
wd-ublndrsc-ndrdoc-17 1 14 October 2002

 1

Universal Business Language (UBL) 2

Naming and Design Rules 3

Working Draft 17, 22 October 2002 4

Document identifier: 5
wd-ublndrsc-ndrdoc-17 (Word, PDF) 6

Location: 7
 http://www.oasis-open.org/committees/ubl/ndrsc/drafts/ 8

Editors: 9
Bill Burcham, Sterling Commerce <Bill_Burcham@stercomm.com> 10
Mavis Cournane, Cognitran Ltd <mavis.cournane@cognitran.com> (primary editor) 11
Mark Crawford, LMI <MCRAWFORD@lmi.org> 12
Arofan Gregory, CommerceOne <arofan.gregory@commerceone.com> 13
Eve Maler, Sun Microsystems <eve.maler@sun.com> 14

Contributors: 15
Fabrice Desré, France Telecom 16
Matt Gertner, Schemantix 17
Jessica Glace, LMI 18
Phil Griffin, Griffin Consulting 19
Michael Grimley, US NavyEduardo Gutentag, Sun Microsystems 20
Sue Probert, CommerceOne 21
Lisa Seaburg, Aeon Consulting 22
Gunther Stuhec, SAP 23
Paul Thorpe, OSS Nokalva 24
 25

Abstract: 26
This specification documents the naming and design rules and guidelines for the 27
construction of XML components for the UBL vocabulary. 28

Status: 29
This is a draft document and is likely to change on a weekly basis. 30
If you are on the ubl-ndrsc@lists.oasis-open.org list for NDR subcommittee members, 31
send comments there. If you are not on that list, subscribe to the ubl-32
comment@lists.oasis-open.org list and send comments there. To subscribe, send an 33
email message to ubl-comment-request@lists.oasis-open.org with the word "subscribe" 34
as the body of the message. 35
For information on whether any patents have been disclosed that may be essential to 36
implementing this specification, and any offers of patent licensing terms, please refer to 37

wd-ublndrsc-ndrdoc-17 2 14 October 2002

the Intellectual Property Rights section of the Security Services TC web page 38
(http://www.oasis-open.org/committees/security/). 39

Copyright © 2001, 2002 The Organization for the Advancement of Structured Information 40
Standards [OASIS] 41

wd-ublndrsc-ndrdoc-17 3 14 October 2002

Table of Contents 42

1 Introduction ... 5 43
1.1 Audiences ... 5 44
1.2 Terminology and Notation... 5 45
1.3 Guiding Principles ... 5 46

1.3.1 Adherence to general UBL guiding principles ... 5 47
1.3.2 Design For Extensibility ... 6 48
1.3.3 Code Generation ... 7 49

2 Choice of schema language ... 8 50
3 Relationship to ebXML Core Components ... 9 51

3.1 Rules for Mapping Business Information Entities, Their Properties, and Primitive Types 52
to XML ... 10 53

4 XML Constructs .. 15 54
4.1 UBL Documentation .. 15 55

4.1.1 The UBL Dictionary ... 15 56
4.1.2 Other UBL Documentation .. 15 57
4.1.3 Embedded documentation... 15 58

4.2 General Naming Rules for XML Constructs.. 15 59
4.3 General Overview of Types... 16 60
4.4 Elements and Attributes .. 16 61

4.4.1 Rules for UBL Elements .. 16 62
4.4.2 Rules for the Naming and Definition of Attributes General Overview 18 63

4.5 Containership and element design ... 20 64
Modularity, Namespaces, and Versioning... 21 65

5.1 Schema Module Concepts.. 21 66
5.2 Rules for Creating Namespaces ... 23 67
5.3 Rules for Namespace Identification .. 23 68
5.4 Rules for Schema Module Schema Location.. 24 69
5.5 Rules for Versioning.. 24 70

6 Facets ... 25 71
6.1 Introduction ... 25 72
6.2 Rules ... 25 73

7 Date and Time .. 26 74
7.1 Introduction ... 26 75

7.1.1 Rules for specific points of date/time... 26 76
7.1.2 Rules for duration .. 26 77
7.1.3 Core Component Types and Representation Terms .. 26 78
7.1.4 Period .. 26 79

8 Rules for Context .. 28 80
9 Code Lists ... 29 81
10 UBL Messages.. 30 82

10.1 General Message Rules.. 30 83

wd-ublndrsc-ndrdoc-17 4 14 October 2002

11 References.. 31 84
12 Technical Terminology.. 32 85
Appendix A. Notices .. 33 86
 87

wd-ublndrsc-ndrdoc-17 5 14 October 2002

1 Introduction 88

This specification documents the rules and guidelines for the naming and design of XML 89
components for the UBL library. It reflects only rules that have been agreed on by the OASIS UBL 90
Naming and Design Rules Subcommittee (NDR SC). Proposed rules, and rationales for decided 91
rules, appear in the accompanying NDR SC position papers, which are available at 92
http://www.oasis-open.org/committees/ubl/ndrsc/. 93
The W3C XML Schema form of the UBL library is currently constructed automatically from the 94
metamodel developed by the OASIS UBL Library Content Subcommittee (LC SC). Thus, most of 95
the rules in this document are used to guide the development of the engine that generates the 96
XSD schema modules; this engine is produced by the OASIS UBL Tools and Techniques 97
Subcommittee (TT SC). Some of the rules address XML instance constructs and other practices 98
that must be undertaken by humans, such as developers who are customizing UBL for their own 99
purposes. 100

1.1 Audiences 101

There are two primary audiences for this document – the internal TC member/perl script writer, 102
and the UBL customizer. 103

1.2 Terminology and Notation 104

The key words must, must not, required, shall, shall not, should, should not, recommended, may, 105
and optional in this document are to be interpreted as described in [RFC2119]. 106
The terms “W3C XML Schema” and “XSD” are used throughout this document. They are 107
considered synonymous; both refer to XML Schemas that conform to the W3C Schema 108
Recommendations [XSD]. See Section 12 for additional term definitions. 109

1.3 Guiding Principles 110

1.3.1 Adherence to general UBL guiding principles 111

The UBL NDRSC is following the high-level guiding principles for the design of UBL as approved 112
by the UBL TC. These principles are: 113

• Internet Use - UBL shall be straightforwardly usable over the Internet. 114
• Interchange and Application Use–UBL is intended for interchange and application 115

use. 116
• Tool Use and Support - The design of UBL cannot make any assumptions about 117

sophisticated tools for creation, management, storage, or presentation being 118
available. . The lowest common denominator for tools is incredibly low (for example, 119
Notepad), and the variety of tools used is staggering. We do not see this situation 120
changing in the near term. 121

• Time Constraints–Urgency is a key item in the development of UBL. Many facets of 122
XML are still being debated. UBL will make rapid “informed” decisions that may not 123
agree with the ultimate “right” design decisions subsequently reached elsewhere. 124

• Legibility - UBL documents should be human-readable and reasonably clear 125
• Simplicity - The design of UBL must be as simple as possible (but no simpler). 126
• 80/20 Rule - The design of UBL should provide the 20% of features that 127

accommodate 80% of the needs. 128

wd-ublndrsc-ndrdoc-17 6 14 October 2002

• Component Reuse–The design of UBL document types should share as many 129
common features as possible. The essential nature of e-commerce transactions is to 130
pass along information that gets incorporated again into the next transaction down 131
the line. For example, a purchase order contains information that will be copied into 132
the purchase order response. This forms the basis for our need for a core library of 133
reusable components. In fact, reuse in this context is important not only for the 134
efficient development of software, but also for keeping audit trails. 135

• Standardization - The number of ways to express the same information in a UBL 136
document is to be kept as close to one as possible. 137

• Domain Expertise–UBL will leverage expertise in a variety of domains through 138
interaction with appropriate development efforts. 139

• Customization and Maintenance - The design of UBL must enable customization and 140
maintenance. 141

• Context Sensitivity - The design of UBL must ensure that context-sensitive document 142
types aren’t precluded. 143

• Prescriptiveness–UBL design will balance prescriptiveness in any one usage 144
scenario with prescriptiveness across the breadth of usage scenarios supported. 145
Having precise, tight content models and datatypes is a good thing (and for this 146
reason, we might want to advocate the creation of more document type “flavors” 147
rather than less; see below). However, in an interchange format, it is often difficult to 148
get the prescriptiveness that would be desired in any one usage scenario. 149

• Content Orientation - Most UBL document types should be as “content-oriented” (as 150
opposed to merely structural) as possible. Some document types, such as product 151
catalogs, will likely have a place for structural material such as paragraphs, but these 152
will be rare. 153

• XML Technology–UBL design will avail itself of standard XML processing technology 154
wherever possible (XML itself, XML Schema, XSLT, XPath, and so on). However, 155
UBL will be cautious about basing decisions on “standards” (foundational or 156
vocabulary) that are works in progress. 157

• Relationship to Other Namespaces–UBL design will be cautious about making 158
dependencies on other namespaces. UBL does not need to reuse existing 159
namespaces wherever possible. For example, XHTML might be useful in catalogs 160
and comments, but it brings its own kind of processing overhead, and if its use is not 161
prescribed carefully it could harm our goals for content orientation as opposed to 162
structural markup. 163

• Legacy formats - UBL is not responsible for catering to legacy formats; companies 164
(such as ERP vendors) can compete to come up with good solutions to permanent 165
conversion. This is not to say that mappings to and from other XML dialects or non-166
XML legacy formats wouldn’t be very valuable. 167

• Relationship to xCBL–UBL will not be a strict subset of xCBL, nor will it be explicitly 168
compatible with it in any way. 169

1.3.2 Design For Extensibility 170

Many basic e-commerce document types are generally useful, but require minor structural 171
modifications for specific tasks or markets. When a truly common XML structure is to be 172
established for e-commerce, it needs to be easy and inexpensive to modify. 173
In EDI there has been a gradual increase in the number of published components to 174
accommodate market-specific variations. Several efforts within the EDI community are focused 175
on eliminating this problem; variations are a requirement, and one that is not easy to meet. A 176
related EDI phenomenon is the overloading of the meaning and use of existing elements, which 177
greatly complicates interoperation. 178

wd-ublndrsc-ndrdoc-17 7 14 October 2002

To avoid the high degree of cross-application coordination required to handle structural variations 179
in EDI - and in DTD-based systems - it is necessary to accommodate the required variations in 180
basic data structures without either overloading the meaning and use of existing data elements, 181
or requiring wholesale addition of data elements. This can be accomplished by allowing 182
implementers to specify new element types that inherit the properties of existing elements, and to 183
also specify exactly the structural and data content of the modifications. 184
Many data structures used in e-commerce are very similar to “standard” data structures, but have 185
some significant semantic difference native to a particular industry or process. This can be 186
expressed by saying that extensions of core elements are driven by context [need ref here]. 187
Context driven extensions should be renamed to distinguish them from their parents, and 188
designed so that only the new elements require new processing. 189
Similarly, data structures should be designed so that processes can be readily engineered to 190
ignore additions that are not needed. 191

1.3.3 Code Generation 192

 193

wd-ublndrsc-ndrdoc-17 8 14 October 2002

2 Choice of schema language 194

The UBL vocabulary is expressed in XSD. 195

wd-ublndrsc-ndrdoc-17 9 14 October 2002

3 Relationship to ebXML Core Components 196

 197
UBL employs the methodology and model described in [CCTS]. In the terminology of that 198
specification, the UBL vocabulary consists primarily of Aggregate Business Information Entities 199
(ABIE). An ABIE is similar to a Class in object-oriented modeling (e.g. UML). An ABIE is similar 200
to an entity in Entity Relationship modeling. 201
 202
According to the CCTS each ABIE must have a unique name (Object Class Term). Each ABIE 203
must have one or more BIE Properties. Each BIE Property must have a name (Property Term). 204
That name must be unique within that ABIE. 205
There are two kinds of BIE Property. A Basic BIE Property represents an intrinsic property of an 206
ABIE. An Association BIE Property represents an extrinsic property – in other words an 207
association from one ABIE instance to another ABIE instance. It is the Association BIE Property 208
that expresses the relationship between ABIEs. 209
 210
In order to actually define the intrinsic structure of an ABIE, a set of Basic Business Information 211
Entities is defined. These are the “leaf” types in the system in that they contain no Association 212
BIE Properties, and no Basic BIE Properties. A BBIE must have a single Content Component 213
and one or more Supplementary Components. A Content Component is of some Primitive Type. 214
 215
Here’s a picture of the relevant parts of the Core Components metamodel: 216

(part of) Core Components Metamodel

-Object Class Term
Aggregate Business Information Entity

-Object Class Term
Basic Business Information Entity

-Property Term
-cardinality

Association BIE Property

0..*

-to1

-name
Primitive Type

0..*

-supplementaryComponents1..*

0..*

-from1

0..*

-contentComponent 1

-Property Term
-cardinality

Basic BIE Property 10..*

10..*

 217
 218
 219

wd-ublndrsc-ndrdoc-17 10 14 October 2002

The preceeding diagram depicts a summary of the Core Components metamodel. Whereas the 220
Core Components metamodel encompasses two broad categories of model element, the Core 221
Component and the Business Information Entity, UBL is concerned with only the latter. 222
Since UBL is concerning itself only with the development of Business Information Entities, and 223
their realization in XML, the UBL metamodel speaks only in terms of BIE concepts. For instance, 224
while the Core Components metamodel specifies that each BIE is “based on” a particular Core 225
Component – that detail is not considered by UBL. UBL defines no Core Components. 226
Similarly, the Core Components metamodel describes parallel model elements to capture low-227
level types such as Identifiers, and Dates etc. In that metamodel, a Core Component Type 228
describes these low-level types for use by Core Components, and (in parallel) a “Data Type” – 229
corresponding to that Core Component Type, describes these low-level types for use by Business 230
Information Entities. UBL is not, therefore concerned with Core Component Types since again, 231
they pertain only to the Core Components model, which UBL is not specifying. UBL defines no 232
Core Components, and UBL defines no Core Component Types. 233
That being said, you might rightly expect to see Data Type appear in the diagram above, 234
however, since in the Core Components metamodel there is a one-to-one correspondence 235
between a Data Type and a Business Information Entity, UBL has elected to define only the 236
latter. The alternative would be for UBL to define Data Types (e.g. AmountType, CodeType, 237
DateTimeType, etc.) and also to define corresponding BIE’s. To do so would add no value to the 238
work product, so we will model only one. UBL defines no Data Types separate from BIE’s – there 239
is only the BIE’s. 240

3.1 Rules for Mapping Business Information Entities, Their 241
Properties, and Primitive Types to XML 242

A primary deliverable of the UBL effort is XML Schemas. These schemas declare a complex type 243
for each ABIE, and a complex type for each BBIE. Each Association BIE Property becomes an 244
element definition (within the appropriate complex type). Similarly each Basic BIE Property 245
becomes an element definition within a complex type. 246
 247
This diagram depicts the relationship between the ABIE model and the XML Schema/XML 248
instance models: 249
 250
 251

wd-ublndrsc-ndrdoc-17 11 14 October 2002

XML Model

XML Instance

XML Schema

(part of) Core Components Metamodel

-Object Class Term
Aggregate Business Information Entity

-Object Class Term
Basic Business Information Entity

-Property Term
-cardinality

Association BIE Property

0..*

-to1

TypeDefinition

ElementDeclaration

-describes

1

0..*

-contains

1

-defines

0..*

1

1

1

1

Element

-parent1
-child

0..*

Type

1

-defines1

-defines

1

-implements

0..*

TypeName

-identifies1

1

TagName

1..*

-describes 1

0..*
-describes1

1

1

-name
Primitive Type

0..*

-supplementary1..*

0..*

-from1

0..*

-contentComponent 1

-Property Term
-cardinality

Basic BIE Property 10..*

10..*
1

1

 252
 253
Each ABIE results in a complex type declaration in the XML Schema. The complex type name is 254
derived like this: 255
 256
<ABIE Object Class Term>”Type” 257
 258
Here are some examples: 259
 260

ABIE Object
Class Term

Complex Type Name

Address AddressType

Party PartyType

 261
Each BBIE results in a complex type declaration in the XML Schema. The name of the complex 262
type is derived like this: 263
 264

wd-ublndrsc-ndrdoc-17 12 14 October 2002

<BBIE Object Class Term>”Type” 265
 266
Here are some examples: 267
 268

BBIE Object
Class Term

Complex Type Name

Amount AmountType

DateTime

DateTimeType

 269
Each Basic BIE Property results in an element in the XML Schema. The tag name is derived like 270
this: 271
 272
<Basic BIE Property Property Term>((<BBIE Object Class Term> != “Text” && <Basic BIE 273
Property Property Term> != <BBIE Object Class Term>) ? (<BBIE Object Class Term> == 274
“Identifier” ? “ID” : <BBIE Object Class Term>) 275
 276
So the tag name is the name of the Basic BIE Property followed by the name of the pertinent 277
BBIE. If the BBIE is named “Text” or if the name of the Basic BIE Property is the same as the 278
name of the BBIE then it must be elided. If the BBIE Object Class Term is Identifier then it is 279
translated to “ID” in the tag name. 280
 281
Here are some examples: 282
 283

Basic BIE Property Property
Term

BBIE Object
Class Term

Tag name

Purpose Code PurposeCode

Name Text Name

Party Identifier PartyID

 284
 285
Each Association BIE Property results in an element definition in the XML Schema. The tag 286
name is derived like this: 287
 288
<Association BIE Property Property Term>((<Association BIE Property Property Term> != < 289
ABIE Object Class Term of ABIE in the “to” role>) ? (<ABIE Object Class Term of ABIE in the “to” 290
role >) 291
 292
 293
Here are some examples: 294
 295

wd-ublndrsc-ndrdoc-17 13 14 October 2002

Association BIE Property
Property Term

ABIE Object
Class Term of
ABIE in the
“to” role

Tag name

Receiving Contact ReceivingContact

Address Address Address

 296
TODO: we need to add the excruciating details of mapping Basic Business Information Entities, 297
and their associated content component and supplementary components to XSD and XMl. 298
 299

wd-ublndrsc-ndrdoc-17 14 14 October 2002

 300

ISO 11179 Model (Data Element Naming)

XML Model

XML Instance

XML Schema

Proposed Core Components Metamodel

Aggregate Core Component

Basic Core Component

Property

-objectClass1..*
1

TypeDefinition

ElementDeclaration

-describes

1

0..*

-contains

1

-defines

0..*

1

1

1

1

Element

-parent1
-child

0..*

Type

1

-defines1

-defines

1

-implements

0..*

TypeName

-identifies1

1

TagName

1..*

-describes 1

0..*
-describes1

Core Component

1 1

Primitive Type

-objectClass1

-supplimentaryComponents

1..*

1

1

DataElement

ObjectClassTerm PropertyTerm

DataElementName

11

RepresentationTerm

1

1
1

BCCProperty

-repTerm0..*

1

-repTerm 0..*
1

0..*

-contentComponent 1

wd-ublndrsc-ndrdoc-17 15 14 October 2002

4 XML Constructs 301

In W3C XML Schema, elements are defined in terms of complex or simple types and attributes 302
are defined in terms of simple types. The rules in this section govern the consistent naming and 303
structuring of these constructs and the manner of unambiguously and thoroughly documenting 304
them. 305

4.1 UBL Documentation 306

4.1.1 The UBL Dictionary 307

The primary component of the UBL documentation is its dictionary. The entries in the dictionary 308
fully define the pieces of information available to be used in UBL business messages. Each 309
dictionary entry has a full name that ties the information to its standardized semantics, while the 310
name of the corresponding XML element or attribute is only a shorthand for this full name. The 311
rules for element and attribute naming and dictionary entry naming are different. 312
[d1] Each dictionary entry name must define one and only one fully qualified path (FQP) for an 313
element or attribute. 314
The fully qualified path anchors the use of that construct to a particular location in a business 315
message. The dictionary definition identifies any semantic dependencies that the FQP has on 316
other elements and attributes within the UBL library that are not otherwise enforced or made 317
explicit in its structural definition. The dictionary serves as a traditional data dictionary, and also 318
serves some of the functions of traditional implementation guides in this way. 319

4.1.2 Other UBL Documentation 320

Additional components of the UBL documentation include definitions of: 321
• XSD complex and simple types in the UBL library, including whether and how that 322

type maps to a core component type 323
• The top-level elements in UBL that contain whole UBL messages 324
• Global attributes 325
• Summaries of Code Lists 326
• UBL-specific Core Component Types 327
• UBL-specific representation terms 328

The UBL documentation should be automatically generated to the extent possible, using 329
embedded documentation fields in the structural definitions. 330

4.1.3 Embedded documentation 331

 332

4.2 General Naming Rules for XML Constructs 333

The following are the naming rules that apply to all names of XML constructs in UBL: 334
Names must use Oxford English. 335
Names must not use acronyms, abbreviations, or other word truncations, with the exception of 336
Identifier. Other exceptions may be identified in the future. 337
The Representation Term Identifier MUST be represented in XML names as ID. 338

wd-ublndrsc-ndrdoc-17 16 14 October 2002

Names must not contain non-letter characters unless required by language rules. 339
Names must be in singular form unless the concept itself is plural (example: Goods). 340
Names for XML constructs must use “camel-case” capitalization, such that each internal word in 341
the name begins with an initial capital followed by lowercase letters (example: 342
AmountContentType). As noted below, all XML constructs other than attributes use “upper 343
camel-case”, with the first word initial-capitalized, while attributes use “lower camel-case”, with 344
the first word all in lowercase. Exceptions are as follows: 345

DUNS for Dun & Bradstreet numbers 346

4.3 General Overview of Types 347

In XSD, elements are declared to have types, and most types (those complex types that are 348
defined to have “complex contents”) are defined as a pattern of subelements and attributes. Thus, 349
XSD has an indirect nesting structure of elements and types (where, for example, Type 1 below is 350
the parent type of Element A and where Type 2 is the parent type of Element B and the type 351
bound to Element A): 352

• Type 1 353
o Element A 354

 Type 2 355
• Element B 356

 357

4.4 Elements and Attributes 358

4.4.1 Rules for UBL Elements 359

These rules distinguish the following constructs within the structural definitions of messages and 360
their component parts. Note that some of these distinctions are specific to UBL and are not part of 361
the formal definition of XML or XSD. 362

• Elements: 363
Top-level elements: Globally declared root elements, functioning at the level of a whole business 364
message. 365
Lower-level elements: Locally declared elements that appear inside a business message. 366
Intermediate elements: Elements not at the top level that are of a complex type, only containing 367
other elements and attributes. 368
Leaf elements: Elements containing only character data (though they may also have attributes). 369
Note that, because of the XSD mechanisms involved, elements that contain only character data 370
but also have attributes must be declared with complex types, but such elements with no 371
attributes may be declared with simple types or complex types. 372
Mixed-content elements: Elements that allow both element content and data in their content 373
models, and which may have attributes. 374
Empty elements: Elements that contain nothing (though they may have attributes). 375

4.4.1.1 Rules for the Naming and Definition of Top-Level Elements 376

Each UBL business message has a single root element that is a UBL top-level element. This 377
element must be globally declared in a UBL root schema (which may contain definitions of 378
additional root elements for other related messages in a functional area; see the Modularity, 379
Namespaces, and Versioning paper) with a reference to a named type definition. Only top-level 380
elements are declared globally. 381

wd-ublndrsc-ndrdoc-17 17 14 October 2002

Top-level elements are named according to the portion of the business process that they initiate. 382
Example: <Order>, <AdvanceShipNotice>. 383

4.4.1.2 Naming and Definition of Lower-Level Elements 384

<!—This section has a strong dependency on the local global decision. Additionally, some of the 385
information on naming is now redundant and has been replaced with the information in section 3 386
on the relationship to CCTS. After the local/global decision is made this section will be re-edited. 387
The purpose of this section will be to elaborate and give detail on the information in Section 3.--> 388

4.4.1.2.1 General Rules 389

Lower-level elements (as well as attributes) are considered Properties of the Object Class 390
represented by their parent type. 391
Lower-level elements must be locally declared (Note: This recommendation is now under 392
discussion and may change) as namespace-unqualified elements by reference to a named type, 393
whether complex or simple, and be accompanied by documentation in the form of an 394
<xsd:annotation> element with an <xsd:documentation> element that has a source 395
attribute value of “Use”. The documentation specifies the use of the element within its parent 396
type. 397
There are several kinds of lower-level elements, each with distinct naming rules discussed in the 398
following sections. 399
<!—since we are using unqualified any customizer has to use qualified to avoid name clashes. It 400
is very unusual to have unqualified elements and this rule is under reconsideration.--> 401

4.4.1.2.2 Rules for Intermediate Elements 402

The names of intermediate elements must contain the Property Term describing the element and 403
MAY be preceded by an appropriate Qualifier term as necessary to create semantic clarity at that 404
level. The Object Class may be used as a qualifier. 405

[Qualifier] + PropertyTerm 406

4.4.1.2.3 Rules for Leaf Elements 407

Leaf elements are named as follows: 408

[Qualifier] + PropertyTerm + RepresentationTerm 409

The naming of leaf elements follows these exceptions: 410
• The Representation Term Text is always removed. 411
• Leaf elements with substantially similar Property Terms and Representation Terms 412

must remove the Property Term. 413
Examples: If the Object Class is Goods, the Property Term is DeliveryDate, and the 414
Representation Term is Date, the element name is truncated to 415
<GoodsDeliveryDate>; the element name for an identifier of a party 416
<PartyIdentificationIdentifier> is truncated to <PartyIdentifier> – and then to 417
<PartyID> because of the truncation rule. 418

4.4.1.2.4 Rules for Mixed-Content Elements 419

Mixed content in business documents is undesirable for a variety of reasons: 420
White space is difficult to handle and complicates processing. 421
 Mixed content models allow little useful control over cardinality of elements. 422

wd-ublndrsc-ndrdoc-17 18 14 October 2002

For now mixed-content elements should have a Representation Term of Prose. This is currently 423
under discussion with the LC SC. 424

4.4.1.2.5 Rules for Empty Elements 425

Empty elements are not permitted in UBL. For further details on the discussion details 426
surrounding this recommendation consult the Elements vs Attributes position paper. 427
 428

4.4.1.2.6 Rules Governing Elements of the Same Name and Their 429
Respective Types 430

In those cases where it seems beneficial to have two elements that have the same tag name but 431
are bound to different types, as is currently the case with the BIE Order.Header.Details (tag name 432
Header), it is permissible. 433

4.4.2 Rules for the Naming and Definition of Attributes General 434
Overview 435

There are two types of attribute: 436
• Global attributes: Attributes that have common semantics on the multiple elements 437

on which they appear. These might be fixed attributes expressing an XML 438
architectural form, attributes for assigning a unique element identifier, or attributes 439
containing natural-language information (such as xml:lang). 440

• Local attributes: Attributes that are specific to the element on which they appear. 441
Most attributes are local. 442

Attributes, like lower-level elements, are Properties of the Object Class represented by their 443
parent type. They are named identically to leaf elements, except that they use lower camel-case 444
rather than upper camel-case e.g. amountCurrencyIDCode. 445

4.4.2.1 Rules for Global Attributes 446

A global attribute should be used only when its semantics are absolutely unchanged no matter 447
what element it's used on, AND it's made available on every single element. This rule applies to 448
both external and UBL-specific global attributes. This allows common attributes that are 449
everywhere but are not global, and that need documentation of their meaning in each XML 450
environment in which they're used. 451
UBL-specific global attributes should be named just like regular attributes and subelements (i.e. 452
as properties of an object class). Hence, by definition, the name of such a property must be 453
consistent across all objects. 454

4.4.2.2 Rules for Local Attributes 455

All attributes that are not globally declared in UBL are considered to be local attributes. 456
 457
Rules: 458
The names of the attributes are not decided yet. So we don't have any naming rules for attributes. 459
The supplementary components have long names and we need to cut these names. 460
 461
If the name of the representation term and the name of the object class of the supplementary 462
component is the same then remove the object class that repeats the name of the representation 463
term 464

wd-ublndrsc-ndrdoc-17 19 14 October 2002

 465
Concatenate all terms removing all punctuation 466
 467
If a Uniform Resource Identifier exists within a supplementary component then abbreviate it to 468
URI. 469
If a representation term contains the word text then text must be omitted. 470

4.4.2.3 Rules for the Naming and Definition of Types 471

4.4.2.3.1 General Rules 472

In UBL all types must be named and therefore they are "top-level". Most UBL elements are 473
declared locally inside complex types and are therefore “lower-level”. In terms of ebXML Core 474
Components, UBL complex types are Object Classes, subelements declared within them are 475
Properties of those Object Classes, and the types bound to those subelements are themselves 476
Object Classes which have their own Properties. See below: 477
 478

[Qualifier] + ObjectClass + “Type” 479

Example: CodeNameType. 480
The definition must contain a structured set of XSD annotations in an <xsd:annotation> 481
element with <xsd:documentation> elements that have source attribute values indicating the 482
names of the documentation fields below: 483

• UBL UID: The unique identifier assigned to the type in the UBL library. 484
• UBL Name: The complete name (not the tag name) of the type per the UBL library. 485
• Object Class: The Object Class represented by the type. 486
• UBL Definition: Documentation of how the type is to be used, written such that it 487

addresses the type’s function as a reusable component. 488
• Code Lists/Standards: A list of potential standard code lists or other relevant 489

standards that could provide definition of possible values not formally expressed in 490
the UBL structural definitions. 491

• Core Component UID: The UID of the Core Component on which the Type is based. 492
• Business Process Context: A valid value describing the Business Process contexts 493

for which this construct has been designed. Default is “In All Contexts”. 494
• Geopolitical/Region Context: A valid value describing the Geopolitical/Region 495

contexts for which this construct has been designed. Default is “In All Contexts”. 496
• Official Constraints Context: A valid value describing the Official Constraints 497

contexts for which this construct has been designed. Default is “None”. 498
• Product Context: A valid value describing the Product contexts for which this 499

construct has been designed. Default is “In All Contexts”. 500
• Industry Context: A valid value describing the Industry contexts for which this 501

construct has been designed. Default is “In All Contexts”. 502
• Role Context: A valid value describing the Role contexts for which this construct has 503

been designed. Default is “In All Contexts”. 504
• Supporting Role Context: A valid value describing the Supporting Role contexts for 505

which this construct has been designed. Default is “In All Contexts”. 506

wd-ublndrsc-ndrdoc-17 20 14 October 2002

• System Capabilities Context: A valid value describing the Systems Capabilities 507
contexts for which this construct has been designed. Default is “In All Contexts”. 508

The following is an extended example of the documentation fields for the type: 509
<xsd:complexType name=”PartyType”> 510
 <xsd:annotation> 511
 <xsd:documentation source=”UBL UID” xml:lang=”en”>PS1 512
 </xsd:documentation> 513
 <xsd:documentation source=”xCBL Name” xml:lang=”en”>Party 514
 </xsd:documentation> 515
 <xsd:documentation source=”Object Class” xml:lang=”en”>Party 516
 </xsd:documentation> 517
 <xsd:documentation source=”UBL Definition” 518
 xml:lang=”en”> 519
 </xsd:documentation> 520
 <xsd:documentation source=”Code Lists/Standards” 521
 xml:lang=”en”>NA 522
 </xsd:documentation> 523
 <xsd:documentation source=”Core Component UID” 524
 xml:lang=”en”>[None] 525
 </xsd:documentation> 526
 <xsd:documentation source=”Business Process Context” 527
 xml:lang=”en”>NA 528
 </xsd:documentation> 529
 <xsd:documentation source=”Geopolitical/Region Context” 530
 xml:lang=”en”>NA 531
 </xsd:documentation> 532
 <xsd:documentation source=”Official Constraints Context” 533
 xml:lang=”en”>NA 534
 </xsd:documentation> 535
 <xsd:documentation source=”Product Context” 536
 xml:lang=”en”>NA 537
 </xsd:documentation> 538
 <xsd:documentation source=”Industry Context” 539
 xml:lang=”en”>NA 540
 </xsd:documentation> 541
 <xsd:documentation source=”Supporting Role Context” 542
 xml:lang=”en”>NA 543
 </xsd:documentation> 544
 <xsd:documentation source=”System Capabilities Context” 545
 xml:lang=”en”>NA 546
 </xsd:documentation> 547
 </xsd:annotation> 548
 … 549
</xsd:complexType> 550

4.5 Containership and element design 551

 552

wd-ublndrsc-ndrdoc-17 21 14 October 2002

5 Modularity, Namespaces, and Versioning 553

For an overview of current thinking on issues of modularity, namespace and versioning, consult 554
the Modnamver position paper. 555

5.1 Schema Module Concepts 556

 557
This section describes the mapping of XML namespaces onto XSD files. A namespace contains 558
type definitions and element declarations. Any file containing type definitions and element 559
declarations is called a SchemaModule. 560
Every namespace has a special SchemaModule, a RootSchema. Other namespaces dependent 561
upon type definitions or element declaration defined in that namespace import the RootSchema 562
and only the RootSchema. 563
If a namespace is small enough then it can be completely specified within the RootSchema. For 564
larger namespaces, more SchemaModules may be defined – call these InternalModules. The 565
RootSchema for that namespace then include those InternalModules. 566
This structure provides encapsulation of namespace implementations. 567
A namespace “A” dependent upon type definitions or element declaration defined in another 568
namespace “B” must import B’s RootSchema. “A” must not import internal schema modules of 569
“B”. 570
The only place XSD “include” is used is within a RootSchema. When a namespace gets large, its 571
type definitions and element declarations may be split into multiple SchemaModules (called 572
InternalModules) and included by the RootSchema for that namespace. 573
Thus a namespace as an indivisible grouping of types. A “piece” of a namespace can never be 574
used without all its pieces. 575
Here is a depiction of the component structure we’ve described so far. This is a UML Static 576
Structure Diagram. It uses classes and associations to depict the various concepts we’ve been 577
discussing: 578

 579

SchemaModule

RootSchemaInternalModule

1-included 0..*

0..*

-imported0..*

File

1

1

Namespace

11

TypeDefinition

ElementDeclaration1 0..*
1

0..*

wd-ublndrsc-ndrdoc-17 22 14 October 2002

You can see that there are two kinds of schema module: RootSchema and “InternalModule”. A 580
RootSchema may have zero or more InternalModules that it includes. Any SchemaModule, be it 581
a RootSchema or an InternalModule may import other RootSchemas. 582
The diagram shows the 1-1 correspondence between RootSchemas and namespaces. It also 583
shows the 1-1 correspondence between files and SchemaModules. A SchemaModule consists of 584
type definitions and element declarations. 585
Another way to visualize the structure is by example. The following informal diagram depicts 586
instances of the various classes from the previous diagram. 587

 588
The preceeding diagram shows how the order and invoice RootSchemas import the 589
“CommonAggregateTypes” and “CommonLeaf Types” RootSchemas. It also shows how e.g. the 590
order RootSchema includes various InternalModules – modules local to that namespace. The 591
clear boxes show how the various SchemaModules are grouped into namespaces. 592
UBL is structured so that a user can import a piece without getting the whole. It must be possible, 593
for instance for a user to import the CommonLeafTypes namespace without causing the 594
CommonAggregateTypes to be imported. It must be possible for a user to import the 595
CommonAggregateTypes namespace without causing the Order namespace to be imported. It 596
must be possible to import any one of the “vertical” namespaces, e.g. Order without causing 597
another, e.g. Invoice to be imported. 598

urn:oasis:names:tc:ubl:
CommonLeafTypes

urn:oasis:names:tc:ubl:
CommonAggregateTypes

urn:oasis:
names:tc:ubl:
Invoice

urn:oasis:
names:tc:ubl
:Order

Common
LeafTypes

InvoiceOrder

Common
Aggregate

Types

Internal
Module

Root
schema

import

include

X:y:z
Namespace

wd-ublndrsc-ndrdoc-17 23 14 October 2002

If two namespaces are mutually dependent then clearly, importing one will cause the other to be 599
imported as well. For this reason there must not exist circular dependencies between UBL 600
SchemaModules. By extension, there must not exist circular dependencies between 601
namespaces. This rule is not limited to direct dependencies – transitive dependencies must be 602
taken into account also. 603
 604
 605
 606
 607

5.2 Rules for Creating Namespaces 608

Given the conceptual framework of the previous section, important questions remain: how many 609
namespaces are needed? What is the function of each? 610
This section makes explicit the namespace structure given implicitly in the previous section. The 611
UBL library consists of four namespaces. The Common Leaf Types namespace defines all the 612
Basic Business Information Entities. A Common Aggregate Types namespace defines reusable 613
Aggregate Business Information Entities based on the types defined in the Common Leaf Types 614
namespace. 615
Two higher-level “domain” namespaces are defined, one for the “ordering” domain and another 616
for the “invoicing” domain. The Order Domain namespace defines message types and ABIEs 617
specific to the ordering domain. Similarly, the Invoice Domain namespace defines message 618
types and ABIEs specific to the invoicing domain. 619
 620

Purpose Namespace name

Common Leaf Types -- this
is where Basic Business
Information Entities are
defined.

urn:oasis:names:tc:ubl:CommonLeafTypes[TBD version
info]

Common Aggregate Types –
this is where Aggregate BIE’s
used across various domains
are defined.

urn:oasis:names:tc:ubl:CommonAggregateTypes[TBD
version info]

Order Domain – this is where
ordering-related message
types and their order-specific
ABIE’s are defined.

urn:oasis:names:tc:ubl:Order[TBD version info]

Invoice Domain – this is
where invoicing-related
message types and their
invoicing-specific ABIE’s are
defined.

urn:oasis:names:tc:ubl:Invoice[TBD version info]

5.3 Rules for Namespace Identification 621

The namespace names for UBL namespaces must have the following structure while the 622
schemas are at draft status: 623
urn:oasis:names:tc:ubl:schema{:subtype}?:{document-id} 624

When they move to specification status the form must change to: 625

wd-ublndrsc-ndrdoc-17 24 14 October 2002

urn:oasis:names:specification:ubl:schema{:subtype}?:{document-id} 626

Where the form of {document-id} is TBD but it should match the schema module name (see 627
section). 628

5.4 Rules for Schema Module Schema Location 629

Schema location must include the complete URI which is used to identify schema modules. 630
In the fashion of other OASIS specifications, UBL schema modules will be located under the UBL 631
committee directory: 632
http://www.oasis-open.org/committees/ubl/schema/<schema-mod-name>.xsd 633
Where <schema-mod-name> is the name of the schema module file. The form of that name is 634
TBD. 635

5.5 Rules for Versioning 636

Each namespace should have a version. 637

wd-ublndrsc-ndrdoc-17 25 14 October 2002

6 Facets 638

 639

6.1 Introduction 640

The following rules have been defined for the handling of facets. 641

6.2 Rules 642

The content component of a basic core component with attributes must be a restriction of a 643
simple type. 644
 645
For Example: 646
 647

 <xsd:simpleType name="AmountContent"> 648
 <xsd:restriction base="decimal"> 649
 <xsd:totalDigits value="31"/> 650
 </xsd:restriction> 651
 </xsd:simpleType> 652

All basic core components and basic information entities that include content components must 653
use user defined types that are based on a simpleType. 654
 655
Example: 656
 657

 <xsd:simpleType name="AmountContent"> 658
 <xsd:restriction base="decimal"> 659
 <xsd:totalDigits value="31"/> 660
 </xsd:restriction> 661
 </xsd:simpleType> 662

 663
Every basic core component or basic business information entity must be created by a 664
ComplexType which refers to the appropriate Simple Type inside of the element <extension>. 665
 666
 667
Example: 668
 669

 <xsd:complexType name="Amount"> 670
 <xsd:simpleContent> 671
 <xsd:extension base="A"> 672
 <xsd:attribute name="currencyId" 673
use="required" id="000107"> 674
 <xsd:simpleType> 675
 <xsd:restriction 676
base="token"> 677
 <xsd:length 678
value="3"/> 679
 </xsd:restriction> 680
 </xsd:simpleType> 681
 </xsd:attribute> 682
 </xsd:extension> 683
 </xsd:simpleContent> 684
 </xsd:complexType> 685
 686

wd-ublndrsc-ndrdoc-17 26 14 October 2002

7 Date and Time 687

7.1 Introduction 688

Rules for the following aspects of time have been formulated. These aspects of time are: 689
• specific point of date and/or time 690
• durations, i.e. measurements of time 691
• period 692

7.1.1 Rules for specific points of date/time 693

For each specific point in time the built in datatype from XML schema (Part 2) must be used. 694
These are xsd:time, xsd:date, xsd:dateTime. 695

7.1.2 Rules for duration 696

 For the expression of the duration the XSD built in datatype xsd:Duration must be used. For 697
example 698

<simpleType name="DurationContent"/> 699
 <complexType name="DurationType"> 700
 <simpleContent> 701
 <extension base="decimal"> 702
 <attributeGroup ref="cct:commonAttributes"/> 703
 </extension> 704
 </simpleContent> 705
 </complexType> 706

7.1.3 Core Component Types and Representation Terms 707

There is a one to one correspondence between Core Component Types and Representation 708
Terms. Where additional property terms like Year, YearMonth, are used then the additional built 709
in datatypes from XML Schema part 2 must be used. These additional datatypes are: 710
xsd:gYear, xsd:gYearMonth, xsd:gMonth, xsd:gMonthDay, and xsd:gDay. 711

7.1.4 Period 712

A period can be expressed use the Aggregate Core Component (ACC) PeriodDetails. The 713
ACC is divided into 3 representation types, Date, Time and DateTime. One of these must be 714
selected. Each option has a start and end date, start and end time or start DateTime and end 715
DateTime. 716
 717

 718

wd-ublndrsc-ndrdoc-17 27 14 October 2002

 719
XML-Schema: 720
 721

 <complexType name="PeriodDetails"> 722
 <sequence> 723
 <choice> 724
 <element name="StartTime" 725
type="cct:TimeType"/> 726
 <element name="StartDate" 727
type="cct:DateType"/> 728
 <element name="StartDateTime" 729
type="cct:DateTimeType"/> 730
 </choice> 731
 <choice> 732
 <element name="EndTime" 733
type="cct:TimeType"/> 734
 <element name="EndDate" 735
type="cct:DateType"/> 736
 <element name="EndDateTime" 737
type="cct:DateTimeType"/> 738
 </choice> 739
 </sequence> 740
 </complexType> 741

 742
XML-Instance: 743
 744

 <ValidityPeriod> 745
 <StartDate>1967-08-13</StartDate> 746
 <EndDate>1967-08-13</EndDate> 747

 748
This example is stating that the validity period is from the 13th Aug 1967 to 13th August 1967, i.e. 749
that day. 750
 751
For each representation term the equivalent data type must be used. 752

wd-ublndrsc-ndrdoc-17 28 14 October 2002

8 Rules for Context 753

For an overview of current thinking on Context Rules, consult the Specialization Architecture 754
position paper from the Context Methodology Subcommittee. 755
 756

wd-ublndrsc-ndrdoc-17 29 14 October 2002

9 Code Lists 757

See the separate Code List Recommendation paper for details of the NDRSC's 758
recommendations for code lists. 759

wd-ublndrsc-ndrdoc-17 30 14 October 2002

10 UBL Messages 760

10.1 General Message Rules 761

The following general rules for messages must be applied. 762
• A UBL message set may be extended where desirable if the business function of the 763

UBL original is retained., but the message exists within its own business context. 764
• According to the XML Recommendation [XML], the legal characters in XML 765

character data are tab, carriage return, line feed, and the legal 766
characters of Unicode and ISO/IEC 10646, as these standards are updated 767
from time to time. It further notes that "The mechanism for encoding 768
character code points into bit patterns may vary from entity to entity" 769
and requires all XML processors (parsers) to accept the UTF-8 and UTF-16 770
encodings of 10646. UBL has the same requirements for legal characters 771
in XML instance documents and the same minimal requirements for 772
character encoding support in UBL-aware software. Trading partners may 773
agree on other character encodings to use among themselves. It is 774
recommended in all case that encoding declarations be provided in the 775
XML declarations of UBL documents. 776

• UBL messages must express semantics fully in schemas and not rely merely on well-777
formedness. 778

• Instances conforming to schemas should be readable and understandable, and 779
should enable reasonably intuitive interactions. 780

• In the context of a schema, information that expresses correspondences between 781
data elements in different classification schemes (“mappings”) may be regarded as 782
metadata. This information should be accessible in the same manner as the rest of 783
the information in the schema. 784

wd-ublndrsc-ndrdoc-17 31 14 October 2002

11 References 785

[CCTS] UN/CEFACT Draft Core Components Specification 30 September, 2002, 786
Version 1.85 787

[CCFeedback] Feedback from OASIS UBL TC to Draft Core Components Specification 788
1.8, version 5.2, May 4, 2002, http://oasis-789
open.org/committees/ubl/lcsc/doc/ubl-cctscomments-5p2.pdf. 790

[GOF] Design Patterns, Gamma, et al. ISBN 0201633612 791
[ISONaming] ISO/IEC 11179, Final committee draft, Parts 1-6. 792
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 793

http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 794
[UBLChart] UBL TC Charter, http://oasis-open.org/committees/ubl/charter/ubl.htm 795
[XML] Extensible Markup Language (XML) 1.0 (Second Edition), W3C 796

Recommendation, October 6, 2000 797
[XSD] XML Schema, W3C Recommendations Parts 0, 1, and 2. 2 May 2001. 798
 799

wd-ublndrsc-ndrdoc-17 32 14 October 2002

12 Technical Terminology 800

 801

Application-level validation Adherence to business requirements, such as valid
account numbers.

Ad hoc schema processing Doing partial schema processing, but not with
official schema validator software; e.g., reading
through schema to get the default values out of it.

Assembly Using parts of the library of reusable UBL
components to create a new kind of business
document type.

Context A particular set of context driver values.

DTD validation Adherence to an XML 1.0 DTD.

Instance constraint checking Additional validation checking of an instance,
beyond what XSD makes available, that relies only
on constraints describable in terms of the instance
and not additional business knowledge; e.g.,
checking co-occurrence constraints across
elements and attributes. Such constraints might be
able to be described in terms of Schematron.

Generic BIE A semantic model that has a “zeroed” context. We
are assuming that it covers the requirements of 80%
of business uses, and therefore is useful in that
state.

Instance root/doctype This is still mushy. The transitive closure of all the
declarations imported from whatever namespaces
are necessary. A doctype may have several
namespaces used within it.

Root Schema A schema document corresponding to a single
namespace, which is likely to pull in (by including or
importing) schema modules. Issue: Should a root
schema always pull in the “meat” of the definitions
for that namespace, regardless of how small it is?

Schema Never use this term unqualified!

Schema Module A “schema document” (as defined by the XSD spec)
that is intended to be taken in combination with
other such schema documents to be used.

Schema Processing Schema validation checking plus provision of default
values and provision of new infoset properties.

Schema Validation Adherence to an XSD schema.

Well-Formedness Checking Basic XML 1.0 adherence.

wd-ublndrsc-ndrdoc-17 33 14 October 2002

Appendix A. Notices 802

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 803
that might be claimed to pertain to the implementation or use of the technology described in this 804
document or the extent to which any license under such rights might or might not be available; 805
neither does it represent that it has made any effort to identify any such rights. Information on 806
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 807
website. Copies of claims of rights made available for publication and any assurances of licenses 808
to be made available, or the result of an attempt made to obtain a general license or permission 809
for the use of such proprietary rights by implementors or users of this specification, can be 810
obtained from the OASIS Executive Director. 811
OASIS invites any interested party to bring to its attention any copyrights, patents or patent 812
applications, or other proprietary rights which may cover technology that may be required to 813
implement this specification. Please address the information to the OASIS Executive Director. 814
Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 815
2001. All Rights Reserved. 816
This document and translations of it may be copied and furnished to others, and derivative works 817
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 818
published and distributed, in whole or in part, without restriction of any kind, provided that the 819
above copyright notice and this paragraph are included on all such copies and derivative works. 820
However, this document itself does not be modified in any way, such as by removing the 821
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS 822
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 823
Property Rights document must be followed, or as required to translate it into languages other 824
than English. 825
The limited permissions granted above are perpetual and will not be revoked by OASIS or its 826
successors or assigns. 827
This document and the information contained herein is provided on an “AS IS” basis and OASIS 828
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 829
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE 830
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 831
PARTICULAR PURPOSE. 832

