
[image: image1.png]OASIS

Position Paper: Reusable Elements

Proposal 01, 14 October 2002

Document identifier:

p-maler-elemreuse-01

Location:

http://www.oasis-open.org/committees/ubl/ndrsc/archive/
Editor:

Eve Maler, Sun Microsystems <eve.maler@sun.com>
Abstract:

This position paper recommends the creation of reusable (global qualified) elements in the UBL Library. It can be considered complementary to the Local vs. Global position paper.

Status:

This is a draft document. It may change at any time.
This document was developed by a member of the OASIS UBL Naming and Design Rules subcommittee. Your comments are invited. Members of this subcommittee should send comments on this specification to the ubl-ndrsc@lists.oasis-open.org list. Others should subscribe to and send comments to the ubl-comment@lists.oasis-open.org list. To subscribe, send an email message to ubl-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

Table of Contents

31
Background

52
The Problem Space

62.1 Use Cases for Reuse

72.2 Relevant Guiding Principles

83
Analyzing the Proposition

93.1 Type Awareness Below the Processing Ceiling

103.2 Achieving the Assembly Use Case with Reusable Types

123.3 A World with Reusable Elements

134
Recommendation

145
References

15Appendix A. Notices

1 Background

At the fifth face-to-face meeting of the UBL TC, the Naming and Design Rules (NDR) subcommittee reassessed its previous decision to make most elements local and unqualified. This paper does not attempt to lay out the entire argument for changing that decision; it merely attempts to justify one argument in favor of global qualified elements: direct element reusability. (This paper can be considered complementary to the Local vs. Global position paper [LvsG].)

Following is a summary of all the arguments pro and con that appeared in the minutes of that meeting [NDRmin]. Points were assigned in a range from –10 to +10. This was not intended to be scientific, but to allow the group to get a sense of the relative benefits and costs. The “[controversial]” notes refer to the lack of confidence in the assignment of points, rather than any lack of confidence in the description of the entry itself. It is the very last entry in the table, shown in red-bold, that this position paper attempts to address.

	Local element characteristics: total points –10

	0
	We don't need to change anything

	0
	Vocabulary has unique element declarations for each unique BIE (as opposed to reused and referenced global elements)

	0
	Vocabulary can have multiple elements with same name with different content models (as required by the "Rules Governing Elements of the Same Name and Their Respective Types" section)

	–2
	In actual usage, there is a risk of confusion

	–3
	Fragment processing requires expensive pre-processing to add xsi:type (or other necessary context) [controversial]

	–5
	Types are required to be re-bound to foreign elements in attempts to reuse individual components of the UBL Library (which has negative consequences for reuse of software) [controversial]

	Global element characteristics: total points +6

	+3
	Fragment processing is uncomplicated [controversial]

	+5
	Elements be reused directly (which has positive consequences for reuse of software) [controversial]

	+5
	Typical design choice (but by no means universal)

	0
	All elements in the vocabulary must have unique names

	–3
	It is expensive to change at this point

	–4
	Going forward, there is a cost to ensuring that each new element name is unique

	Qualified element characteristics: total points 0

	+2
	Customizers can safely define unqualified elements

	0
	Instances can look clean with defaulting

	–2
	Writing XSLT stylesheets with namespace support requires more understanding

	0
	It is expensive to change at this point

	Unqualified element characteristics: total points -8?

	+2
	Very clean, simple instances (the xmlns= default doesn't need to appear at the top)

	0
	We don't need to change anything

	–2
	With a null namespace, can't use the namespace name to indicate version changes in the vocabulary, which can silently change the behavior of software (but our qualified root element gives many of the benefits of a non-null namespace)

	–7
	Customizers can't safely (routinely, without doublechecking) define unqualified elements; there may be name clashes; if an importing schema is tempted to qualify by using elementFormDefault="qualified", there is some risk that our elements will change their nature

	–1
	Unusual design choice; in most vocabularies all elems are qualified

	–?
	Elements are not directly available for reuse (which has negative consequences for reuse of software, but any software for elements in reused UBL types will still work)

2 The Problem Space

This section lays out the main motivations for reuse of the UBL Library and the relevant design principles to which we must refer in developing our solutions.

2.1 Use Cases for Reuse

There are two distinct reuse use cases that we need to account for:

1. Specialization of UBL messages

This assumes that an existing message is appropriate with regard to general business process and any other documented business context, but some of the context details need to be further specialized – for example, a global shoe manufacturers' association may want to extend order line items to account for shoe sizes and so on.

The salient characteristic of this kind of reuse is the derivation of UBL types; this is the basic "hook" for specialization that XSD provides. It's beyond question at this point that XSD types in UBL need to be named and referenceable to enable this use case.

2. Assembly of UBL components into new kinds of messages

This assumes that the lower-level components of UBL, such as addresses, are suitable for some business purpose but that a new kind of message – with a new configuration of smaller components – is required to support the overall process desired. To simplify this use case, let's also assume that no specialization of the lower-level pieces is required (since this helps to make the two use cases more orthogonal and clear; obviously they could be combined).

The salient characteristic of this kind of reuse is the referencing of UBL components in the assembled new message. (The assembly method may be static or dynamic.) The matter before us is: Which kinds of XSD-based components should we make referenceable for this purpose?

2.2 Relevant Guiding Principles

We have a design principle called "Tool Use and Support" (which we have nicknamed "various and sundry"). It speaks of our inability to assume sophisticated processing capabilities on the part of developers working with UBL messages. In general we anticipate that SMEs will have a motley assortment of tools, often with non-leading-edge levels of support for features.

We also have a design principle called "XML technology". It speaks of our intention to leverage the existing XML technologies that are already widely available, and cautions against requiring support for "'standards' (foundational or vocabulary) that are works in progress".

When it came to the issue of reusable elements, the group again felt the need to be more specific about a processing technology "ceiling" that is our mental test for our XSD rules. (In the original effort that created XML, the "desperate perl hacker" or "DPH" test was frequently invoked, contributing to a standard that was able to be rapidly deployed because it was easy to create conforming software.)

In our F2F meeting we boiled this down to "How does XPath 1.0 handle it?" Another reasonable way to set the ceiling is to ask "How does SAX2 handle it?", since SAX is a widely used API for simple XML processing. These ceilings are well motivated for assessing the "manipulability" of UBL documents, since both technologies are very widely deployed and understood and yet offer a lot of power.

It should be noted that our choice of XSD as a physical modeling technology somewhat strains against these principles, in that schema validators and other schema-related technologies are by no means perfectly interoperable or widely adopted yet. We have been mitigating this with case-by-case risk assessments of particularly features.

3 Analyzing the Proposition

This section assesses the results of reusable types alone vs. the availability of both reusable types and reusable elements.

3.1 Type Awareness Below the Processing Ceiling

Type information availability is unreliable in a distributed environment, since it nominally requires an extra input (the schema) and since XML instance documents are often passed around solo. In addition, type information (in the form of the PSVI, or post schema-validation infoset) is so far standardized only in the most abstract sense – there is no standard for an XML-based serialization of type information or an API that accesses it. The existence of the PSVI in the XSD specification is frequently and strongly criticized by many in the XML developer community for its complexity and its lack of processing-pipeline clarity. While some sophisticated software is starting to emerge that takes advantage of the PSVI, such as "data-binding" software that compiles schemas into ready-to-use program classes that create and manipulate XML data in a type-aware fashion, it is far from being the constant companion of XML programmers so far.

XPath and SAX both operate on well-formed XML instance documents just fine without the presence of additional inputs, such as a schema that provides type information; in fact, they don't even have access to type information without extra instance transformations (for example, adding xsi:type attributes to every element). The typical and natural way for them to operate on XML documents is primarily by name (possibly qualified with a namespace), and not by type or by xsi:type attribute value.

3.2 Achieving the Assembly Use Case with Reusable Types

Assume the following scenario: The standard UBL notion of "Address" is perfectly usable for a new message type I'm creating called Foo. I don't want to change Address; I just want to use it. One of my motivations for using pieces of the UBL Library is that there are some software modules and stylesheets available that support them already. I'm willing to modify this software a little bit, but would obviously like to do as little as possible in this regard.

For simplicity, let's say that UBL has only one <Address> element (remember that, with locally declared elements, UBL can have many elements with the same name, although all of these same-named elements typically have identical types in our case) and that this element is locally defined in PartyType. In the style adopted in 0pt65 of the UBL Library, with local unqualified elements, the relevant definitions look like this (embedded documentation is stripped out for clarity):

<xs:complexType name="PartyType">

 <xs:element name="PartyID" type="IdentifierType"/>

 <xs:element name="Name" type="NameType"/>

 <xs:element name="Address" type="AddressType" minOccurs="0"/>

 ...

</xs:complexType>

<xs:complexType name="AddressType">

 <xs:element name="Identifier" type="IdentifierType" minOccurs="0"/>

 <xs:element name="Street" type="StreetType" minOccurs="0"/>

 ...

</xs:complexType>

The software we want to leverage by reusing UBL happens not to be type-aware. In particular, there is a stylesheet that has templates with XPaths like these:

//Party/Address

//Address

I have two choices for reuse:

3. Bind the UBL AddressType type to one of my elements

4. Bind the UBL PartyType type to one of my elements and then use the actual UBL element <Address> in my messages

Choice #1 would look like this:

<xs:element name="FooAddress" type="ubl:AddressType"/>

Instances conforming to the derived schema would contain this sort of markup:

<foo:Foo

 xmlns:foo=”some_namespace_name_for_foo”>

 ...

 <foo:FooAddress>

 <Identifier>...</Identifier> <!-- real UBL element -->

 <Street>...</Street> <!-- real UBL element -->

 </foo:FooAddress>

 ...

</foo:Foo>

Any //Address XPaths in stylesheets would have to be changed to //foo:FooAddress XPaths.

Choice #2 would look like this:

<xs:element name="FooParty" type="ubl:PartyType"/>

Instances conforming to this derived schema would have real UBL <Address> elements but would also require usage of the overall content model in which <Address> was defined:

<foo:Foo

 xmlns:foo=”some_namespace_name_for_foo”>

 ...

 <foo:FooParty> <!-- unwanted outer wrapper for Address -->

 <PartyID>...</PartyID> <!-- real UBL element; undesired -->

 <Name>...</Name> <!-- real UBL element; undesired -->

 <Address> <!-- real UBL element; desired -->

 <Identifier>...</Identifier>

 <Street>...</Street>

 ...

 </Address>

 </foo:FooParty>

 ...

</foo:Foo>

I can use any existing //Address XPaths in stylesheets, but if I didn't want UBL's Party content model, I'm stuck; I can't use UBL's real <Address> element without the Party model coming along.

Either way, UBL's <Address> element is not truly a reusable component, and software reuse is unsatisfying as well.

3.3 A World with Reusable Elements

If UBL's elements were global and qualified, rather than local and unqualified, then the <Address> element would be directly reusable as a modular component, and at least some software could be used without modification. The UBL schema would look like this, creating <ubl:Party> and <ubl:Address> elements:

<xs:element name="Party" type="PartyType">

<xs:complexType name="PartyType">

 <xs:element ref="PartyID"/>

 <xs:element ref="Name"/>

 <xs:element ref="Address" minOccurs="0"/>

 ...

</xs:complexType>

<xs:element name="Address" type="AddressType">

<xs:complexType name="AddressType">

 <xs:element ref="Identifier" minOccurs="0"/>

 <xs:element ref="Street" minOccurs="0"/>

 ...

</xs:complexType>

XPaths would look like this:

//ubl:Party/ubl:Address

//ubl:Address

The <Address> element would be reused like this:

<xs:element name="Foo" type="ubl:FooType"/>

<xs:complexType name="FooType">

 <xs:element ref="ubl:Address"/>

 ...

</xs:complexType>

Instances conforming to this derived schema would look like this, if qualified elements were fully prefixed:

<foo:Foo

 xmlns:foo=”some_namespace_name_for_foo”

 xmlns:ubl=”ubl_namespace_name”>

 ...

 <ubl:Address>

 <ubl:Identifier>...</ubl:Identifier>

 <ubl:Street>...</ubl:Street>

 ...

 </ubl:Address>

 ...

</foo:Foo>

or would look like this, if qualified elements had their namespaces fully defaulted:

<Foo xmlns=”some_namespace_name_for_foo”>

 ...

 <Address xmlns=”ubl_namespace_name”>

 <Identifier>...</Identifier>

 <Street>...</Street>

 ...

 </Address>

 ...

</Foo>

Any software originally written to work with UBL's standard library would work with new assemblies of the same components to a large extent. Many XPaths would not have to change.

4 Recommendation

· Assign at least a –5 value (some believe it should be –10!) to the final entry in the local vs. global table presented in Section 1, allowing the analysis presented here to bolster the argument that reusable elements are a positive.

· If it is ultimately agreed that global qualified elements should be used exclusively, add rules to the NDR document that account for the structuring of the global element declarations. Currently, local unqualified elements pick up the embedded documentation for the properties they represent. In the new scenario, this documentation instead should be attached to references to global qualified element declarations, and these declarations should pick up embedded documentation that is identical to that for the types on which the elements are based.

5 References

[LvsG]
Local vs. Global position paper, Fabrice Desré, 28 May 2002, http://www.oasis-open.org/committees/ubl/ndrsc/archive/p-desre-localvsglobal-01.pdf.
[NDRmin]
UBL Naming and Design Rules mintes from 1-4 October 2002, http://lists.oasis-open.org/archives/ubl-ndrsc/200210/msg00003.html.

Appendix A. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

PAGE
wp-ubl-codelist-01

14 October 2002

Copyright © OASIS Open 2002. All rights reserved.

Page 10 of 12

