
Oasis Security Services Bindings Model1

Prateek Mishra2

Chris Ferris3

Jeff Hodges4

Evan Prodromou5

6

draft-sstc-bindings-model-04.doc7
14-June-20018

9

Oasis Security Services Bindings Model 010

1 INTRODUCTION 111

1.1 Scope 112

1.2 Contents 113

1.3 Guidelines for Specifying Protocol Bindings and Profiles 214

1.4 Process Framework for Describing and Registering Protocol Bindings and Profiles 215

2 PROTOCOL BINDINGS 316

2.1 HTTP 317
2.1.1 Introduction 318
2.1.2 Overview 319
2.1.3 HTTP Binding 420

2.2 SOAP 1.1 621
2.2.1 Introduction 622
2.2.2 Overview 623
2.2.3 SOAP Binding 724

3 PROFILES 825

3.1 Web Browser 826
3.1.1 Overview 827
3.1.2 Parties and Interactions 928
3.1.3 SAML artifact structure 1029
3.1.4 Elementary SAML artifact 1130

3.2 SOAP 1131
3.2.1 Overview 1232
3.2.2 SOAP Headers and Error Processing 1233
3.2.3 Confidentiality 1234
3.2.4 Example 1235
3.2.5 Integrity of Assertion Attachment 1336



1

4 REFERENCES 1337

5 APPENDIX A 1438
39
40

comments to: security-bindings@lists.oasis-open.org41
42

This document is an OASIS-Draft and is [largely] in conformance with relevant OASIS SSTC document43
standards as described in draft-sstc-doc-guidelines-00.txt.44

45

1 Introduction46

1.1 Scope47

Other Oasis Security Services TC subcommittees (e.g. Core Assertions and Protocol) are producing a48
specification of SAML security assertions and one or more SAML request-response message exchanges.49

50
The high-level goal of this document is to specify how:51

52
(1) SAML request-response message exchanges are mapped into standard messaging or communication53
protocols. Such mappings are called SAML protocol bindings. An instance of mapping SAML request-54
response message exchanges into a specific protocol <FOO> is termed a SAML <FOO> binding.55

56
Example: A SAML HTTP binding describes how SAML Query and Response message exchanges are57
mapped into HTTP message exchanges. A SAML SOAP binding describes how SAML Query and58
Response message exchanges are mapped into SOAP message exchanges.59

60
(2) SAML security assertions are embedded in or combined with other objects (e.g. files of various types,61
protocol data units of communication protocols) by an originating party, communicated from the62
originating site to a destination, and subsequently processed at the destination. A set of rules describing63
how to embed and extract SAML assertions into a framework or protocol is termed a profile for SAML. A64
set of rules for embedding and extracting SAML assertions into a specific class of <FOO> objects is65
termed a <FOO> profile for SAML.66

67
Example: A SOAP profile for SAML describes how SAML assertions may be added to SOAP messages,68
the interaction between SOAP headers and SAML assertions, list of SAML-related error states at the69
destination.70

71
72

(1) and (2) MUST be specified in sufficient detail to yield interoperability when independently73
implemented.74

75

1.2 Contents76

The remainder of this document is in four sections:77
78

• General guidelines for the specification of protocol bindings and profiles. The intent here is to79
provide a checklist that MUST or SHOULD be filled out when developing a protocol binding or80
profile for a specific protocol or framework.81

82
• A process framework for describing and registering proposed and future protocol bindings and83

profiles.84
85



2

• Protocol bindings for selected protocols. Bindings MUST be specified in enough detail to satisfy86
the inter-operability requirement.87

88
• Profiles for selected protocols and frameworks. Profiles MUST be specified in enough detail to89

satisfy the inter-operability requirement.90
91

1.3 Guidelines for Specifying Protocol Bindings and Profiles92

93
Issues that MUST be identified in each protocol binding and profile:94

95
(1) Each binding or profile must be characterized as set of interactions between parties. Any restriction on96
applications used by each party and the protocols involved in each interaction must be explicitly called out.97

98
(2) Identification of parties involved in each interaction: how many parties are involved in the interaction?99
Can intermediaries be involved?100

101
(3) Authentication of parties involved in each interaction: Is authentication required? What types of102
authentication are acceptable?103

104
(4) Support for message integrity: what mechanisms are used to ensure message integrity?105

106
(5) Support for Confidentiality: can a third party view the contents of SAML messages and assertions?107
Does the binding or profile require confidentiality? What mechanisms are recommended for securing108
confidentiality?109

110
(6) Error states: characterization of error states at each participant, especially those that receive and process111
SAML assertions or messages.112

113
(7) Support for integrity of assertion attachment. Many profiles consist of a set of rules for adding114
assertions to an existing protocol or packaging framework. These rules will be used by an originating party115
(e.g., user, server) to create a composite package consisting of assertions and a business payload for116
delivery to a destination. When the composite package arrives at the destination, the recipient will require117
proof (1) the originating party is the subject of the assertions contained within the composite package, (2)118
neither the assertion nor business payload have been altered.119

120
The term integrity of assertion attachment refers to the linkage between the originating party, assertions121
and business payload, created when an originating party constructs the composite package. Integrity of122
assertion attachment MUST be verifiable by a recipient. Typically, mechanisms provided to support123
attachment integrity will be based on some cryptographic techniques (hash or digital signature).124

125

1.4 Process Framework for Describing and Registering126

Protocol Bindings and Profiles127

128
When a profile or protocol binding is registered, the following information is supplied:129

130
1. Identification: specify a URI that authoritatively identifies this profile or protocol binding.131

132
2. Contact information: specify the postal and electronic contact information for the author of the133

profile or protocol binding.134
135



3

3. Description: the description MUST follow the guidelines for profiles and protocol bindings given136
above.137

138
4. Updates: references to previously registered profiles or bindings that the current entry improves or139

obsoletes.140
141

Issue: Where should this registry be maintained? It has been proposed that IANA (http://www.iana.org)142
might provide an appropriate forum. Further investigation is required..143

144

2 Protocol Bindings145

2.1 HTTP146

2.1.1 Introduction147

HTTP is among the most commonly-used Internet application protocols today. There are any number of148
implementations of the protocol that allow rapid development of dynamic servers or clients. With the149
possible exception of SMTP mail servers, HTTP servers withstand the greatest collective load, in terms of150
performance, stability, and security, of any other class of software. For these reasons -- widespread use,151
robust implementations, and diverse development platforms -- it makes sense to leverage HTTP, and HTTP152
software, for the exchange of SAML messages.153

154
The following binding description derives from the HTTP binding provided with [AuthXML]. Note that the155
current version of SAML [draft-sstc-core-07.doc] has two different message formats, which will probably156
change over time. For this reason, this section merely refers to them as "request messages" and "response157
messages" without particular information about the content or structure of the message.158

159
Note that this section does not treat the issue of passing SAML assertions or assertion tokens from a160

standard Web browser to a Web server. Instead, it concentrates on using HTTP as a transport layer for161
SAML messages, without the restrictions that standard Web browsers impose. In most cases, this binding162
will be used as a service-to-service binding, rather than a user-to-service binding.163

164
Some design goals of this binding are as follows:165

166
* Enable using existing HTTP software (Web servers, client libraries) to create SAML services.167
* Minimize requirements for supporting the somewhat complex HTTP protocol.168
* Minimize the information carried in HTTP headers and other data. Except in extreme situations,169
information should be passed as SAML.170

171
Readers of this document should be familiar with HTTP/1.1, which is described in [RFC2616].172

2.1.2 Overview173

The message protocol for SAML is based on a request-response metaphor. This naturally maps to the174
HTTP request-response method. So, for most types of interaction between systems, a request message is175
sent as an HTTP request, and a response message is sent as an HTTP response. There are two parties176
involved in the interaction: a requester and a responder. There is no provision for intermediaries in the177
current framework.178

179
In the discussion that follows, the following terms are used:180
* request message -or- request: A SAML request XML object.181
* response message -or- response: A SAML response XML object.182
* HTTP request: An HTTP request, as distinct from a SAML request.183
* HTTP response: An HTTP response, as distinct from a SAML response.184
* requester: The party sending the request.185

http://www.iana.org/


4

* responder: The party sending the response.186
187

2.1.3 HTTP Binding188

2.1.3.1 Connections189
190

As with all HTTP connections, the requester will initiate the connection. Connections MUST be one way.191
Multiple requests and corresponding responses MAY be sent over a single connection, per the HTTP 1.1192
specification. The requester MUST only send requests through the connection, and the responder MUST193
only send responses through the connection.194

195
The Connection header MAY be added to an HTTP request to request that the connection be closed after196
the response is given. "Connection: close" is the only allowed field in this header, in which case the197
responder MUST add the "Connection: close" header to the response and MUST close the connection after198
completing the response.199

200
If the "Connection: close" header is not added to the request, the connection will be handled per the default201
for the HTTP version of the request. If the HTTP version of the request is 1.0, the connection will be202
automatically closed by the responder. If the HTTP version is 1.1, the connection will be maintained by the203
responder, unless a "Connection: close" header was added to the response (See section 2.1.3.3 below).204

2.1.3.2 Request Messages205
A request message is bound to an HTTP request.206

207
The request MUST use the POST method. The HTTP version MUST be one of"1.0" or "1.1".208

209
The request MUST have a Content-Type of "text/xml".210

211
The content of the HTTP request MUST be exactly one request message. Additional content MUST NOT212
be included in the HTTP request.213

214
The Host, Date, Content-Type and Content-Length headers MUST be provided in the HTTP request and be215
correct. A Connection header may be added as noted above in section 2.1.3.1.216

217
Additional HTTP headers MAY be provided, but parties in the conversation MUST ignore those other218
headers.219
[Rationale: many existing HTTP libraries will add additional headers to an HTTP request. The intent is to220
ensure a minimal number of headers required to handle the binding, without requiring that implementations221
write their own HTTP code.]222

223
Content-Encoding or Transfer-Encoding schemes MUST NOT be used.224
[Rationale: SAML messages are relatively small and should not require chunked encoding or compression.225
Forbidding Content- or Transfer-Encoding will allow implementers to safely ignore these fairly advanced226
and costly HTTP features.]227

228

2.1.3.3 Response Messages229
230

If a request can be handled and generates a response, the response will be bound to an HTTP response231
message. If the responder cannot or will not generate a SAML response, the responder MUST send one of232
the HTTP error responses defined in section 2.1.3.6. The rest of this section will treat only successful233
responses.234

235
[Note that success, in this context, means that a SAML response was generated. It does not mean that the236
request was fulfilled or have domain level meaning, such as that authorization was granted, etc. The SAML237
response may have failure notifications per the SAML protocol.]238



5

239
The HTTP response MUST have a status code of 200. The HTTP version MUST be one of "1.0", "1.1".240

241
The response MUST have a Content-Type of "text/xml".242

243
The content of the HTTP response MUST be exactly one response message. Additional content MUST244
NOT be included in the HTTP response.245

246
The Host, Date, Content-Type and Content-Length headers MUST be provided in the HTTP response and247
be correct. A Connection header may be added as noted above in section 4.1.248

249
Additional HTTP headers MAY be provided, but parties in the conversation MUST ignore those other250
headers.251

252
Content-Encoding or Transfer-Encoding schemes MUST NOT be used.253

254

2.1.3.4 Authentication and Message Integrity255
256

Authentication of parties and message integrity of both requests and responses MUST be handled in one of257
two ways.258

259

2.1.3.4.1 XML Signature260
261

If this technique is used, an XML digital signature MUST be added to the entire request or response. The262
digital signature MAY be embedded in the message, or the message MAY be embedded in the signature.263

264

2.1.3.4.2 HTTP/S with Certificates265
266

Alternately, the HTTP conversation may be conducted over a Secure Sockets Layer (SSL) connection. In267
this case, both parties (requester and responder) MUST provide digital certificates for the SSL layer.268

269

2.1.3.5 Message Confidentiality270
271

HTTP/S MAY be used preserve message confidentiality. If authentication and message integrity is272
protected using XML Signatures, neither party is required to provide a digital certificate.273

274

2.1.3.6 Errors275

276
The following error messages may be sent by the responder for a SAML message. [Note that in the277
following section, the error text is not normative, but gives an indication of what the error code means.278
Only the error number is normative.]279

280
For all status values besides "200", the "Connection: close" header MUST be sent, and the connection281
between requester and responder MUST be closed.282

283

2.1.3.6.1 200 OK284
285

The responder received the request and successfully generated a response. The response may contain a286
SAML error code or further SAML information. The meaning of the 200 message is "more info in SAML287
content."288

289



6

2.1.3.6.2 400 Bad Request290
291

The responder received the request, but the request was ill-formed in some way. The content of the292
Response is undefined, but it SHOULD NOT be a SAML message. The content of the Response MAY be a293
stock piece of HTML or plain text explaining the nature of the error.294
[Rationale: Some HTTP server software will add stock explanations for error status codes.]295
This result code is appropriate for requests with bad HTTP headers, HTTP methods other than "POST", or296
with syntactically incorrect SAML content.297

298

2.1.3.6.3 403 Forbidden299
300

The responder has received the request, but refuses to perform a SAML message exchange with the301
requestor. The content of the Response is undefined, but it SHOULD NOT be a SAML message. The302
content of the Response MAY be a stock piece of HTML or plain text explaining the nature of the request.303

304

2.1.3.6.4 500 Internal Server Error305
306

The responder has received the request but has failed to produce a response, due to internal error. The307
content of the Response is undefined, but it SHOULD NOT be a SAML message. The content of the308
Response MAY be a stock piece of HTML or plain text explaining the nature of the request.309

310

2.2 SOAP 1.1311

2.2.1 Introduction312
313

SOAP (Simple Object Access Protocol) 1.1 is a standard proposed by Microsoft, IBM, and other314
contributors for RPC-like interactions using XML. It defines a mechanism for defining messages in XML,315
and for sending them through HTTP. Since its introduction, it has had increased attention, and it is316
expected to provide the foundation for many future Web-based services.317

318
SOAP 1.1 has three main parts. One is a message format that uses an envelope and body metaphor to wrap319
XML data for transmission between parties. The second is a restricted definition of XML data for making320
strict RPC-like calls through SOAP, without using a predefined XML schema. Finally, it provides a321
binding for SOAP messages to HTTP and enhanced HTTP.322

323
This document describes how to use SOAP to send and receive SAML messages. An additional section of324
the SAML specification ("SOAP Profile") defines how to use SAML as an authentication mechanism for325
SOAP. In other words, this section describes using SAML over SOAP, and that section describes using326
SAML for SOAP.327

328
Like SAML, SOAP can be used over multiple underlying transports. This document does not address the329
use of underlying transports directly, although it makes recommendations for some transports in addressing330
message integrity and confidentiality concerns.331

332
Note that this protocol binding is relatively short. This is because SOAP is a relatively simple protocol, and333
because most of the difficult details of connections, routing, etc. are defined in the SOAP 1.1 standard.334

335

2.2.2 Overview336

337

SOAP messages consist of three elements: an envelope, header data, and a message body. SAML messages338
(queries and responses) are enclosed in the SOAP message body.339

340



7

SOAP 1.1 also defines an optional data encoding system. This system is not used for the SOAP protocol341
binding for SAML. This means that SAML messages can be transported using SOAP without re-encoding342
from "standard" SAML to a SAML-like SOAP encoding.343

344
The system model used for SAML conversations over SOAP is a simple request-response model. A345
sending party sends a SAML query in the body of a SOAP message. The receiving party processes the346
SAML query and returns a SAML query response in the body of another SOAP message.347

348
A brief glossary:349

350
SAML conversation: an exchange of a SAML query and a SAML response.351
sending party: The party sending a message.352
receiving party: The party receiving a message.353
querying party: The party sending a query message.354
responding party: The party sending a response.355

356

2.2.3 SOAP Binding357

2.2.3.1 Namespaces358
359

All SAML messages encoded in SOAP MUST include XML namespace qualifiers, as specified by the core360
assertions and messages definition.361

362
[Rationale: Some SOAP message processors require a namespace. Also, the namespace prevents conflicts363
with other standards and schemata.]364

365

2.2.3.2 Headers366
367

The sending party in a SAML conversation over SOAP MAY add arbitrary headers to the SOAP message.368
369

[Rationale: some SOAP software and libraries may add headers to a SOAP message that are out of the370
control of the SAML-aware process. Also, some headers may be needed for underlying protocols that371
require routing of messages.]372

373
The receiving party MAY NOT require any headers for the SOAP message.374

375
[Rationale: requiring extra headers will cause fragmenting of the standard and will hurt interoperability.]376

377

2.2.3.3 SAML Queries378
379

A SAML query is stored as the child of the <SOAP:body> element of a SOAP message. The querying380
party MUST send one SAML query. The querying party MUST NOT send more than one SAML query per381
SOAP message. The querying party MUST NOT include any additional XML elements in the SOAP body.382

383
On receiving a SAML query as a SOAP message, the receiving party MUST return either a SAML query384
response (section 2.2.3.3) or a SOAP fault code (section 2.2.3.4).385

386

2.2.3.4 SAML Query Responses387
388

A SAML query response is stored as the child of the <SOAP:body> element of a SOAP message. The389
message MUST contain exactly one SAML query response. The querying party MUST NOT include any390
additional XML elements in the SOAP body.391

392



8

On receiving a SAML query response in a SOAP message, the querying party MUST NOT send a fault393
code or other error messages to the sending party.394

395
[Rationale: The format for the message interchange is a simple request-response. Adding additional error396
conditions, notifications, etc. would needlessly complicate the protocol.]397

398

2.2.3.5 Fault Codes399
400

If a responding party cannot, for some reason, process a SAML query, it should return a SOAP fault code.401
Fault codes MUST NOT be sent for errors within the SAML problem domain, e.g. as a signal that the402
subject is not authorized to access an object in an authorization query.403

404
The four fault codes (VersionMismatch, MustUnderstand, Client, Server) defined by SOAP 1.1 are405
sufficient to define any SOAP-related errors. Responding parties MUST NOT use any additional fault406
codes, or sub-defined fault codes, in a fault response.407

408
Responding parties MAY provide additional fault information, such as descriptions and details, as defined409
by SOAP.410

411
[Rationale: some SOAP processors may add fault information automatically.]412

413

2.2.3.6 Authentication and Integrity414

2.2.3.6.1 XML Digital Signature415
416

To ensure message integrity, the parties in a SAML conversation MAY add a XML Digital Signature to the417
SAML query. The parties MUST NOT add signatures in either the headers or the envelope of the SOAP418
message.419

420

2.2.3.6.2 HTTP/S with Certificates421
422

Alternately, the parties MAY use the underlying transport of the SOAP conversation to ensure message423
integrity. For SOAP messages sent over HTTP, this would be HTTP/S with client certificates.424

425

2.2.3.7 Confidentiality426
427

To achieve message confidentiality, the parties in a SAML conversation MAY use the confidentiality428
protection mechanism in the underlying SOAP transport. For SOAP messages used over HTTP, this would429
be HTTP/S.430

431

3 Profiles432

3.1 Web Browser433

3.1.1 Overview434

435

The user is utilizing a standard commercial browser and has logged onto the source web site. At some436
point, the user transitions to a destination site which supports single sign-on for users originating from the437
source site. In this situation, information about SAML assertions must be conveyed from one site to another438
through the browser.439

440



9

The only general technique available is based on URL query strings; note that use of cookies requires that441
both the source and destination site belong to the same "cookie domain". While [RFC2616] does not442
specify any restrictions on URL length, in practice commercial web browsers and application servers443
impose constraints on URL size [Appendix A]. This suggests the use of some form of a "small" fixed-size444
SAML artifact, which can be reliably carried as part of the URL query string and thereby transferred from445
source to destination site. The destination site would then utilize information contained within the SAML446
artifact to "pull" a SAML assertion from the source site to the destination site.447

448

3.1.2 Parties and Interactions449

450
{PRIVATE "TYPE=PICT;ALT=Figure 1: SSO Diagram"}451

452
453

The web browser profile involves a single interaction between three parties (source site, user equipped with454
a browser, destination site), with a nested sub-interaction between two parties (source site, destination site).455
We refer to the sub-interaction as an assertion pull interaction.456

457
The user authenticates at the source web site and subsequently visits an inter-site transfer URL at the source458
web site (step (1)). As this step is over the open internet, confidentiality is required, and the inter-site459
transfer URL MUST be exposed over HTTPS (HTTP over server-side SSL).460

461
The inter-site transfer URL at the source web site provides a HTML page (or re-direct link) to the user462
browser (step (2) which includes the destination URL combined with a SAML artifact. The SAML artifact463
is carried as part of the destination URL query string:464

465
466

<destination> ::= https://destination_URL..?SAMLart=<artifact body>..467



10

468
469

The first interaction completes when the user explicitly (or implicitly, if responding to a re-direct) attempts470
to access the destination URL (step (3)) and delivers both the destination URL and the SAML artifact to (a471
web server at) the destination site. As this step is over the open internet, confidentiality is required, and the472
destination URL MUST be exposed over HTTPS (HTTP over server-side SSL).473

474
If the destination site is unable to process this information it MUST return a HTTP "400 Bad Request" error475
code to the browser. Otherwise, it MUST carry out the assertion pull interaction described below, obtain476
an assertion from the source site and make an access control judgement. If the user is refused access to the477
destination URL, it MUST return a HTTP “403 Forbidden” error code to the browser. Otherwise, the478
destination site should grant user access to the destination URL.479

480
481
482
483

Summary of (User) Browser Interaction with Source and Destination Site

Action HTTP Request HTTP Response
(1) User visits inter-site transfer URL GET

https://www.example.com/inter-
site-transfer.html

Web page with destination site
URL and artifact OR re-direct to
destination site URL and artifact

(3) User accesses destination URL
(or is re-directed to destination URL)

GET
https://destination_URL…?SAML
art=<artifact body>…

Requested URL contents OR
“400 Bad Request” OR
“403 Forbidden”

484
485
486

The assertion pull interaction consists of a SAML message exchange between source and destination site487
(step (4)) utilizing a registered SAML protocol binding. The destination site sends a <SAMLQuery>488
message to the source site, which includes information adequate to identify a SAML assertion at the source489
site. If the source site can find the required assertion it responds with a <SAMLQueryResponse> message490
which includes the desired assertion within it. Otherwise, it returns an "assertion not found" error to491
destination site. The selected SAML protocol binding MUST support confidentiality.492

493

3.1.3 SAML artifact structure494

495
The exact format and size of the SAML artifact is somewhat implementation dependent.We would require496
the following properties from any implementation:497

498
1. The SAML artifact must identify the source site to the destination site; the SAML artifact must identify499

the relevant assertion to the destination site.500
501

2. The SAML artifact MUST be a "one-time use ticket"; once the user completes step (3) above, any502
repeated GET https://destination_URL…?SAMLart=<artifact body>…must fail and the destination503
site MUST return HTTP code “403 Forbidden”.504

505
3. The SAML artifact MUST utilize adequate crypto so that it is difficult to forge.506

507
4. The SAML artifact MAY be authenticated by the source web site.508

509
We would expect there to be a large amount of variability in the design of artifact formats. This variability510
is accommodated by a mandatory two byte artifact type code in the proposed representation:511

512



11

513
<SAML_artifact> :=514

B64 representation of <TypeCode> <Remaining artifact>515
<TypeCode> := Byte1Byte2516

517

There are many possible implentations of <Remaining artifact> ([Core-Assertions-Examples,518
Shib-Impl]. Below, we describe an implementation called an elementary SAML artifact.519

520

3.1.4 Elementary SAML artifact521

522
<TypeCode> := 0x0001523
<RemainingArtifact> := <PartnerID> <AssertionID>524
<PartnerID> := byte1byte2byte3byte4525
<AssertionID> := byte1byte2byte3byte4byte5byte6byte7byte8526

527
<PartnerID> is a four byte value used by the destination site to determine source site identity. It is likely528
that such a value would have been agreed upon using some out-of-band technique between the source and529
destination site. <AssertionID> MUST be drawn from a random number sequence [RFC1750] generated by530
the source site and serves to identify the assertion at the source site. There is no authentication component531
to this profile.532

533

3.2 SOAP534

535
{PRIVATE "TYPE=PICT;ALT=Figure 2: SOAP Message Transfer"}536

537



12

3.2.1 Overview538
539

The SOAP profile for SAML is based on a single interaction between a sending party and a receiving party.540
The sending party adds with one or more SAML assertions to a SOAP document and sends the message to541
the receiving party. The receiving party processes the SAML assertion and either returns an error or goes542
on to process the message in the standard way. The message may be sent over any protocol for which a543
SOAP protocol binding is available [SOAP].544

545
SOAP provides a flexible header mechanism, which may be (optionally) used for extending SOAP546
payloads with additional information. A header entry is identified by its fully qualified element name,547
which consists of the namespace URI and the local name. All immediate child elements of the SOAP548
Header element MUST be namespace-qualified.549

550

3.2.2 SOAP Headers and Error Processing551

552
SAML assertions MUST be contained within the SOAP <Header> element contained within the SOAP553
<Envelope> element. Two standard SOAP attributes are available for use with header elements: actor and554
mustUnderstand. Use of the actor attribute is application dependent and no normative use is555
specified herein.556

557
The SOAP mustUnderstand global attribute can be used to indicate whether a header entry is558
mandatory or optional for the recipient to process. SAML assertions MUST have the mustUnderstand559
attribute set to 1; this ensures that a SOAP processor to which the message is directed must be able to560
successfully process the SAML assertions or return a SOAP message with <Fault> element as the561
message body. The returned <Fault> element takes the form:562

563
<Fault>564

<Faultcode>mustUnderstand</Faultcode>565
<Faultstring>…</Faultstring>566

</Fault>567
568
569

If the receiving party is able to successfully process the attached SAML assertions, and based on their570
contents does not further process the body of the SOAP message, it MUST return a SOAP message with571
<Fault> element as the message body. The returned <Fault> element takes the form:572

573
574

<Fault>575
<Faultcode>Client.SAML</Faultcode>576
<Faultstring>Subject not authorized</Faultstring>577

</Fault>578
579

3.2.3 Confidentiality580

In the absence of a mature [XML-Encryption] specification, confidentiality has to be ensured by selection581
of a SOAP protocol binding which preserves confidentiality. This would include, for example, HTTPS,582
S/MIME or some proprietary encryption scheme understood by both sender and recipient.583

584

3.2.4 Example585

586
The following example illustrates the addition of SAML assertions to a SOAP message:587
{PRIVATE "TYPE=PICT;ALT=Figure 3: SOAP document with inserted assertions"}588



13

<SOAP-ENV:Envelope xmlns:SOAP-589
ENV=http://schema.xmlsoap.org/soap/envelope/>590

591
<SOAP-ENV:Header xmlns:SAML=”…”>592

<SAML:Assertion mustUnderstand=1>…</SAML:Assertion>593
<SAML:Assertion mustUnderstand=1>…</SAML:Assertion>594

</SOAP-ENV:Header>595
…596
<SOAP-ENV:Header>597

598
<SOAP-ENV:Body>599

<message_payload/>600
</SOAP-ENV:Body>601
</SOAP-ENV:Envelope>602

603
604
605

3.2.5 Integrity of Assertion Attachment606

607
OPEN ISSUE: We have not addressed the issue of the integrity of assertion attachment for the composite608
SOAP message. The step of adding SOAP assertions to a SOAP message must itself be secured. Once609
assertions are packaged together with a business payload, some form of integrity check is required to610
ensure that the linkage between the two has not been modified. Any solution would require some extension611
to the assertion element schema as described in [draft-sstc-core-0.7].612

613
Two solutions have been proposed on the security services archive [attachment-integrity]:614

615
(1) a hash of the business payload should be placed in the assertion,616
(2) public key of the sending party is included in the assertion.617

618
In case (2), the entire package (assertion + payload) must further be signed using the sending parties private619
key. It is important to distinguish between this signing act and that of an issuer signing an assertion.620

621
Solution (1) has the advantage that it does not require a PKI but it does require that each assertion be622
obtained in the context of a specific business payload. It does not support the "re-use" of an assertion over623
multiple payloads.624

625

4 References626

627
[AuthXML] AuthXML: A Specification for Authentication Information in XML.628
http://www.oasis-open.org/committees/security/docs/draft-authxml-v2.pdf629

630
[BEEP] The Blocks Extensible Exchange Protocol Core631
http://www.normos.org/ietf/draft/draft-ietf-beep-framework-11.txt632

633
[Glossary] OASIS Security Services TC: Glossary.634
http://www.oasis-open.org/committees/security/docs/draft-sstc-hodges-glossary-02.html635

636
[S2ML] S2ML: Security Services Markup Language, Version 0.8a, January 8, 2001.637
http://www.oasis-open.org/committees/security/docs/draft-s2ml-v08a.pdf638

639
[draft-sstc-core-07.doc] Security Assertions Markup Language, Version 0.7, May 14th, 2001.640
http://www.oasis-open.org/committees/security/docs/draft-sstc-core-07.pdf641

http://schema.xmlsoap.org/soap/envelope/
http://www.oasis-open.org/committees/security/docs/draft-authxml-v2.pdf
http://www.oasis-open.org/committees/security/docs/draft-authxml-v2.pdf
http://www.normos.org/ietf/draft/draft-ietf-beep-framework-11.txt
http://www.normos.org/ietf/draft/draft-ietf-beep-framework-11.txt
http://www.oasis-open.org/committees/security/docs/draft-sstc-hodges-glossary-02.html
http://www.oasis-open.org/committees/security/docs/draft-s2ml-v08a.pdf
http://www.oasis-open.org/committees/security/docs/draft-s2ml-v08a.pdf


14

642
[Shib] Shiboleth Overview and Requirements643
http://middleware.internet2.edu/shibboleth/docs/draft-internet2-shibboleth-requirements-644
00.htmlhttp://middleware.internet2.edu/shibboleth/docs/draft-internet2-shibboleth-requirements-00.html645

646
[Shib-Impl] Ariel Glenn, David L. Wasley, A Possible Model for a Shibboleth Implementation, Version647
1.4,648
http://middleware.internet2.edu/shibboleth/docs/draft-glenn-shibboleth-model-00.pdf649

650
[RFC2616] Hypertext Transfer Protocol -- HTTP/1.1651

652
[RFC1750] Randomness Recommendations for Security.653

654
[SOAP] Simple Object Access Protocol (SOAP) 1.1 , W3C Note 08 May 2000655

656
[Core-Assertions-Examples] Core Assertions Architecture, Examples and Explanations,657
http://www.oasis-open.org/committees/security/docs/draft-sstc-core-phill-07.pdf658

659
[attachment integrity]660
http://lists.oasis-open.org/archives/security-services/200105/msg00028.html661

5 Appendix A662

663
http://support.microsoft.com/support/kb/articles/Q208/4/27.ASP664

665
The information in this article applies to:666
Microsoft Internet Explorer (Programming) versions 4.0, 4.01, 4.01 SP1, 4.01 SP2, 5, 5.01, 5.5667

668
SUMMARY669
Internet Explorer has a maximum uniform resource locator (URL) length of 2,083 characters, with a670
maximum path length of 2,048 characters. This limit applies to both POST and GET request URLs.671
If you are using the GET method, you are limited to a maximum of 2,048 characters (minus the number of672
characters in the actual path, of course).673
POST, however, is not limited by the size of the URL for submitting name/value pairs, because they are674
transferred in the header and not the URL.675
RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1, does not specify any requirement for URL length.676

677
REFERENCES678
Further breakdown of the components can be found in the Wininet header file. Hypertext Transfer Protocol679
-- HTTP/1.1 General Syntax, section 3.2.1680
Additional query words: POST GET URL length681
Keywords : kbIE kbIE400 kbie401 kbGrpDSInet kbie500 kbDSupport kbie501 kbie550 kbieFAQ682
Issue type : kbinfo683
Technology :684
-------------------------------------------------------------------------------------------------------------685
Issue: 19971110-3 Product: Enterprise Server686

687
Created: 11/10/1997 Version: 2.01688
Last Updated: 08/10/1998 OS: AIX, Irix, Solaris689
Does this article answer your question?690
Please let us know!691

692
Question:693
How can I determine the maximum URL length that the Enterprise server will accept? Is this configurable694
and, if so, how?695

http://middleware.internet2.edu/shibboleth/docs/draft-internet2-shibboleth-requirements-00.html
http://middleware.internet2.edu/shibboleth/docs/draft-glenn-shibboleth-model-00.pdf
http://support.microsoft.com/support/kb/articles/Q208/4/27.ASP


15

Answer:696
Any single line in the headers has a limit of 4096 chars; it is not configurable.697
-------------------------------------------------------------------------------------------------------------698
issue: 19971015-8 Product: Communicator, Netcaster699
Created: 10/15/1997 Version: all700
Last Updated: 08/10/1998 OS: All701
Does this article answer your question?702
Please let us know!703

704
Question:705
Is there a limit on the length of the URL string?706
Answer:707
Netscape Communicator and Navigator do not have any limit. Windows 3.1 has a restriction of 32kb708
(characters). (Note that this is operating system limitation.) See this article for information about Netscape709
Enterprise Server.710
-------------------------------------------------------------------------------------------------------------711

712


	Introduction
	Scope
	Contents
	Guidelines for Specifying Protocol Bindings and Profiles€
	Process Framework for Describing and Registering Protocol Bindings and Profiles

	Protocol Bindings
	HTTP
	Introduction
	Overview
	HTTP Binding
	Connections
	Request Messages
	Response Messages
	Authentication and Message Integrity
	XML Signature
	HTTP/S with Certificates

	Message Confidentiality
	Errors
	200 OK
	400 Bad Request
	403 Forbidden
	500 Internal Server Error



	SOAP 1.1
	Introduction
	Overview
	SOAP Binding
	Namespaces
	Headers
	SAML Queries
	SAML Query Responses
	Fault Codes
	Authentication and Integrity
	XML Digital Signature
	HTTP/S with Certificates

	Confidentiality



	Profiles
	Web Browser
	Overview
	Parties and Interactions
	SAML artifact structure
	Elementary SAML artifact

	SOAP
	Overview
	SOAP Headers and Error Processing
	Confidentiality
	Example
	Integrity of Assertion Attachment


	References
	Appendix A

