Oasis Security Services Bindings Model

Prateek Mishra
Chris Ferris
Jeff Hodges
draft-sstc-bindings-model-01.html
25-Feb-2001
comments to: security-bindings@lists.oasis-open.org

This document is an OASIS-Draft and is [largely] in conformance with relevant OASIS SSTC document standards as described in draft-sstc-doc-guidelines-00.txt.

Introduction

The purpose of this document is to (1) characterize the scope of work and deliverables for the bindings sub-committee, (2) identify relevant work items and open issues, (3) point to relevant references. It should provide a reasonably complete starting point for the efforts of the binding sub-committee.

Definitions/terminology

```
[JeffH: below list is just an example of the terms I've been extracting from various docs to stuff into a glossary. this
isn't a definitive list. This list is interesting, though, in that they are ones that arise in the context of thinking
about bindings.]
assertion (aka "security assertion"?)
authn - authentication
authz - authorization
business payload - [Chris F: how is this different or distinguished from "message payload" below?]
message payload - [Chris F: how is this different or distinguished from "business payload" above?]
originating site
package -- == assertions [+ entitlements] + payload ? - [Chris F: do we want to use the term "message" here?]
payload
principal
receiving site
Relying party
root -- "root of the message" (from mime?)
scruitinize
security package - one or more s2ml documents combined into a single MIME entity.
security services
subject
web service
```


Scope

Other Oasis Security Services TC subcommittes (e.g. Core Assertions and Protocol) are producing a specification of security assertions and services.

The high-level goal of the Bindings subcommittee is to specify how..
(1) security assertions are embedded in or combined with other objects (e.g. files of various types), communicated from site to site over various protocols, and subsequently scrutinized, and,
(2) security services defined with SAML as message exchanges
(e.g., the Authz protocol utilized between PDP and PEP in [Use Case 2, Straw2])
are mapped into one or more standard messaging protocols such as SOAP/XP and BEEP.
(1) and (2) MUST be specified in sufficient detail to yield interoperability when independently implemented.

Deliverables

- General guidelines for binding security assertions to payloads in the context of a protocol. The intent here is to provide general guidelines that MUST or SHOULD be followed when embedding or combining security assertions with objects drawn from an arbitrary messaging protocol.
[JeffH:I'm wondering just how distinct this is from the third item below. Perhaps the intent
of this item is more: embedding security assertions into other objects (independent of
protocols)? cf. S2ML 4.4][Chris F: I see this as being distinct from the actual bindings
as it provides the overall guidelines that SHALL or SHOULD be followed when defining a
protocol binding]
These should include considerations of the case where the assertions are "secret" versus the case when they are "scoped". cf. [S2ML]
- A process framework for describing and registering proposed and future protocol bindings.
- Bindings for selected protocols.

Bindings MUST be specified in enough detail to satisfy the interoperability requirement. The intent here is that such bindings are "recommendations" of the Oasis SSTC; the groups responsible for developing those protocols will be responsible for defining normative bindings with SAML security asssertions. This is facilitated by providing a method for describing and registering bindings.

- Standard mapping to SOAP/XP and BEEP of all security services defined within SAML. The distinction between a protocol binding and service mapping would be that the latter carries SAML assertions (and other requred data elements as determined by the service schemas) as payload whereas the bindings carry assertions at a different level (e.g., the "headers" of SOAP/XP, ebXML etc).

We would expect each security service (e.g., Section 3.1, S2ML) to be given a high-level description by other working groups within SAML. The effort in this sub-group would focus on considerations such as required headers, selection of encoding descriptions etc. such that interoperability can be achieved between providers and consumers of SAML security services, where both parties have selected a standard messaging framework such as SOAP/XP or BEEP.

Assertion Bindings

Assertion bindings will be provided for the following standard protocols:
(a) HTTP

In case of HTTP, there is a sub-case where the user is utilizing a standard off-the-shelf browser and information about SAML assertions must be conveyed from one site to another through the browser (i.e., there is no direct site-to-site interaction). In this case, we need to ensure that mechanisms for conveying assertions from one site to another be developed that are based on URLs and HTTP headers (e.g., cookies). Both of these entities are strongly
size constrained. Representing assertions by some form of "small" fixed-size object is an important consideration here [Section 6.1, S2ML].
[Section 6.2, S2ML] provides some discussion of a HTTP binding which is not constrained by the use of web browsers.
(b) MIME [Section 6.3 S2ML]
(c) SMTP [Open Issue-2: Relationship to (b) above] [Jeffh: I seriously wonder if there are any viable use cases for a SMTP binding that aren't addressed by a definition of MIME packaging for security assertions?][Chris F: note that BEEP, HTTP and ebXML also leverage or are MIME aware. One could
make the same argument for all of these;-)]
(d) ebXML
(e) SOAP/XP
(f) BEEP

Registration Templates

```
[JeffH: the below extracted from [BEEP] as boilerplate/example text that will need substantial massaging -- but whose
underlying concepts are applicable here.]
When a profile is regi stered, the following inf ormation is supplied:
Profile I dentification: specify a URI [10] that authoritativel y i dentifies this profile.
Message Exchanged during Channel Creation: specify the datatypes that may be exchanged during channel creation.
Messages starting one-to-one exchanges: specify the dat at ypes that may be present when an exchange starts.
Messages in positive repl ies: specify the dat atypes that may be present in a positive reply.
Messages in negative repl ies: specify the dat atypes that may be present in a negat ive repl y.
Messages in one-to-many exchanges: specify the dat at ypes that may be present in a one-to-many exchange.
Message Syntax: specify the syntax of the dat atypes exchanged by the profile.
Message Semantics: specify the semantics of the dat atypes exchanged by the profile.
Cont act I nf ormation: specify the postal and el ectronic cont act i nf or mation for the author of the profile.
5. 2 Feat ure Regi stration Templ ate
```

```
When a feature for the channel management profile is regi stered, the
```

When a feature for the channel management profile is regi stered, the
fol l owing i nf or mati on i s suppl i ed:
fol l owing i nf or mati on i s suppl i ed:
Feat ure I dentification: specify a string that identifies this
Feat ure I dentification: specify a string that identifies this
feat ure. Unl ess the feat ure is regi stered with the IANA, the
feat ure. Unl ess the feat ure is regi stered with the IANA, the
feature's identification must start with "x-".
feature's identification must start with "x-".
Feature Semmntics: specify the semantics of the feature.
Feature Semmntics: specify the semantics of the feature.
Cont act Inf ormati on: specify the postal and el ectroni c cont act
Cont act Inf ormati on: specify the postal and el ectroni c cont act
i nf ormati on for the author of the feature.
i nf ormati on for the author of the feature.
[JeffH: the below extracted from [SASL] as boilerplate/example text that will need substantial massaging -- but whose

```
[JeffH: the below extracted from [SASL] as boilerplate/example text that will need substantial massaging -- but whose
```


4. Profiling requi rements

In order to use this specification, a protocol definition must supply the following inf ormation:

1. A service name, to be sel ected from the IANA regi stry of "servi ce" el ements for the GSSAPI host-based service name form [RFC 2078].
2. A definition of the command to initiate the authentication protocol exchange. This command must have as a paramet er the mechani sm name bei ng sel ected by the client.

The command SHOULD have an optional parameter gi ving an initial response. This optional parameter allows the client to avoid a round trip when using a mechani sm which is defined to have the client send data first. When this initial response is sent by the cli ent and the sel ected mechani smis defined to have the server start with an initial challenge, the command fails. See section 5.1 of this document for further information.
3. A definition of the method by whi ch the authentication protocol exchange is carried out, incl uding how the challenges and responses are encoded, how the server indi cates compl etion or fai ure of the exchange, how the client aborts an exchange, and how the exchange method interacts with any line length limits in the protocol.
4. Identification of the octet where any negotiated security Iayer starts to take effect, in both directions.
5. A specification of how the authorization identity passed fromthe client to the server is to be interpreted.
6. Regi stration procedures

Registration of a SASL mechanismis done by filling in the templ ate in section 6. 4 and sending it in to iana@si. edu. IANA has the right to rej ect obvi ously bogus regi strations, but will performno revi ew of cl ans made in the registration form

There is no naming convention for SASL mechanisms; any name that conforms to the syntax of a SASL mechani sm name can be regi stered.

Wile the registration procedures do not require it, authors of SASL mechani sns are encour aged to seek community revi ew and comment whenever that is feasible. Authors may seek community revi ew by posting a specification of their proposed mechani smas an internetdraft. SASL mechani sns intended for wi despread use should be standardized through the normal IETF process, when appropriate.
6. 1. Comments on SASL nechani smregi strations

Comments on registered SASL mechani sms should first be sent to the "owner" of the mechanism Submitters of comments may, after a reasonable attempt to contact the owner, request IANA to attach their comment to the SASL mechanismregistration itsel f. If I ANA approves of this the comment will be made accessible in conjunction with the SASL mechani smregistration itself.
6. 2. Location of Regi stered SASL Mechani smList

SASL mechani smregistrations will be posted in the anonymous FTP direct ory "ftp://ftp. isi. edu/in- notes/i ana/ assi gnment s/ sasl-
mechani sns/" and all regi stered SASL mechani sns will be listed in the peri odi cally issued "Assi gned Numbers" RFC [currently STD 2, RFC 1700]. The SASL mechani sm description and other supporting material may al so be publ i shed as an Inf or mational RFC by sending it to "rfcedit or @si. edu" (pl ease follow the instructions to RFC authors [RFC 2223]).

6. 3. Change Control

Once a SASL mechanismregi stration has been published by IANA, the aut hor may request a change to its definition. The change request follows the same procedure as the regi stration request.

The owner of a SASL mechanismmay pass responsi bility for the SASL mechani smto another person or agency by informing IANA; this can be done without di scussi on or revi ew.

The IESG may reassign responsibility for a SASL mechanism The most common case of this will be to enable changes to be made to mechani sns where the author of the registration has died, moved out
of contact or is otherwi se unable to make changes that are important to the community.

SASL mechani sm registrations may not be del et ed; mechanisns which are no longer bel i eved appropriate for use can be decl ared OBSOLETE by a change to their "i ntended use" field; such SASL rechani sns will be cl early marked in the lists publ ished by IANA.

The IESG is considered to be the owner of all SASL mechani snm whi ch are on the IETF standards track.
6. 4. Regi stration Templ ate

To: i ana@ ana. or g
Subj ect: Regi stration of SASL mechani sm X
SASL mechani sm name:
Security consi der ations:
Publ i shed specification (optional, recommended) :
Person \& email address to cont act for further information:
I nt ended usage:
(One of COMMDN, LI M TED USE or OBSOLETE)
Author/Change controller:
(Any ot her inf ormation that the author deems interesting may be added bel ow thi s line.)

Security Assertion-based Authn \& Authz Services

[Section 7, Auth-XML] gives some examples of mapping a security service into SOAP messages over HTTP.

References

[AuthXML] AuthXML: A Specification for Authentication Information in XML, Version 0.3, 12/14/2000
[BEEP] The Blocks Extensible Exchange Protocol Core http://www.normos.org/iett/draft/draft-ietf-beep-framework-11.txt
[S2ML] S2ML: Security Services Markup Language, Version 0.8a, January 8, 2001.
[SASL] Simple Authentication and Security Layer (SASL) http://www.ietf.org/rfc/rfc2222.txt
[Shib] Shiboleth Overview and Requirements
http://middleware.internet2.edu/shibboleth/docs/draft-internet2-shibboleth-requirements-00.html
[Straw2] Oasis Security Services Use Cases And Requirements, Straw Man Draft 2, 9 Feb 2001

