

draft-sstc-xmlsig-guidelines-03 1 25 October 2002

 1

Guidelines for using XML Signatures 2

with the OASIS Security Assertion 3

Markup Language (SAML) 4

Draft 03, 27 October 2002 5

Document identifier: 6

draft-sstc-xmlsig-guidelines-03 7

Location: 8

http://www.oasis-open.org/committees/security/docs/ 9

Editor: 10

Scott Cantor, The Ohio State University and Internet2 (cantor.2@osu.edu) 11

Contributors: 12
Phillip Hallam-Baker, Verisign 13
Christian Geuer-Pollmann, Apache XML Security 14
Merlin Hughes, Baltimore Technologies 15
Juergen Kremp, SAP 16

Abstract: 17

This document provides suggestions and best practices for using the XML Signature standard 18
with SAML messages to fulfill the requirements of existing and future SAML profiles and bindings. 19

Status: 20

This is a draft document that supplements the SAML 1.0 committee specification and does not 21
supersede or override it. 22

If you are on the security-services@lists.oasis-open.org list for committee members, send 23
comments there. If you are not on that list, subscribe to the security-services-24
comment@lists.oasis-open.org list and send comments there. To subscribe, send an email 25
message to security-services-comment-request@lists.oasis-open.org with the word "subscribe" 26
as the body of the message. 27

For information on whether any patents have been disclosed that may be essential to 28
implementing this specification, and any offers of patent licensing terms, please refer to the 29
Intellectual Property Rights section of the Security Services TC web page (http://www.oasis-30
open.org/committees/security/). 31

Copyright © 2002 The Organization for the Advancement of Structured Information Standards [OASIS] 32

33

draft-sstc-xmlsig-guidelines-03 2 25 October 2002

Table of Contents 33

1 Introduction ...3 34

2 Canonicalization ...4 35

2.1 Namespace Prefixes in Values ...4 36

2.2 Best Practices ...4 37

3 Signature Coverage..6 38

3.1 References..6 39

3.2 Transforms ..6 40

3.3 Best Practices ...7 41

4 Signature Verification..9 42

4.1 Parse the Octet Stream...9 43

4.2 Node Set Comparison...9 44

4.3 Profiling Transforms..9 45

4.4 Best Practices ...10 46

5 SAML Profile Considerations..11 47

5.1 Browser/POST Profile ...11 48

5.1.1 Profile Recommendations..11 49

6 Futures..12 50

7 References..13 51

Appendix A. Acknowledgments...14 52

Appendix B. Notices ..15 53

 54

draft-sstc-xmlsig-guidelines-03 3 25 October 2002

1 Introduction 55

This non-normative document describes the issues that one must consider when attaching digital 56
signatures to SAML messages using the XML Signature standard [XMLSig], and provides suggested 57
best practices for the application of the standard to SAML 1.0 bindings and profiles, based on SAML and 58
XML Signature implementation experience. 59

While this document does not supersede or contradict section 5 of the core SAML specification 60
[SAMLCore], section 5 lacks guidance in certain aspects of signature processing that insure 61
interoperability, and was written in advance of the completion of new standards for signature formation 62
that improve the robustness and efficiency of signature processing in SAML applications. 63

To the extent that SAML 1.0 implementations follow the guidelines in this document, future revisions of 64
the SAML specification will be able to incorporate them normatively without sacrificing backward 65
compatibility. 66

The following signature processing issues are discussed: 67

• Canonicalization 68

• Signature Coverage 69

• Signature Verification 70

Note that terms used in this document are as defined in the SAML glossary [SAMLBind] Prateek 71
Mishra et al., Bindings and Profiles for the OASIS Security Assertion Markup 72
Language (SAML), http://www.oasis-open.org/committees/security/, OASIS, May 73
2002. 74

[SAMLGloss] unless otherwise noted. 75

draft-sstc-xmlsig-guidelines-03 4 25 October 2002

2 Canonicalization 76

In XML Signature, canonicalization is the process of transforming a piece of content (formally, an octet 77
stream or an XML node set) into an octet stream for input into a digest algorithm. The SAML 1.0 78
specification recommends, but does not require, the use of Inclusive Canonicalization [InclC14N], the 79
algorithm that is required of XML Signature implementations to support. 80

During the SAML specification process, a new Exclusive Canonicalization algorithm [InclC14N]81
 John Boyer, Inclusive XML Canonicalization Version 1.0, 82
http://www.w3.org/TR/xml-c14n/, World Wide Web Consortium. 83

[ExclC14N] was under development by the W3C Signature working group, and has since moved to 84
Recommendation status. The purpose of the new algorithm is to correct certain deficiencies in 85
namespace processing that arise when a signed XML fragment is placed within an XML context, such as 86
a SOAP envelope, and then verified by a relying party while within that context. When the standard 87
algorithm is used, namespaces from the surrounding context "bleed into" the canonicalized XML of the 88
signed fragment, and invalidate the signature. 89

Since SAML assertions, responses, and requests are by their nature designed to be embeddable in other 90
XML messages, the use of Exclusive Canonicalization is highly advantageous for many SAML 91
applications, and this algorithm is therefore strongly suggested for use when signing SAML content. 92

Note that canonicalization algorithms are used with XML Signatures in two ways. They can be specified 93
as the CanonicalizationMethod for an entire Signature (in which case canonicalization is applied 94
specifically to the SignedInfo element). They can also be applied as a Transform within a Reference, in 95
which case canonicalization applies to the specific data being signed for a given Reference. To avoid 96
namespace problems, Exclusive Canonicalization must be used in both places. 97

2.1 Namespace Prefixes in Values 98

Exclusive Canonicalization can only insure that the necessary namespace prefixes are declared in the 99
resulting octet stream when the prefixes are used in element and attribute names. When namespace 100
prefixes are used in element or attribute values, as commonly occurs when using the QName schema 101
type, any prefixes that would not otherwise be "visibly used" in the document must be declared in the 102
"InclusiveNamespaces PrefixList" parameter to the canonicalization algorithm. 103

Since in most cases both the SAML assertion and SAML protocol namespaces will be bound to prefixes 104
in the signed message, those prefixes should be included on the InclusiveNamespaces PrefixList when 105
Exclusive Canonicalization is used as a transform. Other prefixes may also be needed if they are not 106
"visibly used". 107

Furthermore, if either namespace is bound and/or used within the SignedInfo element itself, possibly as 108
part of an XPath expression, then it must also be included on the InclusiveNamespaces PrefixList when 109
Exclusive Canonicalization is used as a CanonicalizationMethod. 110

2.2 Best Practices 111

 When possible, use the Exclusive Canonicalization algorithm when signing SAML assertions, 112
requests, or responses, especially if the SAML object may be signed before insertion into a 113
larger XML context. 114

 When used, the algorithm should be applied at both the Signature level, and as a Transform 115
within the SAML Reference. 116

draft-sstc-xmlsig-guidelines-03 5 25 October 2002

 Bind the SAML protocol and assertion namespaces (and any others used) to prefixes and 117
include those prefixes in the InclusiveNamespaces PrefixList parameter to Exclusive 118
Canonicalization. 119

draft-sstc-xmlsig-guidelines-03 6 25 October 2002

3 Signature Coverage 120

The XML Signature specification provides a plethora of techniques for embedding signatures in XML 121
documents and for specifying what content (XML and otherwise) is to be signed. The SAML 1.0 122
specification mandates the use of the "enveloped signature" syntax, in which the Signature element is 123
placed within the XML fragment that is being signed; the SAML 1.0 schema provides for the placement of 124
optional Signature elements within the Assertion, Request and Response elements. The SAML 1.0 125
specification also makes explicit that such a signature must cover (thus include in its SignedInfo) all of the 126
attributes and elements within the SAML element being signed, including any nested assertions and their 127
Signatures. 128

The SAML specification does not, however, specify in detail how that signature coverage is to be 129
expressed in the Signature element. As section 4 describes, one of the ways that an application can 130
determine the content being signed is to check for specific references and transforms in the Signature; 131
this makes it advantageous for SAML implementations to be consistent in their use of such transforms to 132
express what is being signed. There are also efficiency advantages to certain approaches as well. 133

In the general case, any SAML signature should explicitly specify the containing SAML element 134
(Assertion, Response, or Request) being signed. The following sections discuss various ways in which 135
signatures can meet this goal. Exceptions to this rule are profile-specific (see section 5 for an example) 136
because outside of a profile, there can be few assumptions about how a SAML object will be used. Recall 137
also that a SAML Assertion can be signed and placed within a signed SAML Response, which illustrates 138
the potential complexity. 139

Unfortunately, there is no mandatory reference syntax or transform algorithm in [XMLSig] that can, in 140
general, isolate a subset of a document unless XML ID attributes on those elements are permitted, which 141
SAML does not allow. Therefore, the methods presented below are a set of options that may be possible 142
or impossible for different implementations depending on the features available. 143

3.1 References 144

The first step in specifying coverage with an enveloped signature is to include a single Reference element 145
with a URI that directs the signature processor to include XML content from within the document 146
containing the signature. This can be accomplished either with an empty URI ("") or with a fragment 147
identifier ("#1234"). The latter syntax requires that it be possible to include special ID attributes in the 148
signed element content, but SAML 1.0 does not permit this. Therefore an empty reference URI is the only 149
mandatory syntax that can be used to indicate the "current document" as the source of data. 150

An additional optional syntax involves the use of an empty base URI with a fragment identifier containing 151
other non-ID-based XPointer expressions such as "#xpointer(/)", which also represents the entire 152
document, or a more complex expression that declares the specific element sub-tree to sign by 153
referencing the root element. An example of this would be: 154

"#xmlns(samlp=urn:oasis:names:tc:SAML:1.0:protocol)xpointer(ancestor::samlp::Response[1])" 155

This a good way to isolate the object being signed without using extra Transforms (see below), but may 156
not be supported by some libraries. If it is supported, it is recommended as the most straightforward 157
method to use. 158

3.2 Transforms 159

The second step in specifying coverage, with any signature, is to include zero or more Transform 160
elements that specify how to turn the results of evaluating the Reference URI into a final node set or octet 161

draft-sstc-xmlsig-guidelines-03 7 25 October 2002

stream for input into canonicalization and digest computation. For example, a special transform 162
(http://www.w3.org/2000/09/xmldsig#enveloped-signature) is provided for specifying that a signature is 163
enveloped, and is thus excluded from the node set containing it. 164

If the optional Reference syntax is used, or if the document contains only the content being signed, 165
then the enveloped transform (with suitable canonicalization) is sufficient to 166
complete the specification of a signature. If not, then additional transforms must 167
be applied first. There are two primary XML subsetting algorithms defined at the 168
present time, the original XPath Filter Transform described in 169
http://www.w3.org/TR/xmldsig-core/#sec-XPath and the new version 2.0 170
transform defined in [InclC14N] John Boyer, Inclusive XML Canonicalization 171
Version 1.0, http://www.w3.org/TR/xml-c14n/, World Wide Web Consortium. 172

[ExclC14N] John Boyer et al., Exclusive XML Canonicalization Version 1.0, 173
http://www.w3.org/TR/xml-exc-c14n/, World Wide Web Consortium. 174

[XPath2]. Both are optional, and may not be available in some libraries. 175

While the version 2.0 specification is currently only a proposed recommendation by the W3C, it offers a 176
tremendous advantage over the original in terms of both performance and clarity, and is highly suggested 177
over its predecessor. The original transform is complex to implement efficiently, and forming accurate 178
filter expressions with it is somewhat difficult, even for experienced developers. The new version is more 179
straightforward to understand and is typically much faster to process, both important for a typical SAML 180
application. The enveloped signature transform can also be carried out as part of a single compound 181
XPath Filter 2 expression set, which further improves efficiency in some cases. 182

If signature coverage requires the use of an XPath transform, it is therefore suggested that it be specified 183
using a single XPath Filter 2.0 Transform element containing two XPath filter expressions: 184

<ds:Transform Algorithm="http://www.w3.org/2002/06/xmldsig-filter2"> 185

 <dsig-xpath:XPath Filter="intersect"> 186

 here()/ancestor::samlp:Response[1] 187

 </dsig-xpath:XPath> 188

 <dsig-xpath:XPath Filter="subtract"> 189

 here()/ancestor::ds:Signature[1] 190

 </dsig-xpath:XPath> 191

</ds:Transform> 192

The example above would apply when signing a Response. Requests and Assertions would be identical 193
but for the substitution of "samlp:Request" or "saml:Assertion" in the first expression. 194

Finally, as described in section 2, the final Transform should usually be Exclusive Canonicalization to 195
protect the signed content from namespace contamination. This is unnecessary if there is no surrounding 196
context. 197

3.3 Best Practices 198

 SAML signatures should include a single Reference element with an empty URI, a fragment 199
identifier of "#xpointer(/)" or an XPointer expression such as the one described in section 3.1. 200

 If Transforms must be used to subset the document being signed, use of a compound XPath 201
Filter 2.0 Transform, as described above, is the most efficient way to isolate the containing 202
element for signature input and exclude the enveloped signature. 203

draft-sstc-xmlsig-guidelines-03 8 25 October 2002

 Exclusive Canonicalization should be used as the final Transform unless the object will never 204
be verified in an XML context other than the one in which it was signed. 205

draft-sstc-xmlsig-guidelines-03 9 25 October 2002

4 Signature Verification 206

When a signed message is received by a relying party, there are three main steps in the verification 207
process: verifying that the message has not been tampered with in transit, evaluating the legitimacy of the 208
signer (via certificate validation or other key verification techniques), and determining what portions of the 209
message have been signed. The first two steps are well-defined by [XMLSig] and out of scope for SAML, 210
respectively. The latter step is a subtle consideration that is expressed as "only what is signed is secure", 211
and simply means that an XML Signature can expressively exclude portions of a message using 212
transforms, and without examining those transforms (or at least their output) a relying party can be tricked 213
by a signer into trusting data that has not been signed. 214

There are three primary methods an application can use to determine what has been signed, discussed in 215
the following sections. 216

4.1 Parse the Octet Stream 217

The input to the digest algorithm is an octet stream derived by dereferencing the Reference URI, applying 218
the Transforms, and performing canonicalization. While in general those bytes do not have to consist of 219
well-formed or valid XML, in the case of SAML, they should represent exactly the containing element 220
being signed, minus the enveloped signature. Therefore, the bytes can be fed back into a parser for 221
reconstruction of the unsigned message. The message can then be validated (with the parser or by 222
hand), insuring that only the signed data is consumed by the SAML application. 223

This method has the advantage of being easy to implement in most cases, provided the XML Signature 224
implementation provides access to the octet stream that is the result of digest input processing. The 225
disadvantage is that it may result in extra parsing if the application has already parsed the message to 226
locate the Signature in the first place. 227

4.2 Node Set Comparison 228

When the result of applying transforms to a Reference is an XML node set, the relying party can apply the 229
Transforms to the source material, and then compare the resulting node set against the nodes that are to 230
be viewed as "secure". This can be a one time comparison or an ongoing filtering process. 231

The advantage to this approach is that it doesn’t require a full reparse of the resulting data, but the 232
disadvantage is a certain degree of complexity above and beyond typical XML processing requirements. 233

However, if Exclusive Canonicalization is used as a final Transform to prevent namespace contamination, 234
as this document recommends in many cases, then the output is an octet stream, and not a node set, 235
which precludes this method. 236

4.3 Profiling Transforms 237

The final method requires that a pair of cooperating implementations at the sending and receiving ends 238
agree on the Reference URI and the set of Transforms to be used. This allows a relying party to examine 239
the Reference URI and Transform elements in the document after parsing, and compare its expectations 240
to what the signer has provided. 241

This method is by far the most efficient, since no extra parsing is involved, but it requires agreement on 242
the transforms to be used, which compromises interoperability if the specification does not mandate a 243
specific profile. This is may be an acceptable tradeoff if performance trumps interoperability for an 244
application. Since the SAML 1.0 specification does not outline conformance requirements in the area of 245

draft-sstc-xmlsig-guidelines-03 10 25 October 2002

digital signature interoperability, this method does not preclude conformance, though it does compromise 246
interoperability. 247

4.4 Best Practices 248

 As a matter of security, relying parties must determine that the correct portions of a signed 249
SAML message have been included in the digested bytes. 250

 If interoperability is the paramount concern, then one of the methods described in sections 4.1 251
and 4.2 can be used to make this determination. Only 4.1 can be used if Exclusive 252
Canonicalization is used as a transform. 253

 If performance is critical and interoperability is not a consideration, then the approaches 254
described in section 3 can form the basis of an efficient profile between cooperating 255
endpoints. 256

draft-sstc-xmlsig-guidelines-03 11 25 October 2002

5 SAML Profile Considerations 257

A SAML profile is an application of SAML messages and bindings to solve a specific technical problem, 258
often including constraints on the messages and their contents and the methods of exchange. Some 259
profiles may require the use of digital signatures to insure message integrity, for example when the 260
message must be passed through an untrusted intermediary. Because profiles can include a less general 261
set of assumptions than the SAML specification as a whole, there can be implications toward the use of 262
digital signatures within a profile. This may suggest specific optimizations or additional constraints to 263
simplify profile implementation and facilitate interoperability. 264

5.1 Browser/POST Profile 265

The Browser/POST profile, described in [SAMLBind], is a mechanism for establishing an authenticated 266
session between a browser and a web server by issuing a SAML authentication assertion within a signed 267
SAML response from one web server in an HTML form, and posting it from the browser to the target web 268
server. Because the response must travel in the clear through the browser (and possibly over the 269
network, though use of SSL is recommended), it must be digitally signed by the asserting server and 270
verified by the target server. 271

What makes this profile more restrictive than SAML in general is that there is no surrounding XML context 272
for the SAML Response message. If the enclosed assertion is not signed (and this is not a requirement of 273
the profile), then many of the issues that complicate canonicalization and the specification of signature 274
coverage disappear. In the interest of maximizing the usability of libraries that do not support some of the 275
optional features of [XMLSig], a more restricted signature profile can be used to insure both security and 276
interoperability. 277

With respect to canonicalization, since there can be no namespace declarations outside the message 278
being signed, the original SAML recommendation of Inclusive Canonicalization can be followed if an 279
implementation of Exclusive Canonicalization is not available for some reason. In addition, there is no 280
need to specify a canonicalization algorithm in the transform step. 281

With respect to coverage, by profile definition, the SAML response signature must apply to the entire 282
message. Since it is unnecessary to isolate a specific element in the message, an empty reference URI 283
and the enveloped signature transform is sufficient to specify what is signed. This is advantageous 284
because it relies solely on mandatory features of the signature specification and should be possible with 285
any signature implementation. 286

The assertion that carries the basic authentication payload is specified by the profile as a short-lived 287
assertion. This makes signing it a waste of resources. If however an additional, longer-lived, assertion is 288
enclosed in the response (a legal though unspecified addition to the profile), it may be signed for some 289
application-specific purpose. In that event, the issues of namespace contamination and signature 290
coverage discussed in this document are relevant and these simplifications cannot be employed. 291

5.1.1 Profile Recommendations 292

 In the signature over the SAML Response, use an empty ("") Reference URI with the 293
Enveloped Signature Transform, and specify any appropriate Canonicalization Method. 294

 If an additional, enclosed SAML Assertion is to be signed, review the other options discussed 295
in this document for canonicalization and signature coverage. 296

draft-sstc-xmlsig-guidelines-03 12 25 October 2002

6 Futures 297

XML represents an evolving set of specifications that will continue to advance in new directions in the 298
future. [XMLSig] and related specifications are no exception. Since useful new canonicalization and 299
transform algorithms are likely to appear with relevance to SAML and its profiles, these guidelines must 300
be viewed as a snapshot of current practice only. 301

A particularly important area of developing work is in better accommodating schema validation during 302
signature verification, since SAML currently defines only XML Schema documents as a normative 303
description of SAML XML messages. For example, work has been done outside the W3C on a more 304
schema-aware canonicalization algorithm that may be well suited to SAML applications 305
(http://www.uddi.org/pubs/SchemaCentricCanonicalization-20020710.htm). 306

One particular problem SAML implementations that rely on schema validation must guard against is the 307
presence of base64-encoded data inside signed SAML messages. Schema validation imposes certain 308
normalization steps on schema processors that will result in invalidation of signatures in such cases. One 309
example that may be common is the case in which a SAML assertion is signed, and placed within a 310
SAML response that is also signed. Unless schema normalization is disabled, the values exposed in the 311
resulting, parsed XML will not be the same as the values originally signed, though not in ways that are 312
semantically different. There are imperfect workarounds, but this is an example of how future work will be 313
important to insuring the robustness of future SAML implementations. 314

draft-sstc-xmlsig-guidelines-03 13 25 October 2002

7 References 315

The following are cited in the text of this document: 316

[SAMLCore] Phillip Hallam-Baker et al., Assertions and Protocol for the OASIS Security 317
Assertion Markup Language (SAML), http://www.oasis-318
open.org/committees/security/, OASIS, May 2002. 319

[SAMLBind] Prateek Mishra et al., Bindings and Profiles for the OASIS Security Assertion 320
Markup Language (SAML), http://www.oasis-open.org/committees/security/, 321
OASIS, May 2002. 322

[SAMLGloss] Jeff Hodges et al., Glossary for the OASIS Security Assertion Markup Language 323
(SAML), http://www.oasis-open.org/committees/security/, OASIS, May 2002. 324

[XMLSig] Donald Eastlake et al., XML-Signature Syntax and Processing, 325
http://www.w3.org/TR/xmldsig-core/, World Wide Web Consortium. 326

[InclC14N] John Boyer, Inclusive XML Canonicalization Version 1.0, 327
http://www.w3.org/TR/xml-c14n/, World Wide Web Consortium. 328

[ExclC14N] John Boyer et al., Exclusive XML Canonicalization Version 1.0, 329
http://www.w3.org/TR/xml-exc-c14n/, World Wide Web Consortium. 330

[XPath2] Joseph Reagle et al., XML-Signature XPath Filter 2.0, 331
http://www.w3.org/2002/06/xmldsig-filter2/, World Wide Web Consortium. 332

draft-sstc-xmlsig-guidelines-03 14 25 October 2002

Appendix A. Acknowledgments 333

The editors would like to acknowledge the contributions of the OASIS SAML Technical Committee, whose 334
voting members at the time of publication were: 335

Allen Rogers, Authentica 336

Irving Reid, Baltimore Technologies 337

Krishna Sankar, Cisco Systems 338

Ronald Jacobson, Computer Associates 339

Hal Lockhart, Entegrity 340

Carlisle Adams, Entrust Inc. 341

Robert Griffin, Entrust Inc. 342

Robert Zuccherato, Entrust Inc. 343

Don Flinn, Hitachi 344

Joe Pato, Hewlett-Packard (co-chair) 345

Jason Rouault, Hewlett-Packard 346

Marc Chanliau, Netegrity 347

Chris McLaren, Netegrity 348

Prateek Mishra, Netegrity 349

Charles Knouse, Oblix 350

Steve Anderson, OpenNetwork 351

Rob Philpott, RSA Security 352

Jahan Moreh, Sigaba 353

Bhavna Bhatnagar, Sun Microsystems 354

Jeff Hodges, Sun Microsystems (co-chair) 355

Eve Maler, Sun Microsystems (former chair) 356

Aravindan Ranganathan, Sun Microsystems 357

Emily Xu, Sun Microsystems 358

Bob Morgan, University of Washington and Internet2 359

Scott Cantor, The Ohio State University and Internet2 360

Phillip Hallam-Baker, VeriSign 361

draft-sstc-xmlsig-guidelines-03 15 25 October 2002

Appendix B. Notices 362

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that 363
might be claimed to pertain to the implementation or use of the technology described in this document or 364
the extent to which any license under such rights might or might not be available; neither does it 365
represent that it has made any effort to identify any such rights. Information on OASIS’s procedures with 366
respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights 367
made available for publication and any assurances of licenses to be made available, or the result of an 368
attempt made to obtain a general license or permission for the use of such proprietary rights by 369
implementors or users of this specification, can be obtained from the OASIS Executive Director. 370

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, 371
or other proprietary rights which may cover technology that may be required to implement this 372
specification. Please address the information to the OASIS Executive Director. 373

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001, 374
2002. All Rights Reserved. 375

This document and translations of it may be copied and furnished to others, and derivative works that 376
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published 377
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice 378
and this paragraph are included on all such copies and derivative works. However, this document itself 379
may not be modified in any way, such as by removing the copyright notice or references to OASIS, 380
except as needed for the purpose of developing OASIS specifications, in which case the procedures for 381
copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to 382
translate it into languages other than English. 383

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors 384
or assigns. 385

This document and the information contained herein is provided on an “AS IS” basis and OASIS 386
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 387
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR 388
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 389

