SAP®

Internal & Confidential

SAP®

[image: image1.png]

Internal & Confidential

	Author:

Gunther Stuhec

Rita Becker

	

	
[image: image14.png]

	Global Types and Entities

	
	

	
	History

	
	Version

	Status

	Date

	
	0.1

	Draft

	22.08.2001

	
	
	
	

	
	Storage location of this specification
: \\...

Storage location of the corresponding design document
: \\...

Contents

21
The goals

22
Alternatives to define global types and elements

22.1
Variants

22.1.1
Variant 1

32.1.2
Variant 2

52.1.3
Variant 3

62.2
Representation types

62.2.1
Representation type 1

72.2.2
Representation type 2

93
Proposal

1 The goals

The goals of the working group are:

· To work out a proposal for the definition of the global types in the Interface Repository. This proposal should contain a recommendation for the developers concerning issues like ‘using of elements or attributes’, ‘using of standard code lists’, ‘how to express the context’, etc. The suggestions should consider the requirements of the new AI infrastructure as well as common patterns of external (non-SAP) standards.

· To identify the list of global data types and global business entities and to create the corresponding definitions within the Interface Repository.

2 Alternatives to define global types and elements

2.1 Variants

2.1.1 Variant 1

Variant 1 describes a structure, which each entity built by a element-group and one hierarchy of child-elements. The tag of element-group describes the context of entire entity. The sub-elements within an element-group represents leaf-elements and could have different types of values. The values could be represented as a coded form, as a variable form or as units. If coded values or unit of values are based on a standard, the kind of standard could represent by an additional attribute “standard”.

Advantages are:

· This variant represents an easy, structured and readable composition of elements. It enables an easy processing of element-groups and all included sub-elements. In addition, this structure enables a simple transformation of elements into objects or classes of objects respectively.

· This variant doesn’t use further attributes excepting the attribute for standards. Thus enables an extensibility of structures in a very easy way.

· The attribute for types of standards via code lists could be used for information purposes. This attribute could be also used for an internal validation by applications.

Disadvantages are:

· This variant needs a high number of hierarchies. A high number of hierarchies makes structures complex and it will be responsible for a high volume of data.

· Between entity, context, value and unit of value exists no relationship. It make the representation of XPath expressions much more difficult and the performance would be decrease down by this.

· A validation of standards and their code lists isn’t possible, because the representation of standards isn’t in uniform manner. Applications only could be verified the correctness of codes.

The following table shows a diagram of XML-schema and an example XML-instance.
	[image: image2.jpg]+ Value

+ Amount] | lcesel

amaurtType.
— + Currency, [standar
string string

	<Amount >

<Value>12.56</Value>

<Currency [standard=„ISO4217"] >DEM</Currency>

</Amount>

The following XML-schema represents the diagram, which is showed above:

<xsd:complexType name="AmountType">

<xsd:sequence>

<xsd:element name="Value" type="xsd:decimal"/>

<xsd:element name="Currency">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="standard"
 type="xsd:string"
 use="default" value="ISO4217"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

2.1.2 Variant 2

The basic structure of variant 2 equivalents to variant 1. Additionally, standarized code lists of each standard can be represented inside of schemas additionally. Each standard must be defined by a simpleType. The simpleType of each standard includes a number of defined codes. All different simpleTypes of standards could be merged by the function “xsd:union memberTypes”. This feature makes all different standards available.

Standards defined by simpleType could be provide within each local schema either or by a global repository.

The attribute “xsi:type” for indication of a specific standard within a XML instance document requires a definition of each standard in referenced element group “xsd:union memberTypes”. Thereby, represented codes within XML instance document will be validated against the according simpleType of specified standard. Code values of different standards could be translated by cross-reference-tables.

Advantages are:

· It will be a centralized validation and translation of standards and their code lists. All standards and code lists stored on an central server. The translation of codes could be made by cross-reference-tables on server side.

· All users could be access to this standards and code lists without any high efforts. They get some information of code lists and standards additionally.

· Efforts for implementing any validation into applications will be minimized, because an implicit validation of code lists isn’t necessary.

Disadvantages are:

· A central repository of code lists and standards must available 24 hours and 7 days.

· The maintenance of standards and codes must be done by a responsible organization.

· While many access to a central system, the performance will be decrease down.

· All complex mechanism for replication and translation between codes by cross-reference-tables must be provided by a central system.

· “xsi:type” references the entire element. There is no possibility referencing different attributes.

· They’re less of implementations on market, because this new feature is very new.

The following table shows a diagram of XML-schema and an example XML-instance.
	[image: image3.jpg]# Valuei
Sareun sl

amourtType. + Currency
e o

	<Amount >

<Value>12.56</Value>

<Currency [xsi:type="CurrencyISO4217"]>DEM</Currency>

</Amount>

The following XML-schema represents the diagram, which is showed above:

Code list of first standard:

<xsd:simpleType name="CurrencyISO4217">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="DEM"/>

<-- ..weitere Werte ... -->

</xsd:restriction>

</xsd:simpleType>
Code list of second standard:

<xsd:simpleType name="CurrencyOtherCode">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="DM"/>

<!-- ...further values ... -->

</xsd:restriction>

</xsd:simpleType>

Merging of both standards and their code lists:

<xsd:simpleType name="CurrencyType">

<xsd:union memberTypes="CurrencyISO4217 CurrencyOtherCode"/>

</xsd:simpleType>

Referencing of named simpleType “CurrencyType”:

<xsd:complexType name="AmountType">

<xsd:sequence>

<xsd:element name="Value" type="xsd:decimal"/>

<xsd:element name="Currency" type="CurrencyType"/>

</xsd:sequence>

</xsd:complexType>
2.1.3 Variant 3

Variant 3 represents a structure of entity by one element without any child-elements. There isn’t any additional hierarchy for structuring context and relevant type of values. Each element contains a number of attributes for representing standard type and unit of value. In addition, the same element contains the delivered value. The declaration of standard can be made in a manner of variant 1 only.

Advantages are:

· Variant reduces hierarchies. The readability will be increase, because all necessary information of each entity will be represented in one line.

· The relation between entities, standard, unit of value and value will be guaranteed. Thereby will be te XPath representation of structure much more easier.

Disadvantages are:

· The composition of DOM-objects will be much more difficult, because there some implicit attributes within one element.

· The extensibility of structure will be restricted by a fixed setting of attributes.

· A comparison with variant 2 is not possible, because “xsi:type” referenced the entire element with all attributes included.

	[image: image4.jpg]+ Amount
mourtType.

@ currency,
string

3 ¢

standard,
string

5

	<Amount currency="DEM"

[standard="ISO4217"]>

12.56

</Amount>

XML-Schema

<xsd:complexType name="AmountType">

<xsd:simpleContent>

<xsd:extension base="xsd:decimal">

<xsd:attribute name="currency"
type="xsd:string"
use="required"/>

<xsd:attribute name="standard"
 type="xsd:string"
 use="default"
value="ISO4217"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>
2.2 Representation types

2.2.1 Representation type 1

An additional attribute “qualifier” within entity tag defines context of an entity and can be used for validation of meaning of each entity after receiving XML-instance documents. Therefore, this attribute must be containing in every entity. The different values of “qualifier” ca be listed by an enumeration. This enumeration list can be provided in a global or local repository. The list of qualifiers can be expanded at any time.

Advantages are:

· The statement and context of each entity will be represented in the same structure of XML instance document. This feature will be as an advantage in comprehensive XML instance documents, because it makes documents much more readable.

· The list of contexts can be available by a central location. The entities can be validated against the list of contexts placed on central location. Any extension of that central code list will be made easy.

· The number of different structures of entities can be limited. It could provide more clarity in very complex aggregations.

Disadvantages are:

· The meaning of entities in XML-schemas will be not clearly enough, because the value of contexts are stored in an external list.

· Additional information of attribute “qualifier” must be read additionally during processing.

· The expenditure of implementation will be increase, because in relation to the entity an additional attribute must be processed. Therefore, the building of objects according the context will be much more difficult.

· Central maintenance of lists of qualifiers must be guaranteed.

· It is not possible to assign each markings of context to the relevant structure of interface.

In combination with variant 1:

	[image: image5.jpg][aualifier
ualfierType

+ Amount,
amourtType.

+ Value
decinel

+ Currency,
string

	<Amount qualifier="PaymentAmount">

<Value>12.56</Value>

<Currency standard="ISO4217">DEM</Currency>

</Amount>

In combination with variant 2:

	[image: image6.jpg][aualifier
ualfierType

+ Amount,
amaurtType.

&}

+ Value
idecinel

+ Currency

R

	<Amount qualifier="PaymentAmount">

<Value>12.56</Value>

<Currency xsi:type="CurrencyISO4217">DEM</Currency>

</Amount>

In combination with variant 3:

	[image: image7.jpg]+ Amount
mourtType.

o

@ qualifier
QuslierType

currency,
string

3 ¢

@ standard,
string

5

	<Amount

qualifier="PaymentAmount"

currency="DEM"

standard="ISO4217">

12.56

</Amount>

XML-Schema

<xsd:element name = "Amount" type = "AmountType"/>

<xsd:complexType name = "AmountType">

<xsd:sequence>

[...]

</xsd:sequence>

<xsd:attribute name = "qualifier"
 type="QualifierAmount"/>

</xsd:complexType>

<xsd:simpleType name="QualifierAmount">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="PaymentAmount"/>

<xsd:enumeration value="ValueAddedTax"/>

<!-- ..weitere Werte ... -->

</xsd:restriction>

</xsd:simpleType>
2.2.2 Representation type 2

The representation type 2 considers two types of entities:

· Generic Entities

· Context-related Entities

Generic enteritis defines the characteristics of unified structure of each basic type of entities. These generic entities can be provided globally or locally for defining context-related entities by deriving characteristics.

Context-related entities representing the meaning (context) of each entity. The structure and characteristics will be derived by generic entities.

Advantages:

· During processing, will be the reading of element tags necessary only. The context will be well known after reading immediately.

· The element tags enables a multiple usability during coding and OO-design:

· Declaration of variables

· Declaration of tables

· Declaration of representation of information

· All objects will be defined in accordance to the context of each entity. This makes the further processing of entities much more easier and the expenditure for implementation will be decrease. Additionally, a further access to related attributes will be not necessary.

· The context of each entity will be apparent for users.

Disadvantages:

· For every context related entity must be generated an individual XML schema structure.

· The type of basic entity will be represented within globally defined XML-schema only. This type isn’t obvious in each XML instance document.

· A very complex procedure will be necessary for replication of entities after extension.

Representation type 2 in combination with variant 1:

	[image: image8.jpg]+ Value

+ Paymentamount —

amaurtType.
e + Currency,
string

@ standar
string

	<PaymentAmount>
 <Value>12.56</Value>

<Currency standard="ISO4217">DEM</Currency>

</PaymentAmount>

Representation type 2 in combination with variant 2:

	[image: image9.jpg]@
+ PaymentAmount| | [“decinl

amourtType. + Currency
T

	<PaymentAmount>
 <Value>12.56</Value>

<Currency xsi:type="CurrencyISO4217">DEM</Currency>

</PaymentAmount>

Representation type 2 in combination with variant 3:

	[image: image10.jpg]+ Amount
mourtType.

o

@ qualifier
QuslierType

currency,
string

3 ¢

@ standard,
string

5

	<Amount

qualifier="PaymentAmount"

currency="DEM"

standard="ISO4217">

12.56

</Amount>

XML-Schema:

<xsd:element name = "PaymentAmount" type = "AmountType"/>

<xsd:complexType name = "AmountType">

[...]

</xsd:complexType>

</xsd:element>

3 Proposal

The suggestions described above were discussed in the technology development (with team members responsible for the IFR and proxy environment) and with the application representatives. As result of these discussions, the development of global types and global entities as well as the development of the ‘local’ data types and entities should follow this proposal:

1. The entities should be built hierarchically. The elementary information should be expressed in elements, not in attributes. Especially the information like unit of measurement or currency should be expressed as elements because in that way they are reusable. Attributes should be used only to indicate the standard (like DINxxx, ISOxxx, etc.) to which the element value belongs.

2. The context of the entity usage should be expressed as the entity name and not by using of the qualifier attribute.

According to this proposal, the global type AmountType is defined as in the following:

[image: image11.jpg]+ Value
decinal

mortType. ICUrTenEy ®{ . standard%
cunencyTyee

XML-Schema:

<xsd:complexType name="CurrencyType">

<xsd:simpleContent>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="3"/>

<xsd:attribute name="standard" use="default" value="ISO4217">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="20"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

<xsd:complexType name="AmountType">

<xsd:sequence>

<xsd:element name="Value" type="xsd:decimal"/>

<xsd:element name="Currency" type="CurrencyType"/>

</xsd:sequence>

</xsd:complexType>

All elements which contain amount information have to refer to the complex type AmountType. The name of the element should describe the context of the amount usage, e.g. PaymentAmount:

[image: image12.jpg]& Valuei
+ Paymentamount —

amourtType > Currency ®{ 0 standard%
cunencyTyee

XML-Schema:

<xsd:element name = "PaymentAmount" type = "AmountType"/>
Examples for the XML-instances:

<PaymentAmount>

<Value>12.56</Value>

<Currency standard="ISO4217">DEM</Currency>

</PaymentAmount>
<PaymentAmount>

<Value>12.56</Value>

<Currency>DEM</Currency>

</PaymentAmount>
Both examples describe the same value space of the currency for the payment amount and both examples are valid. In the first example the attribute standard is contained in the document, in the second example the default value “ISO4217” defined in the XML Schema is assigned to the attribute by the processing application or an XML-parser.

The summary of the properties and the advantages of the proposed way to develop the global types and entities is:

· The global types determine the structure of the entities and all its properties are inherited by the context-depend entities.

· The entity definition is well structured and easy to read / easy to understand by a user. On the other hand the context-dependent entities can be easily used in the OO-design and in the implementing coding.

· The data types can be extended easier.

· The entities and the basic data types are reusable.

· The information about the used code list is contained in the attribute value. This attribute value can be omitted in the instances, if the default value is defined.

· No external validation of the code values is required, but the middleware infrastructure can validate these values before passing them to the application. The validation also can be done by the application.

· The processing application can recognize the element meaning by the tagname, the reading of additional information (e.g. the qualifier value) is not necessary.

· The context is immediately visible to the user and does not depend on an attribute value.

�PAGE \# "'Seite: '#'�'" �Seite: 1���Maintain name of author (responsible developer) in "File" menu -> "Properties", click OK, update using <F9>

�PAGE \# "'Seite: '#'�'" �Seite: 1���Maintain in "File" menu -> "Properties", click OK, update using <F9>

�PAGE \# "'Seite: '#'�'" �Seite: 1���Enter old data (version, status, datum) manually in the table and drag the fields into the next row

�PAGE \# "'Seite: '#'�'" �Seite: 1���The first draft of a document is given version number 1.0. If the document is revised, then the old version remains unchanged. A new document is created for the new version (for example, by copying it). With a completely revised document, the first digit of the version number increases by 1, with more minor corrections or a formal revision the second digit increases by 1.

�PAGE \# "'Seite: '#'�'" �Seite: 1���Further statuses: review copy / released

�PAGE \# "'Seite: '#'�'" �Seite: 1���Last change date

�PAGE \# "'Seite: '#'�'" �Seite: 1���Maintain in "File" menu -> "Properties", click OK, update using <F9>

�PAGE \# "'Seite: '#'�'" �Seite: 1���Maintain in "File" menu -> "Properties", click OK, update using <F9>

�PAGE \# "'Seite: '#'�'" �Seite: 1���Storage location of the original of this specification with exact path

�PAGE \# "'Seite: '#'�'" �Seite: 1���Storage location of the original of the corresponding design document with exact path

�PAGE \# "'Seite: '#'�'" �Seite: 2���To update table of contents, mark it and press <F9>

	© 2001 SAP AG

Neurottstr. 16
D-69190 Walldorf
	Titel: Global Types and Entities
Version: 0.1
Date: 22.08.2001
	Page 1 of 10

	© 2001 SAP AG

Neurottstr. 16
D-69190 Walldorf
	Titel: Title
Version: 1.0
Date: 24-10-2001
	Page 2 of 10

[image: image13.png]

_1057051430.bin

_1057051049.bin

