
Position Paper: Modeling Roles
in UBL
Author: Bill Burcham (bill_burcham@stercomm.com)

Date: 3/11/02

Filename: draft-burcham-rolemodel-04.doc

1 Summary ... 2

2 Problem Description ... 2

3 Option 0: Role-Based Naming of Elements.. 4

4 Option 1: if tag names match then types must match ... 5

4.1 Option 1a: Hungarian Code .. 5

5 Option 2: if types match then tag names must match ... 7

6 Option 3: 1-1 Correspondence Between Types and Tag Names 7

7 Recommendation .. 7

7.1 Enter: Properties and Roles... 8

8 Appendix: Sample UBL Modeling Artifact Schema .. 12

9 Appendix: Schema eg0 ... 13

10 Appendix: Schema eg1 ... 14

11 Appendix: Schema eg1a ... 15

12 References... 15

1 Summary
There was much discussion NDRSC during the recent face-to-face meetings regarding
possible rules regarding the cardinality between Tag Names and Types. Various options
were explored and candidate rules were put to straw poll. The exercise did not result in
firm resolution. At least one candidate rule is still on the docket for further discussion.

This paper presents a fairly complete exploration of the options. The exploration results
in the conclusion that none of the candidate rules are viable.

That result (the absence of rule providing guidance in this area) has been termed
“anarchy” by some NDR SC members. A new concept – that of role, is introduced to
address the issue. Rules relating to the identification and definition of roles in UBL are
presented.

2 Problem Description
The problem, as it originally arose in the NDR SC seemed to center on the cardinality
between tag names and types. Given two elements:

• If the elements have the same tag name, do they have the same type?

• If the elements have the same type, do they have the same tag name?

In this section we consider various combinations of tag name/type name uniqueness. In
thinking about it some more there are four top-level cases:

− If tag names match then…

− If tag names don’t match then…

− If types match then…

− If types don’t match then…

Then for each there are three sub-cases, e.g.

a. If tag names match then type names must match

b. If tag names match then type names must not match

c. If tag names match then we can draw no conclusion regarding types (don’t care)

Combining these cases (cross product) we arrive at 12 possibilities. Again, remember
that for this discussion we are considering two elements here. The cases below capture
possible inferences we can make given that the element’s tag names match (or don’t) –
cases 1-6, or given that the element’s types match (or don’t) – cases 7-12.

 2

case Thing-1 Match Thing-2 Must
Match

Must Not
Match

Don’t
care

1 Tag name Type

2 Tag name Type

3 Tag name Type

4 Tag name Type

5 Tag name Type

6 Tag name Type

7 Type Tag name

8 Type Tag name

9 Type Tag name

10 Type Tag name

11 Type Tag name

12 Type Tag name

The way to read this table is, e.g. case 1: if tag names (of the two elements under
consideration) match then their types must match, or more formally:

tagnamea= tagnameb → typea= typeb

Cases 1-6 draw conclusions about type names from statements about tag names. Cases 7-
12 do the reverse.

Cases 3, 6, 9, 12 correspond to the absence of any design rule – the default case should
we decide to make no rule. Those cases encompass the “may match” and “may not
match” cases as well. Those cases are grayed to show that will not be considered further.

Case 2: “if tag names match then type must not match” can be eliminated intuitively.

Cases 4, 8, 10 can be eliminated similarly. Those have been grayed as well.

This leaves for candidate rules, cases: 1, 5, 7, 11.

If we express cases 5 and 7 as propositions, however, we see they are identical:

Case 5 is: tagnamea≠ tagnameb → typea≠ typeb

In propositional form that’s: NOT(tagnamea≠ tagnameb)OR(typea≠ typeb)

Simplifying: (tagnamea= tagnameb)OR(typea≠ typeb)

Case 7 is: typea= typeb → tagnamea= tagnameb

In propositional form: NOT(typea= typeb)OR(tagnamea= tagnameb)

Simplifying and rearranging: (tagnamea= tagnameb)OR(typea≠ typeb)

 3

Similarly for cases 1 and 11:

Case 1 is: tagnamea= tagnameb → typea= typeb

In propositional form that’s: NOT(tagnamea= tagnameb)OR(typea= typeb)

Simplifying and rearranging: (typea= typeb)OR(tagnamea≠ tagnameb)

Case 11 is: typea≠ typeb → tagnamea≠ tagnameb

In propositional form: NOT(typea≠ typeb)OR(tagnamea≠ tagnameb)

Simplifying: (typea= typeb)OR(tagnamea≠ tagnameb)

Similar derivations show that cases 2 and 8 are identical, as are cases 4 and 10. All the
duplicate cases have been grayed-out in the table to show that they can be ignored.

So the only options requiring consideration are cases 1 and 5 and possibly combinations
of those. These options are explored in subsequent sections.

3 Option 0: Role-Based Naming of Elements
An element’s tag name is simply the PropertyTerm for that property. There is no
requirement that elements sharing a tag name must also have the same content type.
There is no requirement that a tag name convey anything about the content type.

This option represents the absence of any rule dictating a relationship between type and
tag name. This option does not proscribe a correspondence where such a correspondence
makes sense.

This option also gives guidance on tag names, to wit that they are precisely
PropertyTerm.

Here is a sample Order document containing element names conforming to this option
(the schema for this example can be found in Appendix: Schema eg0 on page 13):
<?xml version="1.0" encoding="UTF-8"?>
<eg0:OrderDocument xmlns:eg0="eg0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="eg0
eg0.xsd">
 <Header>
 <Buyer>
 <Name>Fred</Name>
 </Buyer>
 <Seller>
 <Name>Ted</Name>
 </Seller>
 </Header>
</eg0:OrderDocument>

+ Short tag names conserve space in instance documents

+ Less redundancy in tag names compared to other options. This eliminates confusing
tag names like “HeaderOrderHeader”

+ The names are by definition, meaningful in the context where they occur since that’s
exactly what a PropertyTerm is meant to do. They are not required to be meaningful

 4

outside that scope and as a result carry none of the baggage necessary for that
purpose.

4 Option 1: if tag names match then types
must match

(from Case 1) For each type there is a set of reserved tag names, usable only for elements
of that type. It is ok for two elements of the same type to have different tag names so
long as both names came from the list for that type.

Here is a sample Order document containing element names conforming to this option
(the schema for this example can be found in Appendix: Schema eg1 on page 14):
<?xml version="1.0" encoding="UTF-8"?>
<eg1:OrderDocument xmlns:eg1="eg1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="eg1
eg1.xsd">
 <OrderHeader>
 <Buyer>
 <Name>Fred</Name>
 </Buyer>
 <Seller>
 <Name>Ted</Name>
 </Seller>
 </OrderHeader>
</eg1:OrderDocument>

Notice that the element containing the header structure is named “OrderHeader” (as
opposed to simply “header”) since invoices will also have headers, but of a different type.
To distinguish the two occurrences this option dictates that the tag names must differ.

+ When a (local) tag name is encountered it would be possible (using the
aforementioned lists of type-to-tag-name associations) to infer the type name from
the (local) tag name. If those lists were mostly short (length 1) then this might even
be possible from memory.

− If the lists are short (length 1) then we have essentially devolved into a 1-1
correspondence between type and tag names. (1-1 correspondence is considered in
section 6 below).

− Requires LC SC to record with each type, the list of (local) tag names used for that
type, and to reconcile candidate tag names against those lists – changing candidate
names when clashes occur.

This last drawback adds to the overhead of the LC SC activity. We might avoid that
overhead at the expense of some redundancy in the UBL instance documents. This gives
rise to a sub-option…

4.1 Option 1a: Hungarian Code
An important drawback of Option 1 is:

 5

− Requires LC SC to record with each type, the list of (local) tag names used for that
type, and to reconcile candidate tag names against those lists – changing candidate
names when clashes occur.

One way to eliminate this procedural overhead would be to include the type name as part
of the tag name. In C circles it has been called Hungarian Code1.

This option builds on option 1 this way:

(from Case 1) For each type there is a set of reserved tag names, usable only for elements
of that type. It is ok for two elements of the same type to have different tag names so
long as both names came from the list for that type. The way this uniqueness is
guaranteed is by including the type name as part of the tag name.

So we might structure tag names like:

[Qualifier.]PropertyTerm[.RepresentationTerm | ObjectClass]

Where ObjectClass is the type of this property=element.

There is precedent for this naming convention. RepresentationTerm is very much like an
ObjectClass where the ObjectClass comes from a distinguished list, namely the list of
RepresentationTerms. Option 1a would extend that naming to “non-leaf” elements.

Option 1a trades the procedural drawback of Option 1 for redundancy in UBL instance
documents. It also improves on the readers ability to know the type name without
resorting to other documentation.

Here is a sample Order document containing element names conforming to this option
(the schema for this example can be found in Appendix: Schema eg1a on page 15):
<?xml version="1.0" encoding="UTF-8"?>
<eg1a:OrderDocument xmlns:eg1a="eg1a" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="eg1a
eg1a.xsd">
 <HeaderOrderHeader>
 <BuyerParty>
 <Name>Fred</Name>
 </BuyerParty>
 <SellerParty>
 <Name>Ted</Name>
 </SellerParty>
 </HeaderOrderHeader>
</eg1a:OrderDocument>

An invoice document would similarly carry a HeaderInvoiceHeader.

+ When a (local) tag name is encountered the type name is immediately apparent.

− Tag names are long. This makes UBL instance documents larger.

1 See http://shamit.virtualave.net/charles_simonyi.htm for a discussion with Charles Simonyi of Microsoft
– creator of this naming style. In the original Hungarian Code the type name was actually encoded for
brevity. While it is certainly reasonable to consider two kinds of Hungarian Code: abbreviated and non-
abbreviated, in this paper we consider only the latter. Abbreviation runs afoul of other design rules already
adopted by the SC.

 6

http://shamit.virtualave.net/charles_simonyi.htm

− Since an element’s tag name carries its type name, that tag name must change
whenever the element’s type changes. An important outcome is that processing code
(e.g. stylesheets) will have to change as well.

− As usual with structured names there is the possibility of redundancy (e.g.
HeaderOrderHeader)

5 Option 2: if types match then tag names
must match

(from Case 52) For each type there is a single tag name. Every element of that type uses
that tag name. However, two types may share a tag name.

This option precludes the creation/use of tag names tailored for their role in a particular
type. Instead, given the type of the element, you’d be stuck with a particular tag name.

− If a type contained two (local) elements of the same type, you’d have to either break
this rule (and give one element a different tag name), or use position to distinguish
the meaning of the two elements (in the context of the type).

− This option allows for elements of two different types to share tag names, so it is not
possible to infer the type from the tag name when reading an instance document.

6 Option 3: 1-1 Correspondence Between
Types and Tag Names

We can also express these situations simply in terms of their cardinality. For instance in
Case 1 the cardinality is: type (1-0..*) tag name, and for Case 5: type (1..*-0..1) tag name.

In order to arrive at a 1-1 cardinality we would have to take these two rules together.

(from Case 1 and 5 taken together): each tag name corresponds to one Type and all
elements of a particular Type share the same tag name.

− This option is tantamount to global tag names. That option has already been rejected
by the SC.

7 Recommendation
During the face-to-face there was some discussion of high level design drivers. Three
important ones that kept coming up were:

� Readability of an instance document

� Ease of instance construction

� Ease of instance processing

2 In the NDRSC we were discussing case 7 (disguised as it’s twin – case 5). When it is worded as in 5 it
may be harder to understand. This may have led to confusion.

 7

When considered against those three drivers, none of the candidate rules (options 1-3
above) has significant value. Therefore we recommend Option 0.

The illusory benefits of options 1 or 2 taken in isolation devolve quickly into option 3 (1-
1 correspondence of type name to tag name). The latter has already been rejected by the
NDR SC.

Perhaps the story doesn’t end there though. There is may be a need to capture recurring
patterns of structure use. The problem with global element names is that in our zeal to
capture usage patterns we enforce everywhere the overhead of formulating a globally
unique and meaningful name.

We already capture recurring structures/semantics with XML types (corresponding to CC
ABIE’s). Is there a way to capture (and identify) recurring usage patterns while not
imposing the use of a globally unique name for every single element in the schema?

7.1 Enter: Properties and Roles
Roles3 are an essential part of many modeling languages, such as UML and Entity
Relationship or ER. Unfortunately roles and associations seem to be absent in the UBL
model, and the UN Core Components [CC-UN] and ISO 11179 [NAMING-ISO] models
upon which it is based.

3 There is a difference between a role and an association. Generally, a role is one side of an association. A
role is a one-way mapping. An association is usually 2-way, but may in general be n-way. The “arity” of
the association corresponds to the number of roles in that association. Also an association in most
modeling methods may also carry its own data and is usually given a “first class” identifier whereas roles
generally are simply named (and described) concepts.

 8

A simple example will illustrate the role concept. The following picture depicts a
motorcycle with two wheels, front and rear.

Motorcycle Wheel

-frontWheel

It is common practic
such as UML or ER)
to use the role name

� In Java, role
23.4.2 on pag

� In SQL, role

� In XML role
Composition

So mapping the UM
<?xml version="1.0" enco
<xs:schema xmlns:xs="ht
attributeFormDefault="unq
 <xs:complexType nam
 <xs:all>
 <xs:element n
 <xs:element n
 </xs:all>
 </xs:complexType>
 <xs:simpleType name
 <xs:restriction/>
 </xs:simpleType>
</xs:schema>

Notice how type Mo
Notice also, how the
element name “Fron

Much of the content
of “properties” in th
that specification do
“dictionary entry na
the existence and ma

The term “property”
Further, it never app
the concept of role a
concept of property.

4 Additionally, the term
used synonymously to “

1 1

1

-rearWheel

1

e when realizing a model including roles (in a modeling language
, in particular implementation language (such as XSD, Java or SQL)

 in the implementation. This mapping is very natural, for instance:

names become names of fields (of reference types) (see section
e 300 of [UML-APPLY])

 names become names of foreign key fields

 names become element names (see section Mapping UML
s on page 107 of [XML-UML])

L model into XML might yield a scheme like this:
ding="UTF-8"?>
tp://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
ualified">
e="Motorcycle">

ame="FrontWheel" type="Wheel"/>
ame="RearWheel" type="Wheel"/>

="Wheel">

torcycle has e.g. an element called FrontWheel of type Wheel.
 role name “frontWheel” from the model was used to arrive at the
tWheel” in the schema.

ion over element naming in UBL stems from the imprecise treatment
e UN Core Components Technical Specification [CC-UN]. While
es talk extensively about “property terms” – which are part of a
me” for a “data element” (a la [NAMING-ISO]), we are left to infer
keup of a “first class” property concept.

 is used often in that specification, but it is never formally defined4.
ears in any of the conceptual diagrams. Little wonder therefore, that
s discussed here would be entirely absent, tied up as it is with the

“child field” is used in some of the examples in that specification. That term is
property”, and is also left undefined.

9

So here we are (in particular the LC SC) trying to build analysis artifacts. We are trying
to give “property terms” to things. What things are we trying to give them to? Well CC
doesn’t tell us! Let us propose:

P0: The UBL model must include the concept of property. Property is the model
element named by a property term in the same way as a BIE or a CC is the model
element named by an object class (name).

Further, once we identify and describe these properties, what shall we call them? Could a
set of rules around role definition satisfy our need to capture recurring component usage
patterns (and name them)? Perhaps the central tenet would be:

P1: Role-based element/property naming: every element’s tag name should reflect the
role played by that element’s content relative to the XSD type in which that element is
declared.

In this way, roles are divorced from types. Then we might make rules like this:

P2: A catalog of roles will be maintained. Each role will be uniquely named and
described.

For instance, we might have roles: Header, Summary and Detail in such a catalog.
When these came up in NDR SC it was amazing to me how polarized we were. One
faction believed that since Order and Invoice both have these components that they
should be called the same thing in both situations. The other thought that would be
confusing since an OrderHeader is different from an InvoiceHeader. Both factions felt
that their approach would be less confusing.

This catalog need not require an entry for every element/property/child field. Such a
requirement would cause devolution into an element catalog, which is not what we’re
after. It would also dilute the strength of the more powerful entries such as Header,
Summary, and Detail.

P3: Candidacy for this catalog could be left to a matter of taste, or we could come up
with a metric that e.g. only roles occurring or expected to occur more than once are
candidates. It will boil down to a combination of experience and taste.

Then where these roles occur in the analysis model, we could use the role name to induce
the tag name:

P4: When naming an element/property consider its role. Reconcile against the role
catalog.

The roles would be linked to the element catalog. Where appropriate, a (local) element
definition would refer to the (cataloged) role represented by that element.

P5: The element catalog would associate an element with its role definition (if any).

 10

The following conceptual class diagram sums up the recommendation:

XML Schema

XML Implementation

XML Instance

Analysis Model

“With known business semantics”

“Without business semantics”

CCTCCTCatalog

ABIE

RepresentationTerm

0..*1..*

BBIE
-represents

0..*1

Property

1

0..*

1..*
1

RepTermCatalog
1

0..*

1

0..*

This concept is not
explicitly present in the
CC specification. It is
mentioned extensively,
but never really defined.

TypeDefinition

ElementDeclaration

-describes

1

0..*

-contains

1

-defines

0..*-models

1

-realizes

0..1

-models

1

-realizes

0..1

Element

-parent1
-child

0..*

Type

1

-defines1

-defines

1

-implements

0..*

TypeName

1

-identifies1

TagName

1..*

-describes 1

0..*
-describes1I’ve shown ABIE as a

kind of BBIE. This is
strictly different from the
letter of the CC spec.
However, for our
purposes I think it works
better.

Role

1..*

0..1

RoleCatalog

1

0..*

BIECatalog

0..*

1

We propose the addition of the property and role concepts to our model, along with a
role catalog and accompanying design rules. This constitutes a nice middle ground
between “anarchy” and a “flat namespace” for properties/elements. This will allow us to
capture recurring usage patterns of structures while allowing for efficient construction of
property names appropriate to their use.

 11

8 Appendix: Sample UBL Modeling Artifact
Schema

Here is a non-normative peek at an actual catalog structure supporting the
recommendations:

Package

Class

PK id

FK1,U1 package
U1 name

description
FK3 authority
FK2 repterm

PK id

U1 name
U1 namespace-identifier

Property

PK id

U1 name
description

FK1,I1,U1 enclosing-class
FK2 type
FK3 role

RepresentationTerm

PK id

U1 name

Role

PK id

U1 name
description

StandardizingBody

PK id

U1 name

 12

9 Appendix: Schema eg0
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="eg0" xmlns:xsi="http://www.w3.org/2000/XMLSchema-instance" xmlns:eg0="eg0"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="eg0" elementFormDefault="unqualified"
attributeFormDefault="unqualified">
 <xs:complexType name="OrderHeader">
 <xs:all>
 <xs:element name="Buyer" type="Party"/>
 <xs:element name="Seller" type="Party"/>
 </xs:all>
 </xs:complexType>
 <xs:complexType name="InvoiceHeader">
 <xs:all>
 <xs:element name="Buyer" type="Party"/>
 <xs:element name="Seller" type="Party"/>
 </xs:all>
 </xs:complexType>
 <xs:complexType name="Party">
 <xs:all>
 <xs:element name="Name" type="xs:string"/>
 </xs:all>
 </xs:complexType>
 <xs:complexType name="Order">
 <xs:sequence>
 <xs:element name="Header" type="OrderHeader"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Invoice">
 <xs:all>
 <xs:element name="Header" type="InvoiceHeader"/>
 </xs:all>
 </xs:complexType>
 <xs:element name="OrderDocument" type="Order"/>
</xs:schema>

 13

10 Appendix: Schema eg1
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="eg1" xmlns:xsi="http://www.w3.org/2000/XMLSchema-instance" xmlns:eg1="eg1"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="eg1" elementFormDefault="unqualified"
attributeFormDefault="unqualified">
 <xs:complexType name="OrderHeader">
 <xs:all>
 <xs:element name="Buyer" type="Party"/>
 <xs:element name="Seller" type="Party"/>
 </xs:all>
 </xs:complexType>
 <xs:complexType name="InvoiceHeader">
 <xs:all>
 <xs:element name="Buyer" type="Party"/>
 <xs:element name="Seller" type="Party"/>
 </xs:all>
 </xs:complexType>
 <xs:complexType name="Party">
 <xs:all>
 <xs:element name="Name" type="xs:string"/>
 </xs:all>
 </xs:complexType>
 <xs:complexType name="Order">
 <xs:sequence>
 <xs:element name="OrderHeader" type="OrderHeader"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Invoice">
 <xs:all>
 <xs:element name="InvoiceHeader" type="InvoiceHeader"/>
 </xs:all>
 </xs:complexType>
 <xs:element name="OrderDocument" type="Order"/>
</xs:schema>

 14

11 Appendix: Schema eg1a
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="eg1a" xmlns="eg1a" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:eg1a="eg1a" xmlns:xsi="http://www.w3.org/2000/XMLSchema-instance" elementFormDefault="unqualified"
attributeFormDefault="unqualified">
 <xs:complexType name="OrderHeader">
 <xs:all>
 <xs:element name="BuyerParty" type="Party"/>
 <xs:element name="SellerParty" type="Party"/>
 </xs:all>
 </xs:complexType>
 <xs:complexType name="InvoiceHeader">
 <xs:all>
 <xs:element name="BuyerParty" type="Party"/>
 <xs:element name="SellerParty" type="Party"/>
 </xs:all>
 </xs:complexType>
 <xs:complexType name="Party">
 <xs:all>
 <xs:element name="Name" type="xs:string"/>
 </xs:all>
 </xs:complexType>
 <xs:complexType name="Order">
 <xs:sequence>
 <xs:element name="HeaderOrderHeader" type="OrderHeader"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Invoice">
 <xs:all>
 <xs:element name="HeaderInvoiceHeader" type="InvoiceHeader"/>
 </xs:all>
 </xs:complexType>
 <xs:element name="OrderDocument" type="Order"/>
</xs:schema>

12 References
CC-UN UN/CEFACT Draft Core Components

Specification, Part 1, 15 January,
2002, version 1.75

NAMING-ISO ISO/IEC 11179, Final committee
draft, Parts 1-6.

UML-APPLY Applying UML and Patterns: An
Introduction to Object Oriented
Analysis and Design

XML-UML Modeling XML Applications with
UML: Practical e-Business
Applications, David Carlson, 2001,
Addison-Wesley.

 15

 16

	Summary
	Problem Description
	Option 0: Role-Based Naming of Elements
	Option 1: if tag names match then types must match
	Option 1a: Hungarian Code

	Option 2: if types match then tag names must match
	Option 3: 1-1 Correspondence Between Types and Tag Names
	Recommendation
	Enter: Properties and Roles

	Appendix: Sample UBL Modeling Artifact Schema
	Appendix: Schema eg0
	Appendix: Schema eg1
	Appendix: Schema eg1a
	References

