SAP®
[image: image5.jpg]

Intern

Elements versus Attributes

 MACROBUTTON NoMacro [Untertitel]
7. November 2001 FORMTEXT

7. November 2001

Gunther Stuhec, MACROBUTTON NoMacro [Abteilung]
Verteiler: UBL-Group

1 Introduction

A common cause of confusion, or at least uncertainty, in the design of a schemas is the choice between specifying parts of the document as elements or attributes. Elements and Attributes are both containers for information. Many times the choice between an Element and an Attribute seems very arbitrary, almost matter of style.

There is some information that could go either way. For example, Country could be an Attribute or an Element. Neither way is right or wrong, it is just a choice. While the choice may indeed be arbitrary in some cases, the 'typical' roles of Elements and Attributes and the different types of content models and constraints of these two containers will be explained in this document very shortly.

2 Characteristics

The fundamental difference between Elements and Attributes in XML 1.0 is to be define the limits of what the two containers can be used for. It means that elements can contain child elements as well as content and attributes can only hold content only. The distinction between attribute and content element then becomes the distinction between an attribute and a containment relationship with another object.

The following table shows the elementary differences of Elements and Attributes:

	Elements
	Attributes

	Can have child Elements nested within them
	Can't have nested Elements or Attributes; can contain only strings, or lists of strings

	Typically used for structured data items but can be and are used for simple data items as well
	Typically used for "atomic" items of data

	Elements must appear in the order specified in the schema, but may appear several times.
	Each Attribute of a particular Element can only be specified once, but more than one Attribute inside of one Element can be specified in any order

	Elements usually represent the natural, core content, which would generally appear in every printout/display?
	Attributes represent data of secondary importance; often metadata?

	(Sub-)Elements usually represent parts of an Element
	Attributes usually represent properties of an Element

2.1 Elements

Elements are logical units of information in a schema. They represent information objects. Elements either contain information (text), or have a structure of subelements. Therefore elements are good for representing structurally significant information.

Elements are more extensible than attributes in an evolving standard because elements can contain other elements or substructures directly while attributes cannot. If a concept is defined as an attribute initially, and then needs to be expanded to hold fine-grained information, it must be changed to an element to be modeled correctly.

Elements can have attributes attached to them as metadata, while attributes cannot. Elements are repeatable within the same container structure, but attributes can only appear once in the attribute list of an element. In addition, if order of occurrence is significant, elements are the only option because attributes do not have order.

2.2 Attributes

Attributes are atomic, referentially transparant characteristics of an object that have no identity of their own. Generally this corresponds to primitive data types (e.g., Strings, Date, etc.). Taking a more logical view, an attribute names some characteristic of an object that models part of its internal state, and is not considered an object in its own right. That is, no other objects have relationships to an attribute of an object, but rather to the object itself.

Attributes can be divided into the following types:

· The type of attribute that relating to element identification (ID and IDREF type attributes, and those attributes of type CDATA that have application-specific identification rules, such as the name attribute of the A element in HTML)

· Those containing tokens that identify one or more contexts in which the element applies, or which identify one or more options to be used during processing of the element (entity names, notation names, name tokens or values from a predefined set of tokens)

· Those tokens that carry data to be used as part of the application (typically CDATA type attributes).

· Attributes can also be describing the characteristics of information: a property of an information object. For example, notation attributes clearly define the coding of the data within the element, and so clearly control the processing of the contents. Similarly entity attributes clearly identify external, unparsed, entities that will need to be processed according to the rules applicable to the notation defined in the entity declaration.

The general characteristics of attributes are:

· Attribute values can have no substructure

· Attributes are unordered, so there is no standard way to specify that one attribute's value should precede the other's (there is no guarantee that an API will give you the attributes in the same order that you specified them)

· Attributes can only contain multiple values if they are tokens (e.g., NMTOKEN) or references to other elements (e.g., IDREFS)

· Attributes can only describe structures by using for example “xsi:type” and they can link to them (IDREF or ENTITY) but they cannot contain subelements directly in markup.

3 Advantages and Disadvantages of Attributes

It is much more easier to describe any general rule for using attributes esspecially, if the advantages and disadvantages are putted into the opposite before.

The advantages of using Attributes are:

· In XML 1.0, and in the XML Schema, only attributes may have default values assigned to them by the schema.
· Attributes can have names that indicate the role the value plays in the element. Element contents have content names, but there can be by Attributes only to say what role the content plays in any particular element that contains it.

· Attributes have (minimal) data types.

· Attributes take up less space as there is no need for an end tag. Using attributes for data points results in a drastically smaller document representing the same information.

· Attributes are easier to access in DOM.

· Attributes can be built in are unordered.

· Attributes can be used for data points disambiguates structure and information. Code is much cleaner when using attributes for data points – attributes always contain data points, and elements always contain structure.

· When extracting information from an XML document to store to an RDBMS, or vice-versa, using attributes for data points forms a very clean mapping between the systems - attributes always correspond to columns, while elements always correspond to tables. This makes code to import and export data between RDBMS systems and XML documents easy to write and very flexible.

· Attributes can be constrained against a predefined list of enumerated values.

· Attributes can have default values.

· Attributes are concise and easier to parse than elements.

The disadvantages of using Attributes are:

· Attributes aren't as convenient for long text, large values, or binary entities.

· Attributes can't contain other elements. Therefore, there can't contain nested info.

· Attribute values are harder to search for in search engines

· Attribute values often don't appear on the screen in editing tools (you have to open a special dialog or popup to see them)

· Attribute values can be slightly more awkward to access in processing APIs

· Attributes are ambiguity and not expandable for future changes. Each attribute is either there or not. There is no way to indicate that if you provide this one, you can't provide that one, or if these two are present, then you can't have that one, or if this one is present, then that one has to also be present, and so on

· Whitespace can't be ignored in an attribute value.

· Attributes can only contain multiple values by using tokens.

· Attributes can describe structures in a difficult form by using “xsi:type” only. There is no way to describe a srtucture by using like child elements.

· Attributes are more difficult to manipulate by program code

4 Guidelines

Attributes can actually be used to display of the information what would otherwise be displayed withing the child elements. How can be done a decision when a piece of information is an child-element or an attribute? Tim Bray has written to this proplem: "...when the property has a simple value like a string, we put that in the content of the element; when the property's value is another object, we put a pointer to it in an attribute value and leave the element decribing the property empty."

That solution is one way but a efficient choice for definition depents not on values only. It must be done additionally a consideration of the limitations and special properties of Elements and Attributes which are depending on the disadvantages and advantages of each too.The following considertions may be helpful for using of Elements or Attributes:

· The definition of an Element is advantangeous if the document property relate to the structure of the document.

· An Element should be used to represent a piece of information that can be considered an indpendent object.

· An Element should be used when the information is related via a parent/child relationship to another piece of information. In this case, the element is also a subelement of the element to which it is related.

· An Attribute should be used to represent any information "left over" after defining the objects that have relationships to other objects (and should thus be elements and subelements).

· An Attribute should be used to represent any information that describes other information, such as a status or id.

· An Elemente must be used, if an item needs to occur multiple times, because attributes can have only occur once in an element.

· An Attribut is very useful, if it necessary to limit values to a predefined list, since it is possible to specify a valid list of values for an element.

· Attributes are a better choice, to minimize the file size of target documents.

The following diagram illustrates a way to find out how want to be an Element or an Attributes necessary to be define it. This definition process depends by considering the limitation and special propertiers which are in the following diagram included.

[image: image1.wmf]flat

unordered

hierachical

program

free-form

ordered

yes

yes

no

meta-data

human

Create an

Element

undesired to be

spell-checked

to be spell-checked

enumeration

Are multiple information

flat or hierarchical?

Break information down

into flat structure.

Does a

specific value

represent information about

content of same hierachy,

or is the information

content itself?

Are the unordered

information existing of

two values only?

Are multiple

information unordered

or ordered?

Are the ordered

information existing of

two values only?

Create an

Attribute with

Enumeration-List

Does the value have

one of an enumeration

of values or is the value

of free-form?

Is each information

to be specified, manipulated,

organized, consumed by a

program or by

a human?

Is the content to be

spell-checked?

Create an

Attribute

Create an

Groupelement

higher

hierachies

5 Recommendation

In the Core Components Technical Specification a Core Component Type will be used for the creation of Core Components. It consists of one Content Component for the value and one ore more Suplementary Components for giving an essential extra definition to the Core Component itself. The Core Component Type will be used for creation of Basic Core Component (BBC) or Aggregate Core Components (ACC) respectively, which are necessary for building of Basic Business Information Entities (BBIEs) or Aggregate Business Information Entities.

Since this BBIEs are a derivation of BCCs and must have a human-readable business semantic definition, the BCCs itself has to be defined as Elements. The content of each Component Content are to be spell-checked in the most of situations. Therefore the Component Content will be represented as an Element-Value.

The Supplementary Components will be represented as Attributes. Since, as the most of the information of each Supplementary Components are restricting attributes, will be used by programs and represented can be represented in a unordered form. Furthermore, the Supplementary Components could be including information as enumerations.

All Aggregate Components (ACCs and ABIEs) are nodes in an hierachical order and nodes inside of hierachies will be defined as Groupelements. The following figure describes the relationship between the Core Components and the Business Information Entities and type of representation in XML-syntax of each component.

[image: image2.wmf]Core

Component

Type

Basic

Core Component

Basic Business

Information

Entity

Aggregate

Core

Component

Aggregate

Business Information

Entity

Message /

Document

CORE

BUSINESS

Repository

Core Component Library

defines in

context

defines in

context

contains

contains

contains

contains

is of type

Content

Component

Supplementary

Component

1

1..*

Element-Value

Attribute

+Attributevalue

Elements + Attributes

(if Attributes for

Supplementary

Compoenents

necessary)

Elements + Attributes

(if Attributes for

Supplementary

Compoenents

necessary)

Elements + Attributes

(if Attributes for

Supplementary

Compoenents

necessary)

Groupelement

Groupelement

Groupelement

Data Dictionary

6 Proposal (not finished yet)

The suggestions described above were discussed in the technology development (with team members responsible for the IFR and proxy environment) and with the application representatives. As result of these discussions, the development of global types and global entities as well as the development of the ‘local’ data types and entities should follow this proposal:

1. The entities should be built hierarchically. The elementary information should be expressed in elements, not in attributes. Especially the information like unit of measurement or currency should be expressed as elements because in that way they are reusable. Attributes should be used only to indicate the standard (like DINxxx, ISOxxx, etc.) to which the element value belongs.

2. The context of the entity usage should be expressed as the entity name and not by using of the qualifier attribute.

According to this proposal, the global type AmountType is defined as in the following:

[image: image3.jpg]+ Value
decinal

mortType. ICUrTenEy ®{ . standard%
cunencyTyee

XML-Schema:

<xsd:complexType name="CurrencyType">

<xsd:simpleContent>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="3"/>

<xsd:attribute name="standard" use="default" value="ISO4217">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="20"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

<xsd:complexType name="AmountType">

<xsd:sequence>

<xsd:element name="Value" type="xsd:decimal"/>

<xsd:element name="Currency" type="CurrencyType"/>

</xsd:sequence>

</xsd:complexType>

All elements which contain amount information have to refer to the complex type AmountType. The name of the element should describe the context of the amount usage, e.g. PaymentAmount:

[image: image4.jpg]& Valuei
+ Paymentamount —

amourtType > Currency ®{ 0 standard%
cunencyTyee

XML-Schema:

<xsd:element name = "PaymentAmount" type = "AmountType"/>
Examples for the XML-instances:

<PaymentAmount>

<Value>12.56</Value>

<Currency standard="ISO4217">DEM</Currency>

</PaymentAmount>
<PaymentAmount>

<Value>12.56</Value>

<Currency>DEM</Currency>

</PaymentAmount>
Both examples describe the same value space of the currency for the payment amount and both examples are valid. In the first example the attribute standard is contained in the document, in the second example the default value “ISO4217” defined in the XML Schema is assigned to the attribute by the processing application or an XML-parser.

The summary of the properties and the advantages of the proposed way to develop the global types and entities is:

· The global types determine the structure of the entities and all its properties are inherited by the context-depend entities.

· The entity definition is well structured and easy to read / easy to understand by a user. On the other hand the context-dependent entities can be easily used in the OO-design and in the implementing coding.

· The data types can be extended easier.

· The entities and the basic data types are reusable.

· The information about the used code list is contained in the attribute value. This attribute value can be omitted in the instances, if the default value is defined.

· No external validation of the code values is required, but the middleware infrastructure can validate these values before passing them to the application. The validation also can be done by the application.

· The processing application can recognize the element meaning by the tagname, the reading of additional information (e.g. the qualifier value) is not necessary.

· The context is immediately visible to the user and does not depend on an attribute value.

Copyright © 2000 SAP AG, All rights reserved
Page 1 of 1
Copyright © 1999 SAP AG, All rights reserved
Page 7 of 8

_1066654795.vsd

_1066655349.vsd

