
Position Paper: UBL
Specialization Architecture
Author: Bill Burcham (bill_burcham@stercomm.com)

Date: 4-17-2002

Filename: draft-burcham-specialization-arch-01.doc

Position Paper: UBL Specialization Architecture... 1
1 Summary ... 2
2 Problem Description ... 2

2.1 Processing Logic Perspective ... 6
2.2 Evaluation Criteria .. 8

3 Options.. 9
3.1 Option 1: Interface-Based XSD (a.k.a. Paella) ... 9
3.2 Option 2: bar ... 9

4 Recommendation .. 9
5 References... 9

mailto:bill_burcham@stercomm.com

1 Summary
A decision has been made that XSD will be the language in which the UBL components
will be specified. On its own, this decision gives UBL a leg up on the older EDI
standards – since the specification is in a formal language (XSD) and validation tools for
that language are readily available, conformance checking against the standard is not only
possible but probable (convenient).

UBL defines an XML vocabulary for electronic commerce. Based on xCBL, it has roots
in the foundational EDI vocabularies like EDIFACT and X12. It is evident to anyone
familiar with the use of those vocabularies that they have given rise to thousands of
specializations – derived vocabularies, expressed in various degrees of formality, directly
or indirectly, on an original standard [EDI-PAIN].

If the difference between a base vocabulary and a specialized vocabulary could be
captured in a formal manner many new efficiencies will be possible. For example:

• automated conformance checking against specialized vocabularies1

• succinct specification of specialized vocabularies – in terms of their difference
from a base vocabulary

• futuristic, applications such as automatic translation across vocabularies – driven
by the inter-vocabulary relationships expressed formally

The purpose of this paper is to develop a position for the architecture that will enable the
formal specification of specialized vocabularies. Various alternatives will be explored
and reconciled with requirements and extant UBL design decisions. Where appropriate,
architectural layers will be delineated so as to arrive at an architecture amenable to
phased implementation.

2 Problem Description
Definition 1

Vocabulary. A vocabulary defines a set of terms. In the UBL architecture, a vocabulary
consists of one or more XSD complex types defined in one or more XML namespaces.
Definition 2

specialized vocabulary. A specialized vocabulary is a vocabulary that contains at least
one specialized type. A specialized vocabulary is defined in terms of a base, or
generalized vocabulary.

Certain core tenets are inherited from UBL’s basis in ebXML and the Joint Core
Components initiative [UBL-CHARTER]:

1 We believe that conformance checking against a specialized vocabulary is actually more important than
conformance checking directly against the (base) UBL vocabulary, since the overwhelming majority of
communication will occur using specialized vocabularies (including specializations of specializations).

 2

Axiom 1

specialization happens. Users of a vocabulary create derivative works on purpose and by
accident, formally and informally. From [UBL-CHARTER].
Requirement 1

specialization formalism. UBL supports (imposes) a formalism for the specification of
specializations with respect to the base vocabulary. It is the structure of such a
specification and its method of generation that is a prime subject of this position paper.
From [UBL-CHARTER].

Requirement 1 represents a giant leap forward from legacy vocabularies. It is the
codification of what in the EDI domain is called “implementation conventions”.

Now a rule from NDRSC:
Design Decision 1

UBL is described in XSD. UBL uses XSD to specify constraints on conformant instance
documents. It follows that XSD schema validation is the process by which documents
are determined to be valid with respect to the UBL specification. From [NDRSC-TBD]

It follows from Design Decision 1 and Axiom 1 that:
Corollary 1

A UBL specialization is described in XSD. Specializations use XSD to specify
constraints on conformant instance documents. (i.e. conformant with respect to the
specialization). It follows that XSD schema validation is the process by which
documents are determined to be valid with respect to a specialization of the UBL
specification. From [Design Decision 1].

This is not necessarily to say that XSD is the sole mechanism for relating a specialization
to its base (generalization) rather, that a specialization has an XSD representation.

Another corollary to Design Decision 1 is:
Corollary 2

transitive specialization. A specialization may specialize either base UBL or a
specialization of base UBL. Any specialization architecture must be recursively
applicable. The purpose of this transitivity rule is to explicitly make "in scope" the
problem of specializing a specialization. From [Design Decision 1].

 3

So that’s an axiom, a requirement, a design decision with two corollaries, and a couple
definitions. Hopefully Figure 0 brings this together. It shows how the base and
specialized vocabularies (round boxes) are each specified as (sets of) XSD namespaces.

It also shows that there is a formal specification of the relationships (square boxes)
between vocabularies. Each of the schemas UBL, S1 … S3.1 may be used to validate
instance documents conforming to their respective vocabularies. Some (unspecified)
process constructs the Sn from UBL (and more generally, the Sx.y from the Sx). That
(unspecified) process uses, for instance, to specialize UBL into S1, the formal description
R1.

generalize

specialize

R1 R2 R3

R1.1 R2.1 R2.2

UBL

S1 S2 S3

S1.1 S2.1 S2.2

R3.1

S3.1

A vocabulary, implemented as a
set of XSD namespaces. The y-th
specialization of specialization x.

Sx.y

Rx.y

A description of the relationship
between vocabulary x and the y-th
specialization of it.

Figure 0

Candidate architectures will specify the content and form of the R boxes as well as the
process by which the R boxes and generalizations are used to produce specializations.

Now we are set to move deeper into XSD arcana… here is a key tenet from the CMSC:

 4

Design Decision 2

Des
imp

Now
spec
Req

sequ
elem
Req

mid
add

In o
Defi

XSD
mus
sim
spec
Defi

XSD
XSD
its b
then
type

And
No namespace aliasing. An XSD type is defined within a namespace. Each
namespace has a unique name. XSD leaves open the possibility that two
schema modules may specify different definitions for a particular namespac
For example:

e.

in one schema module, "mine.xsd", namespace "foo" contains complex
type "Address" having two elements in its content model; in another
schema module, "yours.xsd", namespace "foo" contains complex type
"Address" having only one element in its content model.

The UBL architecture prohibits this sort of namespace "aliasing". Namespaces
are immutable. The UBL specification and conformant specializations
never redefine namespaces. In the example above, schema module
"yours.xsd" would have to define a new namespace for its new Address type.
From [CMSC-2002-3-29].
ign Decision 2 explicitly prohibits use of the XSD “redefine” element (a variant of
ort that supports succinct specification of altered, aliased namespaces).

 we are ready to introduce requirements developed in NDRSC regarding
ialization of sequences:

uirement 2

ences. UBL supports (in complex type definitions) the notion of a sequence of
ents as opposed to only an unordered set. From [NDRSC-TBD].

uirement 3

-sequence element addition. It must be possible for a specialization of a UBL type to
 an element between two elements of a sequence. . From [NDRSC-TBD].

rder to understand the next requirement, two definitions must first be understood.
nition 3

 validation. Instances valid with respect to a type containing a required element,
t contain the required element. This is the straightforward notion of XSD validation:
ply that an instance document is either valid or not with respect to the optionality
ification of an element's declaration. From [SCHEMA-PRIM].

nition 4

 Type Substitution Principle. A derived type may not take away required elements.
 derivation enforces a "replaceability" rule: a derived type must be usable in place of

ase type. This means that if a specialization is related to its base via XSD derivation
 there is no direct way of eliminating in a derived type a required element of a base
. From [SCHEMA-PRIM] and [LISKOV].

 now the requirement:

 5

Requirement 4

remove a required element. It must be possible for a specialization of a UBL type to
remove a required element. . We came up with a notion of specializations "taking away
required elements". In this case, Definition 3 is maintained, but the specialization (a
brand new type) changes the optionality of the element such that document instances may
be valid with respect to the specialization and yet the element may be missing. From
[NDRSC-TBD].

On its face this UBL notion seems to be incompatible with the XSD type substitution
principle (Definition 4). Architecture proposals will either resolve this apparent
contradiction, or our assumptions must change.

2.1 Processing Logic Perspective
The whole point of the UBL effort is to bring new efficiencies to electronic commerce
applications yet we have so far said nothing about how those applications might benefit
from a specialization architecture. In this section we take the perspective of the
application processing XML instance documents conforming to the UBL vocabulary or a
specialization.

We assume that such applications are represented in XPath [XPATH] or a language
derived from XPath (such as XQuery or XSLT). Justify a bit more.

What follows is a list of requirements from the perspective of an application (processing
logic) operating on UBL (or specialized) instance documents. These requirements are
developed here for the first time and do not reference requirements outside this
document.

For purposes of illustration, the following schemas are used to represent base (UBL) and
specialized vocabularies. TODO: add description here.

And here are sample instances of the various vocabularies. TODO: add description here.
Requirement 5

Inheritance Selection. Select on an instance of the base, or a specialization, content of
an element of a type defined on the base and inherited by the specialization.

XPath: /ubl:Order/Header/Address/Street/text()
Expected results: this selects nothing in company-y-doc.xml because
companyY:AddressImpl isn't derived from ubl:AddressImpl.
Requirement 6

Extension Selection. Select on an instance of the derived, content of an element of a
type defined only in the derived.

XPath: /ubl:Order/Header/Address/POBox/text()

Expected results: this works on company-y-doc.xml:
/Order/Header/Address/companyY:POBox/text()

 6

Requirement 7

Polymorphic Selection. Select content based on it's base class, that is, write an XPath
that will select all Addresses in any document regardless of their "actual" type.

This one does what you'd expect on either a vanilla UBL doc or a doc containing
instances of specialized types -- it selects the whole Address structure (even if it's
specialized):

XPath: /ubl:Order/Header/Address/*
Requirement 8

Tunneling Reuse Selection. Select content of an element of a type defined in the base,
even though that element is content for an element of a type defined in the derived.

This one selects CountryCode/Code/text() even though the CountryCode is held in an
instance of a type _derived_ from the UBL type. Call this "Tunneling Reuse":

XPath: /ubl:Order/Header/Address/CountryCode/Code/text()
Expected Results: tunneling works for companyY as well.

TODO: give a diagram of tunneling reuse selection.
Requirement 9

Global Polymorphic Selection. Select all Addresses (regardless of their actual (sub)type).
When executed on a vanilla UBL doc it selects AddressImpl's. When executed on a doc
containing instances of companyX:AddressImpl, it selects those:

XPath: //Address
?: For some reason, this one does not select the companyX:AddressImpl:
//companyX:AddressImpl
AHA! it's because companyX:AddressImpl is not an tag name -- it's a type name. So
that's not a valid XPath!

Requirement 10

Global Extension Selection. Select the specialized POBox ("Extension Selection" with
//):

XPath: //POBox

Requirement 11

Selection on Type. Find all elements of type companyX:AddressImpl. This works in
XPath 1.0:

//*[@xsi:type='companyX:AddressImpl']

 7

This works too:

//*[local-name()='POBox']

TBD: add “selection on type or subtype” XPath 2.0 thingie.

2.2 Evaluation Criteria
Candidate architectures will be evaluated based on the extent to which they are consistent
with the requirements, definitions, axioms and corollaries in problem description. In
addition, these criteria will be used:
Criterion 1

Phased Delivery. UBL will be delivered in two phases [UBL-CHARTER]. Delivery of
a mechanism for constructing specialized vocabularies from generalized ones is not
scheduled until phase 2. Candidate architectures that offer phased implementation are
preferable to those that don’t.

Each candidate architecture will be evaluated according to the criteria in this table:

Criterion reference weight Facet1 Facet2

Specialization
Formalism

Requirement 1

UBL Described in
XSD

Design Decision 1

Specializations
Described in XSD

Corollary 1

Transitive
Specialization

Corollary 2

No Namespace
Aliasing

Design Decision 2

mid-sequence
element addition

Requirement 3

Remove a required
element

Requirement 4

Phased Delivery Criterion 1

Inheritance Selection Requirement 5

Extension Selection Requirement 6

Polymorphic
Selection

Requirement 7

Tunneling Reuse
Selection

Requirement 8

 8

 9

Global Polymorphic
Selection

Requirement 9

Global Extension
Selection

Requirement 10

Selection on Type Requirement 11

3 Options
Options introduction.

3.1 Option 1: Interface-Based XSD (a.k.a. Paella)
We have demonstrated the solution to R1. We need to add a use-case for R2.

The Paella proposal seeks to satisfy requirements 1 and 2 without running afoul of
Design Decisions 0.1-0.3. It does this by breaking what would be monolithic (UBL)
types into two pieces: interface and implementation. The two pieces together comprise
the complete realization of the UBL "core component".

3.2 Option 2: bar

4 Recommendation
5 References
CMSC-2002-3-29 Minutes of 29-MAR-02 Call, UBL CMSC, http://lists.oasis-

open.org/archives/ubl-cmsc/200203/msg00009.html

EDI-PAIN Implementation Conventions, or Why EDI Is Such a Pain, Mike Rawlins,
Rawlins EC Consulting, http://www.metronet.com/~rawlins/x12imp.html

LISKOV The Liskov Substitution Principle,
http://www.objectmentor.com/resources/articles/lsp.pdf,
http://www.amazon.com/exec/obidos/ASIN/0201657686/qid=1018999063/
sr=8-1/ref=sr_8_67_1/002-3294692-6949657

NDRSC-TBD Placeholder for NDRSC decisions. TBD.

SCHEMA-PRIM XML Schema Part 0: Primer, http://www.w3.org/TR/xmlschema-0/

UBL-CHARTER UBL TC Charter, http://oasis-open.org/committees/ubl/charter/ubl.htm

XPATH XML Path Language (XPath), version 1.0, W3C Recommendation,
November 16, 1999, http://www.w3.org/TR/1999/REC-xpath-19991116

TBD: add appendixes for style sheets, schemas and instance documents.

http://lists.oasis-open.org/archives/ubl-cmsc/200203/msg00009.html
http://lists.oasis-open.org/archives/ubl-cmsc/200203/msg00009.html
http://www.metronet.com/~rawlins/x12imp.html
http://www.objectmentor.com/resources/articles/lsp.pdf
http://www.amazon.com/exec/obidos/ASIN/0201657686/qid=1018999063/sr=8-1/ref=sr_8_67_1/002-3294692-6949657
http://www.amazon.com/exec/obidos/ASIN/0201657686/qid=1018999063/sr=8-1/ref=sr_8_67_1/002-3294692-6949657
http://www.w3.org/TR/xmlschema-0/
http://oasis-open.org/committees/ubl/charter/ubl.htm
http://www.w3.org/TR/1999/REC-xpath-19991116

	Summary
	Problem Description
	Processing Logic Perspective
	Evaluation Criteria

	Options
	Option 1: Interface-Based XSD (a.k.a. Paella)
	Option 2: bar

	Recommendation
	References

