Send comments to:

Phillip Hallam-Baker, Senior Author
401 Edgewater Place, Suite 280
Wakefield MA 01880

Tel 781 245 6996 x227

Email: pbaker@verisign.com

Security Assertions Markup Language
Sraw-man Architecture

Phillip Hallam-Baker \&ridgn

Draft Verdon 0.1: Feoruary 16th 2001

Printed on Friday, February 16, 2001

Saaunty AsssticrsMakuplLagee

Vaao0l

Table Of Contents

Table Of Contents
Table of Figures

Executive Summary

1

2

21
2.2
2.3
24
3

31
3.2
3.3

4
4.1
4.2
4.3
5

51
52
53
54
54.1
54.2
55

6

6.1
6.2
6.3

7
8

Introduction

Abstract Data Flow
Client

Issuing Server
Relying Server
Configurations

Data Objects
Security Assertion
Ticket
Meta-Assertion

Constraints

Zero Footprint Client Constraints
SAML Aware Client Constraints
Server Constraints

Protocol Exchanges

Assertion / Ticket Issue Request
Access Query

Access Account Query

Session Management / Distributed Log Out
Status Pull Model

Status Push Model
Push-me-Pull-you Model

Network Configurations

Multiple Issuing Servers

Multiple Relying Servers

Issuing Server is the Relying Server
References

Acknowledgements

Appendix A Ticket Encoding Syntax

Al
A2

A3

Self-terminating Integer Encoding
Envelope Format

Body Data

O©OOWOWW O NN~NN~NOOGT o oo D BB DM WD

Printed on Friday, February 16, 2001

Table of Figures

Figure 1: Parties to the protocol 4
Figure 2: Relying Server acts as Proxy to Issuing Server 5
Figure 3 Configuration in which separate issuing servers address different levels
of authorization 12
Figure 4. Multiple Relying Servers Rely on Assertion Issued by a Single Issuing
Server 13

Figure 5: A Collection of Servers Act in Both Issuing and Relying Mode 14

Printed on Friday, February 16, 2001

Executive Summary

A straw-man architecture is proposed to ducidate the architecturd implications of the
requirements implicit in the SAML use cases documen.

1 Introduction

This paper presents a number of architectural ideas suggested by proposalsin the SAML
USe Cases group.

The terminology chosen is intentionaly separate from that employed in the use cases for
reasons that will become apparent.

2 Abstract Data How

The SAML protocol specification supports transfer of security assertions between an
issuing server, arelying server and adlient (Fgure 1).

Issuing Server Relying Server
>

Client

Figure 1: Partiesto the protocol

21 Client

The gpplication program that is requesting access to aresource. In each caseit isthe
client that initiates a sequence of protocol messages.

Printed on Friday, February 16, 2001

2.2 Issuing Server

Also known as a Policy Decision Point (PDP), the issuing server isrespongble for
issuing assartions and assertion tickets.

2.3 Relying Server

Also known as a Policy Enforcement Point (PEP), the relying server acts on information
encoded in assertions and assertion tickets to determine whether a party isto be alowed

access to aresource or not.

Although aresource controller may subordinate policy decisions to aremote resource we
exdude by dfinition the possihility of subordinating policy enforcement”.

24 Configurations
The data-flow between the parties should be independent of the communication graphs
supported. In particular the client may not have direct access to the issuing server and dl

interactions between the issuing server and the dient may be intermediated by the relying
server acting asaproxy FHgure 2.

Figure 2: Relying Server acts as Proxy to Issuing Server

A wide variety of network configurations may be implemented involving multiple issuing
servers and multiple relying servers. Some of these configurations are discussedin detall
insection 6 bdow.

3 Data Objects

3.1 Security Assertion

An XML data structure that makes a security assartion. Typica assertionsinclude:

The party with account ID Alice has the Plumber right.

! The effect of PEP subordination may be achieved through Ford/Weiner type schemes in which access to an encrypted
resource is controlled by controlling access to the relevant keying material. However for the purposes of this standard
we may simply consider the cryptographic keying material to be the resource to which accessis actually being
controlled and thus subordination is not taking place for the purposes of this specification.

Printed on Friday, February 16, 2001

The Party with the acoount 1D Alice is permitted to access resource X
Any party with the Plumber right is permitted to access resource X

We employ the X TASS framework to represent assertions. XTASS provides avery
generd framework for encoding of assertions, some parts of which do not address
problems within SAML scope (for example management of embedded root keys).

X-TASS assartions may encode authorization datain one of two ways.

1) AsaURI identifying either aresource itsdlf (i.e. aURL of the resource) or a
rightsidentifier associated with the resource (e.g. viaa URN). The mapping of
rights identifiers to resources themselves may be achieved usng SAML or
through another mechanism outsde the scope of the specification.

2) By incorporating additiond dementsinto the assertion thet are defined in a
separate schema (thisis not currently in the X-TASS schema but should be).

All X-TASS assartions share a common s&t of XML dements specifying informetion
about the assartion, including:

A URI that uniqudly identifies the assartion
Status of the assartion
Vdidity interval
Conditions placed on vdidity
3.2 Ticket

A ticket is compact data structure that identifies a particular assertion. A ticket MAY be
authenticated and MAY carry encrypted data.

The principa purpose of tickets isto support the condraints imposad by zero footprint
clients. It isnot possble to encode dl the information encoded in an assartion in the
minima space avallablein aURL fragment or HT TP cookie.

A second use of tickets isto provide a lightweight means of communicating
cryptographic keying materid in the manner of Kerberos [Kerberog).

A possible syntax for encoding tickets is provided in Appendix A . Issuing serversand
relying servers may use a different ticket format by private agreement however.

For architectura purposesit is dedrable that tickets have the following properties

Be compact, dlowing the minimum data st to be encoded in 64 bytes or less,

Printed on Friday, February 16, 2001

Support authentication by means of a shared key
[Could add option to do a DSA sgnature]

Support encryption by means of a shared key

Specify the account identifier of the party to whom the ticket was issued and
whether the identifier was authenticated.

Allow encoding of authentication deta (e.g. a shared key established between the
client and isuing server)

Be extengble to dlow gpplications to encode data from arbitrary XML assertion
eements.

33 Meta-Assertion

An assertion that modifies the status of one or more previoudy issued assertions.
4 Constraints

4.1 Zero Footprint Client Constraints

A ‘zero footprint’ dient is defined for design purposes to be a Web browser supporting a
lowest common denominator fegture s, i.e. requiring no feature not supported by both
Internet Explorer 4.0 and Netscape Navigator 3.5 and not requiring active code such asa
plugrin, Java Applet or Active-X contral.

A zero footprint dient would not recelve assartions but MAY receive aticket encoded in
either a Cookie or aURL.

4.2 SAML Aware Client Constraints

A SAML aware dient supports handling of SAML messages directly. Support may be
integrated into the dient gpplication or provided by adient plug in, aoplet or Active-X
contral.

4.3 Server Constraints

Smpler is better. However if thereis a choice to be made between implementation or
configuration complexity in the dient and complexity in the server, the latter isto be
favored in most cases.

Printed on Friday, February 16, 2001
5 Protocol Exchanges

5.1 Assertion / Ticket Issue Request

The dient authenticates itsdlf to the Issuing server by some means (typicaly
username/password or public key authentication scheme).

5.2 Access Query
Request Data
The party or class of parties requesting access
The specific resource or class of resources for which accessis requested
The context of the request
Examples

Isthe party that presented ticket T alowed access to resource X via security
protocol P?

What rights are associated with ticket T?
Is aparty with the Plumber right permitted to access resource X?
Response
Access Permitted; Party with ticket T may accessresourceXintimeinterva .
Access Denied; Party with ticket T may not access resource X
Party with ticket T has the Plumber right.
A Party with the Plumber right may access resource X
5.3 Access Account Query
A future revison of the protocol could extend the access query transaction to add in

accounting so that each time a resource was accessed an adjustment was made to the
relevant account.

Examples
Printer charging for each page printed

Pay per view

Printed on Friday, February 16, 2001

Detect excessive access to secure resources

54 Session Management / Distributed Log Out

Animportant specia requirement is the need to ensure that parties whose authentication
credentials have been withdrawn can no longer access resources through cached
credentias.

Support for this requirement inevitably involves a greater degree of complexity thanthe
case in which an issued assertion is never revoked until it expires. Either the relying
server must query the status of an assertion each and every time it is used or theissuing
sarver must pro-activey notify dl relying servers whenever an assartion is revoked.

We propose the use of XTASS Tier 2, meta-assartions to support notification of satus
changes. These dlow support for both the ‘push’ and ‘pull” modds of gatus natification.

5.4.1 Status Pull Model

In the status pull modd the relying server queries the status of the assertion eech timeit is
retrieved from the cache. The server queried may be ether the origind issuing server or
another server indicated in the assertion:

O Client makes request for resource X
Rdying Server mekesinitid query to Issuing server,
Issuing Server returns an assertion with status Vaid and containing a Verify
eement as a Condition.
Relying server returns resource X to dlient
Asstionis cached

® Rdying server makes second request for resource X
Relying server retrieves assertion from cache
Relying server request status from service specified in Verify clause
Verify sarvice returns satus Vdid
Relying server returns resource X to client

O, 0Asincax®

©® Rdying server makes second request for resource X
Rdying server retrieves assertion from cache
Assertion has expired, Relying Server makes new query to issuing server
etc.

O Rdying server makes second request for resource X
Relying server retrieves assertion from cache
Relying server request gatus from service specified in Verify clause
Verify sarvice returns status Invaid
Assartion deleted from cache Relying Server makes new query to issuing server
etc.

Printed on Friday, February 16, 2001

Notethat it is generdly desirable to support negative caching in a protocol so that
negeative results are stored as wdll as postive. However the mere revocation of an
assartion does not in the generd case indicate that al statements made by the assartion is
fase

5.4.2 Status Push Model

In many casesit is desrable to avoid the need to introduce a Satus vaidation exchange
for each transaction. It isinefficient in the genera case to continuoudy didtribute status
updates for al assertions and notification protocols are subject to denid of service
attacks. The X.509/PKIX family of specifications has given rise to alarge number of
CRL management optionsinduding Verson 1 CRLS, ddta CRLs, Cettificate
Didribution Points and Scoped CRLS.

The X-TASS meta-assartion modd defines asingle smple compact data Sructure thet
dlows any of the CRL management options of X.509/PKIX to be employed. This
Sructure is used in a manner anadogous to an Access Control List and consgts of aligt of
satements specifying the current status of one or more assertions identified by URI. Each
gatement may be market termind or nontermind. The ligt of Statementsis processed in
order until the first matching statement that is marked termind isfound or the end of the
ligt is encountered.

Example, assertion identifier isur n: abd/ 323, the assartion lig is.

Fi rst="urn: abd/ 100" Last="urn: abd/ 500" status="Valid"

Ter m nal =" Fal se"
Matches, datusisVdid, Rule is not marked termina so processng continues.

First="urn: abd/ 325" status="Invalid" Term nal =" True"
Does nat match, ignore.

Fi rst="urn: abd/ 323" status="Invalid" Term nal ="True"
Matches, gatusis Invdid, Rule marked termind S0 processing is complete.

Fi rst="urn: abd/ 105" status="Invalid" Term nal ="True"
Processing is complete, ruleisignored

Protocol Example:

O Client makes request for resource X
Redying Server makesinitial query to Issuing server,
Issuing Server returns an assartion with satus Vaid and containing a Listen
eement asa Condition.
Relying server returns resource X to dlient
Asstionis cached

1C

Printed on Friday, February 16, 2001

® Rdying server makes second request for resource X
Reying srver retrieves assartion from cache
Verify sarvice returns satus Vdid
Relying server returns resource X to client

O 0Ossincae ®

O [|swe notifies Reying Server that the assertion Satusis Invalid
Relying server deletes assertion from cache

® Rdying server makes second request for resource X
Relying server retrieves assertion from cache
Verify sarvice returns status Valid, Access Denied
Relying sarver returns refusal to client

Depending on implementation the issuing service may or may not track dependencieson
particular assartions.

55 Push-me-Pull-you Model

An implementation may combine the push and pull modds. Reying servers may employ
the pull modd to request status updates on cached assartions from aloca responder

acting as a gateway. The gateway responder acts as alistener for status updates
distributed under push mode and tracks loca dependencies on particular assertions.

6 Network Configurations

6.1 Multiple Issuing Servers

The access control processistypicaly divided into a series of ditinct stages, for example
the access control mechanism embedded in the VM S operating system incorporates the

following dages:

Authentication
Alice authenticates hersdf by entering her username and password & the login

prompt

Rights Authorization
The ALICE account has the rights identifiers FINANCE_SUPER,

FINANCE_ADMIN

Resour ce Authorization
The database file is associated with an Access Control Ligt that specifies that reed
accessis permitted to accounts with the rightsidentifier FINANCE_ADMIN,
write access requires the rights identifier INANCE_SUPER

11

Printed on Friday, February 16, 2001

Smilar multi-stage authorization schemes are supported by other operating systems.
Although the need for multiple authorization stepsis well established the number of steps
required and digtinction between those steps is not.

Thelack of asharp distinction between multiple authorization steps strongly suggests thet
the issue should be left to implementation decision. The protocol SHOUL D support an
goplication implementation in which a sequence of authorization messages are employed
but should not enforce an arbitrary digtinction in the degree of granularity specified.

The configurationin Fgure 3 shows an example of a configuration in which two separate
Issuing servers address different aspects of authorization. 1ssuing server 1 (possibly an
externa resource) returns information corresponding to * Authorization Rights, 1ssuing
sarver 2 (likely to be an internd enterprise resource) returns informeation specific to a
particular resource request.

In the example shown Alice (A) requests access to resource X controlled by the relying
sarver. The relying server firg queries Issuing Server 1 to discover that Alice hasthe
Plumber right. The relying server then queries Issuing Server 2 to determine whether a
party with the Plumber right may access the resource X.

© Can aplumber © Yes/No
access X7

. O A isaPlumber
Issuing >
Server 1

© WhatisA?

O Request O X
Accessto X

A’sClient

Figure 3 Configuration in which separate issuing servers address different levels of authorization

Alternative configurations may be employed to achieve the same objective:

12

Printed on Friday, February 16, 2001

Therdying server may direct dl requeststo asingle internd resource that acts as
an issuing server and processes referrals automeatically.

The relying server may be responsible for handling referrdsitsalf, however the
initia request might be*Can A access X' and the response be ‘ Indeterminate, a
Plumber can access X’

6.2 Multiple Relying Servers

In many circumstances aticket must be acceptable to multiple relying servers Figure 2.

0100
OO

Figure4: Multiple Relying Servers Rely on Assertion Issued by a Single Issuing Server

6.3 Issuing Server is the Relying Server

In many extant Web gpplications the same server performs the functions of theissuing
sarver and the relying server. Thefirgt time the dlient visits a Web ste it authenticates
itsdlf using username and password and receives a token (cookie, URL fragment) that is
used to authenticate further access to the Ste.

The introduction of multiple servers supporting an gpplication of this type leadsto aneed
for an interoperable standard for exchanging security assertions between the servers
Fgure 4.

Printed on Friday, February 16, 2001

O

Figure 5: A Collection of Servers Act in Both Issuing and Relying Mode

7 References

[Kerberog]
[S2ML-Usd]
[XTASS
[XKMS]

8 Acknowledgements

Had discussons with Jeremy, Carlide, Seve, Eve, Dave. Also based on use cases by
Darren, Evan and co.

Appendix A Ticket Encoding Syntax

It may be argued that the ticket encoding syntax can be left to private agreement between
servers.

Allow encoding of any SAML assartion deta dement

Place no arbitrary regtrictions on the lengths of data objects

Require minima overhead, dlowing aticket to be encoded in 64 bytes of data
[dentify the verdon number of the ticket encoding

Al Self-terminating Integer Encoding

Felds representing data length and tag values are encoded using a smple saf-terminating
length encoding. In this encoding vaues are encoded as a sequence of octets. The most
sgnificant bit of the last octet in sequence is set, the mogt Significant bit of each of the
leading octetsis clear. The vaue of the integer is encoded in the lower 7 bits of the octet
sequence, with the firgt octet being the least significant.

14

Printed on Friday, February 16, 2001

Examples
I nteger Data (hexadecimal)
0 80
1 81
2 81
127 F
128 00 81
16383 F F =127+ 128* 127
2097151 7F F FF =127 + 128* 127 + 128% * 127

Datamay be encoded using the following procedure;

Encode (i nteger v,

while (v > 127)
octet (v & 127)

s [i
v

] =
v /
i
+

- I

n—_ =

s
i

128

out octet s[],

out integer i)

Data may be decoded using the following procedure:

Decode (octet s[],
i nt eger base

Y 0

1

while (s[i] < 128)

V:
i =i
base

vV +
+

\Y

i i+ 1

s[i] * base
1

base * 128
v + (s[i] - 128) * base

out integer v,

out integer i)

Additiond code may be required to perform range checking if the language does not
support integers of indefinite Sze.

A2 Envelope Format
Field Length Max Description
(bytes.bits)
Verson 04 04 Equas 0 for this verson
gﬁryption 04 04 | 0= AESencryption with HMAC-SHAL1
ite

Printed on Friday, February 16, 2001

Key ID 1 1
length

Key ID 1 20
Body 1 2
length

Body 2 256+
Checkaum 1 1
length

Checksum 12 20
Totd 301

A3 Body Data

Body datais encoded as a sequence of Tag, Length Data triplets where the tag values are

Specified asfollows
Tag Value Description
0 SHA-1 hash of the assartion
1 Locator for assertion
2 Authenticated account identifier
3 Unauthenticated account identifier
4 Expiry date and time (format TBD)
5 Symmetric keying materid
To be specified

Both tag and length are encoded using the sdf -terminating integer encoding

Examples

8094 16E4 C8F6 681D Cr86 560B 9012 712C 602E 348F 39EE
Tagis0 (SHA-1 hash of the assertion), Length is 20 bytes, and datais C8F6 39EE.

1€

Printed on Friday, February 16, 2001

8285 "Alice"

Tag is 2 (Authenticated account identifier), Length is 5 bytes, and datais Al i ce.

17

