
 1

Position Paper: Code Lists 2

Proposal 09, 28 May 2002 3

Document identifier: 4

p-maler-codelists-09 (Word) 5

Location: 6

http://www.oasis-open.org/committees/ubl/ndrsc/pos 7

Authors: 8
Eve Maler, Sun Microsystems <eve.maler@sun.com> 9
Fabrice Desré, France Télécom <fabrice.desre@francetelecom.com> 10

Abstract: 11

This position paper outlines several options for handling code lists in the UBL library and 12
customizations of that library, and recommends one option for NDR SC consideration. 13
That option was approved by the SC in its 15 May 2002 teleconference. 14

Status: 15

This is V09 of the code lists position paper intended for consideration by the OASIS UBL 16
Naming and Design Rules subcommittee and other interested parties. It is complete, and 17
no new revisions are planned. The recommendations made here and additional specific 18
implementation recommendations have been incorporated into the Universal Business 19
Language Naming and Design Rules Specification, and that document should now serve 20
as the normative source for code list handling. 21

If you are on the ubl-ndrsc@lists.oasis-open.org list for subcommittee members, send 22
comments there. If you are not on that list, subscribe to the ubl-comment@lists.oasis-23
open.org list and send comments there. To subscribe, send an email message to ubl-24
comment-request@lists.oasis-open.org with the word "subscribe" as the body of the 25
message. 26

Copyright © 2002 The Organization for the Advancement of Structured Information Standards 27
[OASIS] 28

 2

Table of Contents 29

1 Guidance to the UBL Modeling Process... 3 30
2 Requirements for a Schema Solution for Code Lists.. 3 31
3 Contenders ... 4 32

3.1 Enumerated List Method ... 5 33
3.1.1 Instance ... 5 34
3.1.2 Schema Definitions .. 5 35
3.1.3 Derivation Opportunities .. 5 36
3.1.4 Assessment ... 5 37

3.2 QName in Content Method ... 6 38
3.2.1 Instance ... 6 39
3.2.2 Schema Definitions .. 7 40
3.2.3 Derivation Opportunities .. 7 41
3.2.4 Assessment ... 7 42

3.3 Instance Extension Method... 8 43
3.3.1 Instance ... 9 44
3.3.2 Schema Definitions .. 9 45
3.3.3 Derivation Opportunities .. 9 46
3.3.4 Assessment ... 9 47

3.4 Single Type Method .. 10 48
3.4.1 Instance ... 10 49
3.4.2 Schema Definitions .. 10 50
3.4.3 Derivation Opportunities .. 12 51
3.4.4 Assessment ... 12 52

3.5 Multiple UBL Types Method .. 13 53
3.5.1 Instance ... 13 54
3.5.2 Schema Definitions .. 13 55
3.5.3 Derivation Opportunities .. 14 56
3.5.4 Assessment ... 14 57

3.6 Multiple Namespaced Types Method.. 15 58
3.6.1 Instance ... 15 59
3.6.2 Schema Definitions .. 16 60
3.6.3 Derivation Opportunities .. 17 61
3.6.4 Assessment ... 17 62

4 Analysis and Recommendation .. 18 63
Appendix A. Notices .. 20 64
 65

 3

1 Guidance to the UBL Modeling Process 66

Where possible, UBL should identify external code lists rather than design its own internal code 67
lists. Potential reasons for designing an internal code list include the need to combine multiple 68
existing external code lists, or the lack of any suitable external code list. The lack of “easy-to-69
read” or “easy-to-understand” codes in an otherwise suitable code list is not sufficient reason to 70
define an internal code list. 71
The UBL documentation must identify, for each UBL construct containing a code, the one or more 72
code lists that must be minimally supported when the construct is used. Our recommendations for 73
how to represent code lists in UBL schema modules have the effect of encapsulating this 74
information in schema form as well. 75

2 Requirements for a Schema Solution for Code 76

Lists 77

Following are our major requirements on potential code list schemes for use in the UBL library 78
and customizations of that library. For convenience, a weighted point system is used for scoring 79
the solutions against the requirements. 80
• Semantic clarity 81

The ability to “dereference” the ultimate normative definition of the code being used. The 82
supplementary components for “Code.Type” CCTs are the expected way of providing this 83
clarity, but there are many ways to supply values for these components in XML, and it’s even 84
possible to supply values in some non-XML form that can then be referenced by the XML 85
form. 86

Points: Low = 0, Medium = 2, High = 4 87

• Interoperability 88
The sharing of a common understanding of the limited set of codes that are expected to be 89
used. There is a continuum of possibilities here. For example, a schema datatype that allows 90
only a hard-coded enumerated list of code values provides “hard” (but inflexible) 91
interoperability. On the other hand, merely documenting the intended shared values is more 92
flexible but somewhat less interoperable, since there are fewer penalties for private 93
arrangements that go outside the standard boundaries. This requirement is related to, but 94
distinct from, validatability and context rules friendliness. 95

Points: Low = 0, Medium = 2, High = 4 96

• External maintenance 97
The ability for non-UBL organizations to create XSD schema modules that define code lists in 98
a way that allows UBL to reuse them without modification on anyone’s part. Some standards 99
bodies are already starting to do this, though we recognize that others may never choose to 100
create such modules. 101

Points: Low = 0, Medium = 2, High = 4 102

• Validatability 103
The ability to use XSD to validate that a code appearing in an instance is legitimately a 104
member of the chosen code list. For the purposes of the analysis presented here, 105
“validatability” will not measure the ability for non-XSD applications (for example, based on 106
perl or Schematron) to do validation. 107

 4

Points: Low = 0, Medium = 2, High = 4 108

• Context rules friendliness 109
The ability to use expected normal mechanisms of the context methodology for allowing 110
codes from additional lists to appear (extension) and for subsetting the legitimate values of 111
existing lists (subsetting), without adding custom features just for code lists. This has lower 112
point values because we expect it to be easy to design custom features for code lists. For 113
example, the following is a mock-up of one approach that could be used: 114

<CodeList fromType="LocaleCodeType" toCode="MyCodeType"> 115
<Add>JP</Add> 116
<Remove>DE</Remove> 117
</CodeList> 118

Points: Low = 0, Medium = 1, High = 2 119

• Upgradability 120
The ability to begin using a new version of a code list without the need for upgrading, 121
modifying, or customizing the schema modules being used. This has lower point values 122
because requirements related to interoperability take precedence over a “convenience 123
requirement”. 124

Points: Low = 0, Medium = 1, High = 2 125

• Readability 126
A representation in the XML instance that provides code information in a clear, easily 127
readable form. This is a subjective measurement, and it has lower point values because 128
although we want to recognize readability when we find it, we don’t want it to become more 129
important than requirements related to interoperability. 130

Points: Low = 0, Medium = 1, High = 2 131

3 Contenders 132

The methods for handling code lists in schemas are as follows: 133
• The enumerated list method, using the classic method of statically enumerating the 134

valid codes corresponding to a code list in an XSD string-based type internally in UBL 135
• The QName in content method, involving the use of XML Namespaces-based “qualified 136

names” in the content of elements, where the namespace URI is associated with the 137
supplementary components 138

• The instance extension method, where a code is provided along with a cross-reference 139
to somewhere in the same instance to the necessary supplementary information 140

• The single type method, involving a single XSD type that sets up attributes for supplying 141
the supplementary components directly on all elements containing codes 142

• The multiple UBL types method, where each element dedicated to containing a code 143
from a particular code list is bound to a unique UBL type, which external organizations 144
must derive from 145

• The multiple namespaced types method, where each element dedicated to containing 146
a code from a particular code list is bound to a unique type that is qualified with a 147
(potentially external) namespace 148

Throughout, an element LocaleCode defined as part of the complex type LanguageType is 149
used as an example element in a sample instance, and UBL library schema definitions are 150

 5

demonstrated along with potential opportunities for XSD-style derivation. Each method is 151
assessed to see which requirements it satisfies. 152

3.1 Enumerated List Method 153

The enumerated list method is the “classic” approach to defining code lists in XML and, before it, 154
SGML. It involves creating a type in UBL that literally lists the allowed codes for each code list. 155

3.1.1 Instance 156

The enumerated list method results in instance documents with the following structure. 157

<LocaleCode>code</LocaleCode> 158

3.1.2 Schema Definitions 159

The schema definitions to support this might look as follows. 160

<xs:simpleType name="LocaleCodeType"> 161
 <xs:restriction base="xs:token"> 162
 <xs:enumeration value="DE"/> 163
 <xs:enumeration value="FR"/> 164
 <xs:enumeration value="US"/> 165
 . . . 166
 </xs:restriction> 167
</xs:simpleType> 168
 169
<xs:element name="LocaleCode" type="LocaleCodeType"/> 170

3.1.3 Derivation Opportunities 171

Using the XSD feature for creating unions of simple types, it is possible to extend the valid values 172
of such an enumeration. However, it seems that we can't restrict the list of valid values. This is 173
because <xs:enumeration> is not a type construction mechanism, but a facet. 174
The base schema shown above could be extended to support new codes as follows: 175

<xs:simpleType name="OtherCodeType"> 176
 <xs:restriction base="xs:token"> 177
 <xs:enumeration value="SP"/> 178
 <xs:enumeration value="DK"/> 179
 <xs:enumeration value="JP"/> 180
 . . . 181
 </xs:restriction> 182
</xs:simpleType> 183
 184
<xs:element name="MyLocalCode"> 185
 <xs:simpleType> 186
 <xs:union memberTypes="LocaleCodeType OtherCodeType"/> 187
 </xs:simpleType> 188
</xs:element> 189

3.1.4 Assessment 190

Spelling out the valid values assures validatability, but defining all the necessary code lists in UBL 191
itself defeats our hope that code lists can be defined and maintained in a decentralized fashion. 192
 193

Requirement Score Rank

 6

Requirement Score Rank

Semantic clarity 0 Low
The supplementary components of the code
list could be provided as schema
annotations, but they are not directly
accessible as first-class information in the
instance or schema.

Interoperability 4 High
The allowed values are defined by a closed
list defined in the schema itself.

External maintenance 0 Low
We have to modify the type union in the
base schema to "import" the new codes.

Validatability 4 High
The allowed values are defined by a closed
list defined in the schema itself.

Context rules friendliness 0 Low
The allowed values are defined in the
middle of a simple type, whereas the
context methodology so far only knows
about elements and attributes.

Upgradability 0 Low
A schema extension would be needed to
add any new codes defined in a new
version.

Readability 2 High
The instance is as compact as it can be,
with no extraneous information hindering
the visibility of the code itself.

Total 11

 194

3.2 QName in Content Method 195

The QName method was proposed in V04 of the code lists paper. 196

3.2.1 Instance 197

With the QName method, the code is an XML qualified name, or “QName”, consisting of a 198
namespace prefix and a local part separated by a colon. Following is an example of a QName 199
used in the LocaleCode element, where “iso3166” is the namespace prefix and “US” is the local 200
part. The “iso3166” prefix is bound to a URI by means of an xmlns:iso3166 attribute (which 201
could have been on any ancestor element). 202

<LocaleCode 203
 xmlns:iso3166=”http://www.oasis-204
open.org/committees/ubl/ns/iso3166”> 205

 7

iso3166:US 206
</LocaleCode> 207

The intent is for the namespace prefix in the QName to be mapped, through the use of the xmlns 208
attribute as part of the normal XML Namespace mechanism, to a URI reference that stands for 209
the code list from which the code comes. The local part identifies the actual code in the list that is 210
desired. 211
The namespace URI shown here is just an example. However, it is likely that the UBL library itself 212
would have to define a set of common namespace URIs in all cases where the owners of external 213
code lists have not provided a URI that could sensibly be used as a code list namespace name. 214

3.2.2 Schema Definitions 215

QNames are defined by the built-in XSD simple type called QName. The schema definition in UBL 216
should make reference to a UBL type based on QName wherever a code is allowed to appear, so 217
that this particular use of QNames in UBL can be isolated and documented. For example: 218

<xs:simpleType name=”CodeType”> 219
 <xs:restriction base=”QName”/> 220
</xs:simpleType> 221
 222
<xsd:complexType name="LanguageType" id="UBL000013"> 223
 <xsd:sequence> 224
 <xsd:element name="IdentificationCode" . . .></xsd:element> 225
 <xsd:element name="Name" . . .></xsd:element> 226
 <xsd:element name="LocaleCode" 227
 type="cct:CodeType" id="UBL000016" minOccurs="0"> 228
 </xsd:element> 229
 </xsd:sequence> 230
</xsd:complexType> 231

The documentation for the LocaleCode element should indicate the minimum set of code lists 232
that are expected to be used in this attribute. However, the attribute can contain codes from any 233
other code lists, as long as they are in the form of a QName. 234
Applications that produce and consume UBL documents are responsible for validating and 235
interpreting the codes contained in the documents. 236

3.2.3 Derivation Opportunities 237

The QName type does have several facets: length, minLength, maxLength, pattern, enumeration, 238
and whiteSpace. However, since namespace prefixes are ideally changeable, depending only on 239
the presence of a correct xmlns namespace declaration, the facets (which are merely lexical in 240
nature) are not a sure bet for controlling values. 241

3.2.4 Assessment 242

The idea of using XML namespaces to identify code lists is potentially useful, but because this 243
method uses namespaces in a hard-to-process (and somewhat non-standard) manner, both 244
semantic clarity and validatability suffer. 245

Requirement Score Rank

Semantic clarity 1.5 Low to medium
You have to go through a level of indirection, and a
complicated one at that (because QNames in content
are pseudo-illegitimate and are not supported properly
in many XML tools), in order to refer back to the
namespace URI. Further, the namespace URI might not

 8

Requirement Score Rank
resolve to any useful information. However, in cases
where the URI is meaningful or sufficient documentation
of the code list exists (something we could dictate by
fiat), clarity can be achieved.

Interoperability 0 Low
The shared understanding of minimally supported code
lists would have to be conveyed only in prose.

External maintenance 0 Low
There is no good way to define a schema module that
controls QNames in content.

Validatability 0 Low
All validation is pushed off to the application.

Context rules friendliness 0 Low
This method is similar to the single type method in this
respect. If extensions and subsets are to be managed
by means of a context rules document at all, there would
need to be a code list-specific mechanism added to
reflect this method. If extensions and subsets don’t need
to be managed by means of context rules because
everything happens in the downstream application,
there is no need to do anything at all.

Upgradability 2 High
You need to have a different URI for each version of a
code list, but if you do this, using a new version is easy:
You just use a prefix that is bound to the URI for the
version you want. However, there is no magic in
namespace URIs that allows version information to be
recognized as such; the whole URI is just an
undifferentiated string.

Readability 1 Medium
The representation is very compact because the
supplementary component details are deferred to
another place (and format) entirely, but the QName
format and the need for the xmlns: attribute make the
information a little obscure.

Total 4.5

3.3 Instance Extension Method 246

In the instance extension method, a code is provided along with a cross-reference to the ID of an 247
element in the same instance that provides the necessary code list supplementary information. 248
One XML instance might contain many code list declarations. 249

 9

3.3.1 Instance 250

The instance extension method results in instance documents with something like the following 251
structure. The CodeListDecl element sets up the supplementary information for a code list, and 252
then an element provides a code (here, LocaleCode) also refers to the ID of the relevant 253
declaration. 254

<CodeListDecl ID=”ID-LocaleCode” 255
 CodeListIdentifier=”ISO3166” 256
 CodeListAgencyIdentifier=”ISO” 257
 CodeListVersionIdentifier=”1.0”/> 258
. . . 259
<LocaleCode IDRef=”ID-LocaleCode”> 260
US 261
</LocaleCode> 262

3.3.2 Schema Definitions 263

The schema definitions to support this might look as follows. 264

<xs:element name=”CodeListDeclaration” type=”CodeListDeclType”/> 265
<xs:complexType name=”CodeListDeclType”> 266
 <xs:attribute name="CodeListIdentifier" type="xs:token"/> 267
 <xs:attribute name="CodeListAgencyIdentifier" type="xs:token"/> 268
 <xs:attribute name="CodeListVersionIdentifier" type="xs:token"> 269
</xs:complexType> 270
. . . 271
<xs:element name=LocaleCode” type=”LocaleCodeType”/> 272
<xs:complexType name=”LocaleCodeType”> 273
 <xs:simpleContent> 274
 <xs:extension base="xs:token"> 275
 <xs:attribute name="IDRef" type="xs:IDREF"/> 276
 </xs:extension> 277
 </xs:simpleContent> 278
</xs:complexType> 279

 280

3.3.3 Derivation Opportunities 281

Since code lists are declared in the instance document, there are not many opportunities for 282
schema type derivation. Additional attributes for supplementary components could be added by 283
this means, though this is unlikely to be needed. 284

3.3.4 Assessment 285

This method allows for great flexibility, but leaves validatability and interoperability nearly out of 286
the picture. 287
 288

Requirement Score Rank

Semantic clarity 3 Medium to high
All of the necessary information is present in the
code list declaration, but retrieving it must be done
somewhat indirectly.

 10

Requirement Score Rank

Interoperability 1 Low to medium
Standard XML entities could be provided that define
the desired code lists, but there is no a machine-
processable way to ensure that they get associated
with the right code-usage elements.

External maintenance 2 Medium
Using XML entities, external organizations could
create and maintain their own code list declarations.

Validatability 0 Low
Using XSD, there is no way to validate that the
usage of a code matches the valid codes in the
referenced code list.

Context rules friendliness 0 Low
Since this method resides primarily in the instance
and not the schema, the context rules have little
opportunity to operate on code list definitions.

Upgradability 2 High
It is easy to declare a code list with a higher version
directly in the instance.

Readability 1.5 Medium to high
The instance looks fairly clean, but the code list
choice is a bit opaque.

Total 9.5

3.4 Single Type Method 289

The single type method is currently being used in UBL, as a result of a perl script running over the 290
Library Content SC’s modeling spreadsheet. The script makes use of our decision to use 291
attributes for supplementary components of a CCT and elements for everything else. 292

3.4.1 Instance 293

The single type method results in instance documents with the following structure. 294

<LocaleCode 295
 CodeListIdentifier=”ISO3166” 296
 CodeListAgencyIdentifier=”ISO” 297
 CodeListVersionIdentifier=”1.0”> 298
US 299
</LocaleCode> 300

3.4.2 Schema Definitions 301

The relevant UBL library schema definitions are as follows in V0.64 (leaving out all annotation 302
elements). Notice that CodeType is a complex type that sets up a series of attributes (the 303
supplementary components for a code) on an element that has simple content of 304
CodeContentType (the code itself). Also note that, although a CodeName attribute is defined 305

 11

along with its corresponding type, this is a duplicate component for the code itself, and need not 306
be used in the instance. 307

<xs:simpleType name="CodeContentType" id="000091"> 308
 <xs:restriction base="token"/> 309
</xs:simpleType> 310
 311
<xs:simpleType name="CodeListAgencyIdentifierType" id="000093"> 312
 <xs:restriction base="token"/> 313
</xs:simpleType> 314
 315
<xs:simpleType name="CodeListIdentifierType" id="000092"> 316
 <xs:restriction base="token"/> 317
</xs:simpleType> 318
 319
<xs:simpleType name="CodeListVersionIdentifierType" id="000099"> 320
 <xs:restriction base="token"/> 321
</xs:simpleType> 322
 323
<xs:simpleType name="CodeNameType" id="000100"> 324
 <xs:restriction base="string"/> 325
</xs:simpleType> 326
 327
<xs:simpleType name="LanguageCodeType" id="000075"> 328
 <xs:restriction base="language"/> 329
</xs:simpleType> 330
 331
<xs:complexType name="CodeType" id="000089"> 332
 <xs:simpleContent> 333
 <xs:extension base="cct:CodeContentType"> 334
 <xs:attribute name="CodeListIdentifier" 335
 type="cct:CodeListIdentifierType"> 336
 </xs:attribute> 337
 <xs:attribute name="CodeListAgencyIdentifier" 338
 type="cct:CodeListAgencyIdentifierType"> 339
 </xs:attribute> 340
 <xs:attribute name="CodeListVersionIdentifier" 341
 type="cct:CodeListVersionIdentifierType"> 342
 </xs:attribute> 343
 <xs:attribute name="CodeName" type="cct:CodeNameType"> 344
 </xs:attribute> 345
 <xs:attribute name="LanguageCode" 346
 type="cct:LanguageCodeType"> 347
 </xs:attribute> 348
 </xs:extension> 349
 </xs:simpleContent> 350
</xs:complexType> 351
 352
<xsd:complexType name="LanguageType" id="UBL000013"> 353
 <xsd:sequence> 354
 <xsd:element name="IdentificationCode" . . .></xsd:element> 355
 <xsd:element name="Name" . . .></xsd:element> 356
 <xsd:element name="LocaleCode" type="cct:CodeType" 357
 id="UBL000016" 358
 minOccurs="0"> 359
 </xsd:element> 360
 </xsd:sequence> 361
</xsd:complexType> 362

 12

3.4.3 Derivation Opportunities 363

While it is possible to derive new simple types that restrict other simple types (including built-in 364
types such as xs:token, used here for the actual code and other components), it is not possible 365
to use such derived simple types directly in a UBL attribute such as 366
CodeListVersionIdentifier without defining a whole new element structure. This is 367
because you need to use the XSD xsi:type attribute to “swap in” the derived type for the 368
ancestor, and you can’t put an attribute on an attribute in XML. 369

3.4.4 Assessment 370

This method is strong on semantic clarity because of the attributes for supplementary 371
components, but it loses interoperability and schema flexibility because it is using a single type for 372
everything. 373

Requirement Score Rank

Semantic clarity 4 High
The various supplementary components for the
code are provided directly on the element that
holds the code, allowing the code to be uniquely
identified and looked up.

Interoperability 0 Low
The shared understanding of minimally supported
code lists would have to be conveyed only in
prose.

External maintenance 0 Low
There is no particular XSD formalism provided for
encoding the details of a code list; thus, there is
no way for external organizations to create a
schema module that works smoothly with the UBL
library. However, there are no barriers to creating
a code list (in some other form) for use in any
code-based UBL element.

Validatability 0 Low
There is no XSD structure for testing the
legitimacy of any particular codes. All validation
would have to happen at the application level
(where the application uses the attribute values to
find some code list in which it can do a lookup of
the code provided).

Context rules friendliness 0 Low
If extensions and subsets are to be managed by
means of a context rules document at all, there
would need to be a code list-specific mechanism
added to reflect this method. If extensions and
subsets don’t need to be managed by means of
context rules because everything happens in the
application, there is no need to do anything at all.

 13

Requirement Score Rank

Upgradability 2 High
A document creator could merely change the
CodeListVersionIdentifier value and
supply a code available only in the new version.

Readability 1.5 Medium to high
The code is accompanied by “live” supplementary
components in the instance, which swells the size
of instance. However, the latter are only in
attributes, and it is nonetheless very clear what
information is being provided.

Total 7.5

3.5 Multiple UBL Types Method 374

In this method, each list is associated with a unique element, whose content is a code from that 375
list. The element is bound to a type that is declared in the UBL library; the type ensures that the 376
Code.Type supplementary components are documented. 377

3.5.1 Instance 378

The multiple UBL types method results in instance documents with the following structure. 379

<LocaleCode> 380
<ISO3166Code>code</ISO3166Code> 381
</LocaleCode> 382

The LocaleCode element doesn’t contain the code directly; instead, it contains a subelement 383
that is dedicated to codes from a particular list. If codes from multiple lists are allowed here, the 384
element could contain any one of a choice of subelements, each dedicated to a different code list. 385

3.5.2 Schema Definitions 386

There are many different ways that UBL can define the ISO3166Code element, but it probably 387
makes sense to base it on something like the single type method (for the supplementary 388
component attributes) and to use the enumerated type method where practical (for the primary 389
component). Thus, the optimal form of the multiple UBL types method is really a hybrid method. 390
The schema definition of the types governing the ISO3166Code element might look like this: 391

<xs:simpleType name=”ISO3166CodeContentType”> 392
 <xs:extension base=”token”> 393
 <xs:enumeration value=”DE”/> 394
 <xs:enumeration value=”FR”/> 395
 <xs:enumeration value=”US”/> 396
 . . . 397
 </xs:extension> 398
</xs:simpleType> 399
 400
<xsd:complexType name=”ISO3166CodeType”> 401
 <simpleContent> 402
 <xs:extension base=" ISO3166CodeContentType"> 403
 <xs:attribute name="CodeListIdentifier" 404
 type="cct:CodeListIdentifierType" fixed=”ISO3166”/> 405
 <xs:attribute name="CodeListAgencyIdentifier" 406
 type="cct:CodeListAgencyIdentifierType" 407

 14

 fixed=”ISO”/> 408
 <xs:attribute name="CodeListVersionIdentifier" 409
 type="cct:CodeListVersionIdentifierType" 410
 default=”1.0”/> 411
 <xs:attribute name="LanguageCode" 412
 type="cct:LanguageCodeType" 413
 use=”optional”/> 414
 </simpleContent> 415
</xsd:complexType> 416

Such a definition does several things: 417
• It enumerates the possible values of the code itself. An alternative would be just to allow the 418

code to be a string or token, or to specify a regular expression pattern that the code needs to 419
match. 420

• It provides a default value for the version of the code list being used, with the possiblity that 421
the default could be overridden in an instance of a UBL message to provide a different 422
version (though, since the codes are enumerated statically, if new codes were added to a 423
new version they could not be used with this element as currently defined). Some alternatives 424
would be to fix the version and to require the instance to set the version value. 425

• It fixes the values of the code list identifier and code list agency identifier for the code list, 426
such that they could not be changed in an instance of a UBL message. Some alternatives 427
would be to provide changeable defaults and to require that the instance set these values. 428

• It makes the language code optional to provide in the instance. 429

3.5.3 Derivation Opportunities 430

Because a whole element is dedicated to the code for each code list, the derivation opportunities 431
are more plentiful. A derived type could be created that does any of the following: 432
• Adds to the enumerated list of values by means of the XSD union technique 433
• Adds defaults where there were none before 434
• Adds fixed values where there were none before 435
In addition, the element containing the dedicated code list subelement can be modified to allow 436
the appearance of additional code list subelements. 437

3.5.4 Assessment 438

This method is quite strong on most requirements; it falls down only on external maintenance. 439

Requirement Score Rank

Semantic clarity 4 High
The supplementary components are always
accessible, either through the instance or (through
defaulting or fixing of values) the schema.

Interoperability 4 High
Each code-containing construct in UBL can indicate,
through schema constraints, exactly what is expected
to appear there.

 15

Requirement Score Rank

External maintenance 0 Low
In order to work with the UBL library, the code lists
maintained by external organizations would have to
derive from the UBL type, which creates a circular
dependency (UBL needs to include an external
schema module, but the external module needs to
derive from UBL). Alternatively, the UBL library has to
do all the work of setting up all the desired code list
types.

Validatability 4 High
The constraint rules can range from very tight to very
loose, and anyone who wants to subset or extend the
valid values can express this in XSD terms fairly
easily. The limitations are only due to XSD’s
capabilities.

Context rules friendliness 2 High
Since there is a dedicated element for a code, it can
be added or subtracted like a regular element –
something that is already assumed to be part of the
power of the context rules language.

Upgradability 1.5 Medium to high
Depending on how the constraint rules have been set
up, it might be required to define a new (possibly
derived) type to allow for a new version of a code list.
However, in many cases, it will be desirable to design
the schema module to avoid the need for this.

Readability 1.5 Medium to high
Because there is an element dedicated to the list
“source” for the code, the code itself is relatively
readable. However, the supplementary components
are likely to be hidden away from the instance, which
makes their values a bit obscure.

Total 17

3.6 Multiple Namespaced Types Method 440

This method is very similar to the multiple UBL types method, with one important change: The 441
UBL elements that each represent a code from a particular list are bound to types that may have 442
come from an external organization’s schema module. 443

3.6.1 Instance 444

The namespaced type method results in instance documents with the following structure. This is 445
identical to the multiple UBL types method, because the element dedicated to a single code list is 446
still a UBL-native element. 447

<LocaleCode> 448
<ISO3166Code>code</ISO3166Code> 449

 16

</LocaleCode> 450

3.6.2 Schema Definitions 451

The schema definitions to support the content of LocaleCode might look as follows. Here, three 452
code list options are offered for a locale code. The xmlns: attributes that provide the namespace 453
declarations for the iso3166:, xxx:, and yyy: prefixes are not shown here. It is assumed that 454
an external organization (presumably ISO) has created a schema module that defines the 455
iso3166:CodeType complex type and that this module has been imported into UBL. 456

<xsd:complexType name="LanguageType"> 457
 <xsd:sequence> 458
 <xsd:element name="IdentificationCode" . . .></xsd:element> 459
 <xsd:element name="Name" . . .></xsd:element> 460
 <xsd:element name="LocaleCode" 461
 type="cct:LocaleCodeType" minOccurs="0"> 462
 </xsd:element> 463
 </xsd:sequence> 464
</xsd:complexType> 465
 466
<xsd:complexType name=”LocaleCodeType” id=”. . .”> 467
 <xsd:choice> 468
 <xsd:element name=”ISO3166Code” type=”iso3166:CodeType”/> 469
 <xsd:element name=”XXXCode” type=”xxx:CodeType”/> 470
 <xsd:element name=”YYYCode” type=”yyy:CodeType”/> 471
 </xsd:choice> 472
</xsd:complexType> 473

Just as for the multiple UBL types method, there are many different ways that the 474
iso3166:CodeType complex type can be defined, but it probably makes sense to base it on 475
something like the single type method (for the supplementary component attributes) and to use 476
the enumerated type method where practical (for the primary component). Thus, the optimal form 477
of the multiple namespaced types method is really a hybrid method. For example, the definition 478
might look like this: 479

<xs:simpleType name=”iso3166:CodeContentType”> 480
 <xs:extension base=”token”> 481
 <xs:enumeration value=”DE”/> 482
 <xs:enumeration value=”FR”/> 483
 <xs:enumeration value=”US”/> 484
 . . . 485
 </xs:extension> 486
</xs:simpleType> 487
 488
<xsd:complexType name=”iso3166:CodeType”> 489
 <simpleContent > 490
 <xs:extension base="iso3166:CodeContentType"> 491
 <xs:attribute name="CodeListIdentifier" 492
 type="cct:CodeListIdentifierType" 493
 fixed=”xxx”/> 494
 <xs:attribute name="CodeListAgencyIdentifier" 495
 type=" iso3166:CodeListAgencyIdentifierType" 496
 fixed=”yyy”/> 497
 <xs:attribute name="CodeListVersionIdentifier" 498
 type=" iso3166:CodeListVersionIdentifierType" 499
 default=”1.0”/> 500
 <xs:attribute name="LanguageCode" 501
 type=" iso3166:LanguageCodeType" 502
 use=”optional”/> 503
 </simpleContent> 504
</xsd:complexType> 505

 17

Because the UBL library would not have direct control over the quality and semantic clarity of the 506
datatypes defined by external organizations, it would be important to document UBL’s 507
expectations on these external code list datatypes. 508

3.6.3 Derivation Opportunities 509

Just as for multiple UBL types, because a whole element is dedicated to the code for each code 510
list, the derivation opportunities are more plentiful. 511
Also, if the external organization failed to meet our expectations about semantic clarity and didn’t 512
add the supplementary component attributes, we could add them ourselves by defining our own 513
complex type whose primary component (the element content) is bound to their type, or by 514
deriving a UBL type from their external type. 515

3.6.4 Assessment 516

This is a strong contender in every area. 517

Requirement Score Rank

Semantic clarity 4 High
The supplementary components are always
accessible to the parser, either through the instance
or (through defaulting or fixing of values) the schema.
This assumes that UBL’s high expectations on
external types are met, but this is a reasonable
assumption.

Interoperability 4 High
Each code-containing construct in UBL can indicate,
through schema constraints, exactly what is expected
to appear there.

External maintenance 4 High
External organizations can freely create schema
modules that define elements dedicated to their
particular code lists, and can even make the
constraint rules as flexible or as draconian as they
want.

Validatability 4 High
The constraint rules can range from very tight to very
loose, and anyone who wants to subset or extend the
valid values can express this in XSD terms fairly
easily. The limitations are only due to XSD’s
capabilities.

Context rules friendliness 2 High 2
Since there is a dedicated element for a code, it can
be added or subtracted like a regular element –
something that is already assumed to be part of the
power of the context rules language.

 18

Requirement Score Rank

Upgradability 1.5 Medium to high
Depending on how the constraint rules have been set
up, it might be required to define a new (possibly
derived) type to allow for a new version of a code list.
However, in many cases, the organization maintaining
the code list might design the schema module in such
a way as to avoid the need for this.

Readability 1.5 Medium to high
Because there is an element dedicated to the list
“source” for the code, the code itself is relatively
readable. However, the supplementary components
are likely to be hidden away from the instance, which
makes their values a bit obscure.

Total 21

 518

4 Analysis and Recommendation 519

Following is a summary of the scores of the different methods. 520

Method Score Comments

Enumerated list 11 Spelling out the valid values assures validatability, but
defining all the necessary code lists in UBL itself defeats
our hope that code lists can be defined and maintained
in a decentralized fashion.

QName in content 4.5 The idea of using XML namespaces to identify code lists
is potentially useful, but because this method uses
namespaces in a hard-to-process (and somewhat non-
standard) manner, both semantic clarity and
validatability suffer.

Instance extension 9.5 This method allows for great flexibility, but leaves
validatability and interoperability nearly out of the
picture.

Single type 7.5 This method is strong on semantic clarity because of the
attributes for supplementary components, but it loses
interoperability and schema flexibility because it is using
a single type for everything.

Multiple UBL types 17 This method is quite strong on most requirements; it
falls down only on external maintenance.

Multiple namespaced
types

21 This is a strong contender in every area.

We recommend the multiple namespaced types method, with the addition of strong documented 521
expectations on the external organizations that define schema modules for code lists in order to 522
ensure maximum semantic clarity and validatability. 523

 19

Note that is is possible that the UBL library will not have many external schema modules to 524
choose from initially, and some external organizations may choose never to create schema 525
modules for their code lists. Thus, UBL might be in the position of having to create dummy 526
datatypes for some of the code lists it uses. In these cases, at least UBL will achieve most of the 527
benefits, while having to balance the costs of maintenance against these benefits. It may be that 528
UBL can even “kick-start” the interest of some external organizations in producing such a 529
deliverable by supplying a starter schema module. 530

 20

Appendix A. Notices 531

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 532
that might be claimed to pertain to the implementation or use of the technology described in this 533
document or the extent to which any license under such rights might or might not be available; 534
neither does it represent that it has made any effort to identify any such rights. Information on 535
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 536
website. Copies of claims of rights made available for publication and any assurances of licenses 537
to be made available, or the result of an attempt made to obtain a general license or permission 538
for the use of such proprietary rights by implementors or users of this specification, can be 539
obtained from the OASIS Executive Director. 540
OASIS invites any interested party to bring to its attention any copyrights, patents or patent 541
applications, or other proprietary rights which may cover technology that may be required to 542
implement this specification. Please address the information to the OASIS Executive Director. 543
Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 544
2001. All Rights Reserved. 545
This document and translations of it may be copied and furnished to others, and derivative works 546
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 547
published and distributed, in whole or in part, without restriction of any kind, provided that the 548
above copyright notice and this paragraph are included on all such copies and derivative works. 549
However, this document itself does not be modified in any way, such as by removing the 550
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS 551
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 552
Property Rights document must be followed, or as required to translate it into languages other 553
than English. 554
The limited permissions granted above are perpetual and will not be revoked by OASIS or its 555
successors or assigns. 556
This document and the information contained herein is provided on an “AS IS” basis and OASIS 557
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 558
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE 559
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 560
PARTICULAR PURPOSE. 561

