundary"; type="text/xml";       3584 
 3585 
--BoundarY 3586 
Content-ID: <GetContentRequest@example.com> 3587 
Content-Type: text/xml 3588 
 3589 
<?xml version="1.0" encoding="UTF-8"?> 3590 
<SOAP-ENV:Envelope  xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/' 3591 
 xmlns:eb= 'http://www.oasis-open.org/committees/ebxml-msg/schema/draft-msg-header-03.xsd'> 3592 
<SOAP-ENV:Header> 3593 
 3594 
...ebMS header goes here if using ebMS 3595 
 3596 
</SOAP-ENV:Header> 3597 
<SOAP-ENV:Body> 3598 
 3599 
...ebMS manifest gooes here if using ebMS 3600 
 3601 
<?xml version="1.0" encoding="UTF-8"?> 3602 
 3603 
<GetContentRequest> 3604 
 <ObjectRefList> 3605 
  <ObjectRef id=”d8163dfb-f45a-4798-81d9-88aca29c24ff” …/> 3606 
  <ObjectRef id=”212c3a78-1368-45d7-acc9-a935197e1e4f” …/> 3607 
 </ObjectRefList> 3608 
</GetContentRequest> 3609 
 3610 
</SOAP-ENV:Body> 3611 
</SOAP-ENV:Envelope> 3612 
 3613 
--Boundary 3614 
Content-ID: d8163dfb-f45a-4798-81d9-88aca29c24ff 3615 
Content-Type: text/xml 3616 
 3617 
<?xml version="1.0" encoding="UTF-8"?> 3618 
<CPP> 3619 
..... 3620 
</CPP> 3621 
 3622 
 3623 
--Boundary-- 3624 
Content-ID: 212c3a78-1368-45d7-acc9-a935197e1e4f 3625 
Content-Type: text/xml 3626 
 3627 
<CPP> 3628 
..... 3629 
</CPP> 3630 
 3631 
--Boundary— 3632 
 3633 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 100 of 128 

9 Registry Security 3634 

This chapter describes the security features of the ebXML Registry. It is assumed that the reader 3635 

is familiar with the security related classes in the Registry information model as described in 3636 

[ebRIM].  Security glossary terms can be referenced from RFC 2828. 3637 

9.1 Security Concerns 3638 

In the current version of this specification, we address data integrity and source integrity (item 1 3639 

in Appendix F.1). We have used a minimalist approach to address the access control concern as 3640 

in item 2 of Appendix F.1. Essentially, “any known entity (Submitting Organization) can publish 3641 

content and anyone can view published content.” The Registry information model has been 3642 

designed to allow more sophisticated security policies in future versions of this specification. 3643 

9.2 Integrity of Registry Content 3644 

It is assumed that most business registries do not have the resources to validate the veracity of 3645 

the content submitted to them. "The mechanisms described in this section can be used to ensure 3646 

that any tampering with the content submitted by a Submitting Organization can be detected. 3647 

Furthermore, these mechanisms support unambiguous identification of the Responsible 3648 

Organization for any registry content. The Registry Client has to sign the contents before 3649 

submission – otherwise the content will be rejected.  Note that in the discussions in this section 3650 

we assume a Submitting Organization to be also the Responsible Organization. Future version of 3651 

this specification may provide more examples and scenarios where a Submitting Organization 3652 

and Responsible Organization are different. 3653 

9.2.1 Message Payload Signature 3654 

The integrity of the Registry content requires that all submitted content be signed by the Registry 3655 

client.  The signature on the submitted content ensures that: 3656 

• Any tampering of the content can be detected. 3657 

• The content’s veracity can be ascertained by its association with a specific Submitting 3658 

Organization. 3659 

This section specifies the requirements for generation, packaging and validation of payload 3660 

signatures. A payload signature is packaged with the payload. Therefore the requirements apply 3661 

regardless of whether the Registry Client and the Registration Authority communicate over 3662 

vanilla SOAP with Attachments or ebXML Messaging Service [ebMS]. Currently, ebXML 3663 

Messaging Service does not specify the generation, validation and packaging of payload 3664 

signatures. The specification of payload signatures is left upto the application (such as Registry).  3665 

So the requirements on the payload signatures augment the [ebMS] specification.  3666 

Use Case 3667 

This Use Case illustrates the use of header and payload signatures (we discuss header signatures 3668 

later). 3669 

• RC1 (Registry Client 1) signs the content (generating a payload signature) and publishes the 3670 

content along with the payload signature to the Registry. 3671 

• RC2 (Registry Client 2) retrieves RC1’s content from the Registry. 3672 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 101 of 128 

• RC2 wants to verify that RC1 published the content.  In order to do this, when RC2 retrieves 3673 

the content, the response from the Registration Authority to RC2 contains the following: 3674 

− Payload containing the content that has been published by RC1. 3675 

− RC1’s payload signature (represented by a ds:Signature element) over RC1’s published 3676 

content. 3677 

− The public key for validating RC1’s payload signature in ds:Signature element ( using the 3678 

KeyInfo element as specified in [XMLDSIG] ) so RC2 can obtain the public key for 3679 

signature (e.g. retrieve a certificate containing the public key for RC1). 3680 

− A ds:Signature element containing the header signature. Note that the Registration 3681 

Authority (not RC1) generates this signature. 3682 

9.2.2 Payload Signature Requirements 3683 

9.2.2.1 Payload Signature Packaging Requirements 3684 

A payload signature is represented by a ds:Signature element.  The payload signature must be 3685 

packaged with the payload as specified here.  This packaging assumes that the payload is always 3686 

signed. 3687 

• The payload and its signature must be enclosed in a MIME multipart message with a 3688 

Content-Type of multipart/Related. 3689 

• The first body part must contain the XML signature as specified in Section 9.2.2.2, “Payload 3690 

Signature Generation Requirements”. 3691 

• The second through nth body part must be the content. 3692 

The packaging of the payload signature with one payload is as follows: 3693 
 3694 

MIME-Version: 1.0 3695 

Content-Type: multipart/Related; boundary=MIME_boundary; type=text/xml; 3696 

Content-Description: ebXML Message 3697 

    3698 

-- MIME_boundary 3699 

Content-Type: text/xml; charset=UTF-8 3700 

Content-Transfer-Encoding: 8bit 3701 

Content-ID: http://claiming-it.com/claim061400a.xml 3702 

 3703 

<?xml version='1.0' encoding="utf-8"?> 3704 

<SOAP-ENV: Envelope> 3705 

 … 3706 

 SOAP-ENV: Envelope> 3707 

 3708 

--MIME_boundary 3709 

Content-Type: multipart/Related; boundary=PAYLOAD_boundary 3710 

 3711 

--PAYLOAD_boundary 3712 

Content-Type: text/xml; charset=UTF-8 3713 

Content-Transfer-Encoding: 8bit 3714 

Content-ID: payload1 3715 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 102 of 128 

<ds:Signature> 3716 

 …. Payload signature 3717 

</ds: Signature> 3718 

 3719 

--PAYLOAD_boundary 3720 

Content-Type: text/xml; charset=UTF-8 3721 

Content-Transfer-Encoding: 8bit 3722 

Content-ID: payload2 3723 

<SubmitObjectsRequest>…</SubmitObjectsRequest> 3724 

--MIME_boundary 3725 

 3726 

9.2.2.2 Payload Signature Generation Requirements 3727 

The ds:Signature element [XMLDSIG] for a payload signature must be generated as specified in 3728 

this section.  Note: the “ds” name space reference is to http://www.w3.org/2000/09/xmldsig# 3729 

• ds:SignatureMethod must be present. [XMLDSIG] requires that the algorithm be identified 3730 

using the Algorithm attribute. [XMLDSIG] allows more than one Algorithm attribute, and a 3731 

client may use any of these attributes. However, signing using the following Algorithm 3732 

attribute: http://www.w3.org/2000/09/xmldsig/#dsa-sha1 will allow interoperability with all 3733 

XMLDSIG compliant implementations, since XMLDSIG requires the implementation of this 3734 

algorithm.   3735 

The ds:SignatureMethod element must contain a ds:CanonicalizationMethod element. The 3736 

following Canonicalization algorithm (specified in [XMLDSIG]) must be supported  3737 
 http://www.w3.org/TR/2001/REC-xml-c14n-2001315 3738 

• One ds:Reference element to reference each of the payloads that needs to be signed must be 3739 

created.  The ds:Reference element: 3740 

− Must identify the payload to be signed using the URI attribute of the ds:Reference 3741 

element. 3742 

− Must contain the <ds:DigestMethod> as specified in [XMLDSIG]. A client must be 3743 

support the following digest algorithm: 3744 

 http://www.w3.org/2000/09/xmldsig/#sha1 3745 

− Must contain a <ds:DigestValue> which is computed as specified in [XMLDSIG]. 3746 

The ds:SignedValue must be generated as specified in [XMLDSIG].  3747 

The ds:KeyInfo element may be present. However, when present, the ds:KeyInfo field is subject 3748 

to the requirements stated in Section 9.4, “KeyDistrbution and KeyInfo element”.  3749 

9.2.2.3 Message Payload Signature Validation 3750 

The ds:Signature element must be validated by the Registry as specified in the [XMLDSIG]. 3751 

9.2.2.4 Payload Signature Example 3752 

The following example shows the format of the payload signature: 3753 
 3754 

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 3755 

<ds:SignedInfo> 3756 

   <SignatureMethod Algorithm=”http://www.w3.org/TR/2000/09/xmldsig#dsa-sha1”/> 3757 

http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/TR/2001/REC-xml-c14n-2001315
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/TR/2000/09/xmldsig#dsa-sha1


OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 103 of 128 

      <ds:CanonicalizationMethod> 3758 

           Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"> 3759 

       </ds:CanonicalizationMethod> 3760 

    <ds:Reference URI=#Payload1> 3761 

             <ds:DigestMethod DigestAlgorithm="http://www.w3.org/TR/2000/09/xmldsig#sha1"> 3762 

              <ds:DigestValue> ... </ds:DigestValue> 3763 

    </ds:Reference> 3764 

</ds:SignedInfo> 3765 

<ds:SignatureValue>  ...  </ds:SignatureValue> 3766 

</ds:Signature> 3767 

 3768 

9.3 Authentication 3769 

The Registry must be able to authenticate the identity of the Principal associated with client 3770 

requests.  The identity of the Principal can be identified by verifying the message header 3771 

signature with the certificate of the Principal. The certificate may be in the message itself or 3772 

provided to the registry through means unspecified in this specification. If not provided in the 3773 

message, this specification does not specify how the Registry correlates a specific message with 3774 

a certificate. Authentication of each payload must also be possible by using the signature 3775 

associated with each payload.  Authentication is also required to identify the "privileges" a 3776 

Principal is authorized  ("authorization") to have with respect to specific objects in the Registry.  3777 

The Registry must perform authentication on a per message basis. From a security point of view, 3778 

all messages are independent and there is no concept of a session encompassing multiple 3779 

messages or conversations. Session support may be added as an optimization feature in future 3780 

versions of this specification. 3781 

It is important to note that the message header signature can only guarantee data integrity and it 3782 

may be used for Authentication knowing that it is vulnerable to replay types of attacks. True 3783 

support for authentication requires timestamps or nonce (nonrecurring series of numbers to 3784 

identify each message) that are signed. 3785 

9.3.1 Message Header Signature 3786 

Message headers are signed to provide data integrity while the message is in transit. Note that the 3787 

signature within the message header also signs the digests of the payloads. 3788 

Header Signature Requirements 3789 

Message headers can be signed and are referred to as a header signature.  This section specifies 3790 

the requirements for generation, packaging and validation of a header signature. These 3791 

requirements apply when the Registry Client and Registration Authority communicate using 3792 

vanilla SOAP with Attachments. When ebXML MS is used for communication, then the 3793 

message handler (i.e. [ebMS]) specifies the generation, packaging and validation of XML 3794 

signatures in the SOAP header. Therefore the header signature requirements do not apply when 3795 

the ebXML MS is used for communication. However, payload signature generation requirements 3796 

(specified elsewhere in this document) do apply whether vanilla SOAP with Attachments or 3797 

ebXML MS is used for communication.  3798 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 104 of 128 

9.3.1.1 Packaging Requirements 3799 

A header signature is represented by a ds:Signature element. The ds:Signature element generated 3800 

must be packaged in a <SOAP-ENV:Header> element.  The packaging of the ds:Signature 3801 

element  in the SOAP header field  is shown below. 3802 
 3803 

MIME-Version: 1.0 3804 

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml; 3805 

Content-Description: ebXML Message 3806 

 3807 

-- MIME_boundary 3808 

Content-Type: text/xml; charset=UTF-8 3809 

Content-Transfer-Encoding: 8bit 3810 

Content-ID: http://claiming-it.com/claim061400a.xml 3811 

 3812 

<?xml version='1.0' encoding="utf-8"?> 3813 

<SOAP-ENV:Envelope 3814 

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"> 3815 

 <SOAP-ENV:Header> 3816 

  <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 3817 

   …signature over soap envelope 3818 

  </ds:Signature> 3819 

 </SOAP-ENV: Header> 3820 

 <SOAP-ENV: Body> 3821 

  … 3822 

 </SOAP-ENV: Body> 3823 

</SOAP-ENV: Envelope> 3824 

 3825 

9.3.1.2 Header Signature Generation Requirements 3826 

The ds:Signature element [XMLDSIG] for a header signature must be generated as specified in 3827 

this section.  A ds:Signature element contains: 3828 

• ds:SignedInfo 3829 

• ds:SignatureValue 3830 

• ds:KeyInfo 3831 

The ds:SignedInfo element must be generated as follows: 3832 

1. ds:SignatureMethod must be present. [XMLDSIG] requires that the algorithm be identified 3833 

using the Algorithm attribute. While [XMLDSIG] allows more than one Algorithm Attribute, 3834 

a client must be capable of signing using only the following Algorithm attribute: 3835 

http://www.w3.org/2000/09/xmldsig/#dsa-sha1  This algorithm is being chosen because all 3836 

XMLDSIG implementations conforming to the [XMLDSIG] specification support it. 3837 

2. The ds:SignatureMethod elment must contain a  ds:CanonicalizationMethod element. The 3838 

following Canonicalization algorithm (specified in [XMLDSIG] ) must be supported: 3839 

http://www.w3.org/TR/2001/REC-xml-c14n-20010315 3840 

http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/TR/2001/REC-xml-c14n-20010315


OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 105 of 128 

3. A ds:Reference element to include the <SOAP-ENV:Envelope> in the signature calculation. 3841 

This signs the entire ds:Reference element and: 3842 

− Must include the following ds:Transform:   3843 

http://www.w3.org/2000/09/xmldsig#enveloped-signature 3844 

This ensures that the signature (which is embedded in the <SOAP-ENV:Header> 3845 

element) is not included in the signature calculation. 3846 

− Must identify the <SOAP-ENV:Envelope> element using the URI attribute of the 3847 

ds:Reference element (The URI attribute is optional in the [XMLDSIG] specification.) . 3848 

The URI attribute must be “”. 3849 

− Must contain the <ds:DigestMethod> as specified in [XMLDSIG]. A client must support 3850 

the following digest algorithm:  http://www.w3.org/2000/09/xmldsig/#sha1 3851 

− Must contain a <ds:DigestValue>, which is computed as specified in [XMLDSIG]. 3852 

The ds:SignedValue must be generated as specified in [XMLDSIG].  3853 

The ds:KeyInfo element may be present. When present, it is subject to the requirements stated in 3854 

Section 9.4, “KeyDistrbution and KeyInfo element”. 3855 

9.3.1.3 Header Signature Validation Requirements 3856 

The ds:Signature element for the ebXML message header must be validated by the recipient as 3857 

specified by [XMLDSIG]. 3858 

9.3.1.4 Header Signature Example 3859 

The following example shows the format of a header signature: 3860 
 3861 

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 3862 

 <ds:SignedInfo> 3863 

  <SignatureMethod Algorithm=http://www.w3.org/TR/2000/09/xmldsig#dsa-sha1/> 3864 

  <ds:CanonicalizationMethod> 3865 

   Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-2001026"> 3866 

  </ds:CanonicalizationMethod> 3867 

  <ds:Reference URI= “”> 3868 

   <ds:Transform>  3869 

    http://www.w3.org/2000/09/xmldsig#enveloped-signature 3870 

   </ds:Transform> 3871 

   <ds:DigestMethod DigestAlgorithm="./xmldsig#sha1"> 3872 

   <ds:DigestValue> ... </ds:DigestValue> 3873 

  </ds:Reference> 3874 

 </ds:SignedInfo> 3875 

 <ds:SignatureValue>  ...  </ds:SignatureValue> 3876 

</ds:Signature> 3877 

 3878 

9.4 Key Distribution and KeyInfo Element 3879 

To validate a signature, the recipient of the signature needs the public key corresponding to the 3880 

signer’s public key. The participants may use the KeyInfo field of ds:Signature, or distribute the 3881 

http://www.w3.org/2000/09/xmldsig#enveloped-signature
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/TR/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#enveloped-signature


OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 106 of 128 

public keys out-of-band. In this section we consider the case when the public key is sent in the 3882 

KeyInfo field. The following use cases need to be handled: 3883 

• Registration Authority needs the public key of the Registry Client to validate the signature 3884 

• Registry Client needs the public key of the Registration Authority to validate the Registry’s 3885 

signature. 3886 

• Registry Client RC1 needs the public key of Registry Client (RC2) to validate the content 3887 

signed by RC1.  3888 

• [XMLDSIG] provides a ds:KeyInfo  element that can be used to pass the recipient 3889 

information for retrieving the public key.  ds:KeyInfo is an optional element as specified in 3890 

[XMLDSIG]. This field together with the procedures outlined in this section is used to 3891 

securely pass the public key to a recipient.  ds:Keyinfo can be used to pass information such 3892 

as keys, certificates, names etc. The intended usage of KeyInfo field is to send the X509 3893 

Certificate, and subsequently extract the public key from the certificate. Therefore, the 3894 

KeyInfo field must contain a X509 Certificate as specified in [XMLDSIG], if the KeyInfo 3895 

field is present. 3896 

The following assumptions are also made: 3897 

1. A Certificate is associated both with the Registration Authority and a Registry Client. 3898 

2. A Registry Client registers its certificate with the Registration Authority. The mechanism 3899 

used for this is not specified here.  3900 

3. A Registry Client obtains the Registration Authority’s certificate and stores it in its own local 3901 

key store. The mechanism is not specified here.  3902 

Couple of scenarios on the use of KeyInfo field is in Appendix F.8. 3903 

9.5 Confidentiality 3904 

9.5.1 On-the-wire Message Confidentiality 3905 

It is suggested but not required that message payloads exchanged between clients and the 3906 

Registry be encrypted during transmission.  This specification does not specify how payload 3907 

encryption is to be done.  3908 

9.5.2 Confidentiality of Registry Content 3909 

In the current version of this specification, there are no provisions for confidentiality of Registry 3910 

content. All content submitted to the Registry may be discovered and read by any client. This 3911 

implies that the Registry and the client need to have an a priori agreement regarding encryption 3912 

algorithm, key exchange agreements, etc.  This service is not addressed in this specification. 3913 

9.6 Authorization 3914 

The Registry must provide an authorization mechanism based on the information model defined 3915 

in [ebRIM]. In this version of the specification the authorization mechanism is based on a default 3916 

Access Control Policy defined for a pre-defined set of roles for Registry users. Future versions of 3917 

this specification will allow for custom Access Control Policies to be defined by the Submitting 3918 

Organization.  The authorization is going to be applied on a specific set of privileges.  A 3919 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 107 of 128 

privelege is the ability to carry a specific action. 3920 

9.6.1 Actions 3921 

Life Cycle Actions  3922 

  submitObjects 3923 

  updateObjects 3924 

  addSlots 3925 

  removeSlots 3926 

  approveObjects 3927 

  deprecateObjects 3928 

  removeObjects 3929 

Read Actions 3930 

 The various getXXX() methods in QueryManagement Service. 3931 

9.7 Access Control  3932 

The Registry must create a default AccessControlPolicy object that grants the default 3933 

permissions to Registry users based upon their assigned role.  The following table defines the 3934 

Permissions granted by the Registry to the various pre-defined roles for Registry users based 3935 

upon the default AccessControlPolicy. Note that we have “ContentOwner” as a role. This role 3936 

maps to the Submitting Organization in the current version of the specification. 3937 

  Table 11: Default Access Control Policies 3938 

Role Permissions 
ContentOwner Access to all methods on Registry Objects that are owned by 

the ContentOwner.  

RegistryAdministrator Access to all methods on all Registry Objects 

RegistryGuest Access to all read-only (getXXX) methods on all Registry 
Objects (read-only access to all content). 

The Registry must implement the default AccessControlPolicy and associate it with all Objects 3939 

in the Registry. The following list summarizes the default role-based AccessControlPolicy: 3940 

• Anyone can publish content, but needs to be a Registered User 3941 

• Anyone can access the content without requiring authentication  3942 

• The ContentOwner has access to all methods for Registry Objects created by it. 3943 

• The RegistryAdministrator has access to all methods on all Registry Objects 3944 

• Unauthenticated clients can access all read-only (getXXX) methods  3945 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 108 of 128 

• At the time of content submission, the Registry must assign the default ContentOwner role to 3946 

the Submitting Organization (SO) as authenticated by the credentials in the submission 3947 

message. In the current version of this specification, the Submitting Organization will be the 3948 

DN as identified by the certificate 3949 

• Clients that browse the Registry need not use certificates. The Registry must assign the 3950 

default RegistryGuest role to such clients. 3951 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 109 of 128 

Appendix A Web Service Architecture 3952 

A.1 Registry Service Abstract Specification 3953 

The normative definition of the Abstract Registry Service in WSDL is defined at the following 3954 

location on the web: 3955 

http://www.oasis-open.org/committees/regrep/documents/2.0/services/Registry.wsdl 3956 

A.2 Registry Service SOAP Binding 3957 

The normative definition of the concrete Registry Service binding to SOAP in WSDL is defined 3958 

at the following location on the web: 3959 

http://www.oasis-open.org/committees/regrep/documents/2.0/services/SOAPBinding.wsdl 3960 

 3961 

http://www.oasis-open.org/committees/regrep/documents/2.0/services/Registry.wsdl
http://www.oasis-open.org/committees/regrep/documents/2.0/services/SOAPBinding.wsdl


OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 110 of 128 

Appendix B ebXML Registry Schema Definitions 3962 

B.1 RIM Schema 3963 

The normative XML Schema definition that maps [ebRIM] classes to XML can be found at the 3964 

following location on the web: 3965 

http://www.oasis-open.org/committees/regrep/documents/2.0/schema/rim.xsd 3966 

B.2 Query Schema 3967 

The normative XML Schema definition for the XML query syntax for the registry service 3968 

interface can be found at the following location on the web: 3969 

http://www.oasis-open.org/committees/regrep/documents/2.0/schema/query.xsd 3970 

B.3 Registry Services Interface Schema 3971 

The normative XML Schema definition that defines the XML requests and responses supported 3972 

by the registry service interfaces in this document can be found at the following location on the 3973 

web: 3974 

http://www.oasis-open.org/committees/regrep/documents/2.0/schema/rs.xsd 3975 

B.4 Examples of Instance Documents 3976 

A growing number of non-normative XML instance documents that conform to the normative 3977 

Schema definitions described earlier may be found at the following location on the web: 3978 

 http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/ebxmlrr/ebxmlrr-spec/misc/samples/ 3979 

 3980 

http://www.oasis-open.org/committees/regrep/documents/2.0/schema/rim.xsd
http://www.oasis-open.org/committees/regrep/documents/2.0/schema/query.xsd
http://www.oasis-open.org/committees/regrep/documents/2.0/schema/rs.xsd
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/ebxmlrr/ebxmlrr-spec/misc/schema/rs.xsd


OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 111 of 128 

Appendix C Interpretation of UML Diagrams 3981 

This section describes in abstract terms the conventions used to define ebXML business process 3982 

description in UML. 3983 

C.1 UML Class Diagram 3984 

A UML class diagram is used to describe the Service Interfaces required to implement an 3985 

ebXML Registry Services and clients. The UML class diagram contains: 3986 

 3987 

1. A collection of UML interfaces where each interface represents a Service Interface for a 3988 

Registry service. 3989 

2. Tabular description of methods on each interface where each method represents an 3990 

Action (as defined by [ebCPP]) within the Service Interface representing the UML 3991 

interface. 3992 

3. Each method within a UML interface specifies one or more parameters, where the type of 3993 

each method argument represents the ebXML message type that is exchanged as part of 3994 

the Action corresponding to the method. Multiple arguments imply multiple payload 3995 

documents within the body of the corresponding ebXML message. 3996 

C.2 UML Sequence Diagram 3997 

A UML sequence diagram is used to specify the business protocol representing the interactions 3998 

between the UML interfaces for a Registry specific ebXML business process. A UML sequence 3999 

diagram provides the necessary information to determine the sequencing of messages, request to 4000 

response association as well as request to error response association. 4001 

Each sequence diagram shows the sequence for a specific conversation protocol as method calls 4002 

from the requestor to the responder. Method invocation may be synchronous or asynchronous 4003 

based on the UML notation used on the arrow-head for the link. A half arrow-head represents 4004 

asynchronous communication. A full arrow-head represents synchronous communication.  4005 

Each method invocation may be followed by a response method invocation from the responder to 4006 

the requestor to indicate the ResponseName for the previous Request. Possible error response is 4007 

indicated by a conditional response method invocation from the responder to the requestor.  See 4008 

Figure 7 on page 27 for an example. 4009 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 112 of 128 

Appendix D SQL Query 4010 

D.1 SQL Query Syntax Specification 4011 

This section specifies the rules that define the SQL Query syntax as a subset of SQL-92. The 4012 

terms enclosed in angle brackets are defined in [SQL] or in [SQL/PSM].  The SQL query syntax 4013 

conforms to the <query specification>, modulo the restrictions identified below: 4014 

1. A <select list> may contain at most one <select sublist>. 4015 

2. In a <select list> must be is a single column whose data type is UUID, from the table in the 4016 

<from clause>. 4017 

3. A <derived column> may not have an <as clause>. 4018 

4. <table expression> does not contain the optional <group by clause> and <having clause> 4019 

clauses. 4020 

5. A <table reference> can only consist of <table name> and <correlation name>. 4021 

6. A <table reference> does not have the optional AS between <table name> and 4022 

<correlation name>. 4023 

7. There can only be one <table reference> in the <from clause>. 4024 

8. Restricted use of sub-queries is allowed by the syntax as follows. The <in predicate> allows 4025 

for the right hand side of the <in predicate> to be limited to a restricted <query 4026 

specification> as defined above.  4027 

9. A <search condition> within the <where clause> may not include a <query expression>. 4028 

10. Simple joins are allowed only if they are based on indexed columns within the relational 4029 

schema. 4030 

11. The SQL query syntax allows for the use of <sql invoked routines> invocation from 4031 

[SQL/PSM] as the RHS of the <in predicate>.  4032 

D.2 Non-Normative BNF for Query Syntax Grammar  4033 

The following BNF exemplifies the grammar for the registry query syntax. It is provided here as 4034 

an aid to implementors. Since this BNF is not based on [SQL] it is provided as non-normative 4035 

syntax. For the normative syntax rules see Appendix D.1. 4036 
 4037 
/******************************************************************* 4038 
 * The Registry Query (Subset of SQL-92) grammar starts here 4039 
 *******************************************************************/ 4040 
 4041 
RegistryQuery = SQLSelect [";"] 4042 
 4043 
SQLSelect = "SELECT" ["DISTINCT"] SQLSelectCols "FROM" SQLTableList [ SQLWhere ] 4044 
 4045 
SQLSelectCols =  ID 4046 
 4047 
SQLTableList = SQLTableRef 4048 
 4049 
SQLTableRef = ID 4050 
 4051 
SQLWhere = "WHERE" SQLOrExpr 4052 
 4053 
SQLOrExpr = SQLAndExpr ( "OR" SQLAndExpr)*  4054 
 4055 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 113 of 128 

SQLAndExpr = SQLNotExpr ("AND" SQLNotExpr)* 4056 
 4057 
SQLNotExpr = [ "NOT" ] SQLCompareExpr 4058 
   4059 
SQLCompareExpr = 4060 
    (SQLColRef "IS") SQLIsClause 4061 
  | SQLSumExpr [ SQLCompareExprRight ]  4062 
 4063 
 4064 
SQLCompareExprRight = 4065 
    SQLLikeClause 4066 
  | SQLInClause 4067 
  | SQLCompareOp SQLSumExpr 4068 
   4069 
SQLCompareOp = 4070 
    "=" 4071 
  | "<>" 4072 
  | ">" 4073 
  | ">=" 4074 
  | "<" 4075 
  | "<=" 4076 
 4077 
SQLInClause = [ "NOT" ] "IN" "(" SQLLValueList ")" 4078 
 4079 
SQLLValueList = SQLLValueElement ( "," SQLLValueElement )* 4080 
 4081 
SQLLValueElement = "NULL" | SQLSelect 4082 
 4083 
SQLIsClause =  SQLColRef "IS" [ "NOT" ] "NULL" 4084 
 4085 
SQLLikeClause = [ "NOT" ] "LIKE" SQLPattern 4086 
 4087 
SQLPattern = STRING_LITERAL 4088 
 4089 
SQLLiteral = 4090 
    STRING_LITERAL  4091 
  | INTEGER_LITERAL  4092 
  | FLOATING_POINT_LITERAL  4093 
 4094 
SQLColRef = SQLLvalue 4095 
 4096 
SQLLvalue =  SQLLvalueTerm 4097 
 4098 
SQLLvalueTerm = ID ( "."  ID )* 4099 
 4100 
SQLSumExpr = SQLProductExpr (( "+" | "-" ) SQLProductExpr )* 4101 
  4102 
SQLProductExpr = SQLUnaryExpr (( "*" | "/" ) SQLUnaryExpr )* 4103 
 4104 
SQLUnaryExpr = [ ( "+" | "-") ] SQLTerm 4105 
 4106 
SQLTerm = "(" SQLOrExpr ")" 4107 
  | SQLColRef 4108 
  | SQLLiteral 4109 
 4110 
INTEGER_LITERAL = (["0"-"9"])+ 4111 
 4112 
FLOATING_POINT_LITERAL =  4113 
          (["0"-"9"])+ "." (["0"-"9"])+ (EXPONENT)? 4114 
        | "." (["0"-"9"])+ (EXPONENT)? 4115 
        | (["0"-"9"])+ EXPONENT 4116 
        | (["0"-"9"])+ (EXPONENT)? 4117 
 4118 
EXPONENT = ["e","E"] (["+","-"])? (["0"-"9"])+  4119 
 4120 
STRING_LITERAL: "'" (~["'"])* ( "''" (~["'"])* )* "'" 4121 
 4122 
ID = ( <LETTER> )+ ( "_" | "$" | "#" | <DIGIT> | <LETTER> )*  4123 
LETTER = ["A"-"Z", "a"-"z"]  4124 
DIGIT = ["0"-"9"] 4125 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 114 of 128 

D.3 Relational Schema For SQL Queries 4126 

The normative Relational Schema definition for SQL queries can be found at the following 4127 

location on the web: 4128 

http://www.oasis-open.org/committees/regrep/documents/2.0/sql/database.sql 4129 

 4130 

The stored procedures that must be supported by the SQL query feature are defined at the following 4131 

location on the web: 4132 

http://www.oasis-open.org/committees/regrep/documents/2.0/sql/storedProcedures.sql 4133 

 4134 

http://www.oasis-open.org/committees/regrep/documents/2.0/sql/database.sql
http://www.oasis-open.org/committees/regrep/documents/2.0/sql/storedProcedures.sql


OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 115 of 128 

Appendix E Non-normative Content Based Ad Hoc Queries 4135 

The Registry SQL query capability supports the ability to search for content based not only on 4136 

metadata that catalogs the content but also the data contained within the content itself. For 4137 

example it is possible for a client to submit a query that searches for all Collaboration Party 4138 

Profiles that define a role named “seller” within a RoleName element in the CPP document itself. 4139 

Currently content-based query capability is restricted to XML content. 4140 

E.1 Automatic Classification of XML Content 4141 

Content-based queries are indirectly supported through the existing classification mechanism 4142 

supported by the Registry.  4143 

A submitting organization may define logical indexes on any XML schema or DTD when it is 4144 

submitted. An instance of such a logical index defines a link between a specific attribute or 4145 

element node in an XML document tree and a ClassificationNode in a classification scheme 4146 

within the registry.  4147 

The registry utilizes this index to automatically classify documents that are instances of the 4148 

schema at the time the document instance is submitted. Such documents are classified according 4149 

to the data contained within the document itself. 4150 

Such automatically classified content may subsequently be discovered by clients using the 4151 

existing classification-based discovery mechanism of the Registry and the query facilities of the 4152 

QueryManager.  4153 

[Note] This approach is conceptually similar to the way databases support 4154 
indexed retrieval. DBAs define indexes on tables in the schema. When 4155 
data is added to the table, the data gets automatically indexed. 4156 

E.2 Index Definition 4157 

This section describes how the logical indexes are defined in the SubmittedObject element 4158 

defined in the Registry Schema. The complete Registry Schema is available via hyperlinks in 4159 

Appendix B.  4160 

A SubmittedObject element for a schema or DTD may define a collection of 4161 

ClassificationIndexes in a ClassificationIndexList optional element. The ClassificationIndexList 4162 

is ignored if the content being submitted is not of the SCHEMA objectType. 4163 

The ClassificationIndex element inherits the attributes of the base class RegistryObject in 4164 

[ebRIM]. It then defines specialized attributes as follows: 4165 

1. classificationNode: This attribute references a specific ClassificationNode by its ID. 4166 

2. contentIdentifier: This attribute identifies a specific data element within the document 4167 

instances of the schema using an XPATH expression as defined by [XPT].  4168 

E.3 Example Of Index Definition 4169 

To define an index that automatically classifies a CPP based upon the roles defined within its 4170 

RoleName elements, the following index must be defined on the CPP schema or DTD: 4171 
 4172 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 116 of 128 

<ClassificationIndex  4173 
 classificationNode=’id-for-role-classification-scheme’ 4174 
 contentIdentifier=’/Role//RoleName’ 4175 
/> 4176 
 4177 

E.4 Proposed XML Definition 4178 

 4179 
<!-- 4180 
A ClassificationIndexList is specified on ExtrinsicObjects of objectType 4181 
'Schema' to define an automatic Classification of instance objects of the 4182 
schema using the specified classificationNode as parent and a 4183 
ClassificationNode created or selected by the object content as selected 4184 
by the contentIdentifier  4185 
--> 4186 
<!ELEMENT ClassificationIndex EMPTY> 4187 
<!ATTLIST ClassificationIndex 4188 
   %ObjectAttributes;  4189 
   classificationNode IDREF #REQUIRED 4190 
   contentIdentifier CDATA #REQUIRED 4191 
> 4192 
 4193 
<!-- ClassificationIndexList contains new ClassificationIndexes  --> 4194 
<!ELEMENT ClassificationIndexList (ClassificationIndex)*> 4195 
 4196 

E.5 Example of Automatic Classification 4197 

Assume that a CPP is submitted that defines two roles as “seller” and “buyer." When the CPP is 4198 

submitted it will automatically be classified by two ClassificationNodes named “buyer” and 4199 

“seller” that are both children of the ClassificationNode (e.g. a node named Role) specified in the 4200 

classificationNode attribute of the ClassificationIndex.  If either of the two ClassificationNodes 4201 

named “buyer” and “seller” did not previously exist, the LifeCycleManager would automatically 4202 

create these ClassificationNodes. 4203 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 117 of 128 

Appendix F Security Implementation Guideline  4204 

This section provides a suggested blueprint for how security processing may be implemented in 4205 

the Registry. It is meant to be illustrative not prescriptive. Registries may choose to have 4206 

different implementations as long as they support the default security roles and authorization 4207 

rules described in this document.  4208 

F.1 Security Concerns 4209 

The security risks broadly stem from the following concerns.  After a description of these 4210 

concerns and potential solutions, we identify the concerns that we address in the current 4211 

specificiation 4212 

1. Is the content of the registry (data) trustworthy? 4213 

a) How to make sure “what is in the registry” is “what is put there” by a submitting 4214 

organization? This concern can be addressed by ensuring that the publisher is 4215 

authenticated using digital signature (Source Integrity), message is not corrupted during 4216 

transfer using digital signature (Data Integrity), and the data is not altered by 4217 

unauthorized subjects based on access control policy (Authorization) 4218 

b) How to protect data while in transmission?  4219 

Communication integrity has two ingredients – Data Integrity (addressed in 1a) and Data 4220 

Confidentiality that can be addressed by encrypting the data in transmission.  How to 4221 

protect against a replay attack? 4222 

c) Is the content up to date? The versioning as well as any time stamp processing, when 4223 

done securely will ensure the “latest content” is guaranteed to be the latest content.  4224 

d) How to ensure only bona fide responsible organizations add contents to registry? 4225 

Ensuring Source Integrity (as in 1a). 4226 

e) How to ensure that bona fide publishers add contents to registry only at authorized 4227 

locations? (System Integrity) 4228 

f) What if the publishers deny modifying certain content after-the-fact? To prevent this 4229 

(Nonrepudiation) audit trails may be kept which contain signed message digests. 4230 

g) What if the reader denies getting information from the registry?  4231 

2. How to provide selective access to registry content? The broad answer is, by using an access 4232 

control policy – applies to (a), (b), and (c) directly. 4233 

a) How does a submitting organization restrict access to the content to only specific registry 4234 

readers? 4235 

b) How can a submitting organization allow some “partners” (fellow publishers) to modify 4236 

content? 4237 

c) How to provide selective access to partners the registry usage data? 4238 

d) How to prevent accidental access to data by unauthorized users? Especially with hw/sw 4239 

failure of the registry security components? The solution to this problem is by having 4240 

System Integrity. 4241 

e) Data confidentiality of RegistryObject 4242 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 118 of 128 

3. How do we make “who can see what” policy itself visible to limited parties, even excluding 4243 

the administrator (self & confidential maintenance of access control policy). By making sure 4244 

there is an access control policy for accessing the policies themselves. 4245 

4. How to transfer credentials? The broad solution is to use credentials assertion (such as being 4246 

worked on in SAML).  Currently, Registry does not support the notion of a session. 4247 

Therefore, some of these concerns are not releveant to the current specification. 4248 

a) How to transfer credentials (authorization/authentication) to federated registries?  4249 

b) How do aggregators get credentials (authorization/authentication) transferred to them? 4250 

c) How to store credentials through a session? 4251 

F.2 Authentication 4252 

1. As soon as a message is received, the first work is the authentication. A principal object is 4253 

created.  4254 

2. If the message is signed, it is verified (including the validity of the certificate) and the DN of 4255 

the certificate becomes the identity of the principal. Then the Registry is searched for the 4256 

principal and if found, the roles and groups are filled in. 4257 

3. If the message is not signed, an empty principal is created with the role RegistryGuest. This 4258 

step is for symmetry and to decouple the rest of the processing. 4259 

4. Then the message is processed for the command and the objects it will act on. 4260 

F.3 Authorization 4261 

For every object, the access controller will iterate through all the AccessControlPolicy objects 4262 

with the object and see if there is a chain through the permission objects to verify that the 4263 

requested method is permitted for the Principal. If any of the permission objects which the object 4264 

is associated with has a common role, or identity, or group with the principal, the action is 4265 

permitted. 4266 

F.4 Registry Bootstrap 4267 

When a Registry is newly created, a default Principal object should be created with the identity 4268 

of the Registry Admin’s certificate DN with a role RegistryAdmin. This way, any message 4269 

signed by the Registry Admin will get all the privileges. 4270 

When a Registry is newly created, a singleton instance of AccessControlPolicy is created as the 4271 

default AccessControlPolicy. This includes the creation of the necessary Permission instances as 4272 

well as the Privilges and Privilege attributes. 4273 

F.5 Content Submission – Client Responsibility 4274 

The Registry client must sign the contents before submission – otherwise the content will be 4275 

rejected.  4276 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 119 of 128 

F.6 Content Submission – Registry Responsibility 4277 

1. As with any other request, the client will first be authenticated. In this case, the Principal 4278 

object will get the DN from the certificate. 4279 

2. As per the request in the message, the RegistryEntry will be created. 4280 

3. The RegistryEntry is assigned the singleton default AccessControlPolicy. 4281 

4. If a principal with the identity of the SO is not available, an identity object with the SO’s DN 4282 

is created. 4283 

5. A principal with this identity is created. 4284 

F.7 Content Delete/Deprecate – Client Responsibility 4285 

The Registry client must sign the header before submission, for authentication purposes; 4286 

otherwise, the request will be rejected 4287 

F.8 Content Delete/Deprecate – Registry Responsibility 4288 

1. As with any other request, the client will first be authenticated. In this case, the Principal 4289 

object will get the DN from the certificate. As there will be a principal with this identity in 4290 

the Registry, the Principal object will get all the roles from that object 4291 

2. As per the request in the message (delete or deprecate), the appropriate method in the 4292 

RegistryObject class will be accessed. 4293 

3. The access controller performs the authorization by iterating through the Permission objects 4294 

associated with this object via the singleton default AccessControlPolicy.  4295 

4. If authorization succeeds then the action will be permitted. Otherwise an error response is 4296 

sent back with a suitable AuthorizationException error message. 4297 

F.9 Using ds:KeyInfo Field 4298 

Two typical usage scenarios for ds:KeyInfo are described below. 4299 

Scenario 1 4300 

1. Registry Client (RC) signs the payload and the SOAP envelope using its private key. 4301 

2. The certificate of RC is passed to the Registry in KeyInfo field of the header signature. 4302 

3. The certificate of RC is passed to the Registry in KeyInfo field of the payload signature. 4303 

4. Registration Authority retrieves the certificate from the KeyInfo field in the header signature  4304 

5. Registration Authority validates the header signature using the public key from the 4305 

certificate. 4306 

6. Registration Authority validates the payload signature by repeating steps 4 and 5 using the 4307 

certificate from the KeyInfo field of the payload signature. Note that this step is not an 4308 

essential one if the onus of validation is that of the eventual user, another Registry Client, of 4309 

the content. 4310 

Scenario 2 4311 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 120 of 128 

1. RC1 signs the payload and SOAP envelope using its private key and publishes to the 4312 

Registry. 4313 

2. The certificate of RC1 is passed to the Registry in the KeyInfo field of the header signature. 4314 

3. The certificate of RC1 is passed to the Registry in the KeyInfo field of the payload signature. 4315 

This step is required in addition to step 2 because when RC2 retrieves content, it should see 4316 

RC1’s signature with the payload. 4317 

4. RC2 retrieves content from the Registry. 4318 

5. Registration Authority signs the SOAP envelope using its private key. Registration Authority 4319 

sends RC1’s content and the RC1’s signature (signed by RC1). 4320 

6. Registration Authority need not send its certificate in the KeyInfo field sinceRC2 is assumed 4321 

to have obtained the Registration Authority’s certificate out of band and installed it in its 4322 

local key store. 4323 

7. RC2 obtains Registration Authority’s certificate out of its local key store and verifies the 4324 

Registration Authority’s signature. 4325 

8. RC2 obtains RC1’s certificate from the KeyInfo field of the payload signature and validates 4326 

the signature on the payload. 4327 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 121 of 128 

Appendix G Native Language Support (NLS) 4328 

G.1 Definitions 4329 

Although this section discusses only character set and language, the following terms have to be 4330 

defined clearly. 4331 

G.1.1 Coded Character Set (CCS): 4332 

CCS is a mapping from a set of abstract characters to a set of integers. [RFC 2130]. Examples of 4333 

CCS are ISO-10646, US-ASCII, ISO-8859-1, and so on. 4334 

G.1.2 Character Encoding Scheme (CES): 4335 

CES is a mapping from a CCS (or several) to a set of octets. [RFC 2130]. Examples of CES are 4336 

ISO-2022, UTF-8. 4337 

G.1.3 Character Set (charset): 4338 

• charset is a set of rules for mapping from a sequence of octets to a sequence of 4339 

characters.[RFC 2277],[RFC 2278]. Examples of character set are ISO-2022-JP, EUC-KR. 4340 

• A list of registered character sets can be found at [IANA]. 4341 

G.2 NLS And Request / Response Messages 4342 

For the accurate processing of data in both registry client and registry services, it is essential to 4343 

know which character set is used. Although the body part of the transaction may contain the 4344 

charset in xml encoding declaration, registry client and registry services shall specify charset 4345 

parameter in MIME header when they use text/xml. Because as defined in [RFC 3023], if a 4346 

text/xml entity is received with the charset parameter omitted, MIME processors and XML 4347 

processors MUST use the default charset value of "us-ascii".  For example: 4348 
 4349 
 Content-Type: text/xml; charset=ISO-2022-JP 4350 
 4351 

Also, when an application/xml entity is used, the charset parameter is optional, and registry 4352 

client and registry services must follow the requirements in Section 4.3.3 of [REC-XML] which 4353 

directly address this contingency. 4354 

If another Content-Type is chosen to be used, usage of charset must follow [RFC 3023]. 4355 

G.3 NLS And Storing of RegistryObject  4356 

This section provides NLS guidelines on how a registry should store RegistryObject instances. 4357 

A single instance of a concrete sub-class of RegistryObject is capable of supporting multiple 4358 

locales. Thus there is no language or character set associated with a specific RegistryObject 4359 

instance. 4360 

A single instance of a concrete sub-class of RegistryObject supports multiple locales as follows. 4361 

Each attribute of the RegistryObject that is I18N capable (e.g. name and description attributes in 4362 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 122 of 128 

RegistryObject class) as defined by [ebRIM], may have multiple locale specific values expressed 4363 

as LocalizedString sub-elements within the XML element representing the I18N capable 4364 

attribute. Each LocalizedString sub-element defines the value of the I18N capable attribute in a 4365 

specific locale. Each LocalizedString element has a charset and lang attribute as well as a value 4366 

attribute of type string. 4367 

G.3.1 Character Set of LocalizedString 4368 

The character set used by a locale specific String (LocalizedString) is defined by the charset 4369 

attribute. It is highly recommended to use UTF-8 or UTF-16 for maximuminter-operability.  4370 

G.3.2 Language Information of LocalizedString 4371 

The language may be specified in xml:lang attribute (Section 2.12  [REC-XML]).  4372 

G.4 NLS And Storing of Repository Items  4373 

This section provides NLS guidelines on how a registry should store repository items. 4374 

While a single instance of an ExtrinsicObject  is capable of supporting multiple locales, it is 4375 

always associated with a single repository item. The repository item may be in a single locale or 4376 

may be in multiple locales. This specification does not specify the repository item. 4377 

G.4.1 Character Set of Repository Items 4378 

The MIME Content-Type mime header for the mime multi-part containing the repository 4379 

item MAY contain a "charset" attribute that specifies the character set used by the repository 4380 

item.  For example: 4381 
 4382 

  Content-Type: text/xml; charset="UTF-8" 4383 

 4384 

It is highly recommended to use UTF-16 or UTF-8 for maximum inter-operability.  The charset 4385 

of a repository item must be preserved as it is originally specified in the transaction.  4386 

G.4.2 Language information of repository item 4387 

The Content-language mime header for the mime bodypart containing the repository item may 4388 

specify the language for a locale specific repository item. The value of the Content-language 4389 

mime header property must conform to [RFC 1766]. 4390 

This document currently specifies only the method of sending the information of character set 4391 

and language, and how it is stored in a registry. However, the language information may be used 4392 

as one of the query criteria, such as retrieving only DTD written in French. Furthermore, a 4393 

language negotiation procedure, like registry client is asking a favorite language for messages 4394 

from registry services, could be another functionality for the future revision of this document. 4395 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 123 of 128 

Appendix H Registry Profile 4396 

Every registry must support exactly one Registry Profile.  The Registry Profile is an XML 4397 

document that describes the capabilities of the registry.  The profile document must conform to 4398 

the RegistryProfile element as described in the Registry Services Interface schema defined in 4399 

Appendix B.  The registry must make the RegistryProfile accessible over HTTP protocol via a 4400 

URL.  The URL must conform to the pattern: 4401 

http://<base url>/registryProfile 4402 

 4403 

http://<base/


OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 124 of 128 

10 References 4404 

[Bra97] Keywords for use in RFCs to Indicate Requirement Levels. 4405 

[ebRIM] ebXML Registry Information Model version 2.0 4406 

http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebRIM.pdf 4407 

[ebRIM Schema] ebXML Registry Information Model Schema 4408 

http://www.oasis-open.org/committees/regrep/documents/2.0/schema/rim.xsd 4409 

[ebBPSS] ebXML Business Process Specification Schema 4410 

http://www.ebxml.org/specs 4411 

[ebCPP] ebXML Collaboration-Protocol Profile and Agreement Specification 4412 

http://www.ebxml.org/specs/ 4413 

[ebMS] ebXML Messaging Service Specification, Version 1.0  4414 

http://www.ebxml.org/specs/ 4415 

[XPT] XML Path Language (XPath) Version 1.0 4416 

http://www.w3.org/TR/xpath 4417 

[SQL] Structured Query Language (FIPS PUB 127-2) 4418 

http://www.itl.nist.gov/fipspubs/fip127-2.htm 4419 

[SQL/PSM] Database Language SQL — Part 4: Persistent Stored Modules 4420 

   (SQL/PSM) [ISO/IEC 9075-4:1996] 4421 

[IANA] IANA (Internet Assigned Numbers Authority).  4422 

Official Names for Character Sets, ed. Keld Simonsen et al. 4423 
 ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets  4424 

[RFC 1766] IETF (Internet Engineering Task Force). RFC 1766: 4425 

Tags for the Identification of Languages, ed. H. Alvestrand. 1995. 4426 
http://www.cis.ohio-state.edu/htbin/rfc/rfc1766.html 4427 

[RFC 2119] IETF (Internet Engineering Task Force). RFC 2119 4428 

[RFC 2130] IETF (Internet Engineering Task Force). RFC 2130 4429 

[RFC 2277] IETF (Internet Engineering Task Force). RFC 2277: 4430 

IETF policy on character sets and languages, ed. H. Alvestrand. 1998.  4431 
http://www.cis.ohio-state.edu/htbin/rfc/rfc2277.html 4432 

[RFC 2278] IETF (Internet Engineering Task Force). RFC 2278: 4433 

IANA Charset Registration Procedures, ed. N. Freed and J. Postel. 1998. 4434 
http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html 4435 

[RFC 2828] IETF (Internet Engineering Task Force). RFC 2828: 4436 

Internet Security Glossary, ed. R. Shirey. May 2000. 4437 
http://www.cis.ohio-state.edu/htbin/rfc/rfc2828.html 4438 

[RFC 3023] ETF (Internet Engineering Task Force). RFC 3023:  4439 

XML Media Types, ed. M. Murata. 2001. 4440 
ftp://ftp.isi.edu/in-notes/rfc3023.txt 4441 

[REC-XML] W3C Recommendation. Extensible Markup language(XML)1.0(Second Edition) 4442 
http://www.w3.org/TR/REC-xml 4443 

[UUID] DCE 128 bit Universal Unique Identifier 4444 
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20 4445 
http://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml 4446 

[WSDL] W3C Note. Web Services Description Language (WSDL) 1.1 4447 

http://www.oasis-open.org/committees/regrep/#documents
http://www.oasis-open.org/committees/regrep/#documents
http://www.oasis-open.org/committees/regrep/documents/2.0/schema/rim.xsd
http://www.ebxml.org/specs
http://www.ebxml.org/specs/
http://www.w3.org/TR/xpath
http://www.itl.nist.gov/fipspubs/fip127-2.htm
ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets
http://www.cis.ohio-state.edu/htbin/rfc/rfc1766.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2277.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html
ftp://ftp.isi.edu/in-notes/rfc3023.txt
http://www.w3.org/TR/REC-xml
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20
http://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20
http://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml


OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 125 of 128 

http://www.w3.org/TR/wsdl 4448 

[SOAP11] W3C Note. Simple Object Access Protocol, May 2000, 4449 
 http://www.w3.org/TR/SOAP 4450 

[SOAPAt] W3C Note: SOAP with Attachments, Dec 2000,  4451 
http://www.w3.org/TR/SOAP-attachments 4452 

[XMLDSIG] XML-Signature Syntax and Processing, 4453 

http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/ 4454 

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/


OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 126 of 128 

11 Disclaimer 4455 

The views and specification expressed in this document are those of the authors and are not 4456 

necessarily those of their employers.  The authors and their employers specifically disclaim 4457 

responsibility for any problems arising from correct or incorrect implementation or use of this 4458 

design. 4459 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 127 of 128 

12 Contact Information 4460 

Team Leader  4461 

Name: Lisa J. Carnahan 4462 

Company: National Institute of Standards and Technology 4463 

Street: 100 Bureau Drive, Stop 8970 4464 

City, State, Postal Code: Gaithersburg, Md. 20899 4465 

Country: USA 4466 

Phone: 301-975-3362 4467 

Email: lisa.carnahan@nist.gov 4468 

 4469 

Editor 4470 

Name: Anne A. Fischer 4471 

Company: Drummond Group, Inc. 4472 

Street: 4700 Bryant Irvin Ct., Suite 303 4473 

City, State, Postal Code: Fort Worth, Texas 76107-7645 4474 

Country: USA 4475 

Phone: 817-371-2367 4476 

Email: anne@drummondgroup.com 4477 

 4478 

Technical Editor 4479 

Name: Farrukh S. Najmi 4480 

Company: Sun Microsystems 4481 

Street: 1 Network Dr., MS BUR02-302 4482 

City, State, Postal Code: Burlington, MA  01803-0902 4483 

Country: USA 4484 

Phone: 781-442-0703 4485 

Email: najmi@east.sun.com 4486 

 4487 



OASIS/ebXML Registry Services Specification v2.0 April 2002 

Copyright © OASIS, 2002. All Rights Reserved   Page 128 of 128 

13 Copyright Statement 4488 

Portions of this document are copyright (c) 2001 OASIS and UN/CEFACT. 4489 

Copyright (C) The Organization for the Advancement of Structured Information 4490 

Standards [OASIS], 2002. All Rights Reserved.  4491 

This document and translations of it may be copied and furnished to others, and derivative works 4492 

that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 4493 

published and distributed, in whole or in part, without restriction of any kind, provided that the 4494 

above copyright notice and this paragraph are included on all such copies and derivative works. 4495 

However, this document itself may not be modified in any way, such as by removing the 4496 

copyright notice or references to OASIS, except as needed for the purpose of developing OASIS 4497 

specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 4498 

Property Rights document must be followed, or as required to translate it into languages other 4499 

than English.  4500 

The limited permissions granted above are perpetual and will not be revoked by OASIS or its 4501 

successors or assigns.  4502 

This document and the information contained herein is provided on an "AS IS" basis and OASIS 4503 

DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT 4504 

LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN 4505 

WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF 4506 

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 4507 

OASIS takes no position regarding the validity or scope of any intellectual property or other 4508 

rights that might be claimed to pertain to the implementation or use of the technology described 4509 

in this document or the extent to which any license under such rights might or might not be 4510 

available; neither does it represent that it has made any effort to identify any such rights. 4511 

Information on OASIS's procedures with respect to rights in OASIS specifications can be found 4512 

at the OASIS website. Copies of claims of rights made available for publication and any 4513 

assurances of licenses to be made available, or the result of an attempt made to obtain a general 4514 

license or permission for the use of such proprietary rights by implementors or users of this 4515 

specification, can be obtained from the OASIS Executive Director.  4516 

OASIS invites any interested party to bring to its attention any copyrights, patents or patent 4517 

applications, or other proprietary rights which may cover technology that may be required to 4518 

implement this specification. Please address the information to the OASIS Executive Director. 4519 


	Status of this Document
	OASIS/ebXML Registry Technical Committee
	Contributors

	Table of Contents
	Table of Figures
	Table of Tables
	Introduction
	Summary of Contents of Document
	General Conventions
	Audience

	Related Documents
	Design Objectives
	Goals
	Caveats and Assumptions

	System Overview
	What The ebXML Registry Does
	How The ebXML Registry Works
	Schema Documents Are Submitted
	Business Process Documents Are Submitted
	Seller’s Collaboration Protocol Profile Is Submitted
	Buyer Discovers The Seller
	CPA Is Established

	Registry Users
	Where the Registry Services May Be Implemented
	Implementation Conformance
	Conformance as an ebXML Registry
	Conformance as an ebXML Registry Client


	ebXML Registry Architecture
	Registry Service Described
	Abstract Registry Service
	Concrete Registry Services
	SOAP Binding
	WSDL Terminology Primer
	Concrete Binding for SOAP

	ebXML Message Service Binding
	Service and Action Elements
	Synchronous and Asynchronous Responses



	Asynchronous response
	Synchronous response
	
	
	ebXML Registry Collaboration Profiles and Agreements


	LifeCycleManager Interface
	QueryManager Interface
	Registry Clients
	Registry Client Described
	Registry Communication Bootstrapping
	Communication Bootstrapping for SOAP Binding
	Communication Bootstrapping for ebXML Message Service

	RegistryClient Interface
	Registry Response

	Interoperability Requirements
	Client Interoperability
	Inter-Registry Cooperation


	Life Cycle Management Service
	Life Cycle of a Repository Item
	RegistryObject Attributes
	The Submit Objects Protocol
	Universally Unique ID Generation
	ID Attribute And Object References
	Audit Trail
	Submitting Organization
	Error Handling
	Sample SubmitObjectsRequest

	The Update Objects Protocol
	Audit Trail
	Submitting Organization
	Error Handling

	The Add Slots Protocol
	The Remove Slots Protocol
	The Approve Objects Protocol
	Audit Trail
	Submitting Organization
	Error Handling

	The Deprecate Objects Protocol
	Audit Trail
	Submitting Organization
	Error Handling

	The Remove Objects Protocol
	Deletion Scope DeleteRepositoryItemOnly
	Deletion Scope DeleteAll
	Error Handling


	Query Management Service
	Ad Hoc Query Request/Response
	Query Response Options

	Filter Query Support
	FilterQuery
	RegistryObjectQuery
	RegistryEntryQuery
	AssociationQuery
	AuditableEventQuery
	ClassificationQuery
	ClassificationNodeQuery
	ClassificationSchemeQuery
	RegistryPackageQuery
	ExtrinsicObjectQuery
	OrganizationQuery
	ServiceQuery
	Registry Filters
	XML Clause Constraint Representation

	SQL Query Support
	SQL Query Syntax Binding To [ebRIM]
	Class Binding
	Primitive Attributes Binding
	Reference Attribute Binding
	Complex Attribute Binding
	Binding of Methods Returning Collections

	Semantic Constraints On Query Syntax
	SQL Query Results
	Simple Metadata Based Queries
	RegistryObject Queries
	RegistryEntry Queries
	Classification Queries
	Identifying ClassificationNodes
	Getting ClassificationSchemes
	Getting Children of Specified ClassificationNode
	Getting Objects Classified By a ClassificationNode
	Getting Classifications That Classify an Object

	Association Queries
	Getting All Association With Specified Object As Its Source
	Getting All Association With Specified Object As Its Target
	Getting Associated Objects Based On Association Attributes
	Complex Association Queries

	Package Queries
	Complex Package Queries

	ExternalLink Queries
	Complex ExternalLink Queries

	Audit Trail Queries

	Content Retrieval
	Identification Of Content Payloads
	GetContentResponse Message Structure


	Registry Security
	Security Concerns
	Integrity of Registry Content
	Message Payload Signature


	Use Case
	
	Payload Signature Requirements
	Payload Signature Packaging Requirements
	Payload Signature Generation Requirements
	Message Payload Signature Validation
	Payload Signature Example


	Authentication
	Message Header Signature
	Packaging Requirements
	Header Signature Generation Requirements
	Header Signature Validation Requirements
	Header Signature Example


	Key Distribution and KeyInfo Element
	Confidentiality
	On-the-wire Message Confidentiality
	Confidentiality of Registry Content

	Authorization
	Actions

	Access Control

	Scenario 1
	Scenario 2
	References
	Disclaimer
	Contact Information
	Copyright Statement

