
Universal Business Language
1.0 Beta – Committee Draft

17 November 2003

Document identifier:

 UBLTC-Library-beta-1.0-cd-03

Location:
http://www.oasis-open.org/committees/ubl/lcsc/UBLv1-beta

Editors:
Bill Meadows, Sun Microsystems <bill.meadows@sun.com>
Lisa Seaburg, Aeon LLC <lseaburg@aeon-llc.com>

Contributors:
Members of the Technical Committee

Abstract:
This specification defines the Library for the Universal Business
Language.

Status:
This document is a Committee Draft of the OASIS Universal Business Language (UBL)
Technical Committee. The OASIS UBL Technical Committee invites interested parties to
comment on this release directly to the UBL Library Content Subcommittee Editor, Bill
Meadows.

Copyright © 2003 OASIS Open, Inc. All Rights Reserved.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 1 of 44

1

2

3

4

5

6
7

8
9

10
11
12

13
14

15
16
17

18
19
20
21
22
23

24

25

Table of Contents
1 Introduction...3

1.1 Notes about this Release..4

1.2 Scope..5

1.3 Support for this Release...5

1.4 The OASIS UBL TC..6

1.5 Document Conventions...6

1.6 Disclaimer...6

2 Context of Initial Library [NORMATIVE]...7

2.1 Initial UBL Business Scenario...7

2.2 The Order-to-Invoice Business Process ..7

3 Library and Methodology [NON-NORMATIVE]..14

3.1 The Conceptual Model..15

3.2 Spreadsheet Models...18

3.3 The Implementation Model...19

4 UBL Schemas [NORMATIVE]..22

5 Code Lists ..24

Appendix A. References..27

Appendix B. UBL Document Examples (Non-Normative)...31

Appendix C. Formatting specifications for UBL document types..33

Appendix D. Tools and Deliverables...35

Appendix E. ASN.1 Materials [informative]...42

Appendix F. Code List Schemas ...43

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 2 of 44

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1 Introduction
Since its introduction as a W3C recommendation in 1998, XML has been adopted in a number of
industries as a framework for the definition of the messages exchanged in electronic commerce.
The widespread use of XML has led to the development of multiple industry-specific XML versions
of such basic documents as purchase orders, shipping notices, and invoices.

While industry-specific data formats have the advantage of maximal optimization for their
business context, the existence of different formats to accomplish the same purpose in different
business domains is attended by a number of significant disadvantages as well.

• Developing and maintaining multiple versions of common business documents like purchase
orders and invoices is a huge waste of effort.

• Creating and maintaining multiple adapters to enable trading relationships across domain
boundaries is an even greater effort.

• The existence of multiple XML formats makes it much harder to integrate XML business
messages with backoffice systems.

• The need to support an arbitrary number of XML formats makes tools more expensive and
trained workers harder to find.

The OASIS Universal Business Language (UBL) is intended to help solve the interoperability
problem by defining a generic XML interchange format for business documents that can be
extended to meet the requirements of particular industries. Specifically, UBL provides the
following:

• A library of XML schemas for reusable data components such as "Address," "Item," and
"Payment" -- the common data elements of everyday business documents.

• A small set of XML schemas for common business documents such as "Order," "Despatch
Advice," and "Invoice" that can be used in a generic order-to-invoice trading context.

• Guidelines for the extension of UBL in specific trading relationships.

A standard basis for XML business schemas is expected to have the following advantages:

• Lower cost of integration, both among and within enterprises, through the reuse of common
data structures.

• Lower cost of commercial software, because software written to process a given XML tag set
is much easier to develop than software that can handle an unlimited number of tag sets.

• An easier learning curve, because users need master just a single library.

• Lower cost of entry and therefore quicker adoption by small and medium-size enterprises
(SMEs).

• Standardized training, resulting in many skilled workers.

• A universally available pool of system integrators.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 3 of 44

48

49
50
51
52

53
54
55

56
57

58
59

60
61

62
63

64
65
66
67

68
69

70
71

72

73

74
75

76
77

78

79
80

81

82

The adoption of UBL is also expected to foster the creation of inexpensive data input and output
tools and to provide a universally understood and recognized commercial syntax for legally
binding business documents.

The design of UBL schemas is modular, reusable, and extensible in XML-aware ways. The
analysis and design processes used by the UBL Library Content team are described in Section
3.0 Library and Methodology. The UBL Library has been designed as a collection of object
classes, their properties and associations expressed as a conceptual model. We call these
components Business Information Entities (BIES). These Business Information Entities (BIES) are
assembled into a specific hierarchical, document models, such as an Order or an Invoice. These
document models are then transformed based upon specific UBL Naming and Design Rules
[NDR] into XML Schema syntax [XSD1][XSD2].

By publishing the models, methodology and rules for schema creation, we hope that UBL
components will also be used to assemble new and customised document structures. UBL is
designed to be layered on existing successful standards. For example, the ebXML infrastructure
developed by OASIS and the UN/CEFACT provides for XML registry services, reliable XML
messaging, standardized trading partner agreements, a standard data registry, and a business
process methodology.

UBL also provides an XML implementation of Electronic Business XML (ebXML) Core
ComponentsTechnical Specification (v2.0).

Significantly, UBL leverages knowledge from existing EDI and XML B2B systems. It is user-
driven, with deep experience and partnership resources to call on. Our goal is to unite and
harmonize a number of currently existing XML and EDI business libraries into a set of legally
recognized international standards.

UBL is committed to truly global trade and information interoperability. UBL will be freely available
to everyone without legal encumbrance or licensing fees.

To aid in deployment, the normative standard UBL schemas are accompanied by a multitude of
non-normative supporting materials, some of which are included in this package and some of
which are available from referenced sites. These materials include:

• UML class diagrams of the conceptual models on which the schemas are based;

• UML class diagrams describing the documents themselves;

• descriptions of two example implementations;

• sample instances of each of the UBL documents used in those implementations;

• formatting specifications for sample renderings of those instances; and

• an ASN.1 specification to enable the transmission of UBL messages in binary form.

1.1 Notes about this Release
This release, known as UBL 1.0 Beta Committee Draft, is provided to enable trial implementations
of UBL in realistic business environments. It is not an OASIS Technical Specification. There are
certain features we would like to bring to the attention of implementors.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 4 of 44

83
84
85

86
87
88
89
90
91
92
93

94
95
96
97
98
99

100
101

102
103
104
105

106
107

108
109
110

111

112

113

114

115

116

117

118
119
120

1.1.1. Recursive structures

Certain components in the library participate in a nesting that may result in recursion. For
example, a Package may contain other Packages, a Delivery may specify another Delivery, etc.
This is a legitimate business construct. In any implementation these would be constrained by
some degree of limitation to the depth of recursion. We cannot describe this constraint in the
schema. Therefore, it is theoretically possible to create unbounded document instances where
these structures are used. Implementors should be aware of this and may wish to guard against
this in their applications.

1.1.2. Implementation of Core Components Technical Specification
The UBL Library does not currently define any UBL-specific Data Types, as specified in the Core
Component Technical Specification [CCTS]. The only DataTypes used in this release are the
Data Types of primary and secondary Representation Terms.

1.1.3 Code Sets
The method for validating against enumerated code lists described in this document has not been
fully implemented in UBL 1.0 Beta. This work is under review by the UBL Code List
Subcommittee but is not expected to impact document instances created with the current
schemas.

1.2 Scope
The Library Content part of UBL specifies a library of business information entities to be used in
the construction of business documents together with a set of common XML business documents
assembled from those entities.

This normative sections of this document are:

• the context scenario and business rules used to construct the business models and business
documents;

• a W3C Schema (XSD) of re-usable components;

• the W3C Schemas (XSD) of the business documents required for the context scenario.

1.3 Support for this Release
The downloadable version of this release is available from UBLv10-beta Downloadable Release.
(This is a zip file that will unpack to give you a replica of the online release directories.)

If there are any problems with the links in this document, you can find the full online version at:

 http://www.oasis-open.org/committees/ubl/lcsc/UBLv10-beta/ .

On release of this Committee Draft, a publicly subscribable mail list will be created for the
discussion of UBL among software developers. Archives of this mail list will be found at

http://lists.oasis-open.org/archives/ubl-dev/

In addition UBL has established a Pilot and Implementation Subcommittee to assist trial
implementors in their application of this specification.

Once in operation, subscriptions to both lists can be made through the OASIS list manager at:

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 5 of 44

121

122
123
124
125
126
127
128

129

130
131
132

133

134
135
136
137

138

139
140
141

142

143
144

145

146

147

148
149

150

151

152
153

154

155
156

157

http://lists.oasis-open.org/ob/adm.pl

1.4 The OASIS UBL TC
The work of the OASIS UBL Technical Committee and its various Subcommittees is open to
public view through the mail archives linked from the UBL home page: http://www.oasis-
open.org/committees/ubl

1.5 Document Conventions
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
RECOMMENDED, MAY and OPTIONAL, when they appear in this document, are to be
interpreted as described in [RFC2119] as quoted here:

MUST: This word, or the terms "REQUIRED" or "SHALL", means that the definition is an
absolute requirement of the specification.

MUST NOT: This phrase, or the phrase "SHALL NOT", means that the definition is an
absolute prohibition of the specification.

SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid
reasons in particular circumstances to ignore a particular item, but the full implications must
be understood and carefully weighed before choosing a different course.

SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may
exist valid reasons in particular circumstances when the particular behavior is acceptable or
even useful, but the full implications should be understood and the case carefully weighed
before implementing any behavior described with this label.

MAY: This word, or the adjective "OPTIONAL", mean that an item is truly optional. One
vendor may choose to include the item because a particular marketplace requires it or
because the vendor feels that it enhances the product while another vendor may omit the
same item. An implementation which does not include a particular option MUST be
prepared to inter-operate with another implementation which does include the option,
though perhaps with reduced functionality. In the same vein an implementation which does
include a particular option MUST be prepared to inter-operate with another implementation
which does not include the option (except, of course, for the feature the option provides).

1.6 Disclaimer
This document and its associated components are Copyright © 2003 OASIS and are protected by
applicable law as works in progress within the OASIS Universal Business Language Technical
Committee. As works in progress, they do not yet have the status of an OASIS Standard or an
OASIS Committee Specification. This draft and its associated components are provided on a
royalty-free basis and may be freely circulated for purposes of experimentation and review. While
the construction of experimental prototypes based on these materials is encouraged for the
purpose of generating input back to the committee process, implementers are strongly advised
against basing commercial or mission-critical applications on the draft specifications contained in
this package. THESE MATERIALS ARE FURNISHED WITH NO WARRANTY, EXPRESS OR
IMPLIED, AS TO THEIR SUITABILITY FOR ANY APPLICATION.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 6 of 44

158

159

160
161
162

163

164
165
166

167
168

169
170

171
172
173

174
175
176
177

178
179
180
181
182
183
184
185

186

187
188
189
190
191
192
193
194
195
196

197

198

2 Context of Initial Library [NORMATIVE]

2.1 Initial UBL Business Scenario
The specific context adopted for UBL 1.0 is based on a typical trading cycle that of procurement.
We have used this context as a means of developing a set of common, re-usable Business
Information Entities and their accompanying document definitions.

This section describes the scenario, business rules, transactions and choreography of a
rudimentary order-to-invoice business process. A set of UBL documents have been assembled to
demonstrate the information exchanges required by these transactions. We have adopted an
80/20 rule for this scenario - recognising this is not the definitive description of this process but a
generalised case.

Of course, this is not the entire scope of the UBL Library. The components and their documents
can also be used as a basis for extension to create more function-rich, but separately defined,
scenarios. As this occurs, we envisage that this section will become part of a registry of available
business processes from different, complementary sources.

2.2 The Order-to-Invoice Business Process
This model addresses the requirements of a basic, usable trading cycle from Order to Invoice
between Buyer and Seller. It includes specifications for:

• Order
• OrderChange
• Order Response (simple)
• Order Response (complex)
• Order Cancellation
• Despatch Advice
• Receipt Advice
• Invoice

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 7 of 44

199

200

201
202
203

204
205
206
207
208

209
210
211
212

213

214
215

216
217
218
219
220
221
222
223

Figure 1. Order-to-Invoice Business Process

Items
An Identifier identifies each Item (e.g. a product identifier), which shall be one of the following:

• Buyer's Item Identification, or
• Seller's Item Identification, or
• Manufacturer's Item Identification, or
• Catalogue Item Identification, or
• Item Identification according to a Standard body's system.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 8 of 44

225

226

227

228

229

230
231
232
233
234

The Item Identification assumes that each different packaging of an Item (e.g. a 6-pack and a 12-
pack of the same item) has a different Item Identifier.

The Item may be further distinguished by the specification of Measurement(s) or Physical Attribute
(s). This enables specification of the following kinds of item:

Item Requiring Description
This is an item that is not identified by an unambiguous, machine processable, product code and
where it is necessary to provide additional descriptive information about the item to precisely
identify what is required.

Customer Defined Item

This is an item that the customer describes according to his need, and in the specification of
which the customer may make some reference to comparable "standard" items.

Item Measurements

This is an item in which it is necessary to specify one or more measurements as part of the
descriptive specification of the item.

Other Item Details

For an Item, price ranges by amount, quantity, etc. are not repeated back to the Seller; only the
active price is specified. The Buyer may not know the Item Base Price, in which case it is not
specified. This makes a detailed response from the Seller necessary [See Order Response
(Complex)].

Ordered items may include Hazardous items, insofar as it is not necessary to specify related
information at the order stage. The Buyer may not be aware of the nature of the Item. Indication of
the Hazardous nature of the Item, and any relevant information, would be indicated in the
Despatch Advice.

Order
The Order may specify Charge Payment (e.g. freight, documentation etc) instructions that identify
the type of charge and who pays which charges. The Order can be placed 'on account' against a
trading credit account held by the Seller, or against a credit/debit card account, or a direct debit
agreement. The Order overall allows only for specification of Currency (e.g. £, $, € etc by ISO
currency code) for Pricing, for Invoice presentation, for Tax accounting. In the case of
International freight/documentation charges, it may also be necessary to specify the Currency.

Trade discount may be specified at Order level. The Buyer may not know the trade discount, in
which case it is not specified. This makes a detailed response from the Seller necessary [See
Order Response (Complex)].

The Order may specify delivery terms and constraints that apply for the delivery location in relation
to the following information that would normally not appear until the Despatch Advice:

• Transport
• Means
• Mode
• One- to many-legged journey

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 9 of 44

235
236

237
238

239

240
241
242

243

244
245

246

247
248

249

250
251
252
253

254
255
256
257

258

259
260
261
262
263
264

265
266
267

268
269

270
271
272
273

• Dates
• Locations

• Arrival 'window'
• Consignment packaging

• Type, e.g. Container, Pallet
• Identifier, e.g. SSCC, Shipping label (Despatch Advice)

The Order provides for multiple Order Lines.

Order Lines

Each Order Line provides for specification of a single place of delivery, and a schedule of
quantities and requested delivery dates.

The Order may specify delivery terms, while the Order Line may provide instructions for delivery.

The Buyer may indicate potential alternatives that are acceptable. For each Order Line, an
Alternative Item can be included. The Alternative Item may be specified by any one of the range of
Item identifiers. For example, the specified Quantity may change e.g. 20x6-packs as an
alternative to 10x12-packs.

Order Response (Simple)
The Order Response (simple) is the means by which the Seller confirms receipt of the Order from
the Buyer, indicating either commitment to fulfill without change or that the Order has been
rejected.

Order Response (Complex)
Proposed changes by the Seller would be accomplished through the OrderResponse (Complex).

The Order Response (complex) is a complete replacement of the Order. It reflects the entire state
of the order transaction. It also is the means by which the Seller confirms or supplies Order-
related details to the Buyer that were not available to, or specified by, the Buyer at the time of
ordering. These may include:

• Delivery date, offered by the Seller if not specifically requested by the Buyer
• Prices
• Trade Discount
• Charges
• Customs Commodity Classification codes

The Seller may advise replacements or substitutes which will be made, or changes necessary,
using the Order Response (complex). The Substitute or Replacement Item may be specified by
any one of the range of Item identifiers. For example, the specified Quantity may change e.g.
20x6-packs as a replacement for 10x12-packs.

Order Change
The Buyer can change an Order, subject to the legal contract or trading partner agreement, by
sending an OrderChange, or by sending an Order Cancellation followed by a new, complete
replacement, Order.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 10 of 44

274
275
276
277
278
279

280

281

282
283

284

285
286
287
288

289

290
291
292

293

294

295
296
297
298

299
300
301
302
303

304
305
306
307

308

309
310
311

An Order Change reflects the entire state of the order transaction.

Buyers can initiate a change to a previously accepted order. Buyers may change an order for
various reasons such as changing the ordered items, quantity, delivery date, ship-to address, etc.
Suppliers can accept or reject the change order using either Order Response documents.

Order Cancellation

At any point of the process, a Buyer can cancel an active order transaction using the Order
Cancellation document. Legal contracts, trading partner agreements and business rules would
restrict at what point a Order Cancellation would be ignored (e.g. at the point of manufacture or
delivery process initiation). Given the agreements and rules, an Order Cancellation may or may
not be an automated business transaction. The terms and conditions of a contract formation for
business commitments will dictate what if any of these restrictions and/or guidelines will apply.

 Despatch Advice

The following information may appear in the Despatch Advice:

• Transport
• Means
• Mode
• One- to many-legged journey

• Dates
• Locations

• Arrival 'window'
• Consignment packaging

• Type, e.g. Container, Pallet
• Identifier, e.g. SSCC, Shipping label (Despatch Advice)

The Despatch Advice caters for two situations:

• Organisation of the delivery set of items by Transport Handling Unit(s) so that the
Receiver can check Transport Handling Unit and then contained items. Quantities of the
same item on the same Order Line may be separated into different Transport Handling
Units, and hence appear on separate Despatch Lines within a Transport Handling Unit.

• Organisation of the delivery set of items by Despatch Line, annotated by the Transport
Handling Unit in which they are placed, to facilitate checking against the Order. For
convenience, any Order Line split over multiple Transport Handling Units will result in a
Despatch Line for each Transport Handling Unit they are contained in.

Additionally, in either case, the Despatch Advice can advise:

• Full Despatch — Advising the Recipient and/or Buyer that all the items on the order will
be, or are being, delivered in one complete consignment on a given date.

• Partial Despatch — Advising the Recipient and/or Buyer that the items on the order will
be, or are being, partially delivered in a consignment on a given date.

Despatch Lines of the Despatch Advice may not correspond one-to-one with Order Lines, but
these need to be linked by reference. The information structure of the Despatch Advice, geared to
physical considerations, may result in multiple Despatch Lines from one Order Line. Equally,
partial despatch may result in some Order Lines not being matched by any Line in a Despatch
Advice.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 11 of 44

312

313
314
315

316

317
318
319
320
321
322

323

324

325
326
327
328
329
330
331
332
333
334

335

336
337
338
339
340
341
342
343

344

345
346
347
348

349
350
351
352
353

Within a Despatch Advice, an Item may also indicate the Country of Origin and the Hazardous
nature of the Item.

 Receipt Advice

The Receipt Advice is sent by the Receiver (Buyer) to the Seller to confirm receipt of items, and is
capable of reporting shortages and/or damaged items.

The Receipt Advice caters for two situations. For ease of processing claimed receipt against
claimed delivery, it needs to be organised in the same way as the matching Despatch Advice:

• Indication of receipt by Transport Handling Unit(s) and contained Receipt Lines one-to-
one with the Despatch Advice as detailed by the Seller party.

• Indication of receipt by Receipt Lines annotated by Transport Handling Unit, one-to-one
with the Despatch Advice as detailed by the Seller party.

The Receipt Advice allows the Receiver to state any shortages from the claimed despatch
quantity, to state any quantities rejected for a given reason.

As presently arranged the Receipt Line only allows for one rejection quantity and reason.
However, any rejection of quantities of same item for different reasons could be achieved by
subdividing the Receipt Line so that there are multiple Receipt Lines to one Despatch Line.

 Invoice

The Invoice is normally issued on the basis of one despatch event triggering one invoice. An
Invoice may also be issued for pre-payment on a whole or partial basis. The possibilities are:

• Pre-payment invoice (payment expected)
• Pro-forma invoice (pre advice, payment not expected)
• Normal Invoice, on despatch for despatched items
• Invoice after return of Receipt Advice

The invoice only contains the information that is necessary for invoicing purposes. It does not re-
iterate information already established in the Order, Order Change, Order Response (complex),
Despatch Advice, or Receipt Advice that is not necessary when invoicing. The Invoice refers to
the Order, Despatch Advice or Receipt Advice by a Reference of those documents.

Taxation on the Invoice allows for compound taxes, the sequence of calculation implied by the
sequence of information repeated in the data-stream. (e.g., Energy tax, with VAT — Value Added
Tax — superimposed).

Charges can be specified either as a lump sum, or by percentage applied to the whole Invoice
value prior to calculation of taxes. Such charges cover:

• Packaging
• Delivery/postage
• Freight
• Documentation

The present Invoice does not cover Debit and Credit Notes. Nor does the cycle include a
Customer Account Statement that summarises Invoices, Credit Notes and Debit Notes to be paid.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 12 of 44

354
355

356

357
358

359
360

361
362
363
364

365
366

367
368
369

370

371
372

373
374
375
376

377
378
379
380

381
382
383

384
385

386
387
388
389

390
391

 Invoice Item Line

Each Invoice Line refers to the related Order Line and may refer to the Despatch Advice Line
and/or Receipt Advice Line.

Adapting UBL for other scenarios
Different business scenarios to meet different ways of trading cycle operation can, and should, be
developed by separate, appropriate business experts. Ideally they should take advantage of the
basic UBL model as a starting point and as an exemplar. However, part of the UBL charter is to
develop a methodology which will formalize the way that documents for other scenarios can be
implemented. This is known as UBL Context Methodology [CM]. When this is in place as part of
UBL 2.0 it will promote greater interoperability, reduce ambiguity, and avoid unnecessary overlap.

Meanwhile we encourage the UBL community to share their customisation and developments,
both to improve the quality of the underlying library and provide valuable input into the UBL
customisation methodology.

For example, within the procurement domain, suggested other scenarios include situations of:

• Vendor managed inventory
• Self-billing
• Master Order and Call-offs
• Prior Quote Request & Quotation
• International Trade requiring Multi-party Transportation
• Hire Trade (e.g. tool hire, scaffolding hire), etc.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 13 of 44

392

393
394

395

396
397
398
399
400
401

402
403
404

405

406
407
408
409
410
411

3 Library and Methodology [NON-NORMATIVE]
It is not the purpose here to give a tutorial on the development process nor is the intention to
define in detail the way UBL has used various tools and techniques. The sole normative
deliverable of UBL is the schemas: unlike some other standards initiatives UBL does not mandate
the use of a specific formal development method.

However, a development methodology has evolved during the UBL project. We refer to this
approach as Document Engineering.

The purpose of this section is to describe the process that evolved, so that users can understand
better the role of the various technical artifacts developed by UBL, and the tools that are available
to work with these artifacts.

The initial library of business information entities (BIEs) was based upon the xCBL3.0 schema
library. After a review of these it was felt necessary to create an abstracted model of the entities in
a syntax neutral form which would support better an iterative development lifecycle. This
abstraction is known as the UBL conceptual model. This modelling language used is UML.

It is important to understand that the conceptual model was developed as a means to an end. The
end result is the UBL schemas and the UBL schemas are the sole normative artifacts of the UBL
development process. At present there is no automated process that takes the conceptual model
and generates the input to the next stage in the development process - currently this is the
spreadsheet of BIEs. However, the conceptual model will be maintained by UBL and it is this
model that will be used by UBL as the starting point for any modifications to the UBL.

The next stage of the process was to identify and document the artifacts required by the ebXML
Core Component Technical Specification (CCTS) - Aggregate Business Information Entities
(ABIE)s, their Basic Business Information Entities (BBIE) properties and their Associations with
other ABIEs (ASBIE)s. This was a manual process using business knowledge of the domain, the
UML diagrams, and the CCTS[CCTS]. The resultant BIEs were documented in a spreadsheet
format. The reason for using a spreadsheet is that the conceptual model was not constructed with
a UML profile that would facilitate the automated production of the XML schemas, and the
development of and agreement to such a profile was seen as a potentially lengthy process.
Conversely, it was a simple process to develop a spreadsheet format that would be both CCTS
compliant and facilitate the automated production of schemas. It is the spreadsheet that is used to
maintain the UBL Library. Importantly, it is spreadsheet that provides the additional meta-data and
associated formulae to facilitate compliance with the CCTS.

Therefore, the BIEs identified in the model were transcribed manually into a spreadsheet of re-
usable BIEs. Additional individual spreadsheets were developed for each document type in the
initial UBL context scenario. These document models can be viewed as demonstrations of how
UBL documents may be assembled.

This development process is shown in the diagram below.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 14 of 44

412

413
414
415
416

417
418

419
420
421

422
423
424
425

426
427
428
429
430
431

432
433
434
435
436
437
438
439
440
441
442
443

444
445
446
447

448

449

Figure 2. The Development Process

3.1 The Conceptual Model
The UBL conceptual model incorporates the data requirements of all of the documents supported
by UBL 1.0. It was developed as a UML class diagram. The model is restricted to the data
aspects of the UBL process scenario: it does not include other UML diagram notations such as
use case models, interaction diagrams etc.

The conceptual model is the result of a detailed analysis of the data requirements to support the
initial UBL Business Process Scenario. During the modeling process common items of data were
identified by a process of normalization to identify aggregates based on functional dependency.
Where appropriate these were generalized so that they could be re-used to support the various
business documents.

The conceptual model is used for the following purposes:

• It facilitates the identification of the re-usable components - i.e. the data that are common
across the business documents comprising UBL 1.0.

• It provides for the understanding of the total data scenario in a visual way
• It is the source from which the BIEs are derived and documented in a spreadsheet

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 15 of 44

451

452

453
454
455
456

457
458
459
460
461

462

463
464
465
466

The conceptual model is included in this document as a series of diagrams. For the purposes of
clarity the model represented here does not include any attributes, nor does it contain any of the
additional semantics that were developed to assist in the documentation of BIEs.

As an example, the Party re-usable component in UML is shown below.

Figure 3. Conceptual UML class diagram of Party

The full list of class diagrams showing re-usable components in sets of packages is shown below.

Address

Contract

Delivery

Document reference

Hazardous item

Item

Party

Payment

Procurement

Tax

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 16 of 44

467
468
469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

Each of the business documents comprising UBL 1.0 is documented as a class in the UML
model. This class represents the top level Aggregate BIE for the document type. All the other BIEs
for the business document were derived by traversing the associations from this class, and by
applying knowledge of the hierarchy required. As an example, the conceptual model of the Order
document is shown below.

Figure 4. Conceptual UML class diagram of the Order Document

The full list of class diagrams for the business documents is shown below.

Order

Order response

Order change

Order cancellation

Despatch Advice

Receipt advice

Invoice

Outside of the internal UBL development process, this conceptual model is for information
purposes only.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 17 of 44

486
487
488
489
490

491

492

493

494

495

496

497

498

499

500

501

502

503
504

In addition to this, the model represented here is just a skeleton of the complete model (it contains
only the classes and their associations). For these reasons the conceptual model is not a
complete enough artifact for implementors to use if they wish to modify the UBL schemas to suit a
specific business community.

3.2 Spreadsheet Models
The UBL team chose, at an early stage of development, to use spreadsheets as a working tool to
maintain the document models. The library and its documents are composed of a combination of
ABIEs, BBIEs and the relationships between two ABIEs, ASBIEs. Many of the spreadsheet
columns are determined by requirements of the ebXML Core Components Technical Specification
[CCTS], others by UBL Naming and Design Rules[NDR].

Each business information entity (BIE) is defined in a single row. Row background colour
distinguishes between BBIE (white), ABIE (pink) and ASBIE (green). Annotations in the first row
of each column provide further explanation of the conventions and design aspects of the
spreadsheets.

All UBL document schemas are automatically generated from these spreadsheet models. Please
note, that the normative form of UBL documents definitions is not the spreadsheet model but the
XSD XML Schemas. The spreadsheets provide:

• - a suitable starting point for model editing and for Schema regeneration using a scripting or
transformation tool such as that used by the UBL team.

For those wishing to customise UBL or use it as the basis for a new vocabulary, the
spreadsheets can be manually edited. It is intended that there be levels of conformance to
UBL, depending on how customisation is performed. Any schema generation should be
compliant with the UBL Naming and Design Rules [NDR] to promote compatibility of
component libraries. Furthermore, UBL foresees the development of a customisation
methodology for version 2.0 of the UBL..

Modifying the current spreadsheets requires an understanding of their structure, the ebXML
Core Components Technical Specification [CCTS] and the various UBL library constituents.
For example, some columns are updated manually. Others have formulas in their cells which
implement ebXML CCTS and UBL Naming and Design Rules [NDR]. Awareness of this is
necessary when adding or editing the row contents. Care should be taken to avoid updating
cells that contain formulae.

• - a supplementary, non-normative documentation of the UBL models

• - an aid to understanding the existing UBL architecture.

All Business Documents are defined in their individual spreadsheets, each references the Re-
usable Component Library spreadsheet.

These are provided in both Microsoft(R) Excel (.xls) and Open Office formats (.sxc).

UBL Order (MS Excel) or UBL Order (Open Office)

UBL Order Response (Simple) (MS Excel) or UBL Order Response (Simple) (Open Office)

UBL Order Response (Complex) (MS Excel) or UBL Order Response (Complex) (Open Office)

UBL Order Change (MS Excel) or UBL Order Change (Open Office)

UBL Order Cancellation (MS Excel) or UBL Order Cancellation (Open Office)

UBL Despatch Advice (MS Excel) or UBL Despatch Advice (Open Office)

UBL Receipt Advice (MS Excel) or UBL Receipt Advice (Open Office)

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 18 of 44

505
506
507
508

509

510
511
512
513
514

515
516
517
518

519
520
521

522
523

524
525
526
527
528
529

530
531
532
533
534
535

536

537

538
539

540

541

542

543

544

545

546

547

UBL Invoice (MS Excel) or UBL Invoice (Open Office)

All Aggregate Business Information Entities are expressed in the UBL Re-usable Component
Library spreadsheet (MS Excel) or UBL Re-usable Component Library spreadsheet (Open Office).

 All Codelist information is expressed in the UBL-CodeListCatalogue-1.0-beta (MS Excel) or UBL-
CodeListCatalogue spreadsheet (Open Office).

3.3 The Implementation Model
The implementation model of UBL represents the actual XML Schemas as a UML model. This is
produced by automatically transforming the UBL XML Schemas into a model conformant with the
Unified Modeling Language [UML]. This model is then used to produce a set of class diagrams
that illustrate each of the main documents and several views of the reusable components. The
automated transformation and diagram creation was performed using a Schema to UML
transformation tools called Ontogenics' hyperModel.

These UML class diagrams are intended to assist understanding of the UBL Schemas, but without
requiring that the reader understand the XML Schema syntax. The diagrams intentionally
suppress some of the detail from the XML Schemas that is also represented in the reverse-
engineered UML model. For example, this UML implementation model contains the sequence
order of elements within a complex type definition, but this information is not included in the
diagrams. Also, part of the transformation process from XML Schema to UML model is designed
to create a useful object-oriented representation that could be used for other software engineering
work based on this model (e.g. the OMG's model driven architecture). Consider two examples
where this choice affects the resulting UML model. First, the "Type" suffix of XML Schema
complexType names are removed when creating the UML class name to yield an object class
name independent of XSD syntax. Second, complex type child elements with simple content
values are represented in UML as class attributes, whereas elements with complex content are
represented as associations to those type classes.

There are eight main business documents in the UBL 1.0 library and one class diagram is created
for each of these document definitions. These document-level diagrams are presented as
simplified views that suppress the detail of types contained within these aggregate structures. As
an example, the class diagram for the UBL Order document is shown in this diagram:

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 19 of 44

548

549
550

551

552
553

554

555

556
557
558
559
560
561

562
563
564
565
566
567
568
569
570
571
572
573
574

575
576
577
578

Figure 5. Implementation Model for the Order Document

In addition to the main document diagrams, there are ten class diagrams that present views of the
packages of reusable components used in these documents. For example, the Order diagram
includes associations to Party, SellerParty, and BuyerParty. The following figure illustrates the
detailed definitions of these components.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 20 of 44

581

582
583
584
585

Figure 6. Implementation Model for Party Components

This implementation model was used by the UBL subcommittees to help verify the completeness
and accuracy of the library definitions, but was not used to generate the XML Schemas contained
in this specification. However, schema generation from UML models is theoretically possible and
could be considered for extending or customizing the UBL library. Readers of this specification
may find these diagrams helpful while gaining an understanding of the UBL library content and as
a quick reference during future use of the schemas. In particular, business users who wish to
review the library contents without learning the XML Schema language will find these model
diagrams helpful.

The complete list of UML implementation model diagrams is:

Document Diagrams Reusable Component Diagrams

• Order
• OrderCancellation
• OrderChange
• OrderResponse
• OrderResponseSimple
• Invoice
• DespatchAdvice
• ReceiptAdvice

• Address
• Contract
• Delivery
• DocumentReference
• HazardousItem
• Item
• Party
• Payment
• Procurement
• Tax

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 21 of 44

586

589

590
591
592
593
594
595
596
597

598

599

4 UBL Schemas [NORMATIVE]
The UBL Document Schemas form the essential deliverables of the UBL Technical Committee.
The XML Schemas are implementations of the conceptual models identified by UBL, and are the
only normative representation of the UBL library.

Within this release there are 3 main sub-directories under the “xsd/” directory: the “codelist/”,
“common/”, and “maindoc/” sub-directories.

The sub-directories show the following contents:

Directory Sub-directory UBL edited
schemas

Auto-
generated
schemas

Number of
schemas

xsd/codelist/ etc/ - 1 1
placebo/ - 56 56
use/ - 56 56

xsd/common/ 4 1 5
xsd/maindoc/ - 8 8

In the common directory, the 4 UBL edited schemas are:

UBL-CoreComponentParameters-1.0-beta.xsd
This file provides the structure description of fields that go into the annotation/documentation
section of the type definitions used in all the other schemas. The meta information, such as the
object class, representation terms, etc are stored in specific fields as defined in this
CoreComponentParameters in a consistent format. This allows the source derivation information
to be extracted instead of reverse-engineered or guessed.
UBL-CoreComponentTypes-1.0-beta.xsd
This file provides the Core Component Types (CCT) as defined by the UN/CEFACT Core
Components Technical Specification team. The types defined within this file provide the basic
building type blocks to construct higher level representation types in a standardized and consistent
manner.
UBL-RepresentationTerms-1.0-beta.xsd
This file provides the Representation Terms (RT) that implements the basic type building blocks to
construct main document schemas.
UBL-DataTypes-1.0-beta.xsd
This file is a placeholder to implement data types that are required by main document schemas,
but which are currently not yet a CCT-recognized type yet. In this release of UBL, there is no such
need for additional data types yet. The content of this schema is therefore empty, although the
necessary namespace and imports are already set in place.
The only schema file in the 'common' sub-directory that is not manually crafted is the Reusable
schema. This is automatically generated from the re-usable spreadsheet model.

UBL-Reusable-1.0-beta.xsd
This file provides the Aggregate Business Information Entities (BIEs) that are used throughout the
UBL. Effectively, this schema serves as a “ABIE type-database” for constructing the main
documents.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 22 of 44

600

601
602
603

604
605

606

607

608

609
610

The “maindoc/” directory contains the 8 automatically generated schemas for each document
type:

Directory File Description Purpose
xsd/maindoc/ UBL-DespatchAdvice-1.0-beta.xsd This schema provides the

UBL Despatch Advice
document.

UBL-Invoice-1.0-beta.xsd This schema provides the
UBL Invoice document.

UBL-Order-1.0-beta.xsd This schema provides the
UBL Order document.

UBL-OrderCancellation-1.0-beta.xsd This schema provides the
UBL Order Cancellation
document.

UBL-OrderChange-1.0-beta.xsd This schema provides the
UBL Order Change
document.

UBL-OrderResponse-1.0-beta.xsd This schema provides the
UBL Order Response
document.

UBL-OrderResponseSimple-1.0-beta.xsd This schema provides the
UBL Order Response Simple
document.

UBL-ReceiptAdvice-1.0-beta.xsd This schema provides the
UBL Receipt Advice
document.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 23 of 44

611
612

5 Code Lists
Editor's Note: the following description of a method for validating against enumerated
code lists has not been fully implemented in UBL 1.0 Beta. This work is under review by
the UBL Code List Subcommittee.

The primary objective of populating codes lists within the UBL Library is to promote
interoperability. That is, by having known sets of values in enumerated lists we allow information
to be exchanged unambiguously. We recognise that other information may be useful for
presenting or describing these codes, but the most effective means of conveying this additional
information is yet to be established. In UBL 1.0 we have concentrated solely on enabling
interoperability by populating enumerated lists.

Strictly speaking a code is an abbreviation of a value. We recognize that in some cases the values
in our lists are not codes but a controlled vocabulary of terms. However, the same mechanisms
can be used to support both. This mechanism is what we refer to as the UBL code list
architecture.

UBL has identified and detailed four validation perspectives, termed "code list definitions", for the
values found in instance content of the type of a given code list, summarized as:

• Standard: These are mandatory codes that MUST be used to be UBL compliant. The
reason a code is defined as standard may be that it required for correct use of
business transactions (e.g. status codes), promotes a single, internationally
recognised code set (e.g. currency code) or enforces a restricted set of possible
values (e.g. latitude code).
UBL will supply codes that should be sufficient to all users of UBL. The values used in
instances should be validated against the supplied codes and validating processors
should correctly throw errors when invalid values are used.
The implementation of standard codes is as a "stock" code without a "placebo" (see
below).

• Placebo: These are code lists whose values SHOULD be agreed upon between
trading partners. UBL SHALL NOT enforce any validation of the coded values in these
code lists. These are implemented by using the generic "normalized string" data type
for these elements in which these coded values belong. Applications working with the
instances have the responsibility of validating any content found for these codes.

• Stock: These are UBL-supplied sets of candidate codes available to be used in place
of "placebo" code lists. Trading partners who agree to utilize the values supplied by
UBL MAY choose to replace the "placebo" lists with these "stock" lists.

• Private-Use: Trading partners SHOULD always have the ability to create and then
utilize sets of codes of their own choosing. "Private-use" code lists MAY replace either
"standard" code lists or "placebo" code lists. Trading partners MAY choose to
implement validation of private code lists either in the schema expression or in their
applications but MUST do so without impacting on any other code list used.

All codes will be handled by separate schema modules, regardless of their source so that the
necessary enumeration's and their subsequent maintenance will not impact the other library
schemas.

There are two sources of codes for UBL code list definitions. The first is when the code list is
created by an outside agency or organization (e.g. the UNCL TRED codes) and is available

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 24 of 44

613

614
615
616

617

618
619
620
621
622
623
624
625
626
627
628
629
630
631

632
633
634
635
636
637
638
639
640
641

642
643
644
645
646

647
648
649

650
651
652
653
654

655
656
657

658
659

without fees or incumberances. The second is when no royalty-free external code list is available
and UBL has created its own codes (e.g. OrderRejectionReasonCode). We envisage and
encourage external code agencies to establish and maintain their own code schemas for use with
UBL. However, in the first instance we accept that we will need to use localised UBL snapshots of
the original codes, maintained by UBL. As external code list owners make their code lists
available in the form of importable schema modules, the corresponding references for those code
list modules can be changed accordingly.

Within the UBL schemas, an "in-use" directory is used to define each code list to be used during
the validation process. Only values for standard definitions of code lists are validated for their
content when UBL is run out-of-the-box. All other code lists are validated using the placebo
definition merely as having a tokenized value, and this value is not checked against any further
constraints. Customised implementations can chose to adopt either stock or private-use code list
definitions, and after any such engagement can revert to the out-of-the-box configuration by
engaging the original standard or placebo code list definition.

UBL provides a catalogue of the code lists in the UBL Library. This catalogue also describes other
meta-data that may be of significance to users of the codes.

The “codelist/” directory contains 3 sub-directories:

Directory Sub-directory File Description Purpose
xsd/codelist/ etc/ UBL-CodeListCatalogue-

1.0-beta.xml
A master catalogue of all
code lists that are used in
one way or another within
UBL schema deliverables.
The catalogue also
provides necessary meta
data for the tool to
generate consistent
linkages between code list
references, namespace
values, filenames and
other important aspects of
code list schema
generation.

placebo/ -
use/ -

The “placebo/” sub-directory contains a set of generated code list schemas that carry appropriate
namespace values and prefixes so that the main documents could reference and import the code
list schema type. In practical usage, however, the files in the “placebo/” sub-directory are not
imported by any other schema; they are copied first into the “use/” sub-directory, and (with its
filename) renamed from “*Placebo*.xsd” to “*Use*.xsd”. In this way, if and when an alternative
implementation of code list schema is implemented by UBL in time to come, they could be copied
and renamed in the “use/” sub-directory without upsetting any of the higher-level schemas that
have used the previous code list schemas.

Following the current code list usage architecture, the schema files found in the “use/” sub-
directory are therefore copies of exactly the same files found in the “placebo/” sub-directory. The
idea is that if the code list schema in the “use/” sub-directory gets replaced by other code list
schema implementation, it is possible to revert back by copying the corresponding code list
schema found in the “placebo/” sub-directory.

Currently, a few alternative means of code list schema implementations are being examined
within the UBL TC. The sub-directory structure may be expanded further in future. As the final
structure of this directory is still being worked out, the current structure sets up in compatible
preparation for this future expansion and change.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 25 of 44

660
661
662
663
664
665
666

667
668
669
670
671
672
673

674
675

676

677
678
679
680
681
682
683
684

685
686
687
688
689

690
691
692
693

Annex F lists the files found in the “placebo/” and “use/” directory.

There is a large set of meta data associated with each of the code list schema. To get a sense of
what each of the code list is intended for, how is it is being used, who is the authority, what is the
version number, etc, one should look into the file “xsd/codelist/etc/UBL-CodeListCatalogue-
1.0.xml”, where each <CodeListItem> child element within that file gives the set of meta data for
that particular code list schema.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 26 of 44

694

695
696
697
698
699

Appendix A. References

A.1 Normative References
[ISO11179] International Standards Organisation's Specification and Standardization of Data
Elements for Information Technology

http://isotc.iso.ch/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
??Redirect=1

[ISO 8601] Data elements and interchange formats -- Information interchange -- Representation
of dates and times

http://www.iso.org/iso/en/CombinedQueryResult.CombinedQueryResult?queryString=8601

[CCTS] UN/CEFACT ebXML Core Components Technical Specification 2.0

http://www.oasis-open.org/committees/download.php/4259/CEFACT%20CCTS%
20Version%202%20of%2011%20August.pdf

[NDR] Universal Business Language Naming and Design Rules

http://www.oasis-open.org/committees/sc_home.php?wg_abbrev=ubl-ndrsc

[CM] Universal Business Language Context Methodology

wd-cmsc-cmguidelines-1.0-beta

[UML] Unified Modeling Language 1.3 (formal/02-07-01)

http://www.omg.org/cgi-bin/doc?formal/02-07-01

[XML] Extensible Markup Language (XML) 1.0 (Second Edition),W3C Recommendation 6
October 2000

http://www.w3.org/TR/2000/REC-xml-20001006

[XSD1] XML Schema Part 1: Structures, W3C Recommendation 2 May 2001

http://www.w3.org/TR/xmlschema-1/

[XSD2] XML Schema Part 2: Datatypes, W3C Recommendation 02 May 2001

http://www.w3.org/TR/xmlschema-2/

A.2 Terms and Definitions
Business Context

The formal description of a specific business circumstance potentially identified by the
values of a set of context categories, allowing different business circumstances to be
uniquely distinguished.

Class Diagram

A graphical notation used by the UML [UML] to describe the static structure of a system,
including object classes and their associations.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 27 of 44

700

701

702
703

704
705

706
707

708

709

710
711

712

713

714

715

716

717

718
719

720

721

722

723

724

725

726

727
728
729

730

731
732

Container

A modular and self-contained group of data components.

Containership

Aggregating components (nested elements in an XML schema [XML]).

Context

The circumstance or events that form the environment within which something exists or
takes place.

Dependency Diagram

A refinement of a class diagram that emphasis's the dependent associations to between
object classes.

Document

A set of information components that are interchanged as part of a business transaction; for
example placing an order.

Document Assembly

A description of an hierarchical pathway through a normalized model of information
components.

Functional Dependency
A means of aggregating components base of whether the values of a set of properties

change when another set of properties changes. That is whether the former is dependent on the
latter.

Hierarchical Model

A tree-structured model that can be implemented as a document schema.

Normalization

A formal technique for identifying and defining functional dependencies.

Conceptual Model

A representation of normalized data components describing a potential network of
relationships between aggregate components.

Schema

An XML document definition based on the W3C XML Schema language [XSD1][XSD2].

schema

Any XML document definition.

Spreadsheet Model

A representation of a data model in tabular form.

The terms Core Component and Business Information Entity are used in this specification with the
meanings given in [CCTS].

The terms Object Class, Property Term, Representation Term, and Qualifier are used in this
specification with the meanings given in [ISO11179].

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 28 of 44

733

734

735

736

737

738
739

740

741
742

743

744
745

746

747
748

749
750
751
752

753

754

755

756

757

758
759

760

761

762

763

764

765

766
767

768
769

 A.3 Symbols and Abbreviations
ABIE

Aggregate Business Information Entity

ACC

Aggregate Core Component

ASBIE

Association Business Information Entity

ASCC

Association Core Component

BBIE

Basic Business Information Entity

BCC

Basic Core Component

BIE

Business Information Entity

CC

Core Component

EAN

European Article Numbering Association

EDI

Electronic Data Interchange

ISO

International Standards Organisation

NDR

UBL Naming and Design Rules [NDR]

UML

Unified Modeling Language [UML]

UN/CEFACT

United Nations Centre for Trade Facilitation and Electronic Business

XML

Extensible Markup Language [XML]

XSD

World Wide Web Consortium's XML Schema Language [XSD1][XSD2]

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 29 of 44

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

A.4 XML Naming and Design Rules
The complete UBL XML Naming and Design Rules (NDR) document is currently in active editing.
It will be completed by and released with the final release of UBL.

The completed NDR document will be a fully annotated version of the rules checklist contained in
the current release. Explanatory text is being developed around each rule to facilitate
understanding and use of this rules document.

After the milestone meeting in Montreal, held July 28 through August 1, 2003, the NDR Sub
Committee decided to give the Library Content Sub Committee a snapshot of the rules as they
existed coming out of that meeting. It is this snapshot that this Beta Release is based on.

Highlights of these rules are:

• Adherence to the Core Component Technical Specification, 2.0, Dated August 2003.
• Implementation of the Core Component Types schema module.

This rules table reflects only those rules valid on 19 September 2003. The link to this table is: rn-
ndrsc-v1-0-beta.html.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 30 of 44

803

804
805

806
807
808

809
810
811

812

813
814

815
816

Appendix B. UBL Document Examples (Non-
Normative)

B.1 Example One Buying Office Supplies
The buyer, Bill's Microdevices, orders several different items from an office supply store. He
knows the supplier's codes for the items and the price.

Office Supply Order - XML instance, Office Supply Order - printed version

The buyer, decides to change the original order.

Office Supply Order Change - XML instance, Office Supply Order Change- printed version

The seller, Joe's Office Supply, replies with an Order Response (simple) so as to indicate the
acceptance of the order. At the same time, the seller gives his reference number of the order, i.e.
the sales order in his system, and also tells the buyer whom to contact if he has any queries.

Office Supply Order Response - XML instance (simple), Office Supply Order Response -
printed version

The buyer cancels a different Order

Office Supply Order Cancel - XML instance, Office Supply Order Cancel - printed version

The seller advises the buyer of the despatch of the items ordered.

Office Supply Despatch Advice - XML Instance, Office Supply Despatch Advice - printed
version

The buyer notifies the seller of missing items.

Office Supply Receipt Advice - XML Instance, Office Supply Receipt Advice - printed
version

The Seller raises the Invoice automatically when the despatch occurs, and the resolution of
shortages etc will be handled post-invoicing. The Invoice shows the tax amount The Seller notes
that payment is due within 30 days of Invoice.

Office Supply Invoice - XML Instance, Office Supply Invoice - printed version

B.2 Example Two Buying Joinery
The buyer, Jerry Builders, PLC. in the UK, orders a number of windows, a door set and some
lengths of timber for delivery to a building site. He knows the supplier's codes for the items and
that he must also specify a number of physical attributes to get the precise item that he wants.
Some windows are asymmetric and are 'handed' left or right: most door sets are handed as they
are hinged on one side. The wood and its finish, the 'fittings' are the handles, stays etc. Items can
be glazed in different ways. Loose timber is coded according to its cross section and the length
must be specified. While the buyer knows these things from the catalogue he does not know the
current prices or any discount rate he may get.

Joinery Order - XML Instance, Joinery Order - printed version

The seller, Specialist Windows PLC, replies with an Order Response (complex) so as to indicate
the unit price of each item and to inform the buyer of the trade discount that he will be given. At

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 31 of 44

817

818

819

820
821

822

823

824

825
826
827

828
829

830

831

832

833
834

835

836
837

838
839
840

841

842

843
844
845
846
847
848
849
850

851

852
853

the same time, the seller gives his reference number of the order, i.e. the identity of the order in
his system, and also tells the buyer whom to contact if he has any queries.

Joinery Order Response - XML Instance, Joinery Order Response - printed version

The seller advises the buyer of the despatch of the items ordered, which will in fact be delivered
on two pallets identified as "A" and "B" (i.e. transportation units). The Despatch Advice lists the
items in order line sequence and refers to the pallet on which the item is delivered.

Joinery Despatch Advice - XML Instance, Joinery Despatch Advice - printed version

The Despatch Advice travels with the delivery; a paper copy is signed and returned as proof of
receipt. Hence the UBL Receipt Advice is not used.
The Seller raises the Invoice automatically when the despatch occurs, and the resolution of any
shortages would be handled post-invoicing. The Invoice has to show the tax point date, the VAT
(Value Added Tax) category to which the item belongs and also to show the VAT rate and total for
each tax category on the invoice. VAT is also applied to charges such as the delivery surcharge.
In order to encourage speedy payment of the amount due, the Seller offers a discount for prompt
settlement, which the buyer can deduct if paying within 30 days. (Note that VAT regulations
assume it will be taken and so the tax is calculated on the trade discounted total of line items plus
any charges and less the settlement discount amount.)

Joinery Invoice - XML Instance, Joinery Invoice - printed version

This scenario is based on the products, product identification, business requirements and
practices of a real UK joinery manufacturer and sales company. It operated its own specialised
transport fleet delivering all over the United Kingdom and to offshore islands.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 32 of 44

854
855

856

857
858
859

860

861
862
863
864
865
866
867
868
869
870

871

872
873
874

Appendix C. Formatting specifications for UBL
document types

This collection contains examples of formatting specifications that can be followed to display
instances of Universal Business Language (UBL) document types in human-readable form.
Presentational semantics have not been formalized in this version of the UBL schema library, and
they may never be formalized due to differing international requirements and conventions for the
presentation of information found in business documents.

These specifications must not be considered as reference implementations of UBL or as
normative components of the UBL specification; they are merely examples from one of what will
probably be many available UBL stylesheet libraries.

The formatting specifications referenced below point to various layouts for the presentation of the
information found in UBL instances. Some layouts are simplified presentations. Some layouts are
intended to conform to the UN Layout Key for printed business documents, mimicking the intent of
the UN Layout Key where official layouts do not currently exist.

The following collection of formatting specifications describes candidate renderings for the
following UBL document types:

 UBL Order

 UBL Order Response

 UBL Order Response Simple

 UBL Order Change

 UBL Order Cancellation

 UBL Despatch Advice

 UBL Receipt Advice

 UBL Invoice

C.1 Documentation conventions
The following is an example of the documentation found in a formatting specification for a given
field of a form on the rendered output.

C.1.2 Example form field information item documentation

Table1. XPath information

XPath addresses

/po:Order/cat:BuyerParty/cat:Address/cat:Street

/po:Order/cat:BuyerParty/cat:Address/cat:Country/@countryId

The box above includes two fictitious XML Path Language (XPath) addresses that documents the
locations of information found in an XML instance. XPath addresses are used in XSLT stylesheets
but can be used as above just for documentation because they are independent of the technology

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 33 of 44

875

876

877
878
879
880
881

882
883
884

885
886
887
888

889
890

891

892

893

894

895

896

897

898

899

900
901

902

903

904
905
906

being used for transformation. The path is the route from the document element (the first step in
the path) through to the information item actually being displayed.

In the first of the two examples above, the item being addressed is the cat:Street element that
is a child of the cat:Address element. In the second of the two examples, the item being
addressed is the countryId attribute of the cat:Country element.

The documented sections of the formatting specifications are oriented in the order of the fields
found in the rendered result, approximately in the order of left to right from top to bottom (with
some differences to accommodate logical groupings).

The formatting specifications are meant to be transformation technology agnostic. The
specifications indicate what information goes where in the result, not how it gets there. Different
implementations of transformation technologies can meet the need for the information found at
the specified XPath address to appear at the specified location on the page.

C.2 Example implementations
These example implementations must not be considered as reference implementations of UBL
formatting specifications or as normative components of the UBL delivery.

See FS-implementations.html for a list of known implementations of UBL Formatting
Specifications at the time of publication.

C.3 Feedback
If you have any input to these formatting specifications, please do not hesitate to contact the UBL
Forms Presentation Subcommittee following the directions on the home page cited above.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 34 of 44

907
908

909
910
911

912
913
914

915
916
917
918

919

920
921

922
923

924

925
926

927

Appendix D. Tools and Deliverables

Figure 7. Tools and Deliverables

A variety of tools have been used in the generation of the UBL 1.0 Beta deliverables. Below we
describe the main tools used to generate the normative schemas as well as the UML model
diagrams and ASN.1 schemas.

D.1 Generation of Normative XSD Schemas
The Library Content Subcommittee (LCSC) has recognized the necessity of having a tool to
automate the assembly of the various diversified input sources required for the generation of the
UBL 1.0 schema sets. These diversified input sources are:

• LCSC data models represented in spreadsheets

• English prose descriptions of schema naming and design rules
as developed by the UBL Naming and Design Rules Subcommittee

• 4 manually created XML schemas which are described at the beginning of the 'UBL
Schemas', Section 4, of this document

• code list metadata captured in a Code List Catalogue spreadsheet

The diagram below illustrates the schema generation process that UBL has used:

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 35 of 44

928

929

930
931
932

933

934
935
936

937

938
939

940
941

942

943

944

945

Figure 8. UBL Schema Generation Process

Central to generation of the UBL Library Schemas is the UBL inter-schema helper (UBLish) which
combines and transforms all the input data sources and assembles them into the Generated
Schemas shown on the right-hand-side of the diagram above. During the generation process,
appropriate testing and validation of input data is done to ensure that data used for schema
generation is proper and not propagated downstream. In addition, consistency checks, such as
consistency amongst column relationships, consistency against NDR descriptions, etc are also
done to increase the level of reliability and confidence in the generated schemas.

D1.1 UBL Schema Generation Process Inputs

D1.1.1 Model Spreadsheets

The design of the UBL Library model spreadsheets is intended primarily to capture the semantics
of business interactions (see earlier sections in this document describing the Conceptual Model
and Spreadsheets), but also supports the schema generation process by providing a specific,
consistent format and positioning of this information which the schema generation tool can
recognize. The tool depends on the format, location, and content of specific columns and cells to
generate schemas that accurately represent the model described by the spreadsheets. There are
9 primary spreadsheets being utilized in this process: the Reusable spreadsheet, containing a
collection of Aggregate Basic Information Entities (ABIEs) that are used throughout the other 8
models, and the 8 document model spreadsheets: Invoice, Order, OrderChange,
OrderCancellation, OrderResponse, OrderResponseSimple, DespatchAdvice, and ReceiptAdvice.

D1.1.2 Manual Schemas

The Manual Schemas shown on the lower left of the diagram serve as input to the generation of
the UBL Library document schemas described above, and represent the only schemas that are
manually crafted and edited in UBL. There are 4 schemas that belong to this category:

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 36 of 44

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962
963
964
965
966
967
968

969

970

971
972
973
974
975
976
977
978
979
980

981

982
983
984

CoreComponentParameters, CoreComponentTypes, RepresentationTerms and DataTypes.
CoreComponentParameters defines the structure of metadata information that is used by all
schemas delivered by UBL. The other 3 manually crafted schemas implement the Core
Component Technical Specifications v2.0.

D1.1.3 Code List Catalogue Spreadsheet

The Code List Catalogue spreadsheet contains specific information used by the UBLish tool to
produce UBL code list schemas. Namespace information in the Code List Catalogue is used to
link the code list information to the data model, enabling the tool to generate main document
schemas that utilize the code list schemas. With the help of UBLish, the laborious process of
ensuring the definition of proper namespace values and schema locations of individual code list
schemas vanishes because the generated schemas automatically will conform to XML Schema
validation requirements.

D1.1.4 Naming and Design Rules

The UBL 1.0 Beta Naming and Design Rules (NDR) are serialized as an English prose document
describing schema design guidelines such as to how XML tag names should be named, how
schema type definitions should be structured, how the files could be named, how the namespace
values would be composed, etc. Because of the prose nature of the NDR, this is a less
straightforward component to implement. In practice, some of the guidelines go into constraining
the values in the data model spreadsheets, while some of them go into the schema generation
phase. All these positive definitive clauses and constraint-oriented guidelines are transformed
and implemented in various parts of the UBLish logic that governs the form and shape of the
generated schemas.

D.1.2 UBLish

The schema generator – UBL inter-schema helper (UBLish) – is not included in the deliverable
package. This is because the application is developed and owned by SoftML and could not be
packaged into the main UBL release as part of OASIS property. However, SoftML has since
March 2003 made available its UBLish (for 0p70 release of UBL), and will be again making the
upgraded version designed for UBL 1.0 release on its website. The UBLish application is royalty
free and is available for download at SoftML website at:

http://SoftML.Net/jedi/ubl/sw/UBLish

Installation instructions and usage notes are found on the URL indicated. Basically, the UBLish is
programmed in XPS (eXtensible Programming Script). To execute UBLish, one would need to
first install the public version of the XPS run-time integration engine, which is also available from
SoftML website at:

http://SoftML.Net/xps/

Installation should be quite straightforward. Both components need to be installed before UBLish
can perform its functions. The public version of XPS run-time integration engine is also royalty
free, but has separate licensing terms that is more commercial in nature. Users of public version
of XPS run-time integration engine should not expect any support other than information that is
released on the website.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 37 of 44

985
986
987
988

989

990
991
992
993
994
995
996

997

998
999
1000
1001
1002
1003
1004
1005
1006

1007

1008
1009
1010
1011
1012
1013

1014

1015

1016

1017
1018
1019
1020

1021

1022

1023

1024
1025
1026
1027
1028

Once the run-time integration engine and the UBLish are installed, you should see something like
the following snapshot in your directory viewer:

At this point, double click on the inverted 3D prism icon to run UBLish.

D.1.2.2 Use of UBLish

One might ask why one would have the need to check out UBLish, or even try running it, since it
has already produced the normative UBL Schemas, and by itself is a non-normative item.

However, serious users would quickly find the need to look at the magic box in the middle of the
diagram “UBL Schema Generation Process” to understand what went on in the whole UBL
machinery that has output the schemas. Being written in XPS scripting language, UBLish allows
the user to examine the functions and variable assignments easily since the script itself is the
executable. It therefore provides another aspect of documentation in and by itself regarding how
UBL manages various sources of input requirements in the process of generating the schemas.

Another group of users might also be expected to download and install UBLish – users who are
looking at customizing UBL and borrowing the same machinery that generated UBL schemas in
their local environments. This group of users may or may not want to understand how UBLish
works. But by installing UBLish and modifying the spreadsheets with their own modeling data,
they gain a machinery that can immediately output UBL-look-alike schemas in a quick and
efficient manner.

D.1.2.3 UBLish+ Extension

SoftML internally continues its ad hoc and experimental extensions to UBLish. Some special
functions had generated derivative information that has helped in providing corrective information
to UBL schema and modeling design process, while other functions had resulted in enhanced
views, functionalities and other aspects of schema uses. Yet other functions are temporal in
nature, and get changed as design rules change or when inter-schema architectural decisions get
altered. All these varying features and functionalities are grouped under a UBLish+ Extension
module that SoftML does not release.

D.1.2.4 Schema Documentation

One of the by-products of UBLish+ Extension is the Schema Documentation HTML set of files.
The set of files is also made available at SoftML website at:

http://SoftML.Net/jedi/ubl/

The main index page is as shown below:

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 38 of 44

1029
1030

1031

1032

1033

1034

1035

1036

1037
1038

1039
1040
1041
1042
1043
1044

1045
1046
1047
1048
1049
1050

1051

1052
1053
1054
1055
1056
1057
1058

1059

1060
1061

1062

1063

1064

1065

1066

Basically, the user starts with browsing this “index.html” page and gets presented with a listing of
all the ABIE types defined in UBL schemas, including all ABIE types defined in the Reusable and
all 8 document schemas. On clicking any of these types, the user is hyperlinked into the
particular page containing intimate details related to that type.

For instance, if the user clicks on the “AddressType” hyperlink, the screen will show the following
color-coded page of information regarding the ABIE type “AddressType”:

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 39 of 44

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084
1085
1086
1087

1088
1089

1090

1091

Not only does it show the individual metadata components from which the original modeling
spreadsheet was taken to generate the type, there are also listings of which other Reusable types
as well as which other code list (schema) types are being used by the selected type.

Through the web of hyperlinks, user can then navigate and explore from here further sub-types
directly without going back to the main page again.

D.2 Generation of Non-Normative Components

D2.1 Generation of UML Models

Ontogenics Corporation's hyperModel tool was used during development of the UBL library
specification to automatically transform the normative XML Schemas into a UML implementation
model. The class diagrams in the UBL 1.0 Beta release were generated from that implementation
model. hyperModel enables round-trip transformation between any XML Schema and any UML
class model. The UML profile used to guide mapping to/from XML Schema enables complete
access to the features of the XSD language. For example, you can customize or extend the UBL
library implementation model in UML, then generate a new set of schemas for your extensions
that reuse the UBL library components. Class diagrams are created using an approach similar to
web browsers; you can explore the structure of complex models, either imported from XML

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 40 of 44

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113
1114
1115

1116
1117

1118

1119

1120
1121
1122
1123
1124
1125
1126
1127
1128

Schemas or created directly in UML. hyperModel is designed as a plug-in to the Eclipse IDE, so
these features can be used alone or integrated with other plug-ins used within the same desktop
IDE.

D2.2 Generation of Abstract Syntax Notation One (ASN.1) Conformant
Schemas

The ASN.1 schemas for UBL were created by using a tool from OSS Nokalva (www.oss.com) that
conforms to ITU-T Recommendation X.694 | ISO/IEC 8825-5 for converting XML Schema to
ASN.1. After feeding the UBL XSD to the OSS Nokalva XSD to ASN.1 conversion tool, the
generated ASN.1 was fed to the PrettyPrint tool at http://asn1.elibel.tm.fr website to produce the
nicely formatted HTML version of the UBL ASN.1 schemas.

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 41 of 44

1129
1130
1131

1132
1133

1134
1135
1136
1137
1138

1139

1140

Appendix E. ASN.1 Materials [informative]

ASN.1 Specification of UBL
UBL also provides an ASN.1 specification for UBL messages that provides an alternative XML
schema definition for the XML documents. This ASN.1 specification defines the same valid XML
documents as the XSD Schema, which is the primary definition of valid XML documents. Use of
this ASN.1 XML schema enables ASN.1 tools to be used for UBL transfers, and in conjunction
with the ASN.1 Packed Encoding Rules, provides a specification for an efficient "binary XML"
encoding of UBL messages.

This is the definition of binary XML encodings of UBL messages.

The ASN.1 definition for the current release of UBL can be found at:

 asn/asn1-UBL-beta-1.0.html

ASN.1 References
[ASN.1] Abstract Syntax Notation One, ITU-T Recommendation | ISO/IEC International Standard

http://www.itu.int/ITU-T/studygroups/com17/languages

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 42 of 44

1141

1142

1143
1144
1145
1146
1147
1148

1149

1150

1151

1152

1153

1154

1155

Appendix F. Code List Schemas

codelist/placebo/ codelist/use/

UBL-CodeList-AccountTypeCode-Placebo-1.0-beta.xsd UBL-CodeList-AccountTypeCode-Use-1.0-beta.xsd
UBL-CodeList-AllowanceChargeReasonCode-Placebo-1.0-
beta.xsd

UBL-CodeList-AllowanceChargeReasonCode-Use-1.0-
beta.xsd

UBL-CodeList-CardTypeCode-Placebo-1.0-beta.xsd UBL-CodeList-CardTypeCode-Use-1.0-beta.xsd
UBL-CodeList-CargoTypeCode-Placebo-1.0-beta.xsd UBL-CodeList-CargoTypeCode-Use-1.0-beta.xsd
UBL-CodeList-ChannelCode-Placebo-1.0-beta.xsd UBL-CodeList-ChannelCode-Use-1.0-beta.xsd
UBL-CodeList-ChipCode-Placebo-1.0-beta.xsd UBL-CodeList-ChipCode-Use-1.0-beta.xsd
UBL-CodeList-CommodityCode-Placebo-1.0-beta.xsd UBL-CodeList-CommodityCode-Use-1.0-beta.xsd
UBL-CodeList-ContractTypeCode-Placebo-1.0-beta.xsd UBL-CodeList-ContractTypeCode-Use-1.0-beta.xsd
UBL-CodeList-CoordinateSystemCode-Placebo-1.0-
beta.xsd UBL-CodeList-CoordinateSystemCode-Use-1.0-beta.xsd
UBL-CodeList-CountryIdentificationCode-Placebo-1.0-
beta.xsd UBL-CodeList-CountryIdentificationCode-Use-1.0-beta.xsd
UBL-CodeList-CountrySubentityCode-Placebo-1.0-beta.xsd UBL-CodeList-CountrySubentityCode-Use-1.0-beta.xsd
UBL-CodeList-CurrencyCode-Placebo-1.0-beta.xsd UBL-CodeList-CurrencyCode-Use-1.0-beta.xsd
UBL-CodeList-DespatchAdviceTypeCode-Placebo-1.0-
beta.xsd UBL-CodeList-DespatchAdviceTypeCode-Use-1.0-beta.xsd
UBL-CodeList-DispositionCode-Placebo-1.0-beta.xsd UBL-CodeList-DispositionCode-Use-1.0-beta.xsd
UBL-CodeList-DocumentStatusCode-Placebo-1.0-beta.xsd UBL-CodeList-DocumentStatusCode-Use-1.0-beta.xsd
UBL-CodeList-EmergencyCardCode-Placebo-1.0-beta.xsd UBL-CodeList-EmergencyCardCode-Use-1.0-beta.xsd
UBL-CodeList-EmergencyProceduresCode-Placebo-1.0-
beta.xsd

UBL-CodeList-EmergencyProceduresCode-Use-1.0-
beta.xsd

UBL-CodeList-ExemptionReasonCode-Placebo-1.0-beta.xsdUBL-CodeList-ExemptionReasonCode-Use-1.0-beta.xsd
UBL-CodeList-FromEventCode-Placebo-1.0-beta.xsd UBL-CodeList-FromEventCode-Use-1.0-beta.xsd
UBL-CodeList-FullnessIndicationCode-Placebo-1.0-beta.xsdUBL-CodeList-FullnessIndicationCode-Use-1.0-beta.xsd
UBL-CodeList-HandlingCode-Placebo-1.0-beta.xsd UBL-CodeList-HandlingCode-Use-1.0-beta.xsd
UBL-CodeList-HazardousPackingCriteriaCode-Placebo-1.0-
beta.xsd

UBL-CodeList-HazardousPackingCriteriaCode-Use-1.0-
beta.xsd

UBL-CodeList-InhalationToxicityZoneCode-Placebo-1.0-
beta.xsd UBL-CodeList-InhalationToxicityZoneCode-Use-1.0-beta.xsd
UBL-CodeList-InvoiceTypeCode-Placebo-1.0-beta.xsd UBL-CodeList-InvoiceTypeCode-Use-1.0-beta.xsd
UBL-CodeList-IssuerTypeCode-Placebo-1.0-beta.xsd UBL-CodeList-IssuerTypeCode-Use-1.0-beta.xsd
UBL-CodeList-LatitudeDirectionCode-Placebo-1.0-beta.xsd UBL-CodeList-LatitudeDirectionCode-Use-1.0-beta.xsd
UBL-CodeList-LineStatusCode-Placebo-1.0-beta.xsd UBL-CodeList-LineStatusCode-Use-1.0-beta.xsd
UBL-CodeList-LocaleCode-Placebo-1.0-beta.xsd UBL-CodeList-LocaleCode-Use-1.0-beta.xsd
UBL-CodeList-LongitudeDirectionCode-Placebo-1.0-
beta.xsd UBL-CodeList-LongitudeDirectionCode-Use-1.0-beta.xsd
UBL-CodeList-MedicalFirstAidGuideCode-Placebo-1.0-
beta.xsd UBL-CodeList-MedicalFirstAidGuideCode-Use-1.0-beta.xsd
UBL-CodeList-NatureCode-Placebo-1.0-beta.xsd UBL-CodeList-NatureCode-Use-1.0-beta.xsd
UBL-CodeList-OrderAcknowledgementCode-Placebo-1.0-
beta.xsd

UBL-CodeList-OrderAcknowledgementCode-Use-1.0-
beta.xsd

UBL-CodeList-PaymentChannelCode-Placebo-1.0-beta.xsd UBL-CodeList-PaymentChannelCode-Use-1.0-beta.xsd
UBL-CodeList-PaymentMeansTypeCode-Placebo-1.0-
beta.xsd UBL-CodeList-PaymentMeansTypeCode-Use-1.0-beta.xsd
UBL-CodeList-PeriodDescriptionCode-Placebo-1.0-beta.xsd UBL-CodeList-PeriodDescriptionCode-Use-1.0-beta.xsd

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 43 of 44

1156

1157

codelist/placebo/ codelist/use/

UBL-CodeList-PositionCode-Placebo-1.0-beta.xsd UBL-CodeList-PositionCode-Use-1.0-beta.xsd
UBL-CodeList-PriorityLevelCode-Placebo-1.0-beta.xsd UBL-CodeList-PriorityLevelCode-Use-1.0-beta.xsd
UBL-CodeList-RateCategoryCode-Placebo-1.0-beta.xsd UBL-CodeList-RateCategoryCode-Use-1.0-beta.xsd
UBL-CodeList-RegulationCode-Placebo-1.0-beta.xsd UBL-CodeList-RegulationCode-Use-1.0-beta.xsd
UBL-CodeList-RejectActionCode-Placebo-1.0-beta.xsd UBL-CodeList-RejectActionCode-Use-1.0-beta.xsd
UBL-CodeList-RejectReasonCode-Placebo-1.0-beta.xsd UBL-CodeList-RejectReasonCode-Use-1.0-beta.xsd
UBL-CodeList-RiskResponsibilityCode-Placebo-1.0-beta.xsdUBL-CodeList-RiskResponsibilityCode-Use-1.0-beta.xsd
UBL-CodeList-SalesConditionsActionCode-Placebo-1.0-
beta.xsd UBL-CodeList-SalesConditionsActionCode-Use-1.0-beta.xsd
UBL-CodeList-SealStatusCode-Placebo-1.0-beta.xsd UBL-CodeList-SealStatusCode-Use-1.0-beta.xsd
UBL-CodeList-ShortageActionCode-Placebo-1.0-beta.xsd UBL-CodeList-ShortageActionCode-Use-1.0-beta.xsd
UBL-CodeList-SubstitutionStatusCode-Placebo-1.0-beta.xsdUBL-CodeList-SubstitutionStatusCode-Use-1.0-beta.xsd
UBL-CodeList-TaxLevelCode-Placebo-1.0-beta.xsd UBL-CodeList-TaxLevelCode-Use-1.0-beta.xsd
UBL-CodeList-TaxTypeCode-Placebo-1.0-beta.xsd UBL-CodeList-TaxTypeCode-Use-1.0-beta.xsd
UBL-CodeList-TimingComplaintCode-Placebo-1.0-beta.xsd UBL-CodeList-TimingComplaintCode-Use-1.0-beta.xsd
UBL-CodeList-TransitDirectionCode-Placebo-1.0-beta.xsd UBL-CodeList-TransitDirectionCode-Use-1.0-beta.xsd
UBL-CodeList-TransportEquipmentSizeTypeCode-Placebo-
1.0-beta.xsd

UBL-CodeList-TransportEquipmentSizeTypeCode-Use-1.0-
beta.xsd

UBL-CodeList-TransportEquipmentTypeCode-Placebo-1.0-
beta.xsd

UBL-CodeList-TransportEquipmentTypeCode-Use-1.0-
beta.xsd

UBL-CodeList-TransportMeansTypeCode-Placebo-1.0-
beta.xsd UBL-CodeList-TransportMeansTypeCode-Use-1.0-beta.xsd
UBL-CodeList-TransportModeCode-Placebo-1.0-beta.xsd UBL-CodeList-TransportModeCode-Use-1.0-beta.xsd
UBL-CodeList-UNDGCode-Placebo-1.0-beta.xsd UBL-CodeList-UNDGCode-Use-1.0-beta.xsd
UBL-CodeList-UnitTypeCode-Placebo-1.0-beta.xsd UBL-CodeList-UnitTypeCode-Use-1.0-beta.xsd

UBL Release 1.0 Beta Committee Draft 17. November 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 44 of 44

1158

