
draft-orchard-maler-assertion-00 - 1 -

Orchard-Maler Assertion Proposal

Document Name and Version
draft-orchard-maler-assertion-00

Publication Date
15 June 2001

Authors
David Orchard, dorchard@jamcracker.com

Eve Maler, eve.maler@east.sun.com

Abstract
This document offers a proposal for SAML assertions and the XML structure that
conveys them to and from SAML Authorities. The structure is simple, easily
implementable, and intuitive to XML Schema-aware developers, allowing for faster time
to development. Many parts of this proposal borrow concepts that are much more fully
defined in the core-07 proposal.

mailto:dorchard@jamcracker.com
mailto:eve.maler@east.sun.com

draft-orchard-maler-assertion-00 - 2 -

Introduction ... 3

Definitions... 3

Document Conventions ... 3

XML Design Principles... 3

SAML Message Architecture.. 4

SAMLRequest Element... 5

SAMLXQuery Element... 6

SubjectAssertionsPackage Element .. 7

SAMLResponse Element .. 7

AssertionsPackage Element .. 8

Individual Assertion Structures... 8

AttributeAssertion Element... 9

AuthenticationAssertion Element ... 9

AuthorizationAssertion Element ... 9

DecisionAssertion Element ... 10

Subject Element... 10

Summary of Extensibility Features ... 10

Summary of Differences from core-07 ... 11

Which Method of Requesting to Use? Error! Bookmark not defined.
Documents... 12

Complete Assertions Schema.. 13

Sample Authorization Decision assertion ... 13

Sample Attribute assertion .. 16

Sample Assertions Repository .. 16

Sample Extensions #1 – sampleExtensions1.xsd.. 17

Sample Extensions #2 – sampleExtensions2.xsd.. 18

Sample Request #1 .. 18

Sample Result #1... 19

Sample Request #2 .. 19

Sample Request #7 .. 19

Appendix ... 21

Notes.. Error! Bookmark not defined.

draft-orchard-maler-assertion-00 - 3 -

Introduction
This document offers a proposal for SAML assertions and the XML structure that
conveys them to and from SAML Authorities. The structure is simple, easily
implementable, and intuitive to XML Schema-aware developers, allowing for faster time
to development.

Many parts of this proposal borrow concepts that are much more fully defined in the
core-07 proposal. We have tried to capture all TBD design issues here; many of them
roughly correspond to the numbered issues currently faced by the TC.

Definitions
The following definitions are used in this proposal:

• Request: A SAML-compliant XML structure (“compound”) that asks for a
particular SAML Authority to produce assertions.

• Response: A SAML-compliant XML structure (“compound”) that encodes the
assertions produced by a SAML Authority on request.

• Assertions package: A grouping of atomic assertions (“molecule”). The core-07
proposal called this an “assertion.”

• Assertion: A single declaration of fact (“atom”). The core-07 proposal called this
a “claim.”

• Metadata: Properties of an XML structure that apply equally to all parts of it. For
example, an assertion has metadata that identifies who issued it and when, and a
request has metadata indicating what version of SAML was used to encode it.

Document Conventions
XML element and attribute names are shown in bold; typically these elements would be
declared to have complex types that are anonymous. XML complex type names that are
abstract and do not necessarily correspond directly to elements are shown in italic.

The class diagram notation uses UML; abstract class names are italicized in
correspondence with XML abstract complex types. In the diagram, parent elements are
shown above their child elements. The cardinality shown on each relationship line
represents the number of child elements allowed inside each instance of the parent
element. Order of child elements within a parent element is not precisely shown in this
diagram, though the schema mostly uses sequential content models.

XML Design Principles
The proposed design adheres to the following principles for XML structure design.

1. Top typing: Use XML Schema complex typing to identify commonalities as high
up in the XML tree as possible. This allows XML validators to function as “free
error checkers” on assertions and improves performance of streaming tools. With
suitable definition of subtypes, we believe it is possible to use any style of

draft-orchard-maler-assertion-00 - 4 -

querying (not just XML Query) with SAML, and so the decision on querying
style can be made independently of this principle.

2. Isolate extensions: Use XML Namespaces and XML Schema to isolate
extensibility features where possible, so that schema modules can be used to
ensure compliance with extensions and so that extensions can be uniquely
referred to with XML namespace names. This makes it easier to describe
conformance to extensions.

3. Existing vocabularies: Consider reusing existing XML vocabularies where they
exist, are well supported, and directly address a SAML need. For example, if
SAML needed a facility for marking up error messages, it should prefer XHTML
to a new SAML-specific vocabulary.

4. Elements vs. attributes: Tend towards attributes for metadata and “single-field”
information, and elements for any content that has distinguishable subparts.

SAML Message Architecture
SAML-encoded information can be conveyed as a whole message in its own right
(“standalone SAML”), without being embedded in another XML structure such as a
purchase order. The form it takes for this purpose is either a request message or a
response message. It is presumed that a SAML message is conveyed by some external
means of transport/messaging (which could include an XML-based messaging protocol
such as SOAP); this is in the purview of the Bindings subcommittee.

Because it may be necessary to embed SAML assertions inside other XML structures
(“embedded SAML”), we anticipate that these higher-level request and response
structures might not always be used. Thus, there is a Version attribute both on
SAMLRequest and SAMLResponse, and also on all the individual assertion elements.

The class diagram below shows the outlines of the entire structure.

Issues:

1. What provision do we need to make for digitally signing requests and responses?
What subparts need to be signed individually?

2. Where a particular binding chooses to extract some of the SAML-native
information and present it in out-of-band layers, how should the SAML schema
handle the possibility of missing information? Can it be assumed that the process
of extracting the information is done after validation on the producing end and
that there is a process of re-introducing it into the SAML stream before the
consuming end validates it?

3. How should unique IDs be handled? Currently we have put generic *ID attributes
in the places where we think IDs should be, and have not said what the constraints
on their content or handling are. We have also proposed that the Issuer attribute
contain a fully qualified DNS domain name. If an issuer/serial number pair is
chosen, it would require the *ID attributes to become *SerialNumber attributes.

4. In the case of “embedded SAML,” would single assertions be embedded, or
would whole assertions packages be embedded? This decision will have an affect
on the pattern of metadata available on these two layers.

draft-orchard-maler-assertion-00 - 5 -

5. How would Policies be added to the model for XACML queries?

Subject Assertion
(Atom)

Authentication
Assertion(Atom)

Authorization
Assertion(Atom)

-Any

Attribute
Assertion(Atom)-CommonName

-NameID
-Any

Subject

Resource Permission
-Protocol
-NameID
-AuthData
-KeyInfo

Authenticator

1 1..* 1..*

-Decision

Authorization Decision
Assertion(Atom)

Conditions

0..1

Advice

0..1

-requestID
-version

SAMLRequest

*

-Any

SAMLXQuery

1

-requestID
-version

SAMLResponse

*

-NotBefore
-NotAfter
-AssertionsPackageID

Assertions
Package

(Molecule)

1

-Version
-AssertionID
-Issuer
-IssueInstant

Assertion
(Atom)

Subject Assertions
Package

(Molecule)

*

Subject Assertions
Package contain only

subject assertions

1..*

*
Audience

*

PermissionBase

SAMLRequest Element
The request message element, SAMLRequest, is a collection of XML-encoded SAML
information that is intended to be sent to a SAML Authority. It puts the actual query in
the required SAMLXQuery element, and may also supply zero or more
SubjectAssertionsPackages as auxiliary input.

draft-orchard-maler-assertion-00 - 6 -

The query operates over all the assertions available to the SAML Authority being
queried, plus the assertions provided as auxiliary input. It is expected that
implementations will store the assertion information in proprietary mechanisms, such as
various RDBMS tables, LDAP tables, files, etc. Thus a query is made against a “virtual”
model.

The request has metadata indicating the version of SAML (Version) in which the
message is encoded and a unique identifier for the request (RequestID).

Rationale:

The need for providing assertions as auxiliary input is demonstrated by the dotted-line
relationships in our domain model, in which (for example) Authentication Assertions can
serve as input to Attribute Authorities that ultimately generate Attribute Assertions. Each
assertions package has the opportunity to provide its own Conditions and Advice.

Issues:

1. Should a SAML request allow for additional non-SAML auxiliary information,
akin to Advice?

2. Should the request ID be handled differently? A “requester” field (similar to
Issuer) might be needed on the request as a whole if a two-part unique identified
system is used.

SAMLXQuery Element
The main content of a SAMLRequest is the query itself, the SAMLXQuery element.

This document proposes the use of a subset of XML Query, including FLWR expressions
(FOR, LET, WHERE, RETURN) and OPERATIONS, but not functions, conditionals,
filtering, or custom data types.

Rationale:

The element was given the name SAMLXQuery because it is a SAML-specific
subsetting of a query in XML Query form. It is the only element, other than the two top-
level message elements, that has “SAML” in the name.

The XML Query approach is being proposed for the following reasons:

• It achieves a higher level of reuse of other specifications, following design
principle #3.

• It will tend to increase developer productivity because XML Query engines
already exist.

• It allows developers to focus on the data model rather than the query syntax.

• It allows arbitrary new kinds of queries to be generated without changes in the
SAML specification or deployed SAML-compliant systems.

Issues:

1. What form should the query take? The most recent Focus telecon listed three
possible directions to go with this: allow only specific forms of request that have
no variability in them (not really a query at all), a SAML-specific query language
along the lines of core-07’s Respond element identifiers, and a (subset of a)
generalized query language such as XML Query.

draft-orchard-maler-assertion-00 - 7 -

2. If we go with the XML Query approach, we are assuming that subsetting is
required. Is the subsetting necessary? How should this subsetting be done? Should
the subset be enforced in the SAML schema by making the query elements be
SAML-native elements? This would allow greater control over the inbound
elements and help conformance, but would not give us the same reuse benefits
because they would no longer be in the XML Query namespace.

3. Even if XML Query is used, should there be in addition a shorthand notation for
common query structures, along the lines of core-07’s Respond element? An
analogy is that Xpath has a short-hand and long-hand syntax. Most people use the
short-hand syntax.

SubjectAssertionsPackage Element
The auxiliary input to a SAML request is an optional SubjectAssertionsPackage
element, which contains one or more assertions of the SubjectAssertion type; in addition
to inheriting metadata attributes, these assertions all share the characteristic that they
require a Subject element as their first subelement. SAML should be able to be extended
to add new assertions of this type. The SubjectAssertionsPackage element is a subtype
of AssertionsPackage, and inherits metadata attributes from it.

Rationale:

Following design principle #1, The SubjectAssertion type factors out the commonalities
in an important set of assertions, those that are subject-centric. Such assertions may
require handling that is different from non-subject-centric assertions, and therefore this
deserves its own type. We anticipate that some extension assertions (for example, session
assertions) will want to be of this subtype.

Issues:

1. Should SubjectAssertionsPackage inherit Conditions and Advice as well as the
metadata attributes?

SAMLResponse Element
The response message, SAMLResponse, is a collection of XML-encoded SAML
information intended to be the output of a SAML Authority. It contains a set of one or
more AssertionsPackages generated in response to a request, optionally preceded by a
Conditions elements and optionally followed by an Advice element.

The response has metadata attributes indicating:

• The version of SAML (Version) in which the message is encoded

• A reference to the unique identifier for the request that it is responding to
(RequestID)

The Conditions element provides auxiliary data that is specific to the package on which
it appears. Currently, this consists only of a series of Audience elements, each of which
contains a string identifying the relevant audience. SAML Authorities are required to
understand and process the contents of any Conditions element provided; if they do not
understand, they must produce an error.

The Advice element provides auxiliary data that is not required for understanding and
processing the package. It can contain any content that is not from the SAML namespace.

draft-orchard-maler-assertion-00 - 8 -

Rationale:

This structure allows one or more packages because they may have different NotBefore
and NotAfter values.

This structure disallows repetition of the Conditions and Advice elements because a
single element is enough to contain whatever conditions or advice is necessary, and there
are no metadata attributes on these elements that would benefit from multiple instances
with different attribute values.

Issues:

1. How should error conditions for responses be handled?

2. Is the Audience information in scope for SAML? (Core-07 describes it as a URI
that points to a document that identifies the terms and conditions for audience
membership.)

3. Is there any other information that SAML should allow in Conditions? Should
non-SAML namespaces be allowed here?

AssertionsPackage Element
The content of a SAML response is set of AssertionsPackage elements, which contains
one or more assertions of the Assertion type. The AssertionsPackage type provides
metadata attributes:

• AssertionsPackageID: a unique identifier for this package.

• NotBefore: The time instant before which the assertions contained within are not
valid.

• NotAfter: The time instant after which the assertions contained within are not
valid.

Rationale:

The AssertionsPackage element is useful as a grouping mechanism for several assertions
of different kinds whose validity interval metadata is shared in common. For example, a
“combination authority” that is capable of producing several different kinds of assertions
may produce them all at once in response to a request, and then provide the validity
information on the package element that contains them all.

Issues:

1. Is a “binding assertion” needed as a native SAML assertion?

2. Given that individual assertions might be embedded in other XML documents,
and given that the AttributeAssertion element implicitly allows multiple attributes
in a single assertion, should the NotBefore and NotAfter attributes go on the
assertion level instead of on the package level? There wouldn’t seem to be too
much point to the package level if this were done.

Individual Assertion Structures
Individual assertions can be of the Assertion type, which provides the following metadata
attributes:

• Version: The version of SAML used to encode this assertion.

draft-orchard-maler-assertion-00 - 9 -

• AssertionID: a unique identifier for this assertion.

• Issuer: The fully qualified DNS domain name of the issuer.

• IssueInstant: A timestamp indicating when the one or more assertions contained
within were issued.

SAML can be extended to add new assertions of the Assertions type.

Some SAML assertions are further subtyped as being of the SubjectAssertion type.
SAML can be extended to add new assertions of this type. In addition to having the
metadata attributes, these assertions inherit Subject as their first child element.

Rationale:

The Version attribute is available here because individual assertions might be embedded
in other XML structures, such as purchase orders, and an assertion element might thus be
a “top-level” SAML element in that context.

AttributeAssertion Element
The AttributeAssertion element is of the SubjectAssertion type. In addition to its
inherited metadata attributes and Subject child element, it can contain any amount of
non-SAML-namespace elements that convey the attribute data. SAML-compliant
systems need to negotiate the attributes they understand by means of XML Schemas.

Rationale:

Following design principle #2, namespaces are used to manage extensibility. XML
Schemas allow for complete flexibility in the content model of attributes. This is much
more suitable for extensibility than the alternatives of name/value pairs or structured
strings.

AuthenticationAssertion Element
The AuthenticationAssertion element is of the SubjectAssertion type. It contains
nothing beyond its inherited metadata attributes and Subject child element.

Rationale:

There is only one Subject element allowed because conveying multiple authentications is
less likely than the scenario of conveying only one of them, and if it is necessary to
convey multiple ones, then a package can be used.

AuthorizationAssertion Element
The AuthorizationAssertion element is of the SubjectAssertion type. In addition to its
inherited metadata attributes and Subject child element, it contains a Resource element
and one or more Permission elements.

Rationale:

See the issues below.

Issues:

3. Authorization “assertions” seem to be needed only as a way to express policy
“facts,” and they don’t really have a place in our domain model (unless decision
assertions eventually turn out to use the basic form described here: subject,

draft-orchard-maler-assertion-00 - 10 -

permissions, resource). Should authorization assertions be a kind of auxiliary
data, rather than being seen as assertions?

4. What should the structure of the Resource element be? Should it be an attribute
or an element? It’s pretty clear that it probably wants to be a URI reference, but
are there any restrictions on what kinds of URI reference? Do we have to say
anything about equality rules for resource URIs? Should the Resource element
allow for plural values?

5. What should the structure of the Permission element be? Should its range of
possible permissions be extensible?

AuthorizationDecisionAssertion Element
The AuthorizationDecisionAssertion element is of the Assertion type. It inherits
metadata attributes, and has an additional attribute, Decision, which provides the decision
in response to the request whose ID is referenced in the SAMLResponse ancestor of this
element.

Rationale:

See the issue below and the information about AuthorizationAssertion above.

Issues:

1. Should decision assertions have a structure more like authentication assertions,
repeating the subject, resource and permissions that are being approved? In this
case, how would a “no” answer be conveyed?

Subject Element
The Subject element appears in the assertions of SubjectAssertion type. It contains zero
or more Authenticator elements, and has two attributes: CommonName and NameID.
The Authenticator element has only the following attributes:

• Protocol

• NameID

• AuthData

• KeyInfo
Issues:

1. We borrowed the core-07 design for the Subject element. We need to understand
this structure better, and also there are outstanding TC issues regarding subjects,
indexical references, and so on that affect this element directly.

2. Should there be an ID reference from Subject to the relevant
AttributeAssertion?

3. Should Authenticator be called ValidationOfBinding instead?

Summary of Extensibility Features
Implementations are offered flexibility in the following areas:

• Arbitrary queries against the data model are allowed.

draft-orchard-maler-assertion-00 - 11 -

• Arbitrary attribute information is permitted in the AttributeAssertion element.
Attributes can be in whatever form the implementations agree upon, so long as
they can be constrained by a schema and can be represented by an XML Query.

• Additional Assertion and SubjectAssertion types are allowed to appear. An
example might be a SessionAssertion, which would be a subtype of
SubjectAssertion.

Issues:

1. Is it a requirement that other schemas can redefine SAML components? This may
make sense in the assertions bindings. For example, a SOAP-SEC:Assertion
could be redefined from s0:Assertion. This will make a difference in how the
SAML schema’s target namespace is handled.

2. There are other questions about extensibility that appear in the various issues lists
above.

Summary of Differences from core-07
1. Removal of Responds element

2. Removal of Bindings and Claims elements, replace with new structures including
subject, object, permissions

3. Change of attributes from list of strings to open model

4. Create top-level assertion type with subtypes

5. Move the resource from the claims/bindings/authorization/resource to resource
6. Move the permission from the claims/bindings/authorization/permission to

permission

Request Methods
The following are some sample requests that need to be supported by SAML. Some of
these came from Tim Moses’s recent post.

1. Can Alice read finance?

2. Can Alice read finance with an attribute Assertion?

3. Can Alice read finance with Role Admin?

4. The requestor requests an authentication assertion that will be accepted by an
identified secondary domain. The requestor, in its request, identifies the target
domain. The responder returns an indication of its success or failure and the
resulting assertion or a reference to an assertion (in the event of success) that it
stores for later retrieval.

5. The requestor requests an attribute assertion that will be accepted by another
(unspecified) secondary domain. The request specifies the requested attributes.
For instance, a group name, a role, a signing authority or a security clearance.
The responder returns an indication of its success or failure. If it indicates
success, it may return the requested assertion or a more general version of the
requested assertion. If it indicates failure, it may return nothing or a more
constrained version of the requested assertion.

draft-orchard-maler-assertion-00 - 12 -

6. The requestor sends a reference to an authentication or attribute assertion to the
responder, indicating that it wants the corresponding assertion to be returned. If
successful, the responder returns the assertion.

7. The requestor sends a description of an assertion that it would like the responder
to locate, retrieve and return. If successful, the responder returns a success
indication and an assertion that either exactly meets the requirements or is more
general. If unsuccessful, the responder returns a failure indication and
(optionally) one or more assertions that are more specific than the one specified.
The sample used is Alice trying to read finance, and if she can't read finance or *,
then return if she can read finance/f1

8. The requestor sends a question concerning the authorization status of a subject in
relation to a specified resource. The subject may be identified by name, by an
authentication assertion or by a reference to an authentication assertion. If
necessary, the responder locates and retrieves the specified (or a suitable)
assertion) and evaluates it in relation to the resource. It can reply in one of three
ways: "Yes", "No" or "No, but if you had asked this (more specific) question, the
answer would have been 'yes'".

Issues:

1. We need to agree on what types of requests are in scope, and (in each case) which
type of SAML Authority they would be addressed to and what the expected
response content is. Does the above list capture what we want?

W3C XML Schema Design principles
This section describes the principles used in creating the SAML XML Schema. Many of
the principles are from

1. Named types used, rather than anonymous types
http://www.xfront.com/ElementVersusType.html

2. The xml schema best practice design pattern of variable content containers using
abstract type and type substitution is used,
http://www.xfront.com/VariableContentContainers.html

Issues:
1. Should the dangling type pattern be used? This allows removal of the xsi:type

attribute. Or can XML Schema SubstitutionGroups be used.

2. Should the ANY content model be used for extension of assertion, as per
http://www.xfront.com/ExtensibleContentModels.html?

3. Is it a requirement that other schemas can redefine SAML components? This may
make sense in the assertions bindings. For example, a SOAP-SEC:Assertion
could be redefined from s0:Assertion. If this is the case, then the chameleon
pattern of http://www.xfront.com/ZeroOneOrManyNamespaces.html should be
used.

4. Would AttributeGroups be useful for the Assertions attributes

http://www.xfront.com/ElementVersusType.html
http://www.xfront.com/VariableContentContainers.html
http://www.xfront.com/ExtensibleContentModels.html
http://www.xfront.com/ZeroOneOrManyNamespaces.html

draft-orchard-maler-assertion-00 - 13 -

5. Should we make all the single-use complex types anonymous? It's distracting to
see name="SAMLQuery" type="s0:SAMLqueryType" and then have a named
complex type, when we haven't said we want extensibility for this type.

6. Should the use of local element names with complexTypes be changed to global
element names?

Schema and Example Documents
A large number of documents are included here to normatively define the schema,
illustrate various extensions, and show samples.

Complete Assertions Schema
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://www.oasis.org/tbs/1066-12-25/"
xmlns="http://www.w3.org/2000/10/XMLSchema"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
xmlns:s0="http://www.oasis.org/tbs/1066-12-25/"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
elementFormDefault="unqualified">

<!-- Schema for all Assertions -->
<xsd:element name="SAMLRequest" type="s0:SAMLRequestType"/>
<xsd:complexType name="SAMLRequestType">

<xsd:sequence>
<xsd:element name="SAMLXQuery" type="s0:SAMLXQuery" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="s0:SubjectAssertionsPackage" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="RequestID" type="s0:RequestIDType"/>
<xsd:attribute name="Version" type="s0:VersionType"/>

</xsd:complexType>

<xsd:element name="SAMLResponse" type="s0:SAMLResponseType"/>
<xsd:complexType name="SAMLResponseType">

<xsd:sequence>
<xsd:element ref="s0:AssertionsPackage" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="RequestID" type="s0:RequestIDType"/>
<xsd:attribute name="Version" type="s0:VersionType"/>

</xsd:complexType>

<xsd:complexType name="SAMLXQuery" mixed="true">
<xsd:choice>

<xsd:any namespace="##any" processContents="skip"/>
</xsd:choice>

</xsd:complexType>

<xsd:element name="AssertionsPackage">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Conditions" type="s0:ConditionsType" minOccurs="0" maxOccurs="1"/>
<xsd:element name="Assertion" type="s0:AssertionType" minOccurs="1"

maxOccurs="unbounded"/>
<xsd:element name="Advice" type="s0:AdviceType" minOccurs="0" maxOccurs="1"/>
<!-- Basic Information -->

</xsd:sequence>
<xsd:attribute name="AssertionsPackageID" type="s0:AssertionIDType"/>
<xsd:attribute name="NotBefore" type="timeInstant"/>
<xsd:attribute name="NotAfter" type="timeInstant"/>

</xsd:complexType>

draft-orchard-maler-assertion-00 - 14 -

</xsd:element>

<xsd:element name="SubjectAssertionsPackage">
<xsd:complexType>
<xsd:complexContent>

<xsd:restriction>
<xsd:sequence>

<xsd:element name="Assertion" type="s0:SubjectAssertionType" minOccurs="0"
maxOccurs="unbounded"/>

<!-- Basic Information -->
</xsd:sequence>
<xsd:attribute name="RequestID" type="s0:AssertionIDType"/>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>

<xsd:element name="Assertion" type="s0:AssertionType"/>
<xsd:complexType name="AssertionType" abstract="true">

<xsd:sequence>
<!-- Basic Information -->

</xsd:sequence>
<xsd:attribute name="Version" type="s0:VersionType"/>
<xsd:attribute name="AssertionID" type="s0:AssertionIDType"/>
<xsd:attribute name="Issuer" type="s0:IssuerType"/>
<xsd:attribute name="IssueInstant" type="timeInstant"/>
</xsd:complexType>

<xsd:complexType name="SubjectAssertionType">
<xsd:complexContent>

<xsd:extension base="s0:AssertionType">
<xsd:sequence>

<xsd:element name="Subject" type="s0:SubjectType" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="AuthenticationAssertionType">
<xsd:complexContent>

<xsd:extension base="s0:SubjectAssertionType">
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="AttributeAssertionType">
<xsd:complexContent>

<xsd:extension base="s0:SubjectAssertionType">
<xsd:sequence>

<!-- the namespace should be any, but I'm doing this to make sure the parser validates at least
the namespace name -->

<xsd:any namespace="http://www.oasis.org/tbs/1066-12-25/s/" processContents="strict"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:element name="AuthorizationDecisionAssertion" type="s0:AuthorizationDecisionAssertionType"/>
<xsd:complexType name="AuthorizationDecisionAssertionType">

<xsd:complexContent>
<xsd:extension base="s0:AssertionType">

<xsd:sequence>
<xsd:element name="Decision" type="s0:DecisionType"/>

</xsd:sequence>

draft-orchard-maler-assertion-00 - 15 -

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="AuthorizationAssertionType">

<xsd:complexContent>
<xsd:extension base="s0:SubjectAssertionType">

<xsd:sequence>
<xsd:element name="Resource" minOccurs="1" type="string"/>
<xsd:element ref="s0:Permission" minOccurs="1" maxOccurs="unbounded"/>
<xsd:any namespace="##any" processContents="strict"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:simpleType name="DecisionType">

<xsd:restriction base="string">
<xsd:enumeration value="Permit"/>
<xsd:enumeration value="Deny"/>
<xsd:enumeration value="Indeterminate"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:element name="Permission" type="s0:PermissionType" abstract="true"/>

<xsd:complexType name="PermissionType">
<xsd:simpleContent>

<xsd:restriction base="string"/>
</xsd:simpleContent>

</xsd:complexType>

<xsd:element name="BasePermission" type="s0:PermissionBaseType" substitutionGroup="s0:Permission"/>
<xsd:complexType name="PermissionBaseType">

<xsd:simpleContent>
<xsd:restriction base="string">

<xsd:enumeration value="R"/>
<xsd:enumeration value="W"/>
<xsd:enumeration value="Use"/>
<xsd:enumeration value="Admin"/>

</xsd:restriction>
</xsd:simpleContent>

</xsd:complexType>

<xsd:simpleType name="VersionType">
<xsd:restriction base="string"/>

</xsd:simpleType>
<xsd:simpleType name="AssertionIDType">

<xsd:restriction base="string"/>
</xsd:simpleType>

<xsd:simpleType name="RequestIDType">
<xsd:restriction base="string"/>

</xsd:simpleType>
<xsd:simpleType name="IssuerType">

<xsd:restriction base="string"/>
</xsd:simpleType>
<xsd:element name="Subject" type="s0:SubjectType"/>
<xsd:complexType name="SubjectType">

<xsd:sequence>
<xsd:element name="CommonName" type="string" minOccurs="0"/>
<xsd:element name="NameID" type="uriReference" minOccurs="0"/>
<xsd:element ref="s0:Authenticator" minOccurs="0"/>
<xsd:any namespace="##any" processContents="lax"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="Authenticator">

<xsd:complexType>

draft-orchard-maler-assertion-00 - 16 -

<xsd:sequence>
<xsd:element name="Protocol" type="string" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="NameID" type="uriReference"/>
<xsd:element name="Authdata" type="string"/>
<xsd:element name="KeyInfo" type="string"/>
<!-- ds:KeyInfo"/> -->

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="Conditions" type="s0:ConditionsType"/>
<xsd:complexType name="ConditionsType">

<xsd:sequence>
<xsd:element name="Audiences" type="string" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

<xsd:element name="Advice" type="s0:ConditionsType"/>
<xsd:complexType name="AdviceType">

<xsd:sequence>
<xsd:element name="Assertion" type="s0:AssertionType" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

Sample Authorization Decision Assertion
<?xml version="1.0" encoding="UTF-8"?>

<s0:Assertion xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

xmlns:s0="http://www.oasis.org/tbs/1066-12-25/"

xsi:schemaLocation="http://www.oasis.org/tbs/1066-12-25/ D:\AllMaterial\OASIS-Sec-TC\Assertions.xsd"
xsi:type="s0:AuthorizationDecisionAssertionType"

AssertionID="http://www.bizexchange.test/assertion/AE0221"

Issuer="URN:dns-date:www.bizexchange.test:2001-01-03:19283">

<Decision>Deny</Decision>

</s0:Assertion>

Sample Attribute Assertion
<?xml version="1.0" encoding="UTF-8"?>

<s0:Assertion xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

xmlns:s0="http://www.oasis.org/tbs/1066-12-25/"

xmlns:s1="http://www.oasis.org/tbs/1066-12-25/s/"

xsi:schemaLocation="http://www.oasis.org/tbs/1066-12-25/ D:\AllMaterial\OASIS-Sec-TC\Assertions.xsd"
xsi:type="s0:AttributeAssertionType"

AssertionID="http://www.bizexchange.test/assertion/AE0221"

Issuer="URN:dns-date:www.bizexchange.test:2001-01-03:19283"

xmlns:someOtherNs="http://www.example.org/something">

<Subject>

<NameID>mailto:Alice@bizex.test</NameID>

</Subject>

<s1:Role>Admin</s1:Role>

</s0:Assertion>

Sample Assertions Repository
<?xml version="1.0" encoding="UTF-8"?>

draft-orchard-maler-assertion-00 - 17 -

<s0:AssertionsPackage
xmlns:s0="http://www.oasis.org/tbs/1066-12-25/"
xmlns:s1="http://www.oasis.org/tbs/1066-12-25/s/"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation="http://www.oasis.org/tbs/1066-12-25/
D:\AllMaterial\OASIS-Sec-TC\sampleExtensions1.xsd
http://www.oasis.org/tbs/1066-12-25/s/
D:\AllMaterial\OASIS-Sec-TC\sampleExtensions2.xsd" >
<!-- Sample File, named SampleAuthorityAssertionsList.xml -->
<!-- Test file for executing SAML Queries against -->
<!-- This file would be a virtual file in a real system -->

<!-- The following extensions are shown: -->
<!-- 1. Custom attributues for a user, in a different namespace -->
<!-- 2. Customer required rights, in the same namespace -->

<!--ToDo: XMLSpy does not seem to validate the Any contents -->
<Assertion xsi:type="s0:AttributeAssertionType">

<Subject>
<NameID>mailto:Alice@bizex.test</NameID>

</Subject>
<s1:Role xsi:type="s1:Role">Admin</s1:Role>

</Assertion>
<!-- Alice can Read and Write-->
<Assertion xsi:type="s0:AuthorizationAssertionType">

<Subject>
<NameID>mailto:Alice@bizex.test</NameID>

</Subject>
<Resource>

http://store.carol.test/finance
</Resource>
<s0:BasePermission>R</s0:BasePermission>

</Assertion>

<!-- Users with Role Admin can Admin the resource -->
<Assertion xsi:type="s0:AuthorizationAssertionType">

<Subject>
<someOtherNs:Role>Admin</someOtherNs:Role>

</Subject>
<Resource>

http://store.carol.test/finance
</Resource>
<s0:BasePermission>Admin</s0:BasePermission>

</Assertion>
<!-- Alice can Write -->

<Assertion xsi:type="s0:AuthorizationAssertionType">
<Subject>

<NameID>mailto:Alice@bizex.test</NameID>
</Subject>
<Resource>

http://store.carol.test/finance2
</Resource>
<s0:ExtensionPermission>Provision</s0:ExtensionPermission>

</Assertion>
</s0:AssertionsPackage>

Sample Extensions #1 – sampleExtensions1.xsd
<?xml version="1.0" encoding="UTF-8"?>

draft-orchard-maler-assertion-00 - 18 -

<xsd:schema targetNamespace="http://www.oasis.org/tbs/1066-12-25/"
xmlns="http://www.w3.org/2000/10/XMLSchema" xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
xmlns:s0="http://www.oasis.org/tbs/1066-12-25/" elementFormDefault="unqualified">

<xsd:include schemaLocation="D:\AllMaterial\OASIS-Sec-TC\Assertions.xsd"/>

<!-- Sample Extensions #1 shows an addition Permission -->

<xsd:element name="ExtensionPermission" type="s0:PermissionExtensionType"
substitutionGroup="s0:Permission"/>

<xsd:complexType name="PermissionExtensionType">

<xsd:simpleContent>

<xsd:restriction base="string">

<xsd:enumeration value="Provision"/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

</xsd:schema>

Sample Extensions #2 – sampleExtensions2.xsd
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="http://www.oasis.org/tbs/1066-12-25/s"

xmlns="http://www.w3.org/2000/10/XMLSchema"

xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

xmlns:s1="http://www.oasis.org/tbs/1066-12-25/s"

elementFormDefault="unqualified">

<!-- sampleExtensions #2 shows a custom attribute, role -->

<xsd:element name="Role">

<xsd:simpleType>

<xsd:restriction base="string">

<xsd:enumeration value="User"/></xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:schema>

Sample Request #1
<?xml version="1.0" encoding="UTF-8"?>
<s0:SAMLQuery xmlns:s0="http://www.oasis.org/tbs/1066-12-25/"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance" xsi:schemaLocation="http://www.oasis.org/tbs/1066-
12-25/ D:\AllMaterial\OASIS-Sec-TC\Assertions.xsd">

<!-- example 2.1.4. Can Alice read finance? -->
<SAMLXQuery>

<AssertionsPackage>
FOR $S IN document("SampleAuthorityAssertionsList.xml")
WHERE $S/Resource = "http://store.carol.test/finance"
AND $S/Subject/NameID = "mailto:Alice@bizex.test"
AND $S/Permission = "Admin"
RETURN $S
</AssertionsPackage>

</SAMLXQuery>

draft-orchard-maler-assertion-00 - 19 -

</s0:SAMLQuery>

Sample Result #1
<?xml version="1.0" encoding="UTF-8"?>
<s0:AssertionsPackage xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xmlns:s0="http://www.oasis.org/tbs/1066-12-25/"

xsi:schemaLocation="http://www.oasis.org/tbs/1066-12-25/ D:\AllMaterial\OASIS-Sec-TC\Assertions.xsd">
<!-- Example 2.1.5 -->
<Assertion xsi:type="s0:AuthorizationDecisionAssertionType"

AssertionID="http://www.bizexchange.test/assertion/AE0221" Issuer="URN:dns-date:www.bizexchange.test:2001-
01-03:19283">

<Decision>Permit</Decision>
</Assertion>

</s0:AssertionsPackage>

Sample Request #2
<?xml version="1.0" encoding="UTF-8"?>
<s0:SAMLRequest
xmlns:s0="http://www.oasis.org/tbs/1066-12-25/"
xmlns:s1="http://www.oasis.org/tbs/1066-12-25/s/"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation="http://www.oasis.org/tbs/1066-12-25/ D:\AllMaterial\OASIS-Sec-TC\Assertions.xsd">

<!-- example 2.1.4 Can Alice read finance with an attribute Assertion-->
<SAMLXQuery>

<AssertionsPackage>
FOR $S IN document("SampleAuthorityAssertionsList.xml")
WHERE $S/Resource = "http://store.carol.test/finance"
AND $S/Subject/NameID = "mailto:Alice@bizex.test"
AND $S/Permission = "READ"

<Assertion>
RETURN $S/Decision

</Assertion>
</AssertionsPackage>

</SAMLXQuery>
<s0:SubjectAssertionsPackage>
<Assertion xsi:type="s0:AttributeAssertionType">

<Subject>
<NameID>mailto:Alice@bizex.test</NameID>

</Subject>
<s1:Role>Admin</s1:Role>

</Assertion>
</s0:SubjectAssertionsPackage>

</s0:SAMLRequest>

Sample Request #7
<?xml version="1.0" encoding="UTF-8"?>
<s0:SAMLQuery
xmlns:s0="http://www.oasis.org/tbs/1066-12-25/"
xmlns:s1="http://www.oasis.org/tbs/1066-12-25/s/"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation="http://www.oasis.org/tbs/1066-12-25/ D:\AllMaterial\OASIS-Sec-TC\Assertions.xsd">

<!-- 7. The requestor sends a description of an assertion that it would like the responder to locate, retrieve
and return. If successful, the responder returns a success indication and an assertion that either exactly meets the
requirements or is more general. If unsuccessful, the responder returns a failure indication and (optionally) one or
more assertions that are more specific than the one specified. The sample used is Alice trying to read finance, and
if she can't read finance or *, then return if she can read finance/f1-->
<!-- this example isn't quite right yet -->

<SAMLXQuery>
<AssertionsPackage>

draft-orchard-maler-assertion-00 - 20 -

<Assertion>
FOR $S IN document("SampleAuthorityAssertionsList.xml")
WHERE ($S/Resource = "http://store.carol.test/finance" OR $S/Resource = "http://store.carol.test/*")
AND $S/Subject/NameID = "mailto:Alice@bizex.test"
AND $S/Permission = "READ"
return $S/Decision
IF $S/Decision != "YES" then

FOR $T IN document("SampleAuthorityAssertionsList.xml")
WHERE $T/Resource = "http://store.carol.test/finance/f1"
AND $T/Subject/NameID = "mailto:Alice@bizex.test"
AND $T/Permission = "READ"
IF $T/Decision = "YES" then return

$T/Decision
</Assertion>

</AssertionsPackage>

</SAMLXQuery>
</s0:SAMLQuery>

draft-orchard-maler-assertion-00 - 21 -

Appendix:

Discussion of Xquery
(Following are notes by Dave on advantages of XQuery.)

The key benefits to using XQuery are:

• Generic syntax, which allows for tighter cardinalities in SAML domain model
(these 2 are linked)

• Arbitrary return values, no need for a responds element.

• Arbitrary searches and results including wildcards and booleans.

• The ability to add new queries without revving the server software. This pushes
the ability to change the queries to the client.

• The Assertions class diagram is simplified as the assertions are for facts only,
rather than queries.

The disadvantages of Xquery are:

• Developers have to learn another specification rather than just saml

• The Xquery syntax is too general for the queries that SAML needs, a very
restrictive and simple syntax would be adequate.

• Implementations are going to have to map Xquery syntax onto their own
repositories

• The xml syntax for Xquery is quite verbose and difficult.

The response to the disadvantages:

• The developers are going to have to learn a syntax anyways, why not use an
industry standard one with tooling and high probability of developer knowledge
re-use.

• It seems that many people want complex queries and also we don’t want to overly
restrict the queries allowed. Should it happen that the requests/queries are very
general, than this might be revisited.

• Implementations are going to have to map Xquery or any other syntax onto their
repositories. Wouldn’t mapping a general syntax rather than a specific syntax be
easier for vendors?

• The xml syntax for xquery is verbose, but probably any kind of general syntax
will be verbose. Xquery has these as issues before it. Presumably they will be
better equipped to create a simple xml syntax for queries than SAML will be.

IMHO, the biggest advantage of the use of XQuery is that it decouples the clients from
the servers from a query perspective. New queries from the client can be added without
requiring a spec and server software change. It allows extensibility from the clients. It

draft-orchard-maler-assertion-00 - 22 -

pushes the ability to change queries from the server to the client. Under the PHB model,
any time we want to modify a query, we have to update the protocol (particularly the
responds element), the client and the server. Using Xqueries, just the client gets updated.

So the big question is: do we want strongly-typed queries, meaning the spec & software
get reved every time there's a new query, or do we want weakly-typed queries.

There are 2 alternatives to Xquery:

1. a generic assertion/claim like PHB has, with a results element.

2. Subtype each of the items in the class diagram for an input query, making the
cardinalities optional.

One of the reasons why the PHB style claim is so open-ended, is so that it can be used as
a template for the query. Say you want to find an authorization assertion (OM model) for
a given subject/object combination. It's got both subject, object, and permission. Now
Permission is required in OM model. In PHB model, Permission is optional. The reason
is so that you can leave permission blank in a PHB query. This is the whole point about
cardinalities, that in phb's model you can never have cardinalities (as they might be left
blank for the query) whereas in OM you can because they are just used for the return.

Now you could model it as a set of AssertionTemplates with no cardinalities, and then
subtype to Assertion with cardinalities, but that adds even more types. (option #2)

Further, because of the template model, you have no control over the operators. Phil has
been desperately wanting wildcards, and this gives it.

Take sample query #8, if SAML does not support this operation exactly, then a rev of the
SERVER will have to happpen to add the query mechanism. With XQuery, you can
simply change the query that you send. So it gives Clients much more flexibility

Another example is #7. Now this is easier to code up in XQuery than adding some new
parameter (to say which extra specifications are to be used in the unsuccessful case) to
the responds element.

Another reason why query is good is because there is no need to create a responds
element. The whole point of the responds element is that it specifies what the requestor
wants returned. But that means that the types of responses are rigidly defined. There is
one out with the use of a schema URI, but that seems a strange way to do it. It also
doesn't cover the if/then/else style of return decision. With XQuery you can return any
part of the results that you've found, like just the Decision or the found Assertions or
whatever.

draft-orchard-maler-assertion-00 - 23 -

Schema Extension Techniques
(Following are notes by Dave on how to do the extension of Permission values.)

Trying to get extension in the Permissions has been many hours, and ultimately I resorted
to a technique I didn’t really like.

The method that finally worked was Method 1(typeExtension) in the same namespace:

<PermissionList>
<BasePermission>R</BasePermission>
<ExtendedPermission>Provision</BasePermission>

The options for adding a Permission type, say Provision, to Assertion are:

• Extend the set of names allowed in an enumeration List - <Permissions>R W
Provision</Permissions>. This doesn’t work because the enumeration value
space can’t be extended.

• specification of different namespaced elements -
<PermissionList>
<s0:Permission>W</s0:Permission>
<s1:Permission>Provision</s1:Permission>.
I can’t recall why this didn’t work

• method 4 (dangling namespace) from xfront.
<PermissionList>
<Permission>W</Permission>
<Permission>Provision</Permission>
XMLSpy illegally follows the namespace declaration in the include.

• Method 3 (abstract base type with type substitution) from xfront
<PermissionList>
<Permission xsi:type=”s0:PermissionBaseType”>W</Permission>
<Permission xsi:type=”s1:PermissionExtensionType”>Provision</Permission>
XMLSpy gives the dreaded internal error on this case, I think because the
Permission is a simpleContent.

• Method 1(typeExtension) in different namespaces
<PermissionList>
<s0:BasePermission>R</s0:BasePermission>
<s1:ExtendedPermission>Provision</s1:BasePermission>

PHB/Core0.7 Class diagram
The following is a class diagram representing Core 0.7

draft-orchard-maler-assertion-00 - 24 -

Claim
(Atom)

Binding

-CommonName
-NameID

Subject

Resource

Object

-Protocol
-NameID
-AuthData
-KeyInfo

Authenticator

* *

* 1

* *

*1

-Version
-AssertionID
-Issuer
-IssueInstant
-ValidityInterval

Assertion
(Molecule)

*

*

-Permission

Decision

-Audience

Conditions

*

*

Advice

*

**

*

-RequestID
-AssertionID
-ValidityInterval

SAMLQuery

*

*

*

*

*

*

Respond

*

*

-requestID

SAMLQueryResponse

*

**

*

**

Attribute Role Authorization

*
*

*
*

*
*

Permission

* *

	Introduction	3
	Introduction
	Definitions
	Document Conventions
	XML Design Principles
	SAML Message Architecture
	SAMLRequest Element
	SAMLXQuery Element
	SubjectAssertionsPackage Element

	SAMLResponse Element
	AssertionsPackage Element

	Individual Assertion Structures
	AttributeAssertion Element
	AuthenticationAssertion Element
	AuthorizationAssertion Element
	AuthorizationDecisionAssertion Element

	Subject Element
	Summary of Extensibility Features
	Summary of Differences from core-07
	Request Methods
	W3C XML Schema Design principles
	Schema and Example Documents
	Complete Assertions Schema
	Sample Authorization Decision Assertion
	Sample Attribute Assertion
	Sample Assertions Repository
	Sample Extensions #1 – sampleExtensions1.xsd
	Sample Extensions #2 – sampleExtensions2.xsd
	Sample Request #1
	Sample Result #1
	Sample Request #2
	Sample Request #7

	Appendix:
	Discussion of Xquery

	Schema Extension Techniques
	PHB/Core0.7 Class diagram

