
uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 1 of 22

UDDI Specifications TC

UDDI as the registry for ebXML
Components
Technical Note

Document identifier:
uddi-spec-tc-tn-uddi-ebxml

Current version:
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-uddi-ebxml-
20031020.htm

Latest version:
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-uddi-ebxml.htm

Author:
Keisuke Kibakura, Fujitsu

Editors:
Luc Clément, Microsoft
Daniel Feygin, Unitspace
Tony Rogers, Computer Associates

Contributors:
Tom Bellwood, IBM
Jacques Durand, Fujitsu
Sam Lee, Oracle
Joel Munter, Intel
Dale Moberg, Cyclone Commerce
Claus von Riegen, SAP
Alok Srivastava, Oracle
Max Voskob, MSI Business Solutions

Abstract:
This document describes the way to model ebXML-based services and ebXML
components such as CPP and BPSS, and provides a practical guidance on how to use a
UDDI registry as the registry for ebXML components.

Status:
This document is updated periodically on no particular schedule. Send comments to the
editor.

Committee members should send comments on this technical note to the uddi-
spec@lists.oasis-open.org list. Others should subscribe to and send comments to the
uddi-spec-comment@lists.oasis-open.org list. To subscribe, send an email message to

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 2 of 22

uddi-spec-comment-request@lists.oasis-open.org with the word "subscribe" as the body
of the message.

For information on whether any intellectual property claims have been disclosed that may
be essential to implementing this technical note, and any offers of patent licensing terms,
please refer to the Intellectual Property Rights section of the UDDI Spec TC web page
(http://www.oasis-open.org/committees/uddi-spec/).

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 3 of 22

Table of Contents

1 Introduction .. 4
1.1 Problem Statement... 4
1.2 Goals.. 4
1.3 Non-goals... 4
1.4 Terminology ... 4

2 Technical Note Solution.. 5
2.1 Definitions .. 5
2.2 Technical Note Behavior... 5

2.2.1 Reference Scenario... 5
2.2.2 Modeling Outline and Rationale ... 6
2.2.3 ebXML Specifications Taxonomy tModel.. 7
2.2.4 Common ebXML tModels .. 8
2.2.5 Registering ebXML Services...12
2.2.6 Searching ebXML Services and Components ...15
2.2.7 Scenario Variation: Using a CPA Template...16
2.2.8 Scenario Variation: Using Role Information...17

3 References ...19
3.1 Normative..19

Appendix A. Acknowledgments..20
Appendix B. Revision History...21
Appendix C. Notices ..22

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 4 of 22

1 Introduction
This UDDI Spec Technical Committee Technical Note (TN) provides technical guidance on how
to use UDDI registries within the ebXML framework of B2B services. Specifically, it addresses the
issues related to enabling automated discovery of ebXML framework components, such as
Collaboration Protocol Profile and Business Process Specification Schema, using UDDI.

By adopting the technical guidance of this TN, users will enable trading partners and their Web
services and ebXML infrastructures to interact using UDDI as a common registry.

1.1 Problem Statement
Multiple consortia have initiated pilot projects using the ebXML framework for business-to-
business transactions, while corporations have also begun adopting ebXML technologies for
internal use. At the same time Web service technologies, which have significant momentum due
to unprecedented industry support, are also being rolled out. UDDI can play a major role in
enabling trading partners and their Web services and ebXML infrastructures to interact using
UDDI as a common registry. This is the focus of this Technical Note.

In addition to being a universal technology for publication and discovery of service metadata,
UDDI also enables discovery of ebXML framework components such as Collaboration Protocol
Profile and Business Process Specification Schema. This capability can help enable
interoperability among trading partners that use UDDI and ebXML framework components.
However, a prescribed methodology of modeling services and components which are conformant
to ebXML specifications is required to make interoperable solutions possible.

1.2 Goals
 This note provides technical guidance:

• to model an ebXML-based service;

• to register an ebXML-based service and ebXML components in a UDDI registry; and

• to query a UDDI registry for an ebXML-based service and ebXML components.

1.3 Non-goals
This note does not intend:

• to merge UDDI and ebXML registry technologies;

• to substitute an ebXML registry with a UDDI registry; or

• to migrate entity data from an ebXML Registry to a UDDI registry (or vice versa).

1.4 Terminology
The key words must, must not, required, shall, shall not, should, should not, recommended, may,
and optional in this document are to be interpreted as described in [RFC2119].

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 5 of 22

2 Technical Note Solution

2.1 Definitions
ebXML

ebXML is a common XML-based e-business framework which consists of some distinct
technologies.

ebXML Registry

ebXML Registry is intended to provide registry and repository services in the ebXML
framework. [ebRR1][ebRR2]

ebXML Message Services

ebXML Messaging Services provides a method for conducting e-business transactions
within the framework of ebXML technologies. It extends the SOAP protocol to address
specific business-to-business transaction requirements such as authentication, reliability
and non-repudiation. [ebMS1][ebMS2]

ebXML Collaboration Protocol Profile and Agreement
(CPPA)

This is a specification which defines CPP and CPA. [ebCPPA1][ebCPPA2]

ebXML Collaboration Protocol Profile (CPP)

A CPP defines one business partner's technical capabilities to engage in electronic
business collaborations with other partners by exchanging electronic messages. These
capabilities include business processes, document formats, and technical communication
parameters required to communicate with a trading partner. Before starting to do
business with a partner via ebXML, trading partners create and exchange their CPPs,
recognize the other’s technical capability, negotiate for common ground, and build a CPA
(Collaboration Protocol Agreement).

ebXML Collaboration Protocol Agreement (CPA)

A CPA documents the technical agreement between two (or more) partners to engage in
electronic business collaboration. It may be formed from two (or more) CPPs, or may be
created from a CPA template.

ebXML CPA template

CPA template is a trading partner’s “fill in the blanks” proposal to a prospective trading
partner. It has place-holding values that are intended to be replaced by the actual values
when a CPA is derived. CPA template may be used to form a CPA as the alternative
method to merging two CPPs.

UN/CEFACT - ebXML Business Process Specification
Schema (BPSS)

BPSS provides a machine readable description of a business process. [ebBPSS]

2.2 Technical Note Behavior

2.2.1 Reference Scenario
What follows is a typical use case which this Technical Note will use as its reference scenario:

• a fictitious consortium, named “ABC Consortium” creates a standardized business
process for a given industry vertical and describes it as an ebXML BPSS;

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 6 of 22

• fictitious seller Company A and buyer Company B each create their own CPPs;

• Company A implements and registers an ebXML-based service Sa which is conformant to
the standard process defined by ABC Consortium.

Using the guidance provided for by this Technical Note, these partners model their ebXML
components and interact as follows to enable their business processes:

1. ABC Consortium creates a tModel to represent the standard business process and
publishes it.

2. Company A registers the location of its CPP as a business service.

3. Company A registers a service Sa.

4. Company B finds A’s service Sa using a UDDI registry.

5. Company B locates A’s CPP using a UDDI registry.

Figure 1 shows these five steps.

Figure 1: Reference scenario

These five steps show how Company B obtains Company A’s CPP. Company B can then begin
to negotiate and build a CPA, allowing it to do business with Company A. What happens after the
discovery is complete is specific to ebXML and is out of this document’s scope.

A CPA provides run-time information required for trading partners’ business collaboration
software components. A CPA is generally only accessible to the parties that created it and is not
disclosed to any third party, since it implies business partnership between the parties to a CPA,
which can be regarded as a potential trade secret. Therefore this TN does not model any
recommended registration of the CPA in UDDI.

The following sections provide specific modeling recommendations covering this scenario.

2.2.2 Modeling Outline and Rationale
ebXML services and components must be modeled to match UDDI data structures. The bases for
modeling are as follows:

• A company that provides ebXML-based services is modeled as a businessEntity.

• An ebXML-based service is modeled as a businessService.

�����������	��
���
�������������� ����
��������������������� ���� �
! ���" �� �����#���"�$

%�& ���" ��� �('(

)+*#,.-0/010243
5�6+7 298+:�;

)+*#,.-0/0102=<
5�> 8+?�?@8A:�;

<	3+)
)A*+1 > *A:�B�C 7 , >

�
��AD��E�� �������F�	� &�G�G �IH+�����J

A’s CPP
��K��+D��E�� �������

LF�@�����9��M��I�
N ��������� N & L=����
G �������0������ ���� �
! ����" ��� �

•Company name
•Service type …

��O��+P�� ��Q��� ���R�� " �
S�TUTUV

: 89W#C > B�:�2

��X�AD���E�� �������F�Q� ���@R�� " � G�Y

��M�+Z0���9� ��J J ����[� N &�&

Biz. Process #1
(BPSS)

A’s CPP

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 7 of 22

• A tModel is created to represent each ebXML specification.

• A company’s CPP is modeled as a businessService belonging to the businessEntity
whose capabilities it describes. This fits the one-to-many cardinality of company-to-CPP
relationships, which are never shared with external parties, just as a businessEntity’s
contained businessServices.

• A business process definition (BPSS) is modeled as a tModel. A BPSS instance can be
regarded as one of technical characteristics of a service interface, and can be used by
multiple organizations.

This Technical Note defines three types of tModels:

Specifications Taxonomy tModel

This taxonomy is used to categorize each ebXML specification represented by a
Common ebXML tModel (see below) to aid in their discovery.

Common ebXML tModels

These tModels refer to specific versions of ebXML specifications/concepts, such
as CPP v1.0, UN/CEFACT BPSS v1.10, Message Service v2.0, and so on.

Proprietary tModels

These tModels refer to specific instances or implementations of ebXML
specifications. For instance, a particular business process, described in an
ebXML BPSS, is an instance of BPSS, and it can be defined as a proprietary
tModel.

The models described in this Technical Note apply equally to both UDDI v2 and v3 registries,
though all the examples are written in terms of UDDI v2.

2.2.3 ebXML Specifications Taxonomy tModel
ebXML is a framework that consists of several distinct technical specifications, each of which
must be represented by tModels in a UDDI registry. UDDI tModels are usually tagged with
categorizations denoting information that facilitates their discovery. That is why before defining
tModels representing ebXML specifications, we define an ebXML Specifications Taxonomy
tModel, which is used to categorize these tModels (described in the following section).

ebXML Specification Taxonomy tModel:

tModel Name: ebxml-org:specifications

tModel Description: ebXML Specifications Taxonomy

tModel UDDI Key (V3): uddi:ebxml.org:specifications

Derived V1, V2 format Key: uuid:da52cf72-2cb2-39a9-ad1e-577e66d8a6f6

Categorization: categorization

Checked: No

<tModel tModelKey="uuid:da52cf72-2cb2-39a9-ad1e-577e66d8a6f6">
<name>ebxml-org:specifications</name>
<description xml:lang="en">ebXML Specifications Taxonomy</description>
<overviewDoc>

 <overviewURL>http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=ebxml-jc/</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756d62ab4"
keyName="uddi-org:types"
keyValue="categorization" />

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 8 of 22

 <keyedReference
tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756d62ab4"
keyName="uddi-org:types"
keyValue="unchecked" />

 </categoryBag>
</tModel>

The following values are defined for this ebXML Specifications taxonomy. These values are
useful for classifying ebXML-related tModels and are helpful for others who want to find those
tModels.

ebXML:CPPA ebXML Collaboration Protocol Profile and Agreement

ebXML:MS ebXML Message Service

ebXML:BPSS UN/CEFACT - ebXML Business Process Specification Schema

Please note that this tModel is a categorization system for ebXML framework specifications and
does not represent ebXML specifications themselves.

2.2.4 Common ebXML tModels
In UDDI, a service interface (which is called a binding template in UDDI) is associated with
tModels, which refer to the technical specification of the interface. Those tModels represent
service type information. This collection of tModels is sometimes referred to as the technical
fingerprint of the service interface.

In the case of ebXML specifications, Message Service, CPP, CPA template1 and BPSS all
convey relevant service type information. It can be captured in tModels, which we will refer to as
common ebXML tModels. “Common” means that these tModels are relied on by all users who
use UDDI as the registry for ebXML services and components. Since these tModels are
categorized by ebXML Specifications Taxonomy (ebxml-org:specifications) defined in the
previous section, they are easy to find.

ebXML Message Service v1.0 tModel

tModel Name: ebxml-org:MessageService:v1_0

tModel Description: ebXML Message Service v1.0

tModel UDDI Key (V3): uddi:ebxml.org:messageservice:v1.0

Derived V1, V2 format Key: uuid:c8692873-1842-3b32-b980-8fa6d16676d2

Categorization: specification

1 This tModel is not used in the scenario, but is used in its variation. See Section 2.2.7.

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 9 of 22

<t Model t Model Key=" uui d: c8692873- 1842- 3b32- b980- 8f a6d16676d2" >
<name>ebxml - or g: MessageSer vi ce: v1_0</ name>
<descr i pt i on xml : l ang=" en" >ebXML Message Ser vi ce v1. 0</ descr i pt i on>
<over v i ewDoc>

 <over v i ewURL>ht t p: / / www. ebxml . or g/ specs/ ebMS. pdf </ over v i ewURL>
 </ over vi ewDoc>
 <cat egor yBag>
 <keyedRef er ence

t Model Key=" uui d: c1acf 26d- 9672- 4404- 9d70- 39b756d62ab4"
keyName=" uddi - or g: t ypes"
keyVal ue=" speci f i cat i on" / >

 <keyedRef er ence
t Model Key=" uui d: da52cf 72- 2cb2- 39a9- ad1e- 577e66d8a6f 6"
keyName=" ebXML Message Ser vi ce"
keyVal ue=" ebXML: MS" / > <! —- Message Ser v i ce spec - - >

 </ cat egor yBag>
</ t Model >

ebXML Message Service v2.0 tModel

tModel Name: ebxml-org:MessageService:v2_0

tModel Description: ebXML Message Service v2.0

tModel UDDI Key (V3): uddi:ebxml.org:messageservice:v2.0

Derived V1, V2 format Key: uuid:9a3b93be-515e-34c7-90c7-b05cdfdba8c3

Categorization: specification

<t Model t Model Key=" uui d: 9a3b93be- 515e- 34c7- 90c7- b05cdf dba8c3" >
<name>ebxml - or g: MessageSer vi ce: v2_0</ name>
<descr i pt i on xml : l ang=" en" >ebXML Message Ser vi ce v2. 0</ descr i pt i on>
<over v i ewDoc>

 <over v i ewURL>ht t p: / / www. oasi s- open. or g/ commi t t ees/ ebxml -
msg/ document s/ ebMS_v2_0. pdf </ over v i ewURL>
 </ over vi ewDoc>
 <cat egor yBag>
 <keyedRef er ence

t Model Key=" uui d: c1acf 26d- 9672- 4404- 9d70- 39b756d62ab4"
keyName=" uddi - or g: t ypes"
keyVal ue=" speci f i cat i on" / >

 <keyedRef er ence
t Model Key=" uui d: da52cf 72- 2cb2- 39a9- ad1e- 577e66d8a6f 6"
keyName=" ebXML Message Ser vi ce"
keyVal ue=" ebXML: MS" / > <! —- Message Ser v i ce spec - - >

 </ cat egor yBag>
</ t Model >

ebXML CPP v1.0 tModel
tModel Name: ebxml-org:CollaborationProtocolProfile:v1_0

tModel Description: ebXML Collaboration Protocol Profile v1.0

tModel UDDI Key (V3): uddi:ebxml.org:collaborationprotocolprofile:v1.0

Derived V1, V2 format Key: uuid:e3f3df4f-b221-33b4-a3ff-17b21410c565

Categorization: specification

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 10 of 22

<tModel tModelKey="uuid:e3f3df4f-b221-33b4-a3ff-17b21410c565">
<name>ebxml-org:CollaborationProtocolProfile:v1_0</name>
<description xml:lang="en">ebXML Collaboration Protocol Profile

v1.0</description>
<overviewDoc>

 <overviewURL>http://www.ebxml.org/specs/ebCPP.pdf</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756d62ab4"
keyName="uddi-org:types"
keyValue="specification" />

 <keyedReference
tModelKey="uuid:da52cf72-2cb2-39a9-ad1e-577e66d8a6f6"
keyName="ebXML Collaboration Protocol Profile and Agreement"
keyValue="ebXML:CPPA" /> <!—- This belongs to CPPA spec -->

 </categoryBag>
</tModel>

ebXML CPP v2.0 tModel
tModel Name: ebxml-org:CollaborationProtocolProfile:v2_0

tModel Description: ebXML Collaboration Protocol Profile v2.0

tModel UDDI Key (V3): uddi:ebxml.org:collaborationprotocolprofile:v2.0

Derived V1, V2 format Key: uuid:43ed4af4-eacf-3b20-95d1-c7c197f5d9d0

Categorization: specification

<tModel tModelKey="uuid:43ed4af4-eacf-3b20-95d1-c7c197f5d9d0">
<name>ebxml-org:CollaborationProtocolProfile:v2_0</name>
<description xml:lang="en">ebXML Collaboration Protocol Profile

v2.0</description>
<overviewDoc>

 <overviewURL>http://www.oasis-open.org/committees/ebxml-
cppa/documents/ebCPP-2_0.pdf</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756d62ab4"
keyName="uddi-org:types"
keyValue="specification" />

 <keyedReference
tModelKey="uuid:da52cf72-2cb2-39a9-ad1e-577e66d8a6f6"
keyName="ebXML Collaboration Protocol Profile and Agreement"
keyValue="ebXML:CPPA" /> <!—- This belongs to CPPA spec -->

 </categoryBag>
</tModel>

ebXML CPA v1.0 Template tModel

tModel Name: ebxml-org:CollaborationProtocolAgreement:v1_0:Template

tModel Description: ebXML Collaboration Protocol Agreement v1.0 Template

tModel UDDI Key (V3): uddi:ebxml.org:collaborationprotocolagreement:v1.0:template

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 11 of 22

Derived V1, V2 format Key: uuid:5ab4e3af-2e67-3a4f-b9b7-92a436be8f43

Categorization: xmlSpec

<tModel tModelKey="uuid:5ab4e3af-2e67-3a4f-b9b7-92a436be8f43">
<name>ebxml-org:CollaborationProtocolAgreement:v1_0:Template</name>
<description xml:lang="en">
 ebXML Collaboration Protocol Agreement v1.0 Template
</description>
<overviewDoc>

 <overviewURL>http://www.ebxml.org/specs/ebCPP.pdf</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756d62ab4"
keyName="uddi-org:types"
keyValue="xmlSpec" />

 <keyedReference
tModelKey="uuid:da52cf72-2cb2-39a9-ad1e-577e66d8a6f6"
keyName="ebXML Collaboration Protocol Profile and Agreement"
keyValue="ebXML:CPPA" /> <!—- This belongs to CPPA spec -->

 </categoryBag>
</tModel>

ebXML CPA v2.0 Template tModel

tModel Name: ebxml-org:CollaborationProtocolAgreement:v2_0:Template

tModel Description: ebXML Collaboration Protocol Agreement v2.0 Template

tModel UDDI Key (V3): uddi:ebxml.org:collaborationprotocolagreement:v2.0:template

Derived V1, V2 format Key: uuid:86c6fcb3-8c73-33a7-8635-38438b76aee7

Categorization: xmlSpec

<tModel tModelKey="uuid:86c6fcb3-8c73-33a7-8635-38438b76aee7">
<name>ebxml-org:CollaborationProtocolAgreement:v2_0:Template</name>
<description xml:lang="en">
 ebXML Collaboration Protocol Agreement v2.0 Template

</description>
<overviewDoc>

 <overviewURL>http://www.oasis-open.org/committees/ebxml-
cppa/documents/ebCPP-2_0.pdf</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756d62ab4"
keyName="uddi-org:types"
keyValue="xmlSpec" />

 <keyedReference
tModelKey="uuid:da52cf72-2cb2-39a9-ad1e-577e66d8a6f6"
keyName="ebXML Collaboration Protocol Profile and Agreement"
keyValue="ebXML:CPPA" /> <!—- This belongs to CPPA spec -->

 </categoryBag>
</tModel>

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 12 of 22

UN/CEFACT - ebXML Business Process Specification Schema v1.10 tModel
tModel Name: untmg-org:BusinessProcessSpecificationSchema:v1_10

tModel Description: UN/CEFACT - ebXML Business Process Specification Schema
v1.10

tModel UDDI Key (V3): uddi:untmg.org:businessprocessspecificationschema:v1.10

Derived V1, V2 format Key: uuid:1a2a88af-54f8-316c-aaf1-e1fc2ef1c0e9

Categorization: specification

<tModel tModelKey="uuid:1a2a88af-54f8-316c-aaf1-e1fc2ef1c0e9">
<name>untmg-org:BusinessProcessSpecificationSchema:v1_10</name>
<description xml:lang="en">UN/CEFACT - ebXML Business Process

Specification Schema v1.10</description>
<overviewDoc>

<overviewURL>http://www.untmg.org/downloads/General/approved/ebBPSS-
v1pt10.zip</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference

tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756d62ab4"
keyName="uddi-org:types"
keyValue="specification" />

 <keyedReference
tModelKey="uuid:da52cf72-2cb2-39a9-ad1e-577e66d8a6f6"
keyName="UN/CEFACT - ebXML Business Process Specification Schema"
keyValue="ebXML:BPSS" /> <!—- This belongs to BPSS spec -->

 </categoryBag>
</tModel>

2.2.5 Registering ebXML Services
The tModels defined so far enable us to model and register ebXML-based services in a UDDI
registry. In accordance with the scenario presented in section 2.2.1, we show the details of each
step one by one.

A consortium registers a tModel of a BPSS instance

In this section, the step below is shown:

1. ABC Consortium creates a tModel to represent the standard business process and
publishes it.

It is natural to regard a business process definition as one of technical characteristics of a service
interface, since it describes business choreography which the service follows. Every registered
businessService conformant to an ebXML BPSS description should be associated with a tModel
of the corresponding BPSS instance.

In the reference scenario, a fictitious consortium, ABC Consortium, defines a standard business
process (here, we call it “ABC Standard Process #1”), which is widely used by the consortium
members. The consortium describes it using a BPSS instance.

Assuming that the BPSS instance is located at “http://abc.org/process_1.bpss”, we define the
tModel like below:

tModel Name: abc-org:StandardProcess:1

tModel Description: ABC Consortium’s Standard Process #1

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 13 of 22

tModel UDDI Key2: uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxbp1

Categorization: xmlSpec

<t Model t Model Key=" uui d: xxxxxxxx- xxxx- xxxx- xxxx- xxxxxxxxxbp1" >
<name>abc- or g: St andar dPr ocess: 1</ name>
<descr i pt i on xml : l ang=" en" > ABC' s st andar d pr ocess #1</ descr i pt i on>
<over v i ewDoc>

 <over v i ewURL>ht t p: / / abc. or g/ pr ocess_1. bpss</ over v i ewURL>
 </ over vi ewDoc>
 <cat egor yBag>
 <keyedRef er ence

t Model Key=" uui d: c1acf 26d- 9672- 4404- 9d70- 39b756d62ab4"
keyName=" uddi - or g: t ypes"
keyVal ue=" xml Spec" / >

 <keyedRef er ence
t Model Key=" uui d: 1a2a88af - 54f 8- 316c- aaf 1- e1f c2ef 1c0e9"
keyName=" UN/ CEFACT - ebXML Busi ness Pr ocess Speci f i cat i on Schema

v1. 10"
keyVal ue=" unt mg- or g: Busi nessPr ocessSpeci f i cat i onSchema: v1_10" / >

 </ cat egor yBag>
</ t Model >

ABC Consortium registers this tModel using save_t Model . Later, it is referenced from a service
whose choreography is conformant to this BPSS instance.

Company A registers CPP

In this section, the step below is shown:

2. Company A registers the location of its CPP as a business service.

In UDDI, all business services must be associated with a business entity. A company must first
create a businessEntity if it decides to register an ebXML service. This Technical Note
recommends that the location of the CPP should be registered as an accessPoint in a
businessService. Assuming that Company A’s CPP is located at “http://a.com/a.cpp”3, its
businessEntity and businessService are as follows:

<busi nessEnt i t y>
 <name xml : l ang=" en" >Company A</ name>
 <cont act s>…</ cont act s>
 <busi nessSer vi ces>
 <busi nessSer vi ce>
 <name xml : l ang=" en" >Company A' s CPP</ name>
 <descr i pt i on xml : l ang=" en" >Company A' s CPP</ descr i pt i on>
 <bi ndi ngTempl at es>
 <bi ndi ngTempl at e>
 <accessPoi nt URLType=" ht t p" >
 ht t p: / / a. com/ a. cpp
 </ accessPoi nt >
 <descr i pt i on xml : l ang=" en" >A' s CPP i s her e! </ descr i pt i on>
 <t Model I nst anceDet ai l s>
 <t Model I nst anceI nf o

2 In the examples in this technical note, v2 format keys are used. Note that entity key compatibility
with v3 and earlier versions of UDDI should be considered unless the publisher intends to use
this proprietary tModel in a closed environment only (e.g. a private registry). See Section 10
“Multi-Version Support” in [UDDIV3].
3 In this scenario, we assume that Company A has just one CPP. Though it is possible for a
business entity to have multiple CPPs, the modeling of such a case is more complex.

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 14 of 22

 tModelKey="uuid:e3f3df4f-b221-33b4-a3ff-17b21410c565">
 <description>
 ebxml-org:CollaborationProtocolProfile:v1_0
 </description>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 </businessService>
 </businessServices>
</businessEntity>

The business service above can be regarded as a service which delivers A’s CPP. Company A
issues save_business API call with above contents within save_business element to register
its CPP. If Company A is already registered in a UDDI registry, its CPP can be registered by
issuing a save_service API call using businessService defined above.

Company A registers an ebXML-based service

In this section, the step below is shown:

3. Company A registers a service Sa.

Company A already has a businessEntity which contains one businessService that delivers CPP.
Now it can add a service Sa which uses ebXML Message Services protocol, and is conformant to
the Standard Process #1 defined by ABC Consortium. Assuming that Sa is an online wine shop,
and is provided at “http://a.com/wine/acceptPurchaseOrder”, the new businessService is as
follows:

<businessService businessKey="...Company A's businessKey...">
 <name xml:lang="en">A's online wine shop</name>
 <description xml:lang="en">an ebXML-based service</description>
<bindingTemplates>
<bindingTemplate>

 <accessPoint URLType="http">
 http://a.com/wine/acceptPurchaseOrder
 </accessPoint>
 <description xml:lang="en">A's ebXML-based service</description>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uuid:c8692873-1842-3b32-b980-8fa6d16676d2">
 <description>ebxml-org:MessageService:v1_0</description>
 </tModelInstanceInfo>
 <tModelInstanceInfo
 tModelKey="uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxbp1">
 <description>abc-org:StandardProcess:1</description>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 <categoryBag>
 <keyedReference

tModelKey="uuid:CD153257-086A-4237-B336-6BDCBDCC6634"
keyValue="50.20.22.05"
keyName="UNSPSC:Sparkling_Wine" /> <!—- Service category info -->

 </categoryBag>
</businessService>

Company A issues save_service API with above contents to register the service.

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 15 of 22

2.2.6 Searching ebXML Services and Components
In this section, we show how Company B (buyer) finds a seller and retrieves a seller’s CPP.
Since the examples below are for explanation, they may sometimes be a little redundant.

Company B finds a service

In this section, the step below is shown:

4. Company B finds A’s service Sa using a UDDI registry.

UDDI provides some powerful search capabilities. It is possible to find by business name, service
category, service type, and so on. What follows are examples that illustrate uses of some of the
UDDI APIs and the return structures of services and tModels registered in accordance with this
TN. There are more (efficient) ways to obtain and query UDDI if richer use of categorization is
employed for example.

In our scenario, it is assumed that Company B (buyer) is capable of doing business using ebXML
framework, adopts the ABC Consortium’s Standard Business Process #1, and wants to consume
a service which is provided by an ebXML-ready seller.

The sample XML below finds a service provider who has an ebXML CPP (which means that it is
ebXML-ready):

<find_business>
 <tModelBag>
 <!-- ebxml-org:CollaborationProtocolProfile:v1_0 -->
 <tModelKey>uuid:e3f3df4f-b221-33b4-a3ff-17b21410c565</tModelKey>
 </tModelBag>
</find_business>

Company B issues the above inquiry and gets a businessList like below as a result:

<businessList>
 <businessInfos>
 <businessInfo businessKey="...Company A's businessKey...">
 <name>Company A</name>
 <serviceInfos>
 <serviceInfo serviceKey="...serviceKey of CPP..."
 <name>Company A's CPP</name> <!-- Company A has a CPP! -->
 </serviceInfo>
 </serviceInfos>
 </businessInfo>
 </businessInfos>
</businessList>

Thus Company B finds that Company A is a seller who provides an ebXML-based online service.
Next, Company B checks if Company A provides a service that is conformant to the ABC
Consortium’s Standard Business Process #1 adopted by Company B.

The example below finds Company A’s service which uses ebXML Message Services as
communication protocol and which is conformant to the Standard Process #1 defined by the ABC
Consortium.

<find_service businessKey="..Company A's businessKey...">
 <tModelBag>
 <!-- ebxml-org:MessageService:v1_0 -->
 <tModelKey>uuid:c8692873-1842-3b32-b980-8fa6d16676d2</tModelKey>
 <!-- abc-org:StandardProcess:1 -->
 <tModelKey>uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxbp1</tModelKey>
 </tModelBag>
</find_service>

Thus Company B has found Company A’s ebXML service which meets the requirements. The
next step is to obtain Company A’s CPP to negotiate communication parameters.

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 16 of 22

Company B obtains A’s CPP

In this section, the step below is shown:

5. Company B locates A’s CPP using the UDDI registry.

The sample find_service invocation below allows to locate Company A’s CPP.

<find_service businessKey="...Company A's businessKey...">
 <tModelBag>
 <!-- ebxml-org:CollaborationProtocolProfile:v1_0 -->
 <tModelKey>uuid:e3f3df4f-b221-33b4-a3ff-17b21410c565</tModelKey>
 </tModelBag>
</find_service>

Company B issues the above inquiry and gets a serviceList like below as a result:

<serviceList>
 <serviceInfos>
 <serviceInfo businessKey="..Company A's businessKey..."

serviceKey="...serviceKey of CPP...">
 <name>Company A's CPP</name>
 </serviceInfo>
 </serviceInfos>
</serviceList>

Once Company B has the serviceKey of the business service which contains the information
about A’s CPP, it can issue a get_serviceDetail to retrieve the access point for the CPP.

<get_serviceDetail>
 <serviceKey>"...serviceKey of CPP..."</serviceKey>
</get_serviceDetail>

Company B gets full information of the businessService and knows that Company A’s CPP is
located at “http://a.com/a.cpp”. Now Company B can fetch that CPP and then initiate negotiations
with Company A. This calls for Company B providing its own CPP, negotiating the definition of a
CPA4, and then consuming Sa.

In a real system, the inquiries shown in the examples above would not be used since they are
redundant and inefficient. This section is provided to give an understanding of the concepts
involved.

2.2.7 Scenario Variation: Using a CPA Template
While [ebCPPA2] suggests that a CPA is formed from two CPPs, it also mentions an alternative
approach which uses a CPA template to create a CPA. Since a CPA template represents one
company’s proposed configuration of service interface to perform business collaboration, the
other trading partner can simply replace the placeholder values to form an agreed CPA. It is an
easier way of negotiating a CPA.

In our scenario described in section 2.2.1, a CPA template provided by Company A (seller) can
be used as an alternative to Company A’s CPP. In this case, Company A can publish a business
service shown below at the Step 2:

<businessService>
 <name xml:lang="en">Company A's CPA Template</name>
 <description xml:lang="en">
 CPA template provided by Company A
 </description>
 <bindingTemplates>
 <bindingTemplate>

4 The ways to exchange CPP and to negotiate CPA are not defined here.

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 17 of 22

 <accessPoint URLType="http">
 http://a.com/a.cpa-template
 </accessPoint>
 <description xml:lang="en">CPA template is here!</description>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uuid:5ab4e3af-2e67-3a4f-b9b7-92a436be8f43">
 <description>
 ebxml-org:CollaborationProtocolAgreement:v1_0:Template
 </description>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
</businessService>

The rest of the steps are similar to the original scenario except that this variation uses a CPA
template instead of a CPP.

2.2.8 Scenario Variation: Using Role Information
In the reference scenario, there appears to be an unspoken agreement with regard to “role” (i.e.
buyer vs. seller) between a publisher and an inquirer that the former provides a service and the
latter consumes the service.

Generally a BPSS instance describes all the roles involved in a business process, such as ‘buyer’
and ‘seller’. When there are multiple parties providing a service within the same BPSS instance,
we cannot suppose such implied agreement. Therefore it is impossible to determine which role of
the ones described in a BPSS instance the service published to a UDDI registry belongs to.

Role information is one of the characteristics of the service provider, which varies with the service.
Modeling service roles in UDDI data structures in the way that aids discovery would be useful for
an inquirer to filter out irrelevant service registrations.

Company A registers role with service information

In Step 3 of the reference scenario, Company A could provide its role with a keyedReference in
the categoryBag of the businessService like below:

 <categoryBag>
 <keyedReference

tModelKey="uuid:CD153257-086A-4237-B336-6BDCBDCC6634"
keyValue="50.20.22.05"
keyName="UNSPSC:Sparkling_Wine" /> <!—- Service category info -->

 <keyedReference tModelKey="UUID:A035A07C-F362-44dd-8F95-
E2B134BF43B4"

keyName="role"
keyValue="seller" />

 </categoryBag>

In this example, uddi-org:general_keywords tModel is used to describe that the service acts as a
“seller”. Generally a business process (i.e., a BPSS instance) has its own vocabulary to specify a
role, such as “seller”, “shipper”, “retailer”, “service provider”, and so on. Therefore, it is impossible
to define a fixed word set to create a universal role taxonomy in advance. By using
general_keywords taxonomy, a publisher can identify his role within the context of a specific
business process.

A publisher's role is described in its CPP, using the role vocabulary that is defined by a BPSS
instance. A publisher should pick the name of the role from its CPP, and use it as the
keyedReference’s keyValue so that a knowledgeable inquirer can use it for a query.

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 18 of 22

Company B finds a service using role

At the Step 4 in the reference scenario, Company B could find a service using role information. In
the case that an inquirer seeks a service provider whose service is conformant to a certain BPSS
instance, it is quite natural to suppose that the inquirer is very familiar with the business process,
otherwise they would fail to collaborate even if they came to know each other.

Therefore, we can assume that Company B knows the business process well, which means that
the role name of the counter party Company B looks for is also known at the time of inquiry.
Company B could filter out undesirable results by using adding the below categoryBag to a
find_service inquiry:

 <categoryBag>
 <keyedReference tModelKey="UUID:A035A07C-F362-44dd-8F95-
E2B134BF43B4" keyName="role" keyValue="seller" />
 </categoryBag>

The rest of the steps are similar to the original scenario.

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 19 of 22

3 References

3.1 Normative
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,

http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.
[UDDIV3] L. Clément et al, UDDI V3.0 Published Specification,

http://uddi.org/pubs/uddi-v3.00-published-20020719.pdf, OASIS UDDI
Spec TC Committee Specification, July 2002.

[ebBPSS] UN/CEFACT Techniques and Methodologies Group (TMG), ebXML -
Business Process Specification Schema Version 1.10,
http://www.untmg.org/downloads/General/approved/ebBPSS-v1pt10.zip,
Oct 2003.

[ebCPPA1] ebXML Trading-Partners Team, Collaboration-Protocol Profile and
Agreement Specification Version 1.0,
http://www.ebxml.org/specs/ebCPP.pdf, May 2001.

[ebCPPA2] OASIS ebXML Collaboration Protocol Profile and Agreement Technical
Committee, Collaboration-Protocol Profile and Agreement Specification
Version 2.0, http://www.ebxml.org/specs/ebcpp-2.0.pdf, September
2002.

[ebMS1] ebXML Transport, Routing & Packaging Team, Message Service
Specification Version 1.0, http://www.ebxml.org/specs/ebMS.pdf, May
2001.

[ebMS2] OASIS ebXML Messaging Services Technical Committee, Message
Service Specification Version 2.0,
http://www.ebxml.org/specs/ebMS2.pdf, April 2002.

[ebRR1] OASIS ebXML Registry Technical Committee, Registry Information
Model v2.0, http://www.ebxml.org/specs/ebrim2.pdf, December 2001.

[ebRR2] OASIS ebXML Registry Technical Committee, Registry Services
Specification, http://www.ebxml.org/specs/ebrs2.pdf, December 2001.

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 20 of 22

Appendix A. Acknowledgments

The author(s) would like to thank Joel Munter, Sean MacRoibeaird, and Ed Mooney for their
contributions to this work.

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 21 of 22

Appendix B. Revision History

Rev Date By Whom What

1 January 8,
2003

Keisuke Kibakura Initial version.

2 January 31,
2003

Keisuke Kibakura Clarification statement added:
- Support for UDDI v2 and v3.
- No intent to substitute ebXML RR.

Improved modeling:
- Restructured spec taxonomy
- Addition of common tModels

Brief outline of modeling

Terminology clarification
- CPPA, CPP, CPA, CPA template

Added scenario variation.

3 February 27,
2003

Keisuke Kibakura Updates based on the F2F discussion:
- Added CPA positioning.
- Added modeling rationale.
- tModel keys changed.
- Added footnote on multiple CPPs.
- Removed errors in the example.

4 March 19, 2003 Luc Clément
Daniel Feygin
Tony Rogers
Keisuke Kibakura

Reviewed by editors.

5 April 16, 2003 Keisuke Kibakura Refinement of tModel categorization.

Added new section on role information.

6 May 8, 2003 Keisuke Kibakura
Daniel Feygin
Tony Rogers
Luc Clément

Final Draft

7 September 20-
22, 2003

Daniel Feygin Incorporated ebXML JC's input.

8 October 18,
2003

Luc Clément Updated the ebXML BPSS references to
the UN/CEFACT BPSS 1.10 spec

uddi-spec-tc-tn-uddi-ebxml-20031020
Copyright © OASIS Open 2003. All Rights Reserved. Page 22 of 22

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Information on
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS
website. Copies of claims of rights made available for publication and any assurances of licenses
to be made available, or the result of an attempt made to obtain a general license or permission
for the use of such proprietary rights by implementors or users of this specification, can be
obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2003. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself does not be modified in any way, such as by removing the
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual
Property Rights document must be followed, or as required to translate it into languages other
than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

