Position Paper: Modularization, Namespaces and Versioning

Author: Bill Burcham (bill_burcham@stercomm.com)

Date: 12/3/01

Filename: draft-burcham-modnamver-01.doc

1Position Paper: Modularization, Namespaces and Versioning

21
Summary

22
Problem Description

23
Assumptions

23.1
Problem Size

33.2
Optimal Component Size

34
Options: Namespace Structure

44.1
Option 1: One Big Namespace

44.2
Option 2: One Namespace Per Type

44.3
Option 3: Core Plus “Functional” Namespaces

44.4
Option 4: Core Plus “Functional” Namespaces (Hierarchical)

45
Recommendation: Namespace Structure

46
Options: Module Structure

57
Recommendation: Module Structure

57.1
Recursive Composition

67.2
Instance Root Types

67.3
Number of Instance Roots

68
Options: Versioning

68.1
Traditional Schema Versioning

68.2
Schema Version as Context Classifier

69
Recommendations: Versioning

610
Definitions

711
References

Summary

There are many possible mappings of XML schema constructs to namespaces and to operating system files. This paper explores some of those alternatives and sets forth some rules governing that mapping in UBL.

1 Problem Description

Namespaces are a syntactic convenience supporting the association of a “context” with either a lexical scope (default namespace), or a shorthand identifier (namespace qualifier). This context, applied either implicitly (in a lexical scope) or explicitly (via qualified names) supports compression of what would otherwise be long identifiers. In the absence of namespaces, identifier names are all long.

It is common for an instance document to carry namespace declarations, so that it might be validated. Processing logic (such as a stylesheet) typically carries namespace declarations pertaining to the language in which it is specified in (XSLT) as well as the namespaces on which it operates. The latter must match namespaces in the instance document under translation in order for useful work to be carried out.

In practice, namespaces are often given names denoting a hierarchy. XML processing tools may or may not use this hierarchy information. This sort of hierarchical naming though can be useful for the human reader.

As with other significant software artifacts, schemas can become large. In addition to the logical taming of complexity that namespaces provide, we might like to also divide the physical realization of that schema into multiple operating system files.

Schemas change over time. UBL will be no exception. What sort of version information (if any) will a schema carry? How shall that information be carried so as to conveniently support the needs of users operating on document instances with XML processing tools.

This position paper will address these three topics related to namespaces:

1. Namespace Structure: What shall be the mapping between namespaces and XML Schema constructs (e.g. type definitions)?

2. Module Structure: What shall be the mapping between namespaces and XML Schema constructs and operating system files?

3. Versioning: What support for versioning of schema shall be provided?

In subsequent sections, we’ll examine each topic in turn, presenting first the options, then a recommendation.

2 Assumptions

Much of this discussion will be based on the expected complexity of the UBL vocabulary. We structure systems into components in order to manage complexity.

2.1 Problem Size

How big will UBL be? How interconnected?

One source for complexity estimation is xCBL. TBD: how many type definitions, element declarations, “instance roots” in xCBL?
Another source for estimation is X12 that according to [NDR-MSG-88] has:

a bit over 1,000 data elements (…) a smaller number of segments, and
300 or so transaction sets

Also from [NDR-MSG-88] we have EDIFACT:

· There are just under 650 data elements which are

· used in approx 200 composite structures (sort of equivalent to low level Aggregate Core Components (ACCs)).

· These elements and composites are reused within just over 150 segment structures (sort of equivalent to higher level ACCs).

· Combinations of all the above make up just under 200 messages (doc types).

So an estimate of 1000 types and 250 message types seems reasonable for UBL.

2.2 Optimal Component Size

For the purposes of this discussion we will assume that a component should consist of seven plus or minus two “parts”. Here, the term “component” can be applied to just about any physical or logical structure in the system, for example: a type, an element declaration, a namespace, a file.

The “seven plus or minus two” rule [SEVEN-TWO] is a good default rule, but it is only the default.

3 Options: Namespace Structure

In this section we’ll explore some mappings between XML Schema structures and namespaces.

	
	Pro
	Con

	Option 1: one big namespace
	Easy to remember namespace
	When anything in UBL changes, all processing code must be changed (at a minimum to use new namespace name)

	Option 2: namespace per type
	Total compartmentalization
	Why use namespaces at all? With this option the namespace ceases to provide useful contextualization.

	Option 3: core plus “functional” namespaces
	Allows parts of UBL to change independently. When a functional area changes, processing code depending on core needn’t change.
	Doesn’t allow for intermediate structure. What if the functional namespaces may require further subdivision?

	Option 4: core plus “functional” namespaces with possible intermediate ones
	(same as Option 3)
	By allowing intermediate namespaces, they will certainly flourish. Design rules must be developed to avoid regressing toward Option 2 over time.

Option 4 is the right choice for UBL. In UBL a namespace is associated 1-1 with a root schema.

3.1 Option 1: One Big Namespace

We could have one big namespace for UBL. On the plus side, it would be fairly easy to remember. The downside is that we would forfeit the opportunity to use hierarchical namespaces to communicate the structure of the vocabulary.

3.2 Option 2: One Namespace Per Type

This approach represents the other end of the spectrum. If you’ve got a namespace per type then why not just use the type name. The namespace fails to be shorthand for anything. It fails to be memorable, or to group related types together.

3.3 Option 3: Core Plus “Functional” Namespaces

This option represents a space between 4.1 and 4.2. There would be one namespace for “core” types and there would be namespaces for each of the TBD functional areas e.g. Order, Invoice.

This represents a top-level decomposition of the vocabulary into multiple vertical (functional) slices and a single (horizontal) slice – the so-called core namespace.

The downside of this approach is that with seven or so functional namespaces, they are going to get awfully “crowded” (on the order of one hundred types per namespace). This violates the “seven plus or minus two rule”.

3.4 Option 4: Core Plus “Functional” Namespaces (Hierarchical)

A refinement on 4.3 this option frees each of the functional and core namespaces to have their own hierarchy as necessary in order to further manage complexity.

4 Recommendation: Namespace Structure

The best option is Option 4: Core Plus “Functional” Namespaces (Hierarchical) since it strikes the appropriate balance between global and local simplicity.

5 Options: Module Structure

TBD: what are some other options?
6 Recommendation: Module Structure

The UBL vocabulary consists of a set of instance roots and root schemas. The instance roots comprise a ready-to-use set of business document types. The instance roots import type definitions from root schemas.

Each root schema defines a BIE. If a root schema is large, it may be broken up into multiple schema modules. The schema modules are included in a root schema.

Here is a depiction of the component structure:

[image: image1.wmf]

InstanceRoot

RootSchema

SchemaModule

0..*

-requires

1..*

1

-has

0..*

0..*

-requires

0..*

6.1 Recursive Composition

A schema module, or by extension, a root schema, may depend upon other root schemas for its definition.

[image: image2.wmf]core

Order

A

invoicing

Invoice

X

Order

mgmt

Schema

module

Root

schema

Instance

root

6.2 Instance Root Types

If preferring type definitions over global element definitions is good, why not take it to the extreme [NDR-MSG-70]. The type of the root element in an instance root is a global type (not an anonymous type).

6.3 Number of Instance Roots

In some cases, various actions in the protocol (create vs. delete) will have totally different document structure requirements. But in some cases (create vs. update), the content might be identical. However, we still think we should design in favor of more document types rather than less, e.g. one for each transmission (a la RosettaNet). It avoids confusion on the part of developers to have a separate document type for each thing. We might then decide to optimize some of them by merging them together.

7 Options: Versioning

The options for versioning schemas are complicated due to a lack of clarity surrounding the use-cases or more appropriately “change” cases for schemas. TBD: we may want a whole (separate) position paper for this hairy topic.
7.1 Traditional Schema Versioning

[XFRNT-VER] does a great job of laying out the problem and solution space for schema versioning as it is traditionally practiced. TBD: distill out the four options presented in that paper.
7.2 Schema Version as Context Classifier

In [NDR-MSG-13] the point was made that schema version might just be another context classifier.

8 Recommendations: Versioning

Schema version is context classifier.

9 Definitions

Backward compatibility – TBD.

BIE – Business Information Entity. A description of a business concept. Represented as an XML schema by a root schema.

extension a.k.a. customization – specification of new BIE’s with well-defined, enforced relationships to old BIE’s. Relationship types include: restriction, extension. In some cases processing logic will need to treat the base and the extension as the same, in other cases it will need to distinguish between them.

Forward compatibility – TBD

instance root, a.k.a. doctype -- This is still mushy. The transitive closure of all the declarations imported from whatever namespaces are necessary. A doctype may have several namespaces used within it.

Namespace – a name that scopes a related group of XML type definitions.

processing logic – software logic that operates on BIE instances to achieve some business function

root schema – A schema module that directly, or via inclusion of other schema modules, defines all types for a particular namespace. This is the XML Schema representation of a BIE. (Compare that definition, with the one we came up with last week in Menlo Park: A schema document corresponding to a single namespace, which is likely to pull in (by including or importing) schema modules. Issue: Should a root schema always pull in the "meat" of the definitions for that namespace, regardless of how small it is?)
schema document – as defined by the XSD specification – per that specification, a schema document defines types into exactly one namespace, the target namespace.

schema module – A schema document. A schema module need not define all types in a particular namespace. Contrast with root schema. (Compare that definition, with last week’s: A "schema document" (as defined by the XSD spec) that is intended to be taken in combination with other such schema documents to be used.)

versioning – reification of revisions to BIE’s in order to support coexistence in a system, of two or more revisions of a BIE.

10 References

	NDR-MSG-13
	schema version as context classifier, Burcham, Bill; Maler, Eve; a post to the UBL-NDR mailing list.
	http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00013.html

	NDR-MSG-70
	Fwd: Straw Man on Namespaces, Schema Module Architecture,etc., Rawlins, Mike; a post to the UBL-NDR mailing list.
	http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00070.html

	NDR-MSG-88
	Fwd: Straw Man on Namespaces,Schema Module Architecture, etc., Probert, Sue; Maler, Eve.; a post to the UBL-NDR mailing list.
	http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00088.html

	SEVEN-TWO
	The Magical Number Seven, Plus or Minus Two: Some Limits on our Capacity for Processing Information, George A. Miller, Psychological Review, 63, 81-97.
	http://psychclassics.yorku.ca/Miller/

	XFRNT-VER
	XML Schema Versioning, MITRE Corporation and xml-dev list group members.
	http://www.xfront.com/Versioning.pdf

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

PAGE
2

_1066620513.vsd
�

�

�

�

�

�

�

�

InstanceRoot�

�

�

�

RootSchema�

�

�

�

SchemaModule�

�

�

�

0..*�

-requires�

1..*�

�

�

1�

-has�

0..*�

�

�

0..*�

-requires�

0..*�

_1066620425.vsd
�

Schema module�

�

Root schema�

Order mgmt�

core�

�

Instance root�

Order A�

invoicing�

Invoice X�

