
wd-ublndrsc-ndrdoc-12 1 31 May 2002

 1

Universal Business Language (UBL) 2

Naming and Design Rules 3

Working Draft 12, 31 May 2002 4

Document identifier: 5
wd-ublndrsc-ndrdoc-12 (Word, PDF) 6

Location: 7
 http://www.oasis-open.org/committees/ubl/ndrsc/drafts/ 8

Editors: 9
Bill Burcham, Sterling Commerce <Bill_Burcham@stercomm.com> 10
Mavis Cournane, Cognitran Ltd <mavis.cournane@cognitran.com> (primary editor) 11
Mark Crawford, LMI <MCRAWFORD@lmi.org> 12
Arofan Gregory, CommerceOne <arofan.gregory@commerceone.com> 13
Eve Maler, Sun Microsystems <eve.maler@sun.com> 14

Contributors: 15
Fabrice Desré, France Telecom 16
Matt Gertner, Schemantix 17
Jessica Glace, LMI 18
Phil Griffin, Griffin Consulting 19
Eduardo Gutentag, Sun Microsystems 20
Sue Probert, CommerceOne 21
Gunther Stuhec, SAP 22
Paul Thorpe, OSS Nokalva 23

Abstract: 24
This specification documents the naming and design rules and guidelines for the 25
construction of XML components for the UBL vocabulary. 26

Status: 27
This is a draft document and is likely to change on a weekly basis. 28
If you are on the ubl-ndrsc@lists.oasis-open.org list for NDR subcommittee members, 29
send comments there. If you are not on that list, subscribe to the ubl-30
comment@lists.oasis-open.org list and send comments there. To subscribe, send an 31
email message to ubl-comment-request@lists.oasis-open.org with the word "subscribe" 32
as the body of the message. 33
For information on whether any patents have been disclosed that may be essential to 34
implementing this specification, and any offers of patent licensing terms, please refer to 35
the Intellectual Property Rights section of the Security Services TC web page 36
(http://www.oasis-open.org/committees/security/). 37

Copyright © 2001, 2002 The Organization for the Advancement of Structured Information 38
Standards [OASIS] 39

wd-ublndrsc-ndrdoc-12 2 31 May 2002

Table of Contents 40

1 Introduction ... 3 41
1.1 Terminology and Notation... 3 42
1.2 Guiding Principles ... 3 43

2 The UBL Metamodel ... 4 44
3 XML Constructs .. 7 45

3.1 UBL Documentation .. 7 46
3.1.1 The UBL Dictionary ... 7 47
3.1.2 Other UBL Documentation .. 7 48

3.2 General Naming Rules for XML Constructs.. 7 49
3.3 General Overview of Types... 8 50
3.4 Elements and Attributes .. 8 51

3.4.1 Rules for UBL Elements .. 8 52
3.4.2 Rules for the Naming and Definition of Attributes General Overview 10 53

4 Modularity, Namespaces, and Versioning .. 13 54
4.1.1 Rules for Namespace structure... 13 55
4.1.2 Rules for Module structure .. 13 56
4.1.3 Rules for Versioning .. 13 57

5 Rules for Context .. 14 58
6 Code Lists ... 15 59

6.1 Guidance to the UBL Modeling Process ... 15 60
6.2 Handling Code Lists in UBL Schema Modules ... 15 61

6.2.1 Creating Code List Modules .. 16 62
6.3 Binding Code List Types and Code Content Types to UBL Elements............................ 17 63

7 References.. 19 64
8 Technical Terminology.. 20 65
Appendix A. Notices .. 21 66
 67

wd-ublndrsc-ndrdoc-12 3 31 May 2002

1 Introduction 68

This specification documents the rules and guidelines for the naming and design of XML 69
components for the UBL library. It reflects only rules that have been agreed on by the OASIS UBL 70
Naming and Design Rules Subcommittee (NDR SC). Proposed rules, and rationales for decided 71
rules, appear in the accompanying NDR SC position papers, which are available at 72
http://www.oasis-open.org/committees/ubl/ndrsc/. 73
The W3C XML Schema form of the UBL library is currently constructed automatically from the 74
metamodel developed by the OASIS UBL Library Content Subcommittee (LC SC). Thus, most of 75
the rules in this document are used to guide the development of the engine that generates the 76
XSD schema modules; this engine is produced by the OASIS UBL Tools and Techniques 77
Subcommittee (TT SC). Some of the rules address XML instance constructs and other practices 78
that must be undertaken by humans, such as developers who are customizing UBL for their own 79
purposes. 80

1.1 Terminology and Notation 81

The key words must, must not, required, shall, shall not, should, should not, recommended, may, 82
and optional in this document are to be interpreted as described in [RFC2119]. 83
The terms “W3C XML Schema” and “XSD” are used throughout this document. They are 84
considered synonymous; both refer to XML Schemas that conform to the W3C Schema 85
Recommendations [XSD]. See Section 8 for additional term definitions. 86

1.2 Guiding Principles 87

TBS (see draft-ublndrsc-designrules-04 for a draft of this information; will be placed here 88
eventually) 89

wd-ublndrsc-ndrdoc-12 4 31 May 2002

2 The UBL Metamodel 90

UBL is based [UBLChart] on the ebXML Core Components Technical Specification [CCTS], 91
which defines a metamodel and the following concepts, most of which were derived from 92
[ISONaming]: 93

• Object Class 94
• Property Term 95
• Qualifier 96
• Representation Term (RT) 97
• Core Component Type (CCT) 98

The UBL metamodel is based on the Core Components metamodel. In certain instances, 99
however, the Core Components metamodel was found to be ambiguous, unwieldy, or insufficient 100
for UBL purposes. Thus, we have provided feedback [CCFeedback] on the CCTS. 101
In this section we describe the UBL metamodel in terms of our proposed revisions. To simplify the 102
reading of this section, we will refer only to Core Components (CCs) when in reality these 103
comments apply to both CCs and Basic Information Entities (BIEs). The issue of context (the 104
distinguishing factor between CCs and BIEs) is not covered in this section. 105
Following is a summary of our proposals: 106

• Add an explicit Property concept, where a Property Term is a name for a Property: 107

Aggregate Core ComponentBasic Core Component

Property

-objectClass1..*
1

Core Component
-repTerm 0..*

1

 108
• Make Property Terms reflect the role played by that Property’s content relative to its 109

Object Class/Aggregate Core Component. 110
• Unify the concepts of Data Element (taken from [ISONaming]) and Property. 111
• Construct the Data Element Name (taken from [ISONaming]) for a Property by 112

taking the Property’s Object Class, its Property Term, and its Representation Term. 113
• Unify the concepts and definitions of Representation Terms and Core Component 114

Types and consider these to be Basic Core Components. 115
• Compose Basic Core Components out of a Content Component and zero or more 116

Supplementary Components, and make Content and Supplementary Components be 117
Properties of the Basic Core Component: 118

wd-ublndrsc-ndrdoc-12 5 31 May 2002

• Eliminate the “Details” Representation Term and treat Aggregate Core Components 119
as Representation Terms instead. 120

Following is the entire proposed Core Components metamodel, mapped to XML and XSD 121
concepts. 122

Proposed Core Components Metamodel

Aggregate Core Component

Basic Core Component

Property

-objectClass1..*
1

Core Component

Primitive Type

-objectClass1

-supplimentaryComponents

1..*

BCCProperty

-repTerm0..*

1

-repTerm 0..*
1

0..*

-contentComponent 1

CC technical
specification
concepts of BCC,
RT and CCT
rolled into one.

For the same reasons ACC needs a
Property to relate it to its
constituents, BCC needs a property
to relate it to its constituents.

wd-ublndrsc-ndrdoc-12 6 31 May 2002

 123

ISO 11179 Model (Data Element Naming)

XML Model

XML Instance

XML Schema

Proposed Core Components Metamodel

Aggregate Core Component

Basic Core Component

Property

-objectClass1..*
1

TypeDefinition

ElementDeclaration

-describes

1

0..*

-contains

1

-defines

0..*

1

1

1

1

Element

-parent1
-child

0..*

Type

1

-defines1

-defines

1

-implements

0..*

TypeName

-identifies1

1

TagName

1..*

-describes 1

0..*
-describes1

Core Component

1 1

Primitive Type

-objectClass1

-supplimentaryComponents

1..*

1

1

DataElement

ObjectClassTerm PropertyTerm

DataElementName

11

RepresentationTerm

1

1
1

BCCProperty

-repTerm0..*

1

-repTerm 0..*
1

0..*

-contentComponent 1

wd-ublndrsc-ndrdoc-12 7 31 May 2002

3 XML Constructs 124

In W3C XML Schema, elements are defined in terms of complex or simple types and attributes 125
are defined in terms of simple types. The rules in this section govern the consistent naming and 126
structuring of these constructs and the manner of unambiguously and thoroughly documenting 127
them. 128

3.1 UBL Documentation 129

3.1.1 The UBL Dictionary 130

The primary component of the UBL documentation is its dictionary. The entries in the dictionary 131
fully define the pieces of information available to be used in UBL business messages. Each 132
dictionary entry has a full name that ties the information to its standardized semantics, while the 133
name of the corresponding XML element or attribute is only a shorthand for this full name. The 134
rules for element and attribute naming and dictionary entry naming are different. 135
Each dictionary entry defines one fully qualified path (FQP) for an element or attribute. The fully 136
qualified path anchors the use of that construct to a particular location in a business message. 137
The dictionary definition identifies any semantic dependencies that the FQP has on other 138
elements and attributes within the UBL library that are not otherwise enforced or made explicit in 139
its structural definition. The dictionary serves as a traditional data dictionary, and also serves 140
some of the functions of traditional implementation guides in this way. 141

3.1.2 Other UBL Documentation 142

Additional components of the UBL documentation include definitions of: 143
• XSD complex and simple types in the UBL library, including whether and how that 144

type maps to a core component type 145
• The top-level elements in UBL that contain whole UBL messages 146
• Global attributes 147
• Summaries of Code Lists 148
• UBL-specific Core Component Types 149
• UBL-specific representation terms 150

The UBL documentation should be automatically generated to the extent possible, using 151
embedded documentation fields in the structural definitions. 152

3.2 General Naming Rules for XML Constructs 153

The following are the naming rules that apply to all names of XML constructs in UBL: 154
1. Names must use Oxford English. 155
2. Names of XML constructs must not use non-alphabetic delimiters. 156
3. Names must not use acronyms, abbreviations, or other word truncations, with the 157

exception of Identifier. Other exceptions may be identified in the future. 158
4. The Representation Term Identifier MUST be represented in XML names as ID. 159
5. Names must not contain non-letter characters unless required by language rules. 160
6. Names must be in singular form unless the concept itself is plural (example: Goods). 161

wd-ublndrsc-ndrdoc-12 8 31 May 2002

7. Names for XML constructs must use “camel-case” capitalization, such that each internal 162
word in the name begins with an initial capital followed by lowercase letters (example: 163
AmountContentType). As noted below, all XML constructs other than attributes use 164
“upper camel-case”, with the first word initial-capitalized, while attributes use “lower 165
camel-case”, with the first word all in lowercase. Exceptions are as follows: 166
DUNS for Dun & Bradstreet numbers 167

3.3 General Overview of Types 168

In XSD, elements are declared to have types, and most types (those complex types that are 169
defined to have “complex contents”) are defined as a pattern of subelements and attributes. Thus, 170
XSD has an indirect nesting structure of elements and types (where, for example, Type 1 below is 171
the parent type of Element A and where Type 2 is the parent type of Element B and the type 172
bound to Element A): 173

• Type 1 174
o Element A 175

 Type 2 176
• Element B… 177

3.4 Elements and Attributes 178

3.4.1 Rules for UBL Elements 179

These rules distinguish the following constructs within the structural definitions of messages and 180
their component parts. Note that some of these distinctions are specific to UBL and are not part of 181
the formal definition of XML or XSD. 182

• Elements: 183
o Top-level elements: Globally declared root elements, functioning at the level of 184

a whole business message. 185
o Lower-level elements: Locally declared elements that appear inside a business 186

message. 187
 Intermediate elements: Elements not at the top level that are of a 188

complex type, only containing other elements and attributes. 189
 Leaf elements: Elements containing only character data (though they 190

may also have attributes). Note that, because of the XSD mechanisms 191
involved, elements that contain only character data but also have 192
attributes must be declared with complex types, but such elements with 193
no attributes may be declared with simple types or complex types. 194

 Mixed-content elements: Elements that allow both element content and 195
data in their content models, and which may have attributes. 196

 Empty elements: Elements that contain nothing (though they may have 197
attributes). 198

3.4.1.1 Rules for the Naming and Definition of Top-Level Elements 199

Each UBL business message has a single root element that is a UBL top-level element. This 200
element must be globally declared in a UBL root schema (which may contain definitions of 201
additional root elements for other related messages in a functional area; see the Modularity, 202
Namespaces, and Versioning paper) with a reference to a named type definition. Only top-level 203
elements are declared globally. 204

wd-ublndrsc-ndrdoc-12 9 31 May 2002

Top-level elements are named according to the portion of the business process that they initiate. 205
Example: <Order>, <AdvanceShipNotice>. 206

3.4.1.2 Naming and Definition of Lower-Level Elements 207

3.4.1.2.1 General Rules 208

Lower-level elements (as well as attributes) are considered Properties of the Object Class 209
represented by their parent type. 210
Lower-level elements must be locally declared (Note: This recommendation is now under 211
discussion and may change) as namespace-unqualified elements by reference to a named type, 212
whether complex or simple, and be accompanied by documentation in the form of an 213
<xsd:annotation> element with an <xsd:documentation> element that has a source 214
attribute value of “Use”. The documentation specifies the use of the element within its parent 215
type. 216
There are several kinds of lower-level elements, each with distinct naming rules discussed in the 217
following sections. 218

3.4.1.2.2 Rules for Intermediate Elements 219

The names of intermediate elements must contain the Property Term describing the element and 220
MAY be preceded by an appropriate Qualifier term as necessary to create semantic clarity at that 221
level. The Object Class may be used as a qualifier. 222

[Qualifier] + PropertyTerm 223

3.4.1.2.3 Rules for Leaf Elements 224

Leaf elements are named as follows: 225

[Qualifier] + PropertyTerm + RepresentationTerm 226

The naming of leaf elements follows these exceptions: 227
• The Representation Term Text is always removed. 228
• Leaf elements with substantially similar Property Terms and Representation Terms 229

must remove the Property Term. 230
Examples: If the Object Class is Goods, the Property Term is DeliveryDate, and the 231
Representation Term is Date, the element name is truncated to 232
<GoodsDeliveryDate>; the element name for an identifier of a party 233
<PartyIdentificationIdentifier> is truncated to <PartyIdentifier> – and then to 234
<PartyID> because of the truncation rule. 235

3.4.1.2.4 Rules for Mixed-Content Elements 236

Mixed content in business documents is undesirable for a variety of reasons: 237
• White space is difficult to handle and complicates processing. 238
• Mixed content models allow little useful control over cardinality of elements. 239
For now mixed-content elements should have a Representation Term of Prose. This is currently 240
under discussion with the LC SC. 241

3.4.1.2.5 Rules for Empty Elements 242

Empty elements are not permitted in UBL. For further details on the discussion details 243
surrounding this recommendation consult the Elements vs Attributes position paper. 244

wd-ublndrsc-ndrdoc-12 10 31 May 2002

3.4.1.2.6 Rules Governing Elements of the Same Name and Their 245
Respective Types 246

In those cases where it seems beneficial to have two elements that have the same tag name but 247
are bound to different types, as is currently the case with the BIE Order.Header.Details (tag name 248
Header), it is permissible. 249

3.4.2 Rules for the Naming and Definition of Attributes General 250
Overview 251

There are two types of attribute: 252
• Global attributes: Attributes that have common semantics on the multiple elements 253

on which they appear. These might be fixed attributes expressing an XML 254
architectural form, attributes for assigning a unique element identifier, or attributes 255
containing natural-language information (such as xml:lang). 256

• Local attributes: Attributes that are specific to the element on which they appear. 257
Most attributes are local. 258

Attributes, like lower-level elements, are Properties of the Object Class represented by their 259
parent type. They are named identically to leaf elements, except that they use lower camel-case 260
rather than upper camel-case e.g. amountCurrencyIDCode. 261

3.4.2.1 Rules for Global Attributes 262

A global attribute should be used only when its semantics are absolutely unchanged no matter 263
what element it's used on, AND it's made available on every single element. This rule applies to 264
both external and UBL-specific global attributes. This allows common attributes that are 265
everywhere but are not global, and that need documentation of their meaning in each XML 266
environment in which they're used. 267
UBL-specific global attributes should be named just like regular attributes and sub-elements (i.e. 268
as properties of an object class). Hence, by definition, the name of such a property must be 269
consistent across all objects. 270

3.4.2.2 Rules for Local Attributes 271

All attributes that are not globally declared in UBL are considered to be local attributes. 272

3.4.2.3 Rules for the Naming and Definition of Types 273

3.4.2.3.1 General Rules 274

In UBL all types must be named and therefore they are "top-level". Most UBL elements are 275
declared locally inside complex types and are therefore “lower-level”. In terms of ebXML Core 276
Components, UBL complex types are Object Classes, subelements declared within them are 277
Properties of those Object Classes, and the types bound to those subelements are themselves 278
Object Classes which have their own Properties. See below: 279
 280

[Qualifier] + ObjectClass + “Type” 281

Example: CodeNameType. 282
The definition must contain a structured set of XSD annotations in an <xsd:annotation> 283
element with <xsd:documentation> elements that have source attribute values indicating the 284
names of the documentation fields below: 285

• UBL UID: The unique identifier assigned to the type in the UBL library. 286

wd-ublndrsc-ndrdoc-12 11 31 May 2002

• UBL Name: The complete name (not the tag name) of the type per the UBL library. 287
• Object Class: The Object Class represented by the type. 288
• UBL Definition: Documentation of how the type is to be used, written such that it 289

addresses the type’s function as a reusable component. 290
• Code Lists/Standards: A list of potential standard code lists or other relevant 291

standards that could provide definition of possible values not formally expressed in 292
the UBL structural definitions. 293

• Core Component UID: The UID of the Core Component on which the Type is based. 294
• Business Process Context: A valid value describing the Business Process contexts 295

for which this construct has been designed. Default is “In All Contexts”. 296
• Geopolitical/Region Context: A valid value describing the Geopolitical/Region 297

contexts for which this construct has been designed. Default is “In All Contexts”. 298
• Official Constraints Context: A valid value describing the Official Constraints 299

contexts for which this construct has been designed. Default is “None”. 300
• Product Context: A valid value describing the Product contexts for which this 301

construct has been designed. Default is “In All Contexts”. 302
• Industry Context: A valid value describing the Industry contexts for which this 303

construct has been designed. Default is “In All Contexts”. 304
• Role Context: A valid value describing the Role contexts for which this construct has 305

been designed. Default is “In All Contexts”. 306
• Supporting Role Context: A valid value describing the Supporting Role contexts for 307

which this construct has been designed. Default is “In All Contexts”. 308
• System Capabilities Context: A valid value describing the Systems Capabilities 309

contexts for which this construct has been designed. Default is “In All Contexts”. 310
The following is an extended example of the documentation fields for the type: 311

<xsd:complexType name=”PartyType”> 312
 <xsd:annotation> 313
 <xsd:documentation source=”UBL UID” xml:lang=”en”>PS1 314
 </xsd:documentation> 315
 <xsd:documentation source=”xCBL Name” xml:lang=”en”>Party 316
 </xsd:documentation> 317
 <xsd:documentation source=”Object Class” xml:lang=”en”>Party 318
 </xsd:documentation> 319
 <xsd:documentation source=”UBL Definition” 320
 xml:lang=”en”> 321
 </xsd:documentation> 322
 <xsd:documentation source=”Code Lists/Standards” 323
 xml:lang=”en”>NA 324
 </xsd:documentation> 325
 <xsd:documentation source=”Core Component UID” 326
 xml:lang=”en”>[None] 327
 </xsd:documentation> 328
 <xsd:documentation source=”Business Process Context” 329
 xml:lang=”en”>NA 330
 </xsd:documentation> 331
 <xsd:documentation source=”Geopolitical/Region Context” 332
 xml:lang=”en”>NA 333
 </xsd:documentation> 334
 <xsd:documentation source=”Official Constraints Context” 335
 xml:lang=”en”>NA 336
 </xsd:documentation> 337
 <xsd:documentation source=”Product Context” 338
 xml:lang=”en”>NA 339
 </xsd:documentation> 340

wd-ublndrsc-ndrdoc-12 12 31 May 2002

 <xsd:documentation source=”Industry Context” 341
 xml:lang=”en”>NA 342
 </xsd:documentation> 343
 <xsd:documentation source=”Supporting Role Context” 344
 xml:lang=”en”>NA 345
 </xsd:documentation> 346
 <xsd:documentation source=”System Capabilities Context” 347
 xml:lang=”en”>NA 348
 </xsd:documentation> 349
 </xsd:annotation> 350
 … 351
</xsd:complexType> 352

wd-ublndrsc-ndrdoc-12 13 31 May 2002

4 Modularity, Namespaces, and Versioning 353

For an overview of current thinking on issues of modularity, namespace and versioning, consult 354
the Modnamver position paper. 355

4.1.1 Rules for Namespace structure 356

4.1.2 Rules for Module structure 357

4.1.3 Rules for Versioning 358

Each namespace should have a version. 359

wd-ublndrsc-ndrdoc-12 14 31 May 2002

5 Rules for Context 360

For an overview of current thinking on Context Rules, consult the Specialization Architecture 361
position paper from the Context Methodology Subcommittee. 362

wd-ublndrsc-ndrdoc-12 15 31 May 2002

6 Code Lists 363

This section recommends how to handle code lists in the UBL library. See the position paper on 364
code lists for the rationale behind these recommendations. 365

6.1 Guidance to the UBL Modeling Process 366

Where possible, the UBL design should identify external code lists rather than develop its own 367
internal code lists. Potential reasons for designing an internal code list include the need to 368
combine multiple existing external code lists, or the lack of any suitable external code list. The 369
lack of “easy-to-read” or “easy-to-understand” codes in an otherwise suitable code list is not 370
sufficient reason to define an internal code list. 371
The UBL documentation must identify, for each UBL construct containing a code, the one or more 372
code lists that must be minimally supported when the construct is used. Our recommendations for 373
how to represent code lists in UBL schema modules have the effect of encapsulating this 374
information in schema form as well. It is assumed that whole code lists, and not subsets of those 375
code lists, are to be identified; however, users of the UBL library may customize these code lists 376
by subsetting them. 377

6.2 Handling Code Lists in UBL Schema Modules 378

We recommend handling codes in UBL by defining a unique XSD complex type/simple type pair 379
for each code list, so that the complex type (a code list type) can be bound to a UBL element (a 380
code element) and the simple type (its corresponding code content type) can be bound to the 381
element’s contents. The UBL library will have occasion to define a few such type pairs for UBL-382
native code lists; mostly we recommend that UBL identify external code lists – and bind its own 383
code-related elements to types defined schema modules owned by external agencies, where 384
such schema modules (code list modules) exist. 385
In some cases, while an external code list may have been defined, an XSD schema module may 386
not yet (or may not ever) be created and maintained by the code list’s owning agency. In these 387
cases, UBL will have to define a schema module on behalf of the agency. It is expected that 388
these orphaned code list modules will not have the same validating power, nor be maintained 389
with as much alacrity, as other code list modules with proper owners. 390
The recommendations here are designed to encourage the creation and maintenance of code list 391
modules by their proper owners as much as possible. 392
Since the UBL library is based on the ebXML Core Components, the supplementary components 393
identified for the Code. Type core component type are assumed to be sufficient for fully 394
identifying a code list and any code used from it. Following are the components associated with 395
Code.Type (as defined in [CCTS 1.8]) and the recommended representation in UBL form. Note 396
that, because of the NDR recommendation on when to use elements vs. attributes, the 397
supplementary components are all recommended to be attributes. 398

wd-ublndrsc-ndrdoc-12 16 31 May 2002

 399

Component Name Component Definition Recommended UBL Form

Code. Content A character string (letters,
figures or symbols) that for
brevity and/or language
independence may be used to
represent or replace a
definitive value or text of an
attribute

The content of the code
element. The element is
bound to the code list type and
the element’s content is bound
to the code content type.

Code List. Identifier The name of a list of codes An attribute on the code
element, defined as part of the
code list type.

Code List. Agency. Identifier An agency that maintains one
or more code lists

An attribute on the code
element, defined as part of the
code list type.

Code List. Version. Identifier The version of the code list An attribute on the code
element, defined as part of the
code list type.

Code. Name The textual equivalent of the
code content

An optional attribute on the
code element, defined as part
of the code list type.

Language. Code The identifier of the language
used in the corresponding text
string (in ISO 639 form)

An optional attribute on the
code element, applying to the
value of the attribute
containing the Code.Name.

There are two parts to the handling of code lists in UBL: the creation of code list modules and the 400
binding of code list types and code content types to UBL elements. 401

6.2.1 Creating Code List Modules 402

Following are strong recommendations for defining code list types and their corresponding code 403
content types: 404

• Name the types and define a named namespace in which they are defined. If 405
possible, define the types in their own schema module (XSD file). 406

• The attributes that you define in the Code List Type may be bound to any appropriate 407
simple types but must have the following names: For Code List.Identifier use ID, For 408
Code List Agency.Identifier use agencyID, For Code List version.identifier use 409
versionID. Use codeName for Code.Name and languageCode for Language.Code. 410

• Define the Code. Content component as the element content. Define attributes for 411
the Code List. Identifier, Code List. Agency. Identifier, and Code List. Version. 412
Identifier components. Name component. The definition of the Language. Code 413
component and the Code.Name component is optional. 414

• Make the XSD definitions as “tight” as you can, defining value defaults or fixed values 415
for supplementary components and circumscribing the valid values of the code 416
content as much as possible without compromising your own maintainability goals. 417

• ISSUE: Do we want to define canonical XSD documentation elements for code list 418
modules? Even if we don’t recommend such for external code list modules, should 419
we have them in UBL-native modules or in orphan code list modules? 420

wd-ublndrsc-ndrdoc-12 17 31 May 2002

Following is a minimal template to follow. This hypothetical ISO 3166 code list for locale codes is 421
used merely as an example. For different code lists, it might make sense not to use enumeration 422
but rather to use pattern-matching regular expressions or to avoid strict code validation entirely. 423

<?xml version="1.0" encoding="UTF-8"?> 424
<xs:schema 425
 targetNamespace="{namespace for ISO 3166 code list module}" 426
 xmlns=”http://www.w3.org/2001/XMLSchema” 427
 xmlns:iso3166="{namespace for ISO 3166 code list module}" 428
 xmlns:xs=”http://www.w3.org/2001/XMLSchema” 429
 elementFormDefault="unqualified" 430
 attributeFormDefault="unqualified"> 431
 <xs:simpleType name=”iso3166:CodeContentType”> 432
 <xs:extension base=”xs:token”> 433
 <xs:enumeration value=”DE”/> 434
 <xs:enumeration value=”FR”/> 435
 <xs:enumeration value=”US”/> 436
 . . . 437
 </xs:extension> 438
 </xs:simpleType> 439
 440
 <xs:complexType name=”iso3166:CodeType”> 441
 <simpleContent> 442
 <xs:extension base="iso3166:CodeContentType"> 443
 <xs:attribute name="ID" 444
 type="xs:token" fixed=”ISO 3166 Locale Code”/> 445
 <xs:attribute name="agencyID" 446
 type="xs:token" fixed=”ISO”/> 447
 <xs:attribute name="versionID" 448
 type="string" fixed=”1.0”/> 449
 </simpleContent> 450
 </xs:complexType> 451
</xs:schema> 452

6.3 Binding Code List Types and Code Content Types to UBL 453
Elements 454

No matter whether type pairs for code lists are defined by UBL or by an external agency, the UBL 455
library must define its own elements for the provision of the actual codes in an instance. Such an 456
element must be bound to the code list type (a complex type), and the element’s contents must 457
be bound to the code content type (a simple type). This creates a unique element for each kind of 458
code. 459
Following is an example of this binding is created. Here, a UBL LocaleCode element, of type 460
LocaleCodeType, is assumed to require a code from the hypothetical ISO 3166 locale code list 461
defined in the previous section. Thus, it needs to contain an ISO3166LocaleCode element 462
bound to the iso3166:LocaleCodeType type. 463

<xsd:complexType name="{LocaleCode element’s parent}"> 464
 <xsd:sequence> 465
 . . . 466
 <xsd:element name="LocaleCode" type="ubl:LocaleCodeType"/> 467
 </xsd:sequence> 468
</xsd:complexType> 469
 470
<xsd:complexType name=”LocaleCodeType” id=”. . .”> 471
 <xsd:element name=”ISO3166Code” type=”iso3166:CodeType”/> 472
</xsd:complexType> 473

If the UBL library allows a choice of codes from different lists in any one location, it will do this by 474
allowing a choice of elements in that location. There is no problem with the interpretation of 475

wd-ublndrsc-ndrdoc-12 18 31 May 2002

clashing codes from different lists because the surrounding code element distinguishes them. For 476
example, if locale codes from two different code lists – ISO 3166 and the Codes “R” Us locale 477
code list – are allowed, following is how to allow them in the UBL library. 478

<xsd:complexType name="{LocaleCode element’s parent}"> 479
 <xsd:sequence> 480
 . . . 481
 <xsd:element name="LocaleCode" type="ubl:LocaleCodeType"/> 482
 </xsd:sequence> 483
</xsd:complexType> 484
 485
<xsd:complexType name=”LocaleCodeType” id=”. . .”> 486
 <xs:choice> 487
 <xsd:element name=”ISO3166Code” type=”iso3166:CodeType”/> 488
 <xsd:element name=”CodesRUsCode” type=”codesrus:CodeType”/> 489
 </xs:choice> 490
</xsd:complexType> 491

wd-ublndrsc-ndrdoc-12 19 31 May 2002

7 References 492

[CCTS] UN/CEFACT Draft Core Components Specification, Part 1, 8 February, 493
2002, Version 1.8. 494

[CCFeedback] Feedback from OASIS UBL TC to Draft Core Components Specification 495
1.8, version 5.2, May 4, 2002, http://oasis-496
open.org/committees/ubl/lcsc/doc/ubl-cctscomments-5p2.pdf. 497

[GOF] Design Patterns, Gamma, et al. ISBN 0201633612 498
[ISONaming] ISO/IEC 11179, Final committee draft, Parts 1-6. 499
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 500

http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 501
[UBLChart] UBL TC Charter, http://oasis-open.org/committees/ubl/charter/ubl.htm 502
[XML] Extensible Markup Language (XML) 1.0 (Second Edition), W3C 503

Recommendation, October 6, 2000 504
[XSD] XML Schema, W3C Recommendations Parts 0, 1, and 2. 2 May 2001. 505

wd-ublndrsc-ndrdoc-12 20 31 May 2002

8 Technical Terminology 506

 507
Application-level validation Adherence to business requirements, such as valid

account numbers.
Ad hoc schema processing Doing partial schema processing, but not with

official schema validator software; e.g., reading
through schema to get the default values out of it.

Assembly Using parts of the library of reusable UBL
components to create a new kind of business
document type.

Context A particular set of context driver values.

DTD validation Adherence to an XML 1.0 DTD.

Instance constraint checking Additional validation checking of an instance,
beyond what XSD makes available, that relies only
on constraints describable in terms of the instance
and not additional business knowledge; e.g.,
checking co-occurrence constraints across
elements and attributes. Such constraints might be
able to be described in terms of Schematron.

Generic BIE A semantic model that has a “zeroed” context. We
are assuming that it covers the requirements of 80%
of business uses, and therefore is useful in that
state.

Instance root/doctype This is still mushy. The transitive closure of all the
declarations imported from whatever namespaces
are necessary. A doctype may have several
namespaces used within it.

Root Schema A schema document corresponding to a single
namespace, which is likely to pull in (by including or
importing) schema modules. Issue: Should a root
schema always pull in the “meat” of the definitions
for that namespace, regardless of how small it is?

Schema Never use this term unqualified!

Schema Module A “schema document” (as defined by the XSD spec)
that is intended to be taken in combination with
other such schema documents to be used.

Schema Processing Schema validation checking plus provision of default
values and provision of new infoset properties.

Schema Validation Adherence to an XSD schema.

Well-Formedness Checking Basic XML 1.0 adherence.

wd-ublndrsc-ndrdoc-12 21 31 May 2002

Appendix A. Notices 508

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 509
that might be claimed to pertain to the implementation or use of the technology described in this 510
document or the extent to which any license under such rights might or might not be available; 511
neither does it represent that it has made any effort to identify any such rights. Information on 512
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 513
website. Copies of claims of rights made available for publication and any assurances of licenses 514
to be made available, or the result of an attempt made to obtain a general license or permission 515
for the use of such proprietary rights by implementors or users of this specification, can be 516
obtained from the OASIS Executive Director. 517
OASIS invites any interested party to bring to its attention any copyrights, patents or patent 518
applications, or other proprietary rights which may cover technology that may be required to 519
implement this specification. Please address the information to the OASIS Executive Director. 520
Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 521
2001. All Rights Reserved. 522
This document and translations of it may be copied and furnished to others, and derivative works 523
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 524
published and distributed, in whole or in part, without restriction of any kind, provided that the 525
above copyright notice and this paragraph are included on all such copies and derivative works. 526
However, this document itself does not be modified in any way, such as by removing the 527
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS 528
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 529
Property Rights document must be followed, or as required to translate it into languages other 530
than English. 531
The limited permissions granted above are perpetual and will not be revoked by OASIS or its 532
successors or assigns. 533
This document and the information contained herein is provided on an “AS IS” basis and OASIS 534
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 535
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE 536
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 537
PARTICULAR PURPOSE. 538

