
1

OASIS SSTC Bindings Model 1

 2

Prateek Mishra, Netegrity 3
Bob Blakley, Tivoli 4
Scott Cantor, Ohio State University 5
Marlena Erdos, Tivoli 6
Chris Ferris, SUN Microsystems 7
Simon Godik, Crosslogix 8
Jeff Hodges, Oblix 9
<big><small>Tim Moses, Entrust 10
Bob Morgan, University of Washington 11
Evan Prodromou, Securant 12
Irving Reid, Baltimore 13
Krishna Sankar, Cisco 14
</small> 15
draft-sstc-bindings-model-07.doc 16

 17

7 December 2001 18

19

2

 19

OASIS SSTC Bindings Model.. 1 20

1 Revision History.. 5 21

2 Introduction ... 6 22

2.1 Scope ... 6 23

2.2 Contents... 7 24

2.3 Guidelines for Specifying Protocol Bindings and Profiles ... 7 25

2.4 Process Framework for Describing and Registering Protocol Bindings and Profiles......... 8 26

3 Protocol Bindings.. 8 27

3.1 SAML Binding for SOAP... 8 28

3.1.1 Overview. .. 9 29

3.1.1.1 Referenced Namespaces.. 9 30

3.1.1.2 Basic Operation ... 10 31

3.1.2 SOAP Headers... 10 32

3.1.3 SAML Requests .. 10 33

3.1.4 SAML Responses.. 11 34

3.1.5 Fault Codes.. 11 35

3.1.6 Authentication ... 11 36

3.1.7 Message Integrity .. 11 37

3.1.8 Confidentiality... 11 38

3.2 SAML use of the SOAP binding over HTTP.. 12 39

3.2.1.1 HTTP Headers... 12 40

3.2.1.2 Authentication ... 12 41

3.2.1.3 Message Integrity .. 12 42

3.2.1.4 Message Confidentiality.. 13 43

3.2.1.5 Security Considerations... 13 44

3.2.1.6 Error reporting... 13 45

3.2.1.7 Example: SAML over SOAP/HTTP... 13 46

4 Profiles .. 14 47

4.1 Web Browser Single Sign-On... 14 48

4.1.1 Overview ... 14 49

4.1.1.1 Relevant Technology... 17 50

4.1.2 Profile Overview ... 18 51

3

4.1.3 SAML Artifact Profile .. 18 52

4.1.3.1 SAML artifact format.. 18 53

4.1.3.2 Artifact Message Flows... 19 54

4.1.3.2.1 Step 1: HTTP Request... 21 55

4.1.3.2.2 Step 2: HTTP Response .. 21 56

4.1.3.2.3 Step 3: HTTP Request:.. 22 57

4.1.3.2.4 Step 6: HTTP Response .. 22 58

4.1.3.2.5 Steps 4 and 5 ... 23 59

4.1.3.3 Threat Model and Counter-Measures.. 24 60

4.1.3.3.1 Stolen artifact .. 24 61

4.1.3.3.2 Attacks on Steps 4 and 5 ... 25 62

4.1.3.3.3 Malicious Destination Site .. 25 63

4.1.3.3.4 Forged SAML artifact ... 26 64

4.1.3.3.5 Browser State Exposure .. 26 65

4.1.4 Form POST ... 26 66

4.1.4.1.1 Step 1: HTTP Request... 27 67

4.1.4.1.2 Step 2: HTTP Response .. 28 68

Step 3: HTTP Request... 29 69

4.1.4.1.3 Step 4: HTTP Response .. 30 70

4.1.4.2 Threat Model and Counter-Measures.. 30 71

4.1.4.2.1 Stolen assertion ... 30 72

4.1.4.2.2 MITM Attack .. 31 73

4.1.4.2.3 Forged Assertion ... 31 74

4.1.4.2.4 Browser State Exposure .. 31 75

4.2 SOAP Profile of SAML .. 32 76

4.2.1 Overview ... 32 77

4.2.2 SOAP Headers... 34 78

4.2.3 SOAP Errors.. 34 79

4.2.4 Security Considerations... 35 80

4.2.4.1 HolderOfKey... 35 81

4.2.4.1.1 Sender.. 35 82

4.2.4.1.2 Receiver... 36 83

4.2.4.1.3 Example... 37 84

4

4.2.4.2 SenderVouches.. 39 85

4.2.4.2.1 Sender.. 39 86

4.2.4.2.2 Receiver... 39 87

4.2.4.2.3 Example... 40 88

4.2.4.3 Additional Security Considerations .. 40 89

5 References ... 40 90

6 Appendix A ... 42 91

7 Appendix B ... 43 92

8 Appendix C ... 44 93

8.1 Web Browser Profile... 44 94

8.2 SAML SOAP Binding... 44 95

 96

97

5

1 Revision History 97

Revision Date Editor Title
0.5 18 August 2001 Prateek Mishra Bindings model draft
0.6 8 November 2001 Prateek Mishra Removed SAML HTTP binding,

removed artifact PUSH case, updated
SOAP profile based on Blakley note

0.7 3 December 2001 Re-structured based on F2F#5
comments; separated discussion and
normative language

 98

 99

 100

 101

 102

103

6

2 Introduction 103

2.1 Scope 104

<big>Other Oasis Security Services TC subcommittees (e.g. Core Assertions and Protocol) are 105
producing a specification of SAML security assertions and one or more SAML</big><big> 106
</big><big>request-response message exchanges. 107
</big> 108

<big>The high-level goal of this document is to specify how: 109
 </big> 110

<big>(1) SAML request-response message exchanges are mapped into standard messaging or 111
communication protocols. Such </big><big></big><big>mappings are called SAML 112
</big><big>protocol bindings. </big><big>An instance of mapping SAML request-response 113
message exchanges into a specific protocol <FOO> is termed a </big><big>SAML 114
<FOO> binding</big><big>. 115

 116

Example: A SAML HTTP binding describes how SAML Query and Response message 117
exchanges are mapped into HTTP message exchanges. A SAML SOAP binding describes how 118
SAML Query and Response message exchanges are mapped into SOAP message 119
exchanges.</big><big> 120
</big> 121

<big>(2) SAML security assertions are embedded in or combined with other objects (e.g. files 122
of various types, protocol data units of communication protocols) by an originating party, 123
</big><big></big><big>communicated from the originating site to a destination, and 124
subsequently processed at the destination. A set of rules</big><big> </big><big>describing 125
how to embed and extract SAML assertions into a framework or protocol is termed a 126
</big><big>profile</big><big> for SAML. A set of rules for embedding and extracting SAML 127
assertions into a </big><big></big><big>specific class of <FOO> objects is termed a 128
</big><big><FOO> profile</big><big> of SAML. 129
 130

Example: A SOAP profile for SAML describes how SAML assertions may be added to SOAP 131
messages, the interaction between SOAP headers and SAML assertions, description of SAML-132
related error states at the destination. 133

 134

</big> 135

<big>(1) and (2) MUST be specified in sufficient detail to yield interoperability when 136
independently implemented. 137
</big> 138

7

2.2 Contents 139

<big>The remainder of this document is in four sections: 140
</big> 141

• <big>Guidelines for the specification of protocol bindings and profiles. The intent here is 142
to provide a checklist that MUST or SHOULD be filled out when developing a protocol 143
binding or profile for a specific protocol or framework. 144
 </big> 145

• <big>A process framework for describing and registering proposed and future protocol 146
bindings and profiles. 147
 </big> 148

• <big>Protocol bindings for selected protocols. Bindings MUST be specified in enough 149
detail to satisfy the inter-operability requirement. 150
 </big> 151

• <big>Profiles for selected protocols and frameworks. Profiles MUST be specified in 152
enough detail to satisfy the inter-operability requirement. 153
</big> 154

2.3 Guidelines for Specifying Protocol Bindings and 155

Profiles<big> </big> 156

 157
<big>Issues that MUST be identified in each protocol binding and profile:</big><big> 158
</big><big></big><big></big><big> 159
</big><big>(1) Each binding or profile must be characterized as set of interactions between 160
parties. Any restriction on applications used by each party and the protocols involved in each 161
interaction must be explicitly called out.</big><big> 162
</big><big> 163
</big><big>(2) Identification of parties involved in each interaction: how many parties are 164
involved in the interaction? Can intermediaries be involved? 165
</big> 166

<big>(3) Authentication of parties involved in each interaction: Is authentication required? What 167
types of authentication are acceptable?</big><big> 168
</big><big> 169
</big><big>(4) Support for message integrity: what mechanisms are used to ensure message 170
integrity? 171

 172
(5) Support for Confidentiality: can a third party view the contents of SAML messages and 173
assertions? Does the binding or profile require confidentiality? What mechanisms are 174
recommended for securing confidentiality? </big><big></big><big> 175
</big><big> 176
</big><big>(6) Error states: characterization of error states at each participant, especially those 177
that receive and process SAML assertions or messages.</big> 178

8

 179

(7) Security considerations: including analysis of threats and description of counter-measures. 180

 181

2.4 Process Framework for Describing and Registering 182

Protocol Bindings and Profiles 183

 184
<big>When a profile or protocol binding is registered, the following information MUST be 185
supplied:</big> 186

<big> </big> 187

1. <big>Identification: specify a URI that authoritatively identifies this profile or protocol 188
binding. 189
</big> 190

2. <big>Contact information: specify the postal and electronic contact information for the 191
author of the profile or protocol binding. 192
</big> 193

3. <big>Description: the description SHOULD follow the guidelines for profiles and 194
protocol bindings given above. 195
</big> 196

4. <big>Updates: references to previously registered profiles or bindings that the current 197
entry improves or obsoletes. 198
 199

The Security Services Technical Committee (SSTC) at OASIS (http://www.oasis-open.org) 200
will maintain a respository of submitted bindings and profiles titled “Additional Bindings and 201
Profiles”. The SSTC will also provide instructions for submission of bindings and profiles 202
by Oasis members.</big><big> 203
</big> 204

 205

 206

<big>Whe</big> 207

 208

3 Protocol Bindings 209

 210

3.1 SAML Binding for SOAP 211

 212

9

SOAP (Simple Object Access Protocol) 1.1 is a standard proposed by Microsoft, IBM, and other 213
contributors for RPC-like interactions using XML. It defines a mechanism for defining messages 214
in XML, and for sending them over HTTP. Since its introduction, it has attracted much 215
attention, and it is expected to provide the foundation for many future Web-based services. 216

 217

SOAP 1.1 [SOAP1.1] has three main parts. One is a message format that uses an envelope and 218
body metaphor to wrap XML data for transmission between parties. The second is a restricted 219
definition of XML data for making strict RPC-like calls through SOAP, without using a 220
predefined XML schema. Finally, it provides a binding for SOAP messages to HTTP and 221
extended HTTP. 222

 223

This document describes how to use SOAP to send and receive SAML messages. An additional 224
section of the SAML specification ("SOAP Profile") defines how to use SAML as an 225
authentication mechanism for SOAP. In other words, the former describes using SAML over 226
SOAP, and the latter describes using SAML for SOAP. 227

 228

Like SAML, SOAP can be used over multiple underlying transports. This document describes 229
protocol independent aspects of the SAML SOAP binding and calls out the use of HTTP 230
protocol as mandatory-to-implement. It includes recomendations for HTTP specifics, including 231
HTTP headers, error reporting, authentication, message integrity, and confidentiality. 232

[Issue: Bob B wanted to include: “This description is general for SOAP and may use any 233
protocol”. I think paragraph above says the same thing]. 234

 235

SOAP over HTTP does not cover security considerations. Refer to SAML security 236
considerations document [SEC-CONS] for details. 237

3.1.1 Overview. 238

3.1.1.1 Referenced Namespaces 239

 240

SOAP envelope namespace: 241

SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope 242

 243

SAML core assertions namespace: 244

saml=http://www.oasis-open.org/committees/security/docs/sstc-schema-assertion.xsd 245

 246

SAML protocol namespace: 247

samlp=http://www.oasis-open.org/committees/secutiry/docs/sstc-schema-protocol.xsd 248

10

 249

3.1.1.2 Basic Operation 250

 251

SOAP messages consist of three elements: an envelope, header data, and a message body. SAML 252
messages (<samlp:Request> and <samlp:Response>) MUST be enclosed within the SOAP 253
message body. 254

 255

SOAP 1.1 also defines an optional data encoding system. This system is not used within the 256
SAML SOAP binding. This means that SAML messages can be transported using SOAP without 257
re-encoding from the "standard" SAML schema to one based on SOAP encoding. 258

 259

The system model used for SAML conversations over SOAP is a simple request-response model. 260
A sender transmits a SAML <samlp:Request> within the body of a SOAP message to a receiver. 261
The receiver processes the SAML request and returns a <samlp:Response> within the body of 262
another SOAP message. 263

 264

3.1.2 SOAP Headers 265

 266

A SAML sender in a SAML conversation over SOAP MAY add arbitrary headers to the SOAP 267
message. SAML 1.0 does not define any additional SOAP headers. 268

[Rationale: some SOAP software and libraries may add headers to a SOAP message that are out 269
of the control of the SAML-aware process. Also, some headers may be needed for underlying 270
protocols that require routing of messages.] 271

A SAML receiver MUST NOT require any headers for the SOAP message. 272

[Rationale: requiring extra headers will cause fragmentation of the standard and will hurt 273
interoperability.] 274

3.1.3 SAML Requests 275

 276

A SAML request <samlp:Request> is stored as the (only) child of the <SOAP-ENV:body> 277
element of a SOAP message. The sender MUST NOT include more than one SAML request per 278
SOAP message or include any additional XML elements in the SOAP body. 279

On receiving a SAML request as a SOAP message, the SAML receiver MUST return either a 280
SAML response <samlp:Response> or a SOAP fault code. 281

 282

11

3.1.4 SAML Responses 283

 284

A SAML response <samlp:Response> MUST appear as the (only) child of the <SOAP-285
ENV:body> element in a SOAP message. The SOAP message MUST contain exactly one 286
SAML response element. The SAML receiver MUST NOT include any additional XML 287
elements in the SOAP body. 288

On receiving a SAML response in a SOAP message, the SAML sender MUST NOT send a fault 289
code or other error messages to the receiver. 290

[Rationale: The format for the message interchange is a simple request-response. Adding 291
additional error conditions, notifications, etc. would needlessly complicate the protocol.] 292

 293

3.1.5 Fault Codes 294

 295

If a receiver cannot, for some reason, process a SAML request, it should return a SOAP fault 296
code. SOAP Fault codes MUST NOT be sent for errors within the SAML problem domain, e.g. 297
inability to find extension schema or as a signal that the subject is not authorized to access 298
resource in an authorization query. 299

[Issue: If valid SAML requests can not be extracted, SOAP fault code must be returned] 300

Section 4.1 of [SOAP1.1] describes SOAP faults and fault codes. 301

3.1.6 Authentication 302

Authentication of both sender and receiver is optional and depends upon the environment of use. 303
Authentication protocols available from the underlying substrate protocol MAY be utilized to 304
provide authentication. Section 3.1.9.2 describes authentication in the HTTP environment. 305

3.1.7 Message Integrity 306

Message integrity of both request and response is optional and depends on the environment of 307
use. The security layer in the underlying substrate protocol MAY be used to ensure message 308
integrity. 309

3.1.8 Confidentiality 310

 311

Confidentiality of both request and response is optional and depends on the environment of use. 312
The security layer in the underlying substrate protocol MAY be used to ensure message 313
confidentiality. 314

 315

12

 316

3.2 SAML use of the SOAP binding over HTTP. 317

 318

 Any SAML processor implementing the SAML SOAP binding MUST implement SAML over 319
SOAP over HTTP. 320

The HTTP binding for SOAP is described in Section 6.0 of [SOAP1.1]. It requires the use of a 321
SOAPAction header as part of a SOAP HTTP request. A SAML receiver MUST NOT depend on 322
the value of this header. A SAML sender MAY set the value of SOAPAction header to 323
“http://www.oasis-open.org/committees/security”. 324

3.2.1.1 HTTP Headers. 325

 326

HTTP proxies MUST NOT cache responses carrying SAML assertions. 327

When using HTTP 1.1: 328

(1) a SAML receiver MUST NOT include Cache-Control header field in the response UNLESS 329
its value is set to no-store. 330

(2) Expires response header field SHOULD NOT be included, UNLESS it is disabled by Cache-331
Control header with the value of no-store. 332

There are no other restrictions on HTTP headers. 333

3.2.1.2 Authentication 334

 SAML sender and SAML receiver MUST implement following authentication methods: 335

1. No client authentication. 336

2. HTTP basic client authentication [rfc2617] with and without SSLv3 or TLS 1.0. 337

3. HTTP over SSLv3 or TLS 1.0[Appendix C] server authentication with a server-side 338
certificate. 339

4. HTTP over SSLv3 or TLS 1.0 [Appendix C] client authentication with a client-side certificate. 340

Should a SAML receiver utilize SSLv3 or TLS 1.0 [Appendix C] it MUST use a server-side 341
certificate. 342
 343

3.2.1.3 Message Integrity 344

SAML receivers MUST implement message integrity by utilizing HTTP over SSLv3 or TLS1.0 345
[AppendixC] with a server-side certificate. 346

13

3.2.1.4 Message Confidentiality 347

When message confidentiality is required, HTTP over SSLv3 or TLS 1.0 [Appendix C] with a 348
server-side certificate MUST be used. 349

3.2.1.5 Security Considerations 350

Each combination of authentication-message integrity-confidentiality should be analyzed for 351
vulnerability in the context of deployment environment. See the security considerations 352
document [saml-sec-cons] for detailed discussion. 353

[Rfc2617] provides descriptions of possible attacks in HTTP environment using basic and 354
authentication schemes. 355

3.2.1.6 Error reporting 356

A SAML receiver that refuses to perform a SAML message exchange with the sender it should 357
return a "403 Forbidden" response. In this case content of the HTTP body is undefined. 358

As described in [SOAP1.1 section 6.2], in case of a SOAP error while processing SOAP request 359
the SOAP HTTP server MUST return a "500 Internal Server Error" response and include a 360
SOAP message in response containing a SOAP Fault element. This type of error should be 361
returned for SOAP related errors detected before control is passed to the SAML processor, or 362
when the SOAP processor reports an internal error. Examples include situations when soap 363
namespace is incorrect, SAML schema can not be located, SOAP message signature does not 364
validate, etc. 365

In case of a SAML processing error the SOAP HTTP server MUST respond with "200 OK" and 366
include SAML specified error description as the only child of the SOAP-ENV:Body element. 367
For complete list of SAML error codes see [SAML-CoreDoc]. 368
 369

3.2.1.7 Example: SAML over SOAP/HTTP 370

 371

REQUEST: 372

 373

POST /SamlService HTTP/1.1374
Host: www.example.com375
Content-Type: text/xml376
Content-Length: nnn377
SOAPAction: http://www.oasis-open.org/committees/security378
<SOAP-ENV:Envelope379

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">380
<SOAP-ENV:Body>381

<samlp:Request xmlns:samlp="..." xmlns:saml="..."382
xmlns:ds="...">383

<ds:Signature> ... </ds:Signature>384
<samlp:AuthenticationQuery>385

http://www.whatever.com/
http://www.oasis-open.org/committees/security

14

...386
</samlp:AuthenticationQuery>387

</samlp:Request>388
</SOAP-ENV:Body>389

</SOAP-ENV:Envelope>390

391

RESPONSE:392
393

HTTP/1.1 200 OK394
Content-Type: text/xml395
Content-Length: nnnn396
<SOAP-ENV:Envelope397

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">398
<SOAP-ENV:Body>399

<samlp:Response xmlns:samlp="..." xmlns:saml="..."400
xmlns:ds="..." samlp:StatusCode="Success">401
<ds:Signature> ... </ds:Signature>402
<saml:AssertionSimple>403

<saml:AuthenticationStatement>404
...405

</saml:AuthenticationStatement>406
</saml:AssertionSimple>407

</samlp:Response>408
</SOAP-ENV:Body>409

</SOAP-ENV:Envelope>410

 411

 412

 413

 414

4 Profiles</big> 415

4.1 Web Browser Single Sign-On 416

4.1.1 Overview 417

 418

The web browser profile utilizes terminology taken from Use Case 1 and Scenario 1-1 of the 419
SAML Requirements document. In this use-case, a web user authenticates with a source site. 420
The web user then uses a secured resource at a destination site, without directly authenticating to 421
the destination site. 422

 423
We assume that <big>the user is utilizing a standard commercial browser and has authenticated 424
to a source site. Further, the source site has some form of security engine in place that can track 425
locally authenticated users [WEB-SSO]. Typically, this takes the form of a session which may be 426

15

represented by an encrypted cookie or an encoded URL or by the use of some other technology 427
[SESSION]. This is a substantial requirement but one which is met by a large class of security 428
engines. 429

 430

 431

16

 432

Browser Source Site Destination Site

1. User authenticates to
Source Site

3. User accesses assertion consumer service with
information about SAML assertions and target

2. User accesses inter-
site transfer service with

target information

4. User obtains access to desired resource OR is
given an error message

Figure 1: Web Browser Single Sign-On

17

At some point, the user attempts to access a target resource available from the destination site 433
and subsequently through one or more steps (e.g., re-direction) arrives at an inter-site transfer 434
service1 at the source site. Starting from this point, the SAML web browser profiles describe a 435
canonical sequence of HTTP protocol exchanges that transit the user browser to a distinguished 436
assertion consumer service at the destination site. Information about SAML assertions associated 437
with the user and the desired target are conveyed from the source to the destination site by the 438
protocol exchange. 439
 440

The destination site can examine both the assertions and target information and determine 441
whether to allow access to the target resource, thereby achieving web single sign-on for 442
authenticated users originating from a source site. Often, the destination site also utilizes a 443
standard security engine that will create and maintain a session, possibly utilizing information 444
contained in the source site assertions, for the user at the destination site. 445

4.1.1.1 Relevant Technology 446

We describe two HTTP-based techniques available for conveying information from one site to 447
another via a stock commercial browser. We do not discuss the use of cookies, as these impose 448
the limitation that both the source and destination site belong to the same "cookie domain". 449
 450

• Form POST: SAML assertions are uploaded to the user browser within a HTML Form 451
[HTML] and conveyed to the destination site as part of a HTTP POST payload when the user 452
“submits” the form, 453
 454

• SAML Artifact: A “small”, bounded-size SAML artifact, which unambiguously identifies an 455
assertion to the source site, is carried as part of a URL query string and conveyed via re-456
direction to the destination site; the destination site must acquire the referenced assertion by 457
some further steps. Typically, this involves the use of a registered SAML protocol binding. 458

 459

The need for a “small’’ SAML artifact is motivated by restrictions on URL size imposed by 460
commercial web browsers. While [RFC2616] does not specify any restrictions on URL length, in 461
practice commercial web browsers and </big><big></big><big>application servers impose size 462
constraints on URLs (maximum size of approximately 2000 characters [Appendix A]). Further, 463
as developers will need to estimate and set aside URL ``real-estate’’ for the artifact, it is 464
important that the artifact have a bounded size, i.e. with predefined maximum size. These 465
measures ensure that the artifact can be reliably carried as part of the URL query string and 466
thereby transferred from source to destination site. 467

 468

 469

1 One or more URLs may be associated with such a service.

18

4.1.2 Profile Overview 470

 471

Two distinct web browser profiles are described: one based on use of artifacts and one based on 472
form POST. For each type of profile, a section describing the threat model and relevant counter-473
measures is also included. 474

4.1.3 SAML Artifact Profile 475

4.1.3.1 SAML artifact format 476

 477

Depending on upon the level of security desired and associated profile protocol steps, many 478
viable architectures may be developed for the SAML artifact ([Core-Assertions-Examples, Shib-479
Marlena]. We accommodate variability in the architecture by a mandatory two byte artifact type 480
code in the representation: 481
 482
<SAML_artifact> :=483

B64 representation of <TypeCode> <RemainingArtifact>484
<TypeCode> := Byte1Byte2 485

 486
 487

The following fixed size artifact is mandatory to implement for any implementation of the 488
SAML artifact profile. 489

 490

491
492

<TypeCode> := 0x0001493
<RemainingArtifact> := <SourceID> <AssertionHandle>494
<SourceID> := 20 byte sequence495
<AssertionHandle> := 20 byte sequence496

497
<SourceID> is a twenty byte sequence used by the destination site to determine source site 498
identity. We assume that the destination site will maintain a table of sourceID values as well as 499
the URL (or address) for the corresponding SAML query service. This information is 500
communicated between the source and destination sites using an out-of-band technique. On 501
receiving the SAML artifact, the destination site determines if the <SourceID> belongs to a 502
known source site, retrieves the “assertion lookup” service information and invokes the service 503
with the <SAML_artifact> and other values as an argument. 504

 505

Any two source sites with a common destination site MUST use distinct <SourceID> values. 506
Construction of <AssertionHandle> values is governed by the principle that they should have no 507
predictable relationship to the contents of the referenced assertion at the source site and should 508
also be difficult to “guess”. 509

19

 510

The following practices are RECOMMENDED for the creation of SAML artifacts at source 511
sites: 512
 513

(1) Each source site selects a single Identification URL which it communicates to all potential 514
destination sites. The domain name used within the identification URL MUST be administered 515
by source site. 516
 517

(2) The source site constructs the <SourceID> component of the artifact by taking the SHA-1 518
[SHA-1] hash of the identification URL. 519
 520

(3) The value should be constructed from a pseudo-random number sequence [RFC1750] 521
generated by the source site. The sequence must consist of values of size at least eight bytes. 522
 523

4.1.3.2 Artifact Message Flows 524

</big> 525

<big>This profile consists of a single interaction between three parties (source site, user 526
equipped with a browser, destination site), with a nested sub-interaction between two parties 527
(source site, destination site). The interaction sequence is diagrammed in Figure 1. 528
 529

Terminology from [RFC1738] is used to describe components of a URL. An HTTP URL has the 530
form: 531

 532

 533

http://<HOST>:<port>/<path>?<searchpart>534

 535

In what follows, we will specify certain portions of the searchpart component of the URL. 536
Ellipses will be used to indicate additional but unspecified portions of the searchpart. 537

 538

HTTP requests and responses may be drawn from HTTP 1.1 [RFC2068] or HTTP 1.0 539
[RFC1945]. Distinctions between the two are drawn only when necessary. 540

 541

http://<host/

20

 542

 543

 544
 545
 546

 547

 548

Browser Source Site Destination Site

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

21

4.1.3.2.1 Step 1: HTTP Request 549

 550
No normative form is given for Step 1. It is RECOMMENDED that the HTTP request take the 551
form: 552
 553

 554
GET http://<inter-site transfer host name and path>?…TARGET=<Target>…<HTTP-Version>555
<other HTTP 1.0 or 1.1 Components>556

557
 558

Notes: 559
 560

1. <inter-site transfer host name and path> refers to the host name, port number and path 561
components of an inter-site transfer URL of the source site. 562
 563

2. The Target=<Target> name-value pair occurs in the searchpart and is used to convey 564
information about the desired target resource at the destination site. 565

 566

4.1.3.2.2 Step 2: HTTP Response 567

 568

The HTTP Response MUST take the form: 569

 570
<HTTP-Version> 302 <Reason Phrase>571
<other headers>572
Location : http://<assertion consumer host name and path>?<SAML searchpart>573
<other HTTP 1.0 or 1.1 Components>574

575

 576

Notes: 577

1. <assertion consumer host name and path> refers to the host name, port number and path 578
components of an assertion consumer URL at the destination site. 579
 580

2. <SAML searchpart>= …TARGET=<Target>…SAMLart=<SAML artifact> … 581

A single target description MUST be included in the SAML searchpart component. At least one 582
SAML artifact MUST be included in the SAML searchpart component; multiple SAML artifacts 583
MAY be included. If more than one artifact is carried within <SAML searchpart>, all the 584
artifacts MUST have the same SourceID. 585

 586

3. HTTP 1.1 and HTTP 1.0 recommend the use of status code 302 to indicate “the requested 587
resource resides temporarily under a different URI”. The response may also include 588

22

additional headers and an (optional) message body as described in FRC2068 and 589
RFCXXXX. 590

 591

4. Confidentiality and message integrity MUST be maintained in steps 1 and 2. 592
 593

5. It is RECOMMENDED that the inter-site transfer URL be exposed over SSLv3 or TLS 1.0 594
[Appendix C]. Otherwise, the artifact(s) returned in step 2 will be available in plain text to 595
any attacker. 596
 597

4.1.3.2.3 Step 3: HTTP Request: 598

 599

The HTTP request MUST take the form: 600

 601
GET http://<assertion consumer host name and path>?<SAML searchpart> <HTTP-Version>602
<Other HTTP 1.0 or 1.1 request components>603

 604
Notes: 605

 606

1. <assertion consumer host name and path> refers to the host name, port number and path 607
components of an assertion consumer URL at the destination site. 608
 609

2. <SAML searchpart>= …TARGET=<Target>…SAMLart=<SAML artifact> … 610

A single target description MUST be included in the SAML searchpart component. At least one 611
SAML artifact MUST be included in the SAML searchpart component; multiple SAML artifacts 612
MAY be included. If more than one artifact is carried within <SAML searchpart>, all the 613
artifacts MUST have the same SourceID. 614
 615

3. Confidentiality and message integrity MUST be maintained for the HTTP request in Step 5. 616
 617

4. It is RECOMMENDED that the assertion consumer URL be exposed over SSLv3 or TLS 1.0 618
[Appendix C]. Otherwise, the artifact(s) transmitted in Step 3 will be available in plain text to 619
any attacker. 620

 621

 622

4.1.3.2.4 Step 6: HTTP Response 623

 624

23

No normative form is given for the HTTP response in Step 6. Implementations SHOULD 625
provide some form of helpful error-message in the case where access to resources at the 626
destination site is disallowed. 627
 628

4.1.3.2.5 Steps 4 and 5 629

1. These steps MUST utilize a SAML protocol binding for a SAML message exchange between source 630
and destination site. 631
 632

2. The destination site MUST send a <samlp:Request> message to the source site, querying 633
against all of the SAML artifacts delivered to the destination site in step 3. 634

 635

3. If the source site can find or construct the requested assertions it responds with a 636
<samlp:Response> message with the requested assertions. Otherwise, it returns an 637
appropriate error, as defined within the selected SAML binding, to the destination site. 638
 639

4. In the case where the source site returns assertions within <samlp:Response>, it MUST 640
return exactly one assertion for each SAML artifact found in the corresponding 641
<samlp:Request> element. The case where fewer or greater number of assertions is returned 642
within the <samlp:Respond> element MUST be treated as an error state by the destination 643
site. 644
 645

5. The source site MUST implement a “one-time request” property for any SAML artifact. 646
Many simple implementations meet this constraint, such as deleting the relevant assertion 647
from persistent storage at the source site after one lookup. Should a SAML artifact is 648
presented to the source site again, the source site MUST return the same message as when it 649
is queried with an unknown artifact. 650
 651

6. The selected SAML protocol binding MUST provide confidentiality, message integrity and 652
bilateral authentication. The source site MUST implement the SAML SOAP binding with 653
support for confidentiality (SSLv3 or TLS 1.0 [Appendix C]); support for other protocol 654
bindings is not mandatory. 655
 656

7. [pm1]The source site MUST return an error response if it receives a <samlp:Request> 657
message from a destination site X containing an artifact issued by the source site to some 658
other destination site Y. One way to implement this feature is to have source sites maintain a 659
list of artifact and destination site pairs. 660
 661

8. We will refer to an assertion with one or more authentication statements and a <Conditions> 662
element, with NotBefore and NotOnOrAfter attributes present, as a SSO (single-sign on) 663
assertion. At least one of the SAML assertions returned to the destination site MUST be a 664
SSO assertion. 665
 666

24

9. Authentication statements MAY be contained within one or more returned assertions. 667
 668

10. The <saml:ConfirmationMethod> element of each assertion MUST be set to SAML Artifact 669
(5.1.1 of [Core-20]). 670
 671

4.1.3.3 Threat Model and Counter-Measures 672

 673

This section utilizes materials from [Shib-Marlena] and [Rescorla-Security]. 674

4.1.3.3.1 Stolen artifact 675

Threat: 676

 677

If an eavesdropper (Eve) can copy the real user’s SAML artifact, then the Eve could construct a 678
URL with the real user’s SAML artifact and be able to impersonate the user at the destination 679
site. 680
 681
Counter-Measure: 682
 683

As indicated in Steps 1, 2, 5 and 6, confidentiality must be provided whenever an artifact is 684
communicated between a site and the user’s browser. This provides protection against an Eve 685
gaining access to a real user’s SAML artifact. 686
 687
Should Eve defeat the measures used to ensure confidentiality, additional counter-measures are 688
available. Recall that SAML assertions communicated through Step 5 must always include an 689
SSO assertion. SSO assertions SHOULD have short validity periods (values for NotBefore and 690
NotOnOrAfter attributes) consistent with successful functioning of the profile. This ensures that 691
a stolen artifact can only be used successfully within a small time window. 692
 693
Source and destination sites SHOULD make some reasonable effort to ensure that clock settings 694
are both sites differ by at most a few minutes. Many forms of time synchronization service are 695
available, both over the Internet and from proprietary sources. 696
 697
RECOMMENDATIONS for the Source Site: 698
 699
(a) Source sites SHOULD track the time difference between when a SAML artifact is generated 700
and placed on a URL line and when the destination site “calls back” for an assertion. A 701
maximum time limit of a few minutes is recommended. Should an assertion be requested by a 702
destination site query beyond this time limit, a SAML error should be returned by the source site. 703
 704
(b) SSO assertions MAY BE created by the source site either when the corresponding SAML 705
artifact is created or when the destination site “calls back” for an assertion. In each of these 706

25

cases, the validity period of the assertion should be set appropriately (longer in the former case, 707
shorter for the latter). 708
 709
(c) values for NotBefore and NotOnOrAfter attributes of SSO assertions SHOULD have the 710
shortest possible validity period consistent with successfully communication of the assertion 711
from source to destination site. This is typically on the order of a few minutes. 712
 713

 714
RECOMMENDATIONS for Destination Site: 715
 716
(a) The destination site MUST check the validity period of all assertions obtained from the 717
source site and reject expired assertions. A destination site MAY choose to implement a stricter 718
test of validity for SSO assertions, such as for example, requiring the IssueInstant attribute 719
value or AuthenticationInstant attribute value of the assertion to be within a few minutes of 720
the time at which the assertion is received at the destination site. 721
 722
(b) Authentication statements MAY include an <AuthenticationLocality> element with the 723
IP address of the user. The destination site MAY check the browser IP address against the IP 724
address contained in the authentication statement. 725
 726

4.1.3.3.2 Attacks on Steps 4 and 5 727
 728

Threat: The message exchange on steps 4 and 5 may be attacked in a variety of ways, including: 729
artifact or assertion theft, replay, message insertion or modification, MITM (man-in-the-middle 730
attack). 731
 732
Counter-Measure: The requirement for the use of a SAML protocol binding with the properties 733
of bilateral authentication, message integrity and confidentiality obviates these attacks. 734

4.1.3.3.3 Malicious Destination Site 735

 736
Threat: Since the destination site obtains artifacts from the user, a malicious site could 737
impersonate the user at some new destination site. The new destination site would obtain 738
assertions from the source site and believe the malicious site to be the user. 739
 740
Counter-Measure: 741
 742
The new destination site will need to authenticate itself to the source site so as to obtain the 743
SAML assertions corresponding to the SAML artifacts. There are two cases: 744
 745
(a) If the new destination site has no relationship with the source site, it will be unable to 746
authenticate and this step will fail. 747

26

 748
(b) If the new destination site has an existing relationship with the source site, the source site will 749
determine that artifacts are being queried against from a site other than the one to which the 750
artifacts were issued. In such a case, the source site will not provide the assertions to the new 751
destination site. 752

 753

4.1.3.3.4 Forged SAML artifact 754

Threat: A MAL (malicious user) could forge a SAML artifact. 755
 756

Counter-Measure: 757

A SAML artifact must be constructed in such a way that it is very hard to guess and Section 758
4.1.3 provides specific recommendations in this space. A MAL could attempt to repeatedly 759
“guess” a valid SAML artifact value (one that corresponds to an existing assertion at a source 760
site) but given the size of the value space would likely require a very large number of failed 761
attempts. A source site SHOULD implement measures to ensure that repeated attempts at 762
querying against non-existent artifacts are monitored. 763

4.1.3.3.5 Browser State Exposure 764

Threat: The SAML artifact profile involves “upload” of SAML artifacts to the web browser from 765
a source site. This information is available as part of the web browser state and is usually stored 766
in persistent storage on the user system in a completely unsecured fashion. The threat here is that 767
the artifact may be “re-used” at some later point in time. 768
 769

Counter-Measure: The “one-use” property of SAML artifacts ensures that they may not be re-770
used from a browser. Due to the recommended short life-times of artifacts and mandatory SSO 771
assertions, it is difficult to steal an artifact and re-use it from some other browser at a later time. 772

4.1.4 Form POST 773

 774

Figure 2 provides a description of a web browser profile based upon the use of “POST” to 775
convey SAML assertions from source to destination site [S2ML, Anders-Browser-Profile]. 776

 777

 778

 779

 780

 781

 782

 783

27

 784

 785

4.1.4.1.1 Step 1: HTTP Request 786

 787
No normative form is given for Step 1 (HTTP request). It is RECOMMENDED that the request 788
take the form: 789
 790

 791
GET http://<inter-site transfer host name and path>?…TARGET=<Target>…<HTTP-Version>792
<other HTTP 1.0 or 1.1 Components>793

794
 795

Browser Source Site Destination Site

Step 1

Step 2

Step 3

Step 4

28

Notes: 796
 797

<inter-site transfer host name and path> refers to the host name, port number and path 798
components of an inter-site transfer URL at the source site. 799

 800

4.1.4.1.2 Step 2: HTTP Response 801

 802

The HTTP Response in MUST take the form: 803

 804
<HTTP-Version> 200 <Reason Phrase>805
<additional HTTP 1.0 or 1.1 Components>806

807

 808

Notes: 809

 810
1. <additional HTTP 1.0 or 1.1 Components> MUST include an HTML Form [Chapter 17, HTML 811
4.01] with the following Form body: 812

 813
<Body>814
<FORM Method=”Post” Action=”<assertion consumer host name and path>”>815
<INPUT TYPE=”Submit” NAME=”button” Value=”Submit”>816
<INPUT TYPE=”hidden” NAME=”SAMLAssertion” Value=”B64(<assertion>)”>817
…818
<INPUT TYPE=”hidden” NAME=”TARGET” Value=”<Target>”>819
</Body> 820

 821

2. <assertion consumer host name and path> refers to the host name, port number and path 822
components of an assertion consumer URL at the destination site. 823
 824

3. At least one SAML assertion MUST be returned included within the FORM body with the 825
control name SAMLAssertion; multiple SAML assertion MAY be included. A single target 826
description MUST be included with the control name TARGET.827

828

3. Every SAML assertion MUST be digitally signed following the guidelines given in [SAML-829
DSIG-Profile]. 830

 831

4. Confidentiality and message integrity MUST be maintained for steps 1 and 2. It is 832
RECOMMENDED that the inter-site transfer URL exposed over SSLv3 or TLS 1.0 [Appendix 833
C]. Otherwise, the assertion(s) returned on (step (2)) will be available in plain text to any 834
attacker. 835

29

Step 3: HTTP Request 836

 837

In step 3, the browser submits a form and creates the following HTTP request. Appendix B 838
describes a technique for form submission which avoids user input. 839

 840

The HTTP request MUST include the following components: 841

 842
POST http://<assertion consumer host name and path>843
<Other HTTP 1.0 or 1.1 request components>844

 845

Notes: 846
 847
1. 848
<Other HTTP 1.0 or 1.1 request components>849

Consists of the form data set derived by the browser processing of the form data received in Step 850
2 according to 17.13.3 of [HTML4.01]. At least one SAML assertion MUST be included within 851
the form data set with control name SAMLAssertion; multiple SAML assertions MAY be 852
included. A single target description MUST be included with the control name set to TARGET. 853
 854

2. At least one of the SAML assertions posted to the destination site MUST be a single-sign on 855
assertion with the additional restriction that the <Target> element MUST also be included 856
within the SSO assertion and its value set to <assertion consumer host name and path>. 857
 858

3. The destination site MUST ensure a “single use” policy for SSO assertions communicated via 859
form data. The implication here is that the destination site will need to be stateful. A simple 860
implementation maintains a table of pairs: 861
 862
Assertion Id, Time at which entry is to be deleted 863
 864
The time at which an entry is to be deleted is based upon the SSO assertion life-time. Since SSO 865
assertions containing authentication statements are recommended to have short life-times in the 866
web browser context, such a table would be of manageable size. 867

 868

4. Confidentiality and message integrity MUST be maintained for the HTTP request in Step 3. It 869
is RECOMMENDED that the assertion consumer URL be exposed over SSLv3 or TLS 1.0 870
[Appendix C]. Otherwise, the assertion(s) transmitted in Step 3 will be available in plain text to 871
any attacker. 872

 873

5. The <saml:ConfirmationMethod> element of each assertion MUST be set to Assertion Bearer 874
(5.1.2 of [Core-20]). 875
 876

30

 877

 878

4.1.4.1.3 Step 4: HTTP Response 879

 880

No normative form is given for the HTTP response in Step 6. Implementations SHOULD 881
provide some form of helpful error-message in the case where access to resources at the 882
destination site is disallowed. 883

4.1.4.2 Threat Model and Counter-Measures 884

 885

This section utilizes materials from [Shib-Marlena] and and [Rescorla-Security]. 886

4.1.4.2.1 Stolen assertion 887

 888

Threat: If an eavesdropper (Eve) can copy the real user’s SAML assertion (Form POST), then 889
the Eve could construct an appropriate POST body and be able to impersonate the user at the 890
destination site. 891
 892
Counter-Measure: As indicated in Steps 1, 2, 3 and 4, confidentiality must be provided whenever 893
an assertion is communicated between a site and the user’s browser. This provides protection 894
against an Eve gaining access to a user’s SAML assertion. 895
 896
Should Eve defeat the measures used to ensure confidentiality, additional counter-measures are 897
available. Recall, that SAML assertions communicated through Step 3 must always include an 898
SSO assertion. SSO assertions SHOULD have short validity periods (values for NotBefore and 899
NotOnOrAfter attributes) consistent with successful functioning of the profile. This ensures that 900
a stolen assertion can only be used successfully within a small time window. 901
 902
Source and destination sites SHOULD make some reasonable effort to ensure that clock settings 903
are both sites differ by at most a few minutes. Many forms of time synchronization service are 904
available, both over the Internet and from proprietary sources. 905
 906
RECOMMENDATIONS for the Source Site: 907
 908
(a) values for NotBefore and NotOnOrAfter attributes of SSO assertions SHOULD have the 909
shortest possible validity period consistent with successfully communicating the assertion from 910
source to destination site. This is typically of the order of a few minutes. 911
 912

 913
RECOMMENDATIONS for Destination Site: 914
 915

31

(a) The destination site MUST check the validity period of all assertions obtained from the 916
source site and reject expired assertions. A destination site MAY choose to implement a stricter 917
test of validity for SSO assertions, such as for example, requiring the IssueInstant attribute 918
value or AuthenticationInstant attribute value of the assertion to be within a few minutes of 919
the time at which the assertion is received at the destination site. 920
 921
(b) Authentication statements MAY include an <AuthenticationLocality> element with the 922
IP address of the user. The destination site MAY check the browser IP address against the IP 923
address contained in the authentication statement. 924
 925

4.1.4.2.2 MITM Attack 926
 927

 928

Threat: Since the destination site obtains bearer SAML assertions from the user via a Form post, 929
a malicious site could impersonate the user at some new destination site. The new destination site 930
would believe the malicious site to be the user. 931
 932
Counter-Measure: 933
 934
The destination site MUST check the <saml:Target> elements of the SSO assertion to ensure 935
that at least one of their values matches the <assertion consumer host name and path>. As 936
the assertion is digitally signed, the <saml:Target> value cannot be altered by the malicious 937
site. 938

4.1.4.2.3 Forged Assertion 939

Threat: A MAL or the browser user could forge or alter a SAML assertion (form POST). 940

 941

Counter-Measure: The POST browser profile requires SAML assertions to be signed, thus 942
providing both message integrity and authentication. The destination site MUST verify the 943
signature and authenticate the issuer. 944

4.1.4.2.4 Browser State Exposure 945

Threat: The POST browser profile involve upload of assertions to the web browser from a source 946
site. This information is available as part of the web browser state and is usually stored in 947
persistent storage on the user system in a completely unsecured fashion. The threat here is that 948
the assertion may be “re-used” at some later point in time. 949
 950

Counter-Measure: Assertions communicated using FORM post must always include a SSO 951
assertion. It is recommended that SSO assertions have short life-times and that destination sites 952
must ensure that they may be used only once. 953

 954

32

4.2 SOAP Profile of SAML 955

4.2.1 Overview 956

957
The SOAP profile of SAML is a realization of User Case 3, Scenarios 3-1 and 3-3 of the SAML 958
Requirements document in the context of SOAP. It is based on a single interaction between a 959
sender and a receiver. The sender adds with one or more SAML assertions to a SOAP document 960
and sends the message to the receiver. The receiver extracts the SAML assertion from the 961
message and processes them. If it is unable to process the assertions it returns an error. 962
Otherwise, it processes the message and assertions in a standard way. The message may be sent 963
over any protocol for which a SOAP protocol binding is available [SOAP1.1]. 964

 965

33

 966

 967

 968

 969

 970

 971

Sender Receiver

3. SOAP message with attached
assertion is sent to receiver

1. Sender obtains SAML
assertions

2. Sender attaches SAML
assertions to SOAP message

Figure 4: SOAP Profile of SAML

4. Receiver returns an error message
if assertions cannot be processed

5. Receiver processes
assertion and SOAP

message

34

4.2.2 SOAP Headers 972

 973

SOAP provides a flexible header mechanism, which may be (optionally) used for extending 974
SOAP payloads with additional information. Rules for SOAP headers are given in Section 4.2 of 975
[SOAP1.1]. 976

 977

SAML assertions MUST be contained within the SOAP <Header> element contained within the 978
SOAP <Envelope> element. Two standard SOAP attributes are available for use with header 979
elements: actor and mustUnderstand. Use of the actor attribute is application dependent and 980
no normative use is specified herein. 981

 982

The SOAP mustUnderstand global attribute can be used to indicate whether a header entry 983
is mandatory or optional for the recipient to process. SAML assertions MUST have the 984
mustUnderstand attribute set to 1; this ensures that a SOAP processor to which the SAML 985
header is directed must process the SAML assertions as explained in Section 4.2.3 of [SOAP1.1].986

987

4.2.3 SOAP Errors 988

 989

If the receiver is able to access the SAML assertions contained in the SOAP header, but is unable 990
to process them , the receiver SHOULD return a 991

SOAP message with a <Fault> element as the message body. Reasons why the 992

receiver may be able to process SAML assertions, include, but are not limited to: 993
 994
1. The assertion contains a <Condition> element that the receiver does not understand. 995

2. The signature on the assertion is invalid. 996

3. The receiver does not accept assertions from the issuer of the assertion in question.997

4. The receiver does not have access to extension schema utilized in the assertion.998

999

The returned <Fault> element takes the form:1000

1001
<Fault>1002

<Faultcode>Client.SAML</Faultcode>1003
<Faultstring>...</Faultstring>1004

</Fault>1005

1006

35

It is recommended that the <Faultstring> element contain an informative message. This 1007
specification does not specify any normative text. Sending parties MUST NOT rely on specific 1008
contents in the <Faultstring> element. 1009

 1010

 1011

4.2.4 Security Considerations 1012

 1013

Every assertion MUST be signed by the issuer following the guidelines in [SAML-DSIG-1014
Profile]. 1015

 1016

Sender and Receiver MUST utilize means to ensure that the data integrity of SOAP messages 1017
containing assertions is assured. A number of different techniques are available for providing 1018
data integrity including use of SSL, digital signatures, IPsec etc. 1019

 1020

When a receiver processes a SOAP message with attached assertions, it MUST make an explicit 1021
determination of whether the sender has a right to possess and communicate the attached 1022
assertions. Merely obtaining a message containing assertions carries no implication about the 1023
sender’s right to possess and communicate the included assertions. A variety of means can be 1024
used to make such a determination, including, for example, explicit policies at the receiver, 1025
authentication of sender, use of digital signature etc. 1026

 1027

Two formats for securing the attachment of assertions to an arbitrary SOAP message are 1028
described below. Senders and receivers implementing the SOAP Profile of SAML MUST 1029
implement both models. 1030

 1031

4.2.4.1 HolderOfKey 1032

4.2.4.1.1 Sender 1033

In this case, the sender and subject are the same entity. The sender obtains one or more assertions 1034
from one or more authorities. Each assertion MUST include the following 1035
<SubjectConfirmation> element: 1036
 1037

<SubjectConfirmation> 1038
 <ConfirmationMethod>HolderOfKey</ConfirmationMethod> 1039
 <dsig:KeyInfo>…<dsig:KeyInfo> 1040
 </SubjectConfirmation> 1041

 1042

36

The <SubjectConfirmation> element carries information about the sender’s key within the 1043
<dsig:KeyInfo> element. The <dsig:KeyInfo> provides varied ways for describing information 1044
about the sender’s public or secret key. 1045

 1046

In addition to the assertions, the sender MUST include an digital signature <dsig:Signature>1047
element within the SOAP <Header> element as described in [XML-DSIG]. The 1048
<dsig:Signature> element MUST apply to all the SAML assertion elements 1049

in the SOAP <Header>, and all the relevant portions of the SOAP <Body>, as 1050

required by the application. Specific applications may require that the signature also apply to 1051
additional elements. 1052

 1053

4.2.4.1.2 Receiver 1054

The receiver MUST verify that each assertion carries a <SubjectConfirmation> element of the 1055
form: 1056
 1057

<SubjectConfirmation> 1058
 <ConfirmationMethod>HolderOfKey</ConfirmationMethod> 1059
 <dsig:KeyInfo>…<dsig:KeyInfo> 1060
 </SubjectConfirmation> 1061
 1062

The receiving party MUST check the validity of the signature found in a 1063
<SOAP:Envelope>/<dsig:Signature> sub-element of the SOAP message. Information about 1064
the sender’s public or secret key may be found in the 1065
 1066

<saml:SubjectConfirmation>/<dsig:KeyInfo> 1067

 1068

element carried within each assertion. 1069
 1070

Notice the <ds:KeyInfo> element is used only for checking integrity of assertion attachment 1071
(message integrity). Therefore, there is no requirement that the receiver validate the key or 1072
certificate. This suggests that, if needed, a sender may generate a public/private key pair and 1073
utilize them for this purpose. 1074

 1075

Once the above steps are complete, the receiver may further process the assertions and SOAP 1076
message contents with the assurance that portions of the SOAP message covered by the digital 1077
signature (a) have been constructed by the sender, (b) have not been altered by an intermediary, 1078
(c) the sender has provided proof of possession of the private-key component of the information 1079
included in <saml:SubjectConfirmation>/<dsig:KeyInfo>. 1080

 1081

37

4.2.4.1.3 Example 1082

 1083
The following example illustrates the HolderOfKey model for securing SAML assertions to a 1084
SOAP message: 1085

 {PRIVATE "TYPE=PICT;ALT=Figure 3: SOAP document with inserted assertions"} 1086

<?xml version='1.0' encoding='UTF-8'?> 1087
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 1088
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance" 1089
xmlns:xsd="http://www.w3.org/1999/XMLSchema"> 1090
<SOAP-ENV:Header> 1091
 <saml:AssertionList mustUnderstand="1" 1092
 AssertionID="192.168.2.175.1005169137985" IssueInstant="2001-11-07T21:38:57Z" 1093
 Issuer="M and M Consulting" MajorVersion="1" MinorVersion="0" 1094
 xmlns:saml="http://… /security/docs/draft-sstc-schema-assertion-16.xsd">1095
 <saml:Conditions NotBefore="2001-11-07T21:33:57Z" 1096
 NotOnOrAfter="2001-11-07T21:48:57Z"> <saml:AbstractCondition 1097
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 1098
 xsi:type="AudienceRestrictionConditionType"> 1099
<saml:Audience>http://www.example.com/research_finance_agreement.xml 1100
 </saml:Audience> 1101
 </saml:AbstractCondition> 1102
 </saml:Conditions> 1103
 <saml:AuthenticationStatement AuthenticationInstant="2001-11-07T21:38:57Z" 1104
AuthenticationMethod="Password"> 1105
 <saml:Subject> 1106
 <saml:NameIdentifier Name="goodguy" SecurityDomain="www.example.com"/> 1107
<saml:SubjectConfirmation>HolderOfKey</SubjectConfirmation> 1108
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#"> 1109
 <KeyValue> 1110
 ... 1111
 </KeyValue> 1112
 <X509Data> 1113
 ... 1114
 </X509Data> 1115
 </KeyInfo> 1116
</saml:Subject> 1117
<saml:AuthenticationLocality DNSAddress="some_computer" IPAddress="111.111.111.111"/>1118
 </saml:AuthenticationStatement> 1119
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#"> 1120
 <SignedInfo> 1121
 <CanonicalizationMethod 1122
 Algorithm="http://www.w3.org/TR/2000/WD-xml-c14n-20000119"/> 1123
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/> 1124
 <Reference URI=""> 1125
 <Transforms> 1126

38

 <Transform 1127
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/> 1128
 </Transforms> 1129
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 1130
 <DigestValue>GSUvQSPfYkAC9wpHbLSfPEjMlIo=</DigestValue> 1131
 </Reference> 1132
 </SignedInfo> 1133
 <SignatureValue> 1134
 iLJj64yusw7h4FTbiyKRvAQoALlmeCnKxhKqStrFahVXIZUXacmDJw== 1135
 </SignatureValue> 1136
 <KeyInfo> 1137
 <KeyValue> 1138
 ... 1139
 </KeyValue> 1140
 <X509Data> 1141
 ... 1142
 </X509Data> 1143
 </KeyInfo> 1144
 </Signature> 1145
 </saml:AssertionList> 1146
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#"> 1147
 <SignedInfo> 1148
 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2000/WD-xml-1149
c14n-20000119"/> 1150
 <SignatureMethod 1151
 Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/> 1152
 <Reference URI=""> 1153
 <Transforms> 1154
 <Transform 1155
 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/> 1156
 </Transforms> 1157
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 1158
 <DigestValue>UYRsLhRffJagF7d+RfNt8CPKhbM=</DigestValue> 1159
 </Reference> 1160
 </SignedInfo> 1161
 <SignatureValue> 1162
 HJJWbvqW9E84vJVQkjjLLA6nNvBX7mY00TZhwBdFNDEIgscSXZ5Ekw== 1163
 </SignatureValue> 1164
 </Signature> 1165
</SOAP-ENV:Header> 1166

<SOAP-ENV:Body> 1167
 <ReportRequest> 1168
 <TickerSymbol>SUNW</TickerSymbol> 1169
 </ReportRequest> 1170
</SOAP-ENV:Body> 1171
</SOAP-ENV:Envelope> 1172

39

 1173

4.2.4.2 SenderVouches 1174
 1175

4.2.4.2.1 Sender 1176

In this case, the sender and subject may be distinct entities. The subject obtains one or more 1177
assertions from one or more authorities. Each assertion MUST include the following 1178
<SubjectConfirmation> element: 1179
 1180

<SubjectConfirmation> 1181
 <ConfirmationMethod>SenderVouches</ConfirmationMethod> 1182
 </SubjectConfirmation> 1183

 1184

In this model, information about the sender’s key is held within the <dsig:KeyInfo> element 1185
associated with the senders signature. The <dsig:KeyInfo> provides varied ways for describing 1186
information about the sender’s public or secret key. 1187

 1188

In addition to the assertions, the sender MUST include an digital signature <dsig:Signature>1189
element within the SOAP <Header> element as described in [XML-DSIG]. The 1190
<dsig:Signature> element MUST apply to all the SAML assertion elements in the SOAP 1191
<Header>, and all the relevant portions of the SOAP <Body>, as required by the application. 1192
Specific applications may require that the signature also apply to additional elements. 1193

 1194

The sender MUST include a <dsig:KeyInfo> element with the <dsig:Signature> element. 1195

4.2.4.2.2 Receiver 1196

The receiver MUST verify that each assertion carries a <SubjectConfirmation> element of the 1197
form: 1198

<SubjectConfirmation> 1199
 <ConfirmationMethod>SenderVouches</ConfirmationMethod> 1200
 </SubjectConfirmation> 1201

 1202

The receiving party MUST check the validity of the signature found in the 1203
<SOAP:Envelope>/<dsig:Signature> element. Information about the sender’s public or secret 1204
key may be found in the <SOAP:Envelope>/<dsig:Signature>/<dsig:KeyInfo> element 1205
carried within each assertion. 1206

40

Once the above steps are complete, the receiver may further process the assertions and SOAP 1207
message contents with the assurance that portions of the SOAP message covered by the digital 1208
signature (a) have been constructed by the sender, (b) have not been altered by an intermediary. 1209

 1210

4.2.4.2.3 Example 1211

 1212
The following example illustrates the SenderVouches architecture for adding SAML assertions 1213
to a SOAP message: 1214

 1215

<SOAP-ENV:Envelope xmlns:SOAP-ENV=http://schema.xmlsoap.org/soap/envelope/>1216
1217

<SOAP-ENV:Header xmlns:SAML=”…”>1218
<SAML:Assertion mustUnderstand=1>…</SAML:Assertion>1219
<SAML:Assertion mustUnderstand=1>…</SAML:Assertion>1220

<dsig:signature>…</signature>1221
</SOAP-ENV:Header>1222
…1223
<SOAP-ENV:Body>1224

<message_payload/>1225
</SOAP-ENV:Body>1226
</SOAP-ENV:Envelope> 1227
{PRIVATE "TYPE=PICT;ALT=Figure 3: SOAP document with inserted assertions"} 1228

 1229

4.2.4.3 Additional Security Considerations 1230

The model described in this section does not take into account such issues as replay attacks, 1231
authentication of sender by receiver and vice-versa and confidentiality. These must be addressed 1232
by means other than those described in this specification. 1233

 1234

5 References 1235

 1236
[Anders-Browser-Profile] A suggestion on how to implement SAML browser bindings without 1237
using “Artifacts”, http://www.x-obi.com/OBI400/andersr-browser-artifact.ppt 1238

 1239
[AuthXML] AuthXML: A Specification for Authentication Information in XML. 1240
http://www.oasis-open.org/committees/security/docs/draft-authxml-v2.pdf 1241

 1242

[Glossary] OASIS Security Services TC: Glossary. 1243
http://www.oasis-open.org/committees/security/docs/draft-sstc-hodges-glossary-02.html 1244

http://schema.xmlsoap.org/soap/envelope/
http://www.x-obi.com/OBI400/andersr-browser-artifact.ppt
http://www.oasis-open.org/committees/security/docs/draft-authxml-v2.pdf
http://www.oasis-open.org/committees/security/docs/draft-authxml-v2.pdf
http://www.oasis-open.org/committees/security/docs/draft-sstc-hodges-glossary-02.html

41

 1245

[S2ML] S2ML: Security Services Markup Language, Version 0.8a, January 8, 2001. 1246
http://www.oasis-open.org/committees/security/docs/draft-s2ml-v08a.pdf 1247

 1248

[Shib] Shiboleth Overview and Requirements 1249
http://middleware.internet2.edu/shibboleth/docs/draft-internet2-shibboleth-requirements-1250
00.htmlhttp://middleware.internet2.edu/shibboleth/docs/draft-internet2-shibboleth-requirements-1251
00.html 1252

 1253

[Shib-Marlena] Marlena Erdos, Shibboleth Architecture DRAFT v1.1, 1254
http://middleware.internet2.edu/shibboleth/docs/draft-erdos-shibboleth-architecturel-00.pdf 1255

 1256

[RFC2616] Hypertext Transfer Protocol -- HTTP/1.1 1257

 1258

[RFC1750] Randomness Recommendations for Security. 1259
 1260

[SOAP1.1] Simple Object Access Protocol (SOAP) 1.1 , W3C Note 08 May 2000 1261

 1262

[Core-Assertions-Examples] Core Assertions Architecture, Examples and Explanations, 1263

http://www.oasis-open.org/committees/security/docs/draft-sstc-core-phill-07.pdf 1264

 1265
[XML-DSIG] XML – Signature Syntax and Processing, available from http://www.w3.org 1266
 1267
[WEBSSO] RL “Bob” Morgan, Interactions between Shibboleth and local-site web sign-on 1268
services, http://middleware.internet2.edu/shibboleth/docs/draft-morgan-1269
shibboleth-websso-00.txt1270

1271
[SESSION] RL “Bob” Morgan, Support of target web server sessions in Shibboleth, 1272

http://middleware.internet2.edu/shibboleth/docs/draft-morgan-shibboleth-1273
session-00.txt1274
 1275
[rfc1945] Hypertext Transfer Protocol -- HTTP/1.0, http://www.ietf.org/rfc/rfc1945.txt 1276

[rfc2616] Hypertext Transfer Protocol -- HTTP/1.1, http://www.ietf.org/rfc/rfc2616.txt 1277

[rfc2617] HTTP Authentication: Basic and Digest Access Authentication, 1278
http://www.ietf.org/rfc/rfc2617.txt 1279

[rfc2774] An HTTP Extension Framework, http://www.ietf.org/rfc/rfc2774.txt 1280

 1281
[RFC2246] The TLS Protocol Version 1.0, http://www.ietf.org/rfcs/rfc2246.html 1282

http://www.oasis-open.org/committees/security/docs/draft-s2ml-v08a.pdf
http://www.oasis-open.org/committees/security/docs/draft-s2ml-v08a.pdf
http://middleware.internet2.edu/shibboleth/docs/draft-internet2-shibboleth-requirements-00.html
http://middleware.internet2.edu/shibboleth/docs/draft-internet2-shibboleth-requirements-00.html
http://middleware.internet2.edu/shibboleth/docs/draft-erdos-shibboleth-architecturel-00.pdf
http://www.w3.org/
http://middleware.internet2.edu/shibboleth/docs/draft-morgan-shibboleth-websso-00.txt
http://middleware.internet2.edu/shibboleth/docs/draft-morgan-shibboleth-websso-00.txt
http://middleware.internet2.edu/shibboleth/docs/draft-morgan-shibboleth-session-00.txt
http://middleware.internet2.edu/shibboleth/docs/draft-morgan-shibboleth-session-00.txt
http://www.ietf.org/rfcs/rfc2246.html

42

[SSLv3] The SSL Protocol Version 3.0, 1283
http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt 1284

 1285

[Rescorla-Security] E. Rescorla, B. Korver, Guidelines for Writing RFC Text on Security 1286
Considerations, http://www.ietf.org/internet-drafts/draft-rescorla-sec-cons-03.txt 1287

6 Appendix A 1288

 1289
http://support.microsoft.com/support/kb/articles/Q208/4/27.ASP 1290

 1291

The information in this article applies to: 1292

Microsoft Internet Explorer (Programming) versions 4.0, 4.01, 4.01 SP1, 4.01 SP2, 5, 5.01, 5.5 1293

 1294

SUMMARY 1295

Internet Explorer has a maximum uniform resource locator (URL) length of 2,083 characters, 1296
with a maximum path length of 2,048 characters. This limit applies to both POST and GET 1297
request URLs. 1298

If you are using the GET method, you are limited to a maximum of 2,048 characters (minus the 1299
number of characters in the actual path, of course). 1300

POST, however, is not limited by the size of the URL for submitting name/value pairs, because 1301
they are transferred in the header and not the URL. 1302

RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1, does not specify any requirement for URL 1303
length. 1304

 1305

REFERENCES 1306

Further breakdown of the components can be found in the Wininet header file. Hypertext 1307
Transfer Protocol -- HTTP/1.1 General Syntax, section 3.2.1 1308

Additional query words: POST GET URL length 1309

Keywords : kbIE kbIE400 kbie401 kbGrpDSInet kbie500 kbDSupport kbie501 kbie550 1310
kbieFAQ 1311

Issue type : kbinfo 1312

Technology : 1313

--- 1314

Issue: 19971110-3 Product: Enterprise Server 1315

 1316

http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt
http://support.microsoft.com/support/kb/articles/Q208/4/27.ASP

43

Created: 11/10/1997 Version: 2.01 1317

Last Updated: 08/10/1998 OS: AIX, Irix, Solaris 1318

Does this article answer your question? 1319

Please let us know! 1320

 1321

Question: 1322

How can I determine the maximum URL length that the Enterprise server will accept? Is this 1323
configurable and, if so, how? 1324

Answer: 1325

Any single line in the headers has a limit of 4096 chars; it is not configurable. 1326

--- 1327

issue: 19971015-8 Product: Communicator, Netcaster 1328

Created: 10/15/1997 Version: all 1329

Last Updated: 08/10/1998 OS: All 1330

Does this article answer your question? 1331

Please let us know! 1332

 1333

Question: 1334

Is there a limit on the length of the URL string? 1335

Answer: 1336

Netscape Communicator and Navigator do not have any limit. Windows 3.1 has a restriction of 1337
32kb (characters). (Note that this is operating system limitation.) See this article for information 1338
about Netscape Enterprise Server. 1339

--- 1340

<map></map> 1341

7 Appendix B 1342

 1343
Javascript may be used to avoid an additional “submit” step from the user. This material is taken 1344
from [Anders-Browser-Profile]. 1345

<HTML>1346
<BODY Onload="javascript:document.forms[0].submit ()">1347
<FORM METHOD="POST" ACTION="Destination-site URL">1348
…1349
<INPUT TYPE="HIDDEN" NAME="SAMLAssertion" VALUE="Assertion in Base64-1350

44

coding">1351
</FORM>1352
</BODY>1353
</HTML>1354

 1355

8 Appendix C 1356

In any SAML use of SSLv3 [SSLv3] or TLS 1.0 [RFC2246], servers MUST authenticate to 1357
clients using a X.509.v3 certificate. The client MUST establish server identity based on contents 1358
of the certificate (typically through examination of the certificate subject DN field). 1359

8.1 Web Browser Profile 1360

SSL-capable [SSLv3] implementations MUST implement the 1361
SSL_RSA_WITH_3DES_EDE_CBC_SHA ciphersuite. 1362

TLS-capable [RFC2246] implementations MUST implement the 1363
TLS_RSA_WITH_3DES_EDE_CBC_SHA ciphersuite. 1364

8.2 SAML SOAP Binding 1365

TLS-capable implementations MUST implement the 1366
TLS_RSA_WITH_3DES_EDE_CBC_SHA ciphersuite and MAY implement the 1367
TLS_RSA_AES_128_CBC_SHA ciphersuite [AES]. 1368

 1369

Page: 23
[pm1]This needs to be moved elsewhere, perhaps in a mandatory-to-implement section.

	Revision History
	
	
	
	
	Title

	Scope
	Contents
	Guidelines for Specifying Protocol Bindings and Profiles<big>€</big>
	Process Framework for Describing and Registering Protocol Bindings and Profiles
	SAML Binding for SOAP
	Overview.
	Referenced Namespaces
	Basic Operation

	SOAP Headers
	SAML Requests
	SAML Responses
	Fault Codes
	Authentication
	Message Integrity
	Confidentiality

	SAML use of the SOAP binding over HTTP.
	
	HTTP Headers.
	Authentication
	Message Integrity
	Message Confidentiality
	Security Considerations
	Error reporting
	Example: SAML over SOAP/HTTP

	Profiles</big>
	Web Browser Single Sign-On
	Overview
	Relevant Technology

	Profile Overview
	SAML Artifact Profile
	SAML artifact format
	Artifact Message Flows
	Step 1: HTTP Request
	Step 2: HTTP Response
	Step 3: HTTP Request:
	Step 6: HTTP Response
	Steps 4 and 5

	Threat Model and Counter-Measures
	Stolen artifact
	Attacks on Steps 4 and 5
	Malicious Destination Site
	Forged SAML artifact
	Browser State Exposure

	Form POST
	
	Step 1: HTTP Request
	Step 2: HTTP Response
	Step 3: HTTP Request
	Step 4: HTTP Response

	Threat Model and Counter-Measures
	Stolen assertion
	MITM Attack
	Forged Assertion
	Browser State Exposure

	SOAP Profile of SAML
	Overview
	SOAP Headers
	SOAP Errors
	Security Considerations
	HolderOfKey
	Sender
	Receiver
	Example

	SenderVouches
	Sender
	Receiver
	Example

	Additional Security Considerations

	References
	Appendix A
	Appendix B
	Appendix C
	Web Browser Profile
	SAML SOAP Binding

