
Web Services for Remote Portlets Specification Version 0.85 11/26/2002

Web Services for Remote Portlets
Specification
Working Draft 0.85, 26 November 2002

Document identifier: 5

WSRP_Specification-v0.85 (Word)

Location:

http://www.oasis-open.org/committees/wsia

http://www.oasis-open.org/committees/wsrp

Editors: 10

Alan Kropp, Epicentric, Inc. <akropp@epicentric.com>
Carsten Leue, IBM Corporation <cleue@de.ibm.com>
Rich Thompson, IBM Corporation <richt2@us.ibm.com>

Contributors:
Chris Braun, Novell <cbraun@silverstream.com> 15
Jeff Broberg, Novell <jbroberg@silverstream.com>
Mark Cassidy, Netegrity <mcassidy@Netegrity.com>
Michael Freedman, Oracle Corporation <Michael.Freedman@oracle.com>
Timothy N. Jones, CrossWeave <tim@crossweave.com>
Thomas Schaeck, IBM Corporation <schaeck@de.ibm.com> 20
Gil Tayar, WebCollage <Gil.Tayar@webcollage.com>

Abstract:

Integration of remote content and application logic into an End-User presentation has been a
task requiring significant custom programming effort. Typically, vendors of aggregating
applications, such as a portal, had to write special adapters for applications and content 25
providers to accommodate the variety of different interfaces and protocols those providers
used. The goal of this specification is to enable an application designer or administrator to pick
from a rich choice of compliant remote content and application providers, and integrate them
with just a few mouse clicks and no programming effort.

 30

This specification is a joint effort of two OASIS technical committees. Web Services for
Interactive Applications (WSIA) and Web Services for Remote Portlets (WSRP) aim to simplify
the integration effort through a standard set of web service interfaces allowing integrating
applications to quickly exploit new web services as they become available. The joint authoring
of these interfaces by WSRP and WSIA allows maximum reuse of user-facing, interactive web 35
services while allowing the consuming applications to access a much richer set of standardized
web services.

Web Services for Remote Portlets Specification 2

This joint standard layers on top of the existing web services stack, utilizing existing web
services standards and will leverage emerging web service standards (such as security) as
they become available. The interfaces are defined using the Web Services Description
Language (WSDL).

Status: 5

This draft is an early version of the public spec. Various concepts continue to be debated.
Points needing clarification as this evolves into the final specification are much appreciated and
may be emailed to Rich Thompson.

If you are on the wsia@lists.oasis-open.org or wsrp@lists.oasis-open.org list for committee 10
members, send comments there. If you are not on that list, subscribe to the wsia-
comment@lists.oasis-open.org or wsrp-comment@lists.oasis-open.org list and send comments
there. To subscribe, send an email message to wsia-comment-request@lists.oasis-open.org or
wsrp-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the
message. 15

The errata page for this specification is at
http://www.oasis-open.org/committees/wsrp/specification_v1_errata.html.

Copyright © 2001, 2002 The Organization for the Advancement of Structured Information
Standards [OASIS] 20

Web Services for Remote Portlets Specification 3

Table of Contents

1 Introduction ..8
1.1 Motivation...8
1.2 Actors ..9

1.2.1 Producer .. 9 5
1.2.2 Consumer ... 10
1.2.3 End-User ... 10

1.3 Typical Process Flow...10
1.4 Example Scenarios ...11

1.4.1 SimpleProducer .. 11 10
1.4.2 SophisticatedProducer ... 11
1.4.3 SimpleConsumer .. 11
1.4.4 SophisticatedConsumer... 11
1.4.5 Interaction between levels of sophistication ... 12

2 Terminology ...19 15

3 General Design Issues..19
3.1 Related Standards ..20

3.1.1 Existing Standards ... 20
3.1.2 Emerging Standards ... 20

3.2 Data Objects ...20 20

3.3 Lifecycles ...21
3.4 Scopes ..21
3.5 Types of Stateful Information ..21
3.6 Persistence and statefulness ..22
3.7 Sessions ...23 25

3.8 Producer Mediated Sharing ...23
3.9 Information Passing Mechanisms..23
3.10 Event Handling ...23
3.11 Two-step protocol ..23
3.12 Interaction Lifecycle States ..24 30

3.12.1 Assumptions: ... 24
3.12.2 State 0: Unknown .. 24
3.12.3 State 1: Known... 24
3.12.4 State 2: Active .. 24

3.13 Transport Issues ..25 35

4 Service Description Interface ..25
4.1 Data Structures ..25

4.1.1 Extension .. 25
4.1.2 LocalizedString Type .. 26
4.1.3 ResourceList Type ... 26 40

Web Services for Remote Portlets Specification 4

4.1.4 Resource Type .. 26
4.1.5 ResourceValue Type .. 26
4.1.6 RoleDescription Type ... 27
4.1.7 ServiceDescription ... 27
4.1.8 UserContext ... 28 5
4.1.9 RegistrationState .. 28
4.1.10 RegistrationContext ... 29
4.1.11 desiredLocales and sendAllLocales .. 29

4.2 getServiceDescription() Operation ..29

5 Markup Interface ..30 10

5.1 Data Structures ..30
5.1.1 SessionContext ... 30
5.1.2 RuntimeContext .. 31
5.1.3 EntityContext.. 31
5.1.4 CacheControl ... 32 15
5.1.5 Templates ... 32
5.1.6 MarkupParams .. 33
5.1.7 MarkupContext .. 35
5.1.8 MarkupResponse... 36
5.1.9 InteractionResponse ... 36 20
5.1.10 UpdateResponse.. 37
5.1.11 BlockingInteractionResponse .. 38
5.1.12 StateChange .. 38
5.1.13 UploadContext... 38
5.1.14 InteractionParams .. 39 25

5.2 getMarkup() Operation ..40
5.2.1 Caching of markup fragments.. 40

5.3 Interaction Operations ...40
5.3.1 performInteraction() Operation .. 40
5.3.2 performBlockingInteraction() Operation ... 41 30
5.3.3 Updating Persistent Entity State... 41

5.4 initCookie() Operation..42
5.5 releaseSessions() Operation ...43
5.6 ..43
5.7 Load Balancing ..43 35

5.8 Consumer Transitions across Bindings ...43
5.9 Stateful Entity Scenarios ...44

5.9.1 No State... 44
5.9.2 Navigational State Only.. 44
5.9.3 Local state .. 45 40

5.10 Modes ..46
5.10.1 “view” Mode.. 46
5.10.2 “edit” Mode .. 46
5.10.3 “help” Mode .. 46
5.10.4 “preview” Mode ... 46 45
5.10.5 Custom Modes .. 47

5.11 Window States ...47
5.11.1 “normal” Window State... 47

Web Services for Remote Portlets Specification 5

5.11.2 “minimized” Window State .. 47
5.11.3 “maximized” Window State ... 47
5.11.4 “solo” Window State .. 47
5.11.5 Custom Window States .. 47

6 Registration Interface ..48 5

6.1 Data Structures ..48
6.1.1 RegistrationData ... 48

6.2 register() Operation ..49
6.3 modifyRegistration() Operation ..49
6.4 deregister() Operation ..49 10

7 Entity Management Interface ...50
7.1 Data Structures ..50

7.1.1 MarkupType Type .. 50
7.1.2 EntityDescription ... 51
7.1.3 DestroyFailed ... 52 15
7.1.4 DestroyEntitiesResponse .. 53
7.1.5 Property Type .. 53
7.1.6 ResetProperty Type .. 53
7.1.7 PropertyList .. 54
7.1.8 PropertyDescription ... 54 20
7.1.9 ModelDescription .. 55

7.2 getEntityDescription() Operation..55
7.3 cloneEntity() Operation ..55
7.4 destroyEntities() Operation ..56
7.5 setEntityProperties() Operation ..56 25

7.6 getEntityProperties() Operation..57
7.7 getEntityPropertyDescription() Operation ...57

8 Security ..58
8.1 Authentication of Consumer ..58
8.2 Confidentiality & Message Integrity...58 30

8.3 Access control ..59
8.4 Producer Roles ..59

8.4.1 Role Assertions ... 59
8.4.2 Standard Roles ... 59

9 Markup ..60 35

9.1 Encoding ..60
9.2 URL Considerations ...60

9.2.1 Consumer URL Writing .. 62
9.2.2 Producer URL Writing ... 65
9.2.3 BNF Description of URL formats .. 67 40
9.2.4 Method=get in HTML forms .. 67

9.3 Namespace Encoding ...67

Web Services for Remote Portlets Specification 6

9.3.1 Consumer Rewriting.. 68
9.3.2 Producer Writing ... 68

9.4 Markup Fragment Rules ...68
9.4.1 HTML .. 68
9.4.2 XHTML ... 69 5
9.4.3 XHTML Basic ... 69

9.5 CSS Style Definitions ...70
9.5.1 Links (Anchor) ... 70
9.5.2 Fonts ... 70
9.5.3 Messages .. 70 10
9.5.4 Sections ... 71
9.5.5 Forms ... 71
9.5.6 Menus ... 72

10 User Information ..73
10.1 Passing User Information ...74 15

10.2 User Identity ..74

11 Data Structures ..74
11.1 BlockingInteractionResponse Type ..75
11.2 CacheControl Type ...75
11.3 ClientData Type ...75 20

11.4 EntityContext Type ...75
11.5 EntityDescription Type ...75
11.6 Extension Type ..75
11.7 DestroyFailed ..75
11.8 DestroyEntitiesResponse ...75 25

11.9 Handle Type..75
11.10 InteractionParams Type ...76
11.11 InteractionResponse Type ..76
11.12 LocalizedString Type...76
11.13 MarkupContext Type ...76 30

11.14 MarkupParams Type ...76
11.15 MarkupResponse Type ..76
11.16 MarkupType Type ..76
11.17 ModelDescription Type ...77
11.18 Property Type ..77 35

11.19 PropertyDescription Type ..77
11.20 PropertyList Type ...77
11.21 RegistrationContext Type ..77
11.22 RegistrationState Type ...77
11.23 RegistrationData Type ..77 40

Web Services for Remote Portlets Specification 7

11.24 ResetProperty Type...77
11.25 Resource Type ..77
11.26 ResourceList Type ...77
11.27 ResourceValue Type...78
11.28 RoleDescription Type..78 5

11.29 RuntimeContext Type ...78
11.30 ServiceDescription Type ..78
11.31 SessionContext Type ..78
11.32 StateChange Type ...78
11.33 Templates Type ..78 10

11.34 UploadContext Type..78
11.35 UserContext Type ..78
11.36 User Profile Types ..79

11.36.1 UserName Type ... 79
11.36.2 EmployerInfo Type .. 80 15
11.36.3 LocationInfo Type .. 80
11.36.4 Address Type .. 80

12 Producer Roles..81

13 Constants..81

14 Fault Messages ..82 20

15 WSDL Interface Definition...84

16 References ...85
16.1 Normative...85
16.2 Non-Normative ...85

Appendix A. Glossary ..86 25

Appendix B. Acknowledgments ..89

Appendix C. Revision History ..91

Appendix D. Notices...92

Web Services for Remote Portlets Specification 8

1 Introduction
Both Web Services for Interactive Applications (WSIA) and Web Services for Remote Portlets
(WSRP) define a web service interface for accessing and interacting with user-facing,
interactive presentation-oriented web services.

 5

This specification defines the joint WSIA/WSRP interfaces. It is based on the requirements
gathered by both committees and on the concrete proposals to both committees.

Scenarios that motivate WSRP/WSIA functionality include:

• Portal servers providing portlets as user-facing web services that can be used by 10
aggregation engines.

• Portal servers consuming user-facing web services provided by portal or non-portal
Producers and integrating them into a portal framework.

However this description also applies to non-portal environments, mostly identified by the WSIA 15
use cases 1. For a detailed overview of Web Services, Portal Environments and the application
of WSRP to these environments, please refer to the [WSRP Whitepaper] and additional
documents at http://www.oasis-open.org/committees/wsrp/.

This specification accounts for the fact that Producers (web services conforming to this 20
specification) and Consumers (applications consuming Producers in a manner
conforming to this specification) may be implemented on very different platforms, be
it as a Java/[Boyer-Moore] http://www.cs.utexas.edu/users/moore/best-ideas/string-
searching/

[DIME] http://www.ietf.org/internet-drafts/draft-nielsen-dime-02.txt 25
[J2EE] based web service, a web service implemented on Microsoft's [JSR168]

http://www.jcp.org/jsr/detail/168.jsp

[.Net] platform or a portlet published directly by a portal [A100]. Special attention has been
taken to ensure this platform independence.

 30

These web services are built on standard technologies, including [SSL/TLS]
http://www.ietf.org/html.charters/tls-charter.html

[URI/URL] http://www.ietf.org/rfc/rfc2396.txt

[WSDL] and [SOAP], and will leverage future applicable Web Service standards, such as WS-
Security and WS-Policy (see section 3.1) [A102]. 35

1.1 Motivation
Portals render and aggregate information from different sources and provide it in a compact
and easily consumable form to an End-User. Typically, this information consists of markup
fragments that are surrounded by a decoration that contain Portal-inserted controls (e.g.
minimize and maximize buttons). The whole construct is commonly referred to as a “portlet” 40
and the content as “markup” or “markup fragment”.

1 http://www.oasis-open.org/committees/wsia/use_cases/index.shtml

Web Services for Remote Portlets Specification 9

Among typical sources of information are web services. Traditional data-oriented web services,
however, require aggregating applications to provide specific presentation logic for each of
these web services. Furthermore, each aggregating application communicates with each web
service via its unique interface. This approach is not well suited to dynamic integration of 5
business applications and content as a plug-and-play solution.

This specification solves this problem by introducing a user-facing web service interface that
allows the inclusion of and interaction with content from a web service. Such a user-facing web
service provides both application logic and presentation logic. This specification provides a 10
common protocol and a set of interfaces for all user-facing web services. Thus, aggregating
applications can easily adopt these web services by utilizing generic proxy code.

1.2 Actors
This protocol describes the conversation between Producers and Consumers on behalf of End-
Users (clients of the Consumer). Producers provide user-facing web services that are able to 15
render markup fragments and process user interaction requests. Consumers use these web
services to present the generated markup to End-Users and manage the user’s interaction with
the markup.

1.2.1 Producer
Producers are modeled as containers of the actual content generators (e.g. portlets from the 20
portal scenario). These content generators are called entities by this specification. The
Producer provides a set of interfaces, including:

• Self description: A required interface that allows Consumers to find out the capabilities of
the Producer and about the entities it hosts, including the metadata necessary for a
Consumer to properly interact with each entity. 25

• Markup: A required interface used to render and interact with markup fragments.

• Registration: An optional interface used to establish a relationship between a Producer
and a Consumer (e.g. for billing or book-keeping purposes).

• Entity management: An optional interface that grants access to the life-cycle of the
hosted entities. This interface also includes Property management, which enables 30
programmatic access to an entity’s persistent state.

In order to allow different levels of sophistication for both the Producer and Consumer, parts of
this functionality are optional. This specification contains various examples of how a Producer
might implement particular functionality for varying levels of sophistication and with regards to 35
implementing some of the optional portions of the protocol.

A particular entity is identified with an entityHandle. The Consumer uses entityHandles
throughout the communication to address and interact with entities via the Producer. The
entities a Producer publishes as available for all Consumers to interact with are called 40
“Producer_Offered_Entities”. Producer_Offered_Entities are pre-configured and not modifiable
by Consumers.

Web Services for Remote Portlets Specification 10

If the Producer chooses to expose the entity management interface, it is allowing Consumers to
clone the entities offered by the Producer and customize those cloned entities. Such a uniquely
configured entity is called a “Consumer_Configured_Entity”. Like Producer_Offered_Entities,
an entityHandle is used to address Consumer_Configured_Entities. This entityHandle is
both; 1) invariant until released, and 2) unique within and scoped by the supplied 5
registrationHandle.

Besides entity management, the Producer optionally manages Consumer registrations . The
Producer may require Consumers to register prior to discovering and interacting with entities. A
registration represents a relationship (often including both technical and business aspects) 10
between the Consumer and Producer.

1.2.2 Consumer
A Consumer is an intermediary system that communicates with user-facing web services (i.e.
Producers and the entities they host) on behalf of its users. It gathers and aggregates the
markup delivered by the entities and presents the aggregation to the End-User. One typical 15
Consumer is a portal, which mediates the markup and the interaction with this markup between
End-Users and user-facing web services. Another typical Consumer is an e-Commerce
application that aggregates manufacturer-provided content into its own pages.

While this specification is neutral as to the markup used to represent the user interface to the 20
End-User, we note that general performance concerns favor markup technologies that push the
processing of user interface logic, such as the validation of End-User input, as far toward the
user agent as possible. XForms2 represents a markup technology that can be leveraged to
address these performance concerns.

1.2.3 End-User 25

The main purpose of a Consumer that aggregates content from various Producers/entities is
the preparation and presentation of markup to an End-User. In addition, the Consumer needs
to manage the processing of interactions with that markup in order to properly correlate the
interactions with the stateful environment that produced the markup. This specification defines
the operations, getMarkup(), processInteraction(), and processBlockingInteraction(), for 30
this purpose:

• getMarkup() is invoked to obtain the markup fragments from an entity. The markup
returned depends on things such as the entity’s current state, the user context, the
markup type requested, etc.

• performInteraction() is invoked when an End-User interacts with the markup from the 35
entity. This interaction may result in a state change of the entity, which often causes
changes in the markup returned on a subsequent getMarkup() call.

• performBlockingInteraction() carries all the same semantics as performInteraction(),
but in addition causes the Consumer to block both the streaming of its own markup to the
End-User and the gathering of markup from other entities until this operation finishes. 40

1.3 Typical Process Flow
While some of the following steps are optional, the typical flow of interactions between these
actors is:

2 http://www.w3.org/TR/xforms/

Web Services for Remote Portlets Specification 11

1. Establishment of a relationship between the Consumer and Producer. This may involve
the exchange of information regarding capabilities, security requirements or other
business and/or technical aspects of the relationship.

2. Establishment of a relationship between the Consumer and End-User. This permits the
Consumer to authenticate the End-User and may allow the End-User to personalize the 5
aggregated pages presented by the Consumer.

3. Production of aggregated pages. This typically involves the Consumer defining some
base level of page design (often with customized entities) and may involve further
customization of those pages by the End-User.

4. Request for a page. This typically results when the End-User directs an agent (e.g. 10
browser) to the Consumer’s URL, but also occurs indirectly as a result of processing an
interaction with the markup of a previous page.

5. Processing interactions. Some End-User interactions with the markup of a page will
result in an invocation on the Consumer to provide some logical function. The
Consumer will process this invocation to determine the Producer/entity that the 15
interaction has targeted and the nature of the invocation on that entity that has been
requested. Since the resulting invocation of that entity is likely to change its state (and
may also change the state of other entities), the Consumer must also treat this as an
indirect request for a page and thereby loop back to step 4.

6. Destruction of relationships. Much as new relationships are formed, at times 20
relationships end. The protocol provides means by which the Producer and Consumer
may inform each other that the relationship (or some portion of it) has ended and that
related resources may be cleaned up.

1.4 Example Scenarios
This specification supports Consumers and Producers of various levels of sophistication 25
interacting with one another. While not exhaustive, the following scenarios represent examples
of the broad range of possibilities.

1.4.1 SimpleProducer
Does not support registration or persistence. May only offer one type of entity.

Examples: 30

• A flight schedule display that is publicly available. Neither user registration nor
persistent state is required. The entity may, however, maintain interaction state using a
session.

• News feed web service that allows the user to browse news topics.

1.4.2 SophisticatedProducer 35

Requires Consumers to register and supply the returned reference on all future invocations.
Provides metadata relevant for interacting with the web service. Supports a number of entities,
which publish metadata that declare the supported markup types and properties for interacting
with the entity.

Example: 40

• Portal server that exposes portlets available through a compliant service endpoint.
Each portlet may contain End-User and Consumer-specific settings and information
that are persisted on the portal server.

Web Services for Remote Portlets Specification 12

1.4.3 SimpleConsumer
Does not persist any registration/entity information across restarting of the Consumer. Have
explicit declarations for binding to and interacting with a set of Producer services.

1.4.4 SophisticatedConsumer
Supports the persistence of Producer, Consumer and End-User related data. Supports single 5
sign on for its End-Users (may require End-User to trust Consumer with sign-on data). May
support discovery of new Producers by either Administrators and/or End-Users.

Example:

• Typical portal server that access WSIA/WSRP services for content aggregated onto
pages. 10

1.4.5 Interaction between levels of sophistication
The following illustrate how the interaction between the various parties (End-Users, a
Consumer and a Producer) might flow for each of the combinations of these example
scenarios.

1.4.5.1 Sophisticated Consumer / Sophisticated Producer (stateful 15
+configurable)

These interactions span the entire protocol as this Consumer/Producer pair both support and
exploit as much of the protocol as possible.

1.4.5.1.1 Administration

Administration involves both the technical and business sides of the relationship between 20
the Consumer and Producer. In particular it involves establishing the relationship, cloning
the entities the Producer offers for the Consumer to configure and eventually destroying
both those configured entities and the relationship itself. The protocol has operations for
each of these tasks as depicted below.

Web Services for Remote Portlets Specification 13

1.4.5.1.2 Configuration

Configuration can occur either using an entity-generated user interface or a consumer-
generated interface. First we consider the entity-generated case.

 5

Web Services for Remote Portlets Specification 14

The other possibility the protocol enables is consumer-generated interfaces that interact
with an entity’s properties through their description and current values. Note that the
Producer might not expose all configurable items as properties.

 5

1.4.5.1.3 End-User Interactions

The flow of End-User interactions through the Consumer and Producer using the protocol is
depicted below.

 10

Web Services for Remote Portlets Specification 15

1.4.5.2 Sophisticated Consumer / Simple Producer (stateful)

1.4.5.2.1 Administration

Since the Simple Producer example does not offer the registration interface, any aspect of
registration that is required occurs outside the protocol. Other portions of the protocol
remain unchanged, though invocations such as cloneEntity() now return their full state to 5
the Consumer as the Producer does not offer persistence to its entities. Producers
choosing this level of functionality should note the security implications of this choice and
be implemented accordingly.

1.4.5.2.2 Configuration 10

Configuration can occur either using an entity-generated user interface or a consumer-
generated interface. First we consider the entity-generated case.

Web Services for Remote Portlets Specification 16

The other possibility the protocol enables is consumer-generated interfaces that interact
with an entity’s properties through their description and current values.

 5

1.4.5.2.3 End-User Interactions

The flow of End-User interaction through the Consumer and Producer using the protocol is
depicted below.

 10

Web Services for Remote Portlets Specification 17

1.4.5.3 Simple Consumer / Simple Producer (no state)
The interactions between this pair of actors are limited to the generation of markup based on
the state carried by the request for markup itself. In general, entities of this type encode
everything required to generate the markup on the URL causing the invocation of
getMarkup(). Often these entities involve only a single page, but could provide links on that 5
page that cause the generation of a completely different markup based on the parameters
passed when the link is activated. Invocations of performInteraction() and
performBlockingInteraction() MAY happen in this scenario if the entity impacts some
backend system as a result of the invocation, as this impact could change the markup some
other entity will generate. This is depicted below: 10

1.4.5.4 Simple Consumer / Simple Producer (with state)
In addition to the previous example, this pair of actors manage the processing of runtime state
with the Producer managing that state and the Consumer supplying the means to reference
that state when processing End-User interactions. 15

1.4.5.4.1 End-User Interactions

The flow of End-User interaction through the Consumer and Producer using the protocol is
depicted below.

Web Services for Remote Portlets Specification 18

1.4.5.5 Simple Consumer / Sophisticated Producer (stateful+configurable)
While this Consumer example offers minimal services to the Producer, a sophisticated
Producer is able to provide a rich set of functionality to the entities it hosts.

1.4.5.5.1 Administration

Since the Simple Consumer example does not persist registration information, the 5
registration aspect of the relationship with the Producer must be created and destroyed on
each set of interactions.

1.4.5.5.2 End-User Interactions

The flow of End-User interaction through the Consumer and Producer using the protocol is 10
depicted below.

Web Services for Remote Portlets Specification 19

2 Terminology
The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD
NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as
described in [Character Sets] http://www.iana.org/assignments/character-sets 5

[Namespaces] http://www.w3.org/TR/REC-xml-names/

[RFC2119].

Compliance: Mandatory – relevant to legal rules, regulations or laws. Compliancy is the act of
complying with a specification and/or standard. Example: ISO 9001. IEEE defines as complying 10
with laws and regulations.

Conformance: Not mandatory – ISO/IEC Guide 2 defines conformance or conformity as
fulfillment of a product, process or service of specified requirements. Note that many times
providers use “comply” to a standard to sidestep because they don’t actually “conform” to a 15
standard. Reasons they do not “conform” often include the standard is not approved yet or that
the provider does not actually meet the standard’s conformance requirements.

Cross references to the [P3P] http://www.w3.org/TR/P3P/

[Requirements] developed by both the WSIA and WSRP technical committees are designated 20
throughout this specification by a hyperlink to the requirement contained where the requirement
number is enclosed in square brackets (e.g. [A100]).

3 General Design Issues
The major design goals of this specification are simplicity, extensibility and efficiency.

Web Services for Remote Portlets Specification 20

3.1 Related Standards
This specification seeks to leverage both existing and emerging web service standards
whenever possible. The following are particularly noted as relevant standardization efforts:

3.1.1 Existing Standards
WSDL – Defines how abstract interfaces and their concrete realizations are defined. 5

Schema – Defines how types are defined and associated with each other.

Namespaces – Defines how XML Namespaces are declared and used.

SOAP – Defines how to invoke remote interfaces.

SSL/TLS – Defines secure transport mechanisms.

URL – Defines URI (includes URL) syntax and encoding 10

Character Sets - Character set encoding

XML Digital Signatures – Defines how portions of an XML document are digitally signed.

SAML – Defines how authentication and authorization information may be exchanged.

XACML – Defines a syntax for expressing authorization rules.

P3P – Defines how a Producer/entity may publish its privacy policy so that a Consumer could 15
enforce End-User privacy preferences.

3.1.2 Emerging Standards
XML Encryption – Defines how to encrypt/decrypt portions of an XML document.

WS-Security – Defines how document level security standards apply to SOAP messages.

RLTC – Defines a syntax for expressing authorization rules. 20

XCBF – Defines how to exchange biometric data.

WS-Attachments - Defines how to encapsulate a SOAP message and zero or more
attachments within a DIME message.

WS-I.org - Defines profiles for use of web services standards such that interoperability is
maximized. 25

DIME – A lightweight, binary message format that encapsulates one or more resources in a
single message construct.

JSR168 – Java Community Process for standardizing a portlet API.

3.2 Data Objects
It is often necessary to pass data to operations. Typed data objects are defined as the transport 30
mechanism wherever possible. The Schema definitions of these structures includes the <any
namespace=”##other”/> construct as a standard means for data extensions. Producers/entities
employing these extensions SHOULD provide typing information for the extended data items
[A505]. The preferred means for this typing information includes using the schema defined3
“type” attribute to reference the correct schema on each such extension element, and use of 35
either the Producer’s WSDL (default) or a “schemaLocation” attribute as per standard schema
usage to declare the details of all non-simple types. This allows Consumers to provide type
checking outside of that done by typical interface layers. This specification introduces various
data structures as they are needed for operations and then summarizes them all in section 11.

3 http://www.w3.org/TR/xmlschema-1/#xsi_type

Web Services for Remote Portlets Specification 21

3.3 Lifecycles
“Lifecycle” is a term used to describe how items become available, are interacted with, and
finally are destroyed. The two lifecycles included in this specification are:

Persistent: This lifecycle starts with an explicit operation to create the item and ends only with
an explicit operation to destroy the item. Examples include the registrationHandle and 5
Consumer_Configured_Entities.

Transient: This lifecycle can either start with an explicit operation OR as a side effect of some
other operation [A204]. The item created is transient and no explicit operation is required to
destroy it. This specification generally includes an expires element (a duration in seconds)
whenever such an item may be created so that any resources at the Consumer related to the 10
item may be reclaimed at an appropriate time. An example of this is session creation.

3.4 Scopes
Scope is a term used to describe when something is valid. An item often scopes both the
usage and lifecycle of other items. Scopes that are referenced in this specification are:

Registration scope: This scope is initiated when a Consumer registers with a Producer and 15
ends when the handle referring to that registration is released. As such it encompasses any
entities the Consumer configures and any interactions with the entities of the Producer. From
the Producer’s perspective, this scope has a persistent lifecycle, as the Consumer MUST
explicitly invoke deregister() to terminate a registration scope. This scope is referenced
throughout the protocol using a registrationHandle. The Producer optionally exposes this 20
scope by declaring support for the Registration portType. If the Producer exposes the
Registration portType, then the Consumer MUST respect the registration requirements
established by this specification.

Entity scope: This scope is initiated when an entity is cloned and as such will be encapsulated
by a registration scope (which will be null if the Producer does not support registration). This 25
scope ends when the reference to the entity is explicitly released. As such it encompasses all
interactions with the entity. This scope has a persistent lifecycle and is referenced using an
entityHandle. The Producer optionally exposes this scope by declaring support for the
EntityManagement portType. If the Producer exposes the EntityMangement portType, then the
Consumer MAY clone the Producer_Offered_Entities and uniquely configure them for its own 30
use. The Consumer MAY also choose to directly use the Producer_Offered_Entities.

Session scope: This scope is initiated when an entity needs to store transient state on the
Producer and is always encapsulated by the entity’s scope. This scope ends when the session
holding that state is released (either via an explicit operation on the Producer OR via a timeout
mechanism). As such it encompasses a set of operation invocations in which the Consumer 35
has supplied the refined entity handle (Producer-generated) that also encodes the session.
This scope has a transient lifecycle and is established by the Producer returning a new
SessionContext. The Consumer MUST respect this new scope as described in section 0.

3.5 Types of Stateful Information
Because WSIA and WSRP are connectionless protocols, the Producer must be able to return 40
information to the Consumer, with the understanding that this information will be sent back to it
[A200]. Three types of stateful information exist:

Web Services for Remote Portlets Specification 22

Navigational state: This is the state that allows the current page to be correctly generated,
including on a page refresh. Web applications typically store this type of state in the URL so
that both page refresh and bookmarked pages will generate what the End-User expects. The
Producer returns this state to the Consumer as navigationalState such that it may satisfy
these expectations of the End-User. To supply the bookmarking capability End-Users expect, 5
the Consumer may store this state, or a reference to it, in the URL. The Consumer may also
choose to not supply this functionality to its End-Users.

Transient state: This is state stored on the Producer related to a sequence of operations (for
example, an e-Commerce site may store a shopping cart in its transient state). Once this type
of state is generated, the Producer returns a reference to it and the Consumer must return this 10
reference on future invocations as described in section 5.1.2. This type of state will be referred
to as a Session (similar to an HTTP Session) and an opaque reference to one is a
sessionHandle.

Persistent state: This is state that the Producer persists until either the Consumer or Producer
explicitly discards it. This specification defines two kinds of persistent state with each referred 15
to via a handle that MUST remain invariant once the Producer supplies it to the Consumer.
This simplifies a number of issues related to Consumer processing when changes occur
relative to a particular persistent state reference. These two kinds of persistent state are:

Consumer Registration: Represents a relationship between a Consumer and
Producer. Data that is part of the Consumer registration state impacts all invocations 20
within the scope of the registration. The opaque reference to Consumer registration
state is referred to as a registrationHandle.

Entity: In addition to the entities a Producer offers for all Consumers to use, the ability
of a Consumer to create a unique configuration of one of those entities for its own use
is defined. The opaque reference to a configured entity is referred to as an 25
entityHandle.

3.6 Persistence and statefulness
This specification does not mandate that either the Producer or the Consumer is stateful
[A201]. In the getMarkup() and performInteraction() calls, the navigationalState field
carries the state necessary for the entity to render the current markup to be returned to the 30
Consumer. This enables the Consumer to reasonably support page refresh and bookmarking
by the End-User. If the Producer utilizes local state, then it stores the conversational state in
an implementation-dependent manner, and returns a sessionHandle to the Consumer for use
during the lifetime of the session.

 35

If the Consumer is operating in a stateless manner, then it may choose the way to achieve this.
In the case of HTTP transport the Consumer may employ standard HTTP mechanisms
(cookies or URL-rewriting) to push the navigational state or sessionHandle out to its client. If
operating in a stateful manner, the Consumer may employ any number of persistence/caching
mechanisms [A202]. 40

The nature of the conversation between the client and the Consumer, for purposes of this
section, is out of scope [A304]. This does not mean that information about the client, including
user profile data, is opaque to the Producer. There are many use cases for which user identity
must be conveyed to the Producer [A501][A606]. Also, a stateful Producer MUST relate its 45
private conversational state with the userContext the Consumer supplies.

Web Services for Remote Portlets Specification 23

3.7 Sessions
In addition to any persistent data, each entity may use a runtime data area (Session). An entity
MAY establish such a session, and return a sessionHandle to reference it within the context of
the underlying entityHandle in operations such as getMarkup(), performInteraction(), and
performBlockingInteraction().In general, the session between a Consumer and an entity at 5
the Producer maps to a client session with the Consumer.

3.8 Producer Mediated Sharing
Producers may implement a sharing mechanism through techniques such as a shared area
within sessions for entities to use. The Producer indicates which entities share such data areas
via the groupID parameter in the entity metadata. The Consumer MUST respect this grouping 10
as detailed in section 5.4.

Shared data areas introduce implementation challenges in clustered environments. In such an
environment, multiple concurrent requests may be routed to different cluster nodes. The
Producer must ensure that entities with a common shared data area have access to the shared 15
data even in such situations. Possible implementation choices include:

• The Producer stores the shared data in a database and accesses the same database
from all cluster nodes.

• In the case of HTTP transport, a Producer can use HTTP sessions to store the shared
data4. It must implement a mechanism that ensures only one shared HTTP session is 20
established for each user of a set of entities accessing the shared HTTP session, even
for concurrent requests.

• Requiring Consumer assistance in establishing appropriate routing information such
as that detailed in section 5.4.

3.9 Information Passing Mechanisms 25

All information passing enabled by this specification is between exactly one Producer and one
Consumer. Implementation of data sharing, including both policy and side effects, within a
particular Producer service is outside the scope of this specification.

3.10 Event Handling
Event handling is explicitly not part of this version of the specification. It might be included in a 30
future version of WSRP.

3.11 Two-step protocol
This specification attempts to account for both isolated interactions between a Consumer and a
Producer, and also those interactions that may cause state changes in other entities the
Consumer aggregates from the same Producer [A503]. Common causes of such shared state 35
include use of a common backend system (e.g. database) and Producer-mediated data
sharing. For these reasons, there is a “two-step” capability built into the protocol.

4 http://www.javaworld.com/javaworld/jw-12-2000/jw-1221-servlets.html

Web Services for Remote Portlets Specification 24

In this two-step interaction, the Consumer first invokes either performInteraction() or
performBlockinInteraction() on the entity whose markup the End-User interacted with. In the
case of performBlockingInteraction(), the Consumer MUST block all other invocations within
the context of the initiating request from the client of the Consumer until either the receipt of a
response or the invocation fails (e.g. times out). The Consumer then invokes getMarkup() on 5
the entities being aggregated.

Interaction semantics are well-defined across the spectrum of interaction styles supported in
the protocol. In other words, the results of the Consumer invoking
performBlockingInteraction() on an entity, regardless of whether the interaction may have 10
side effects on other entities at the Producer, is well-defined independent of the order of
getMarkup() invocations on the entities. Entities specifying the invocation of
performInteraction() (i.e. non-blocking state changes) when URLs are activated from their
markup MUST ensure this same determinism in the resulting aggregated markup.

3.12 Interaction Lifecycle States 15

This section defines the state transitions for the relationship between a Producer and a
Consumer.

3.12.1 Assumptions:
In general the Producer is a web service endpoint exposing one or more entities that generate
markup and handle interactions with that markup. How these entities are implemented and 20
managed is not defined by this specification, though it is anticipated that the model of how
requests are conveyed to the entities by the Producer will be strongly influenced by this
specification.

3.12.2 State 0: Unknown
The Consumer has no knowledge that the Producer exists. From this state the Consumer 25
transitions to the Known state via discovery; namely by learning the location of the Producer’s
WSDL. Examples of mechanisms for discovering this include UDDI query, WSIL declarations or
other ad hoc mechanisms [A110].

3.12.3 State 1: Known
In this state the Consumer knows the location and interfaces of the Producer (i.e. the 30
Producer’s WSDL). From this state the Consumer can transition back to the Unknown state,
but typically transitions to the Active state. This is the earliest state at which the Consumer
MAY request a Producer to describe itself [A104]. This ability is present in all states other than
Unknown.

3.12.4 State 2: Active 35

This specification is primarily concerned with what can happen when the Producer is in the
Active state, as this is when Consumers interact with the Producer. It is possible to transition
back to the Known state by releasing all resources related to the relationship with the
Producer. The Consumer is free to perform this state transition multiple times.

Web Services for Remote Portlets Specification 25

3.13 Transport Issues
Since the transport layer is often used to store various pieces of information (e.g. J2EE load
balancing depends on the JSessionID cookie and HTTP transport), and these pieces of
information often will pertain to a userContext rather than the Consumer, Consumers that
manage transport layer issues, such as cookies, MUST return them to the Producer only for 5
subsequent invocations using the same userContext. We note that failure to properly do this
management will eliminate the ability to use Producers that set requiresInitCookie to a
value other than “none”.

4 Service Description Interface
A Producer may be discovered through mechanisms such as [P3P] 10

http://www.w3.org/TR/P3P/
[Requirements] http://www.oasis-open.org/committees/wsia/documents/Requirements2002-

09-17.html
[RLTC] http://www.oasis-open.org/committees/rights/
[SAML] https://www.oasis-open.org/committees/security/ 15
[UDDI] or [WS-Attachments] http://www-

106.ibm.com/developerworks/webservices/library/ws -attach.html
[WS-I.org] http://www.ws -i.org/

[WSIL], which also provide information concerning the capabilities of the service. Other
discovery mechanisms (e.g. emailed URL to a properly enabled browser) do not expose these 20
capabilities. The getServiceDescription() operation provides a discovery mechanism-agnostic
means for a Consumer to ascertain a Producer’s or entity’s capabilities [A110]. This interface is
required of all Producers to provide a well-defined means for Consumers to ascertain the
requirements to register or use the Producer.

4.1 Data Structures 25

The normative definitions for all data structures are contained in the WSDL referenced in
section 15. For the convenience of the reader, this non-normative section uses an IDL like
syntax to describe these structures, where the leading [R] indicates a field is required and [O]
indicates it is optional. The operations in this section introduce the following data structures:

4.1.1 Extension 30

The Extension structure contains the payload extension mechanism for vendor and application
extensions. This allows arbitrary elements from other namespaces to be sent as part of
containing data structures. Each such extension MUST declare its type using the schema-
defined “type” attribute5. We would encourage these to either be of type xsd:string or be
explicitly typed in a WSDL file that carries the relevant type definitions so that Consumers MAY 35
prepare the appropriate serializer/deserializer. The other option is for each message to connect
the extension to a type declared in a schema using the “schemaLocation” attribute as used by
schema. Consumers and Producers are NOT REQUIRED to process information supplied
using these extension elements.

Extension 40
 [O] Object any[]

Members:

5 http://www.w3.org/TR/xmlschema-1/#xsi_type

Web Services for Remote Portlets Specification 26

• any: A schema declaration that implementations MAY choose to extend this structure
provided those extensions come from a different namespace.

4.1.2 LocalizedString Type
This LocalizedString structure describes both the value for a particular locale and the
resource name that MAY be used to extract the value for other locales from a ResourceList. 5

 LocalizedString
 [R] string xmlLang
 [R] string resourceName
 [R] string value

Members: 10

• xmlLang: The locale for this supplied localized value. This is carried in the WSDL
using the xml:lang attribute.

• resourceName: The name assigned to this localized string for dereferencing into a
ResourceList for values from other locales.

• value: The value for this localized string in the declared locale. 15

4.1.3 ResourceList Type

This is an array of Resource structure, each of which carries the values for a localized resource
in various locales.

 ResourceList
 [R] Resource resources[] 20
 [O] Extension extensions[]

Members:

• resources: Each member of this array provides the localized values for a resource.

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace. 25

4.1.4 Resource Type

The Resource structure carries the values for a resource in a set of locales.

 Resource
 [R] string resourceName
 [R] ResourceValue values[] 30
 [O] Extension extensions[]

Members:

• resourceName: The name of the resource for which this is a list of localized values.

• values: Each member of this array provides the value for the resource in a locale.

• extensions: A mechanism implementations MAY choose to use for extending this 35
structure provided those extensions come from a different namespace.

4.1.5 ResourceValue Type
This structure provides the value of a resource for a locale.

 ResourceValue
 [R] string xmlLang 40

Web Services for Remote Portlets Specification 27

 [R] string value
 [O] Extension extensions[]

Members:

• xmlLang: The locale for this localized value. This is carried in the WSDL using the
xml:lang attribute. 5

• value: The value for this localized string in the declared locale.

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace.

4.1.6 RoleDescription Type
This structure is used to describe the roles a Consumer MAY assert for an End-User when 10
interacting with the entities at the Producer. The Consumer MUST NOT assert a role for which
no RoleDescription was part of the Producer’s ServiceDescription. Entities MUS T NOT
declare support for roles that are not part of the Producer’s ServiceDescription. Note that
roles are Producer-wide and therefore are inherently shared by the Producer’s entities.

 RoleDescription 15
 [R] string name
 [R] LocalizedString description
 [O] Extension extensions[]

Members:

• name: The name for this role. Preferred form for this name is a URI such that it is 20
definitively namespaced.

• description: A localized, free form description of the role. Expected use of this field
is for display at the Consumer to someone who will provide a mapping to Consumer
supported roles.

• extensions: A mechanism implementations MAY choose to use for extending this 25
structure provided those extensions come from a different namespace.

4.1.7 ServiceDescription

The ServiceDescription structure contains a set of fields that describe the offered services of
the Producer.

 ServiceDescription 30
 [R] EntityDescription offeredEntities[]
 [O] RoleDescription roleDescriptions[]
 [O] string requiresInitCookie
 [O] boolean requiresRegistration
 [O] ModelDescription registrationPropertyDescription 35
 [O] ResourceList resourceList
 [O] Extension extensions[]

Members:

• offeredEntities: An array of structures (defined in Section 7.1.2) containing the
metadata for the Producer_Offered_Entities. 40

• roleDescriptions: An array of role description structures as defined in Section
4.1.6. This array MUST include an entry for any role the Producer is willing to have the
Consumer assert for an End-User, including if the roles named by this specification are
supported.

Web Services for Remote Portlets Specification 28

• requiresInitCookie: A string (default value = “none“) indicating whether or not the
Producer requires the Consumer to assist with cookie support of the HTTP protocol.
Defined values include:

o none: The Producer does not need the Consumer to ever invoke initCookie().

o perUser: The Consumer MUST invoke initCookie() once per user of the 5
Consumer, and associate the returned cookie with subsequent invocations on
behalf of that user.

o perGroup: The Consumer MUST invoke initCookie() once per unique groupID
from the EntityDescriptions for the entities it is aggregating on a page for
each user of the Consumer, and associate the returned cookie with subsequent 10
invocations on behalf of that user targeting entities with identical groupIDs.

• requiresRegistration: A boolean (default value = “true”) indicating whether or not
the Producer requires Consumer registration. If requiresRegistration is set to
“false” then it MUST be valid to pass null for the registrationHandle field to all
operations with the registrationContext parameter. 15

• registrationPropertyDescription: Property descriptions for what may and must
be supplied during registration.

• resourceList: This is an array of Resource structures, each of which carries the
values for a localized resource in various locales.

• extensions: A mechanism implementations MAY choose to use for extending this 20
structure provided those extensions come from a different namespace.

4.1.8 UserContext

The UserContext structure supplies End-User specific data to operations. Note that this does
not carry user authentication type information (e.g. userID / password) as quite flexible
mechanisms for communicating this information are being defined elsewhere (e.g. WS-Security 25
(see section 3.1.2) defines how to carry User Information in a SOAP header).

 UserContext
 [R] string userContextID
 [O] string producerRoles[]
 [O] UserProfile profile 30
 [O] Extension extensions[]

Members:

• userContextID: A string that MAY be used as a reference to the user and that MUST
remain invariant for the duration of a Consumer’s registration. This key is a token that
the Consumer supplies to uniquely identify the UserContext. 35

• producerRoles: An array of strings, each of which specifies an Producer-defined role
which the Consumer authorizes for the End-User relative to the current operation. See
the discussion of roles in section 8.4.

• profile: End-User profile data structure as defined in section 11.36. Note that while
the UserContext structure is passed to many operations, only the interaction oriented 40
operations need this optional field to be supplied.

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace.

Web Services for Remote Portlets Specification 29

4.1.9 RegistrationState

The RegistrationState structure contains fields related to a particular registration of a
Consumer with a Producer. It is returned by the modifyRegistration() operation and contains
the fields of a RegistrationContext that allow a Producer to push the storage of state at
registration scope to the Consumer. 5

 RegistrationState

 [O] string registrationState

 [O] Extension extensions[]

Members:

• registrationState: This field is used only when the Producer wants the Consumer 10
to provide persistent storage for the state resulting from processing the registration. If
this field is non-null, the Consumer MUST return this value on any subsequent calls in
the context of this registration [R362].

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace. 15

4.1.10 RegistrationContext
The RegistrationContext structure contains fields related to a particular registration of a
Consumer with a Producer. It is returned by the register() operation and is a required
parameter on most other operations.

 RegistrationContext 20
 [R] string registrationHandle
 [O] string registrationState
 [O] Extension extensions[]

Members:

• registrationHandle: An unique, invariant and opaque reference to the Consumer-25
Producer relationship. This reference is generated by either the register() operation
[R355] or a process outside the scope of this specification. Note that Handles are
restricted to a maximum length of 255 bytes.

• registrationState: This field is used only when the Producer wants the Consumer
to provide persistent storage for the state resulting from processing the registration. If 30
this field is non-null, the Consumer MUST return this value on any subsequent calls in
the context of this registration [R362].

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace.

Web Services for Remote Portlets Specification 30

4.1.11 desiredLocales and sendAllLocales
These two parameters are used to control what locales are used when localized strings are
returned. The desiredLocales parameter is an array of strings, each of which specifies a
single locale, whose order indicates the preference of the Consumer as to the locales values
are returned for. Since localized strings use an indirection through resources to carry the set of 5
values for different locales, the first member of this array SHOULD be used as the locale for the
values returned directly in the structure. When the sendAllLocales boolean flag is set to
“true”, the Producer’s response SHOULD contain values for all returned localized strings in all
locales where they are available.

4.2 getServiceDescription() Operation 10

This operation allows a Producer to provide information about its capabilities in a context-
sensitive manner (e.g. registration may be required to discover the full capabilities of a
Producer) [R303].

serviceDescription = getServiceDescription(registrationContext, desiredLocales,
 sendAllLocales); 15
Faults: Security.AccessDenied, Security.InvalidProducerRole,
 Security.InconsistentParameters, Security.InvalidRegistration,

 Security.AuthenticationFailure, Interface.MissingParameters,

 Interface.OperationFailed

Producers may choose to restrict the information returned in serviceDescription based on 20
the supplied registration context. The minimum information a Producer MUST return is that
which declares what is required for a Consumer to register (e.g. the registrationProperties
field) with the Producer [R300][R301][R303]. Producers may also find it useful to restrict the
information returned to those portions of the service the registration context allow the
Consumer to access on subsequent invocations. Note that the registrationHandle field of 25
the registrationContext parameter is likely to be null when an unregistered Consumer
invokes it. This allows the Consumer to gain access to the information required to successfully
register. It is recommended that Consumers invoke getServiceDescription() after registering
in order to receive a full description of the capabilities the Producer offers within the context of
that registration. Producers MUST return a complete enough description to registered 30
Consumers for them to properly interact with both the Producer and entities it exposes.

When generating the ServiceDescription response the Producer MUST use the
desiredLocales (an array of strings) to control what locales are returned for localized strings
and sendAllLocales (a boolean) as an indication that values for all locales are desired. 35

While it is possible a ServiceDescription will change with time (e.g. Producer deploys
additional entities), Producers SHOULD return as complete a ServiceDescription as
possible.

5 Markup Interface 40

As user-facing web services, one of the required portTypes a WSIA or WSRP compliant service
MUST implement is the generation of markup, which is to be used to represent the current
state of an entity to an End-User and the processing of interactions with that markup [A300].
This section explains both the signatures for the operations related to markup generation and
processing interactions, and how the concepts of mode and window state impact the 45
generation of the markup.

Web Services for Remote Portlets Specification 31

5.1 Data Structures
The normative definitions for all data structures are contained in the WSDL referenced in
section 15. For the convenience of the reader, this non-normative section uses an IDL like
syntax to describe these structures, where the leading [R] indicates a field is required and [O]
indicates it is optional. The operations in this section introduce the following data structures: 5

5.1.1 SessionContext

The SessionContext structure contains the handle and expires information the Consumer
needs to refer to the session in subsequent invocations.

SessionContext
 [R] string sessionHandle 10
 [R] int expires
 [O] Extension extensions[]

Members:

• sessionHandle: An opaque string the entity defines for referencing state that is stored
locally on the Producer. If the Consumer fails to return this reference on future 15
invocations, the entity will be unable to reference this state and therefore likely not
generate a markup fragment meeting the End-User’s expectations. Note that Handles
are restricted to a maximum length of 255 bytes.

• expires: Maximum number of seconds between invocations referencing the
sessionHandle before the Producer will schedule releasing the related resources. A 20
value of –1 indicates that the sessionHandle will never expire.

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace.

5.1.2 RuntimeContext
The RuntimeContext structure defines a collection of fields used only in transient interactions 25
between the Producer and Consumer.

RuntimeContext
 [R] string entityInstanceID
 [O] string sessionHandle
 [O] Extension extensions[] 30

Members:

• entityInstanceID: An opaque string the Consumer MUST supply as a unique
reference to this use of the entity. This reference MAY be used by the entity to properly
separate data for multiple instances of the entity within any Producer-defined data
sharing mechanisms. 35

• sessionHandle: An opaque string the Producer defines for referencing state stored
locally on the Producer. If the Consumer fails to return this reference on future
invocations, the entity will be unable to reference this state and therefore likely not
generate a markup fragment meeting the End-User’s expectations.

• extensions: A mechanism implementations MAY choose to use for extending this 40
structure provided those extensions come from a different namespace.

Web Services for Remote Portlets Specification 32

5.1.3 EntityContext

The EntityContext structure is used as a parameter on many operations to supply the entity
information that was pushed to the Consumer.

EntityContext
 [R] string entityHandle 5
 [O] string entityState
 [O] Extension extensions[]

Members:

• entityHandle: An opaque and invariant handle, unique within the context of the
Consumer’s registration (unique within the Producer for Producers not supporting 10
registration). Note that Handles are restricted to a maximum length of 255 bytes.

• entityState: An opaque string the entity uses when it depends on the Consumer to
store its persistent state [A205]. If entityState has a non-null value, the Consumer
MUST return this value on subsequent calls using the same entityHandle. Note that
such uses MAY span various cycling of the Consumer and therefore this state MUST 15
be persisted by the Consumer until successfully invoking destroyEntities() with the
related entityHandle.

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace.

5.1.4 CacheControl 20

The CacheControl structure contains a set of fields needed for the entity to manage cached
markup fragments. Note that the cache key MUST always include the MarkupParams structure
that caused the markup fragment to be generated.

CacheControl
 [R] int expires 25
 [O] string userScope
 [O] string validateTag
 [O] Extension extensions[]

Members:

• expires: Number of seconds the markup fragment referenced by this cache control 30
entry remains valid. A value of –1 indicates that the markup fragment will never expire.

• userScope: A string indicating when the markup may be used by various users:

a. ”perUser”: The markup is specific to the userContext for which it was
generated. Changes to the data of the userContext MUST invalidate the
markup. 35

b. ”forAll”: The markup is not specific to the userContext and therefore may be
supplied to all users of the Consumer.

• validateTag: A string the Consumer MAY use to attempt to revalidate markup once
the expires duration elapses. This potentially eliminates the need for the entity to
regenerate the markup and thereby can significantly impact the performance for the 40
End-User.

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace.

Web Services for Remote Portlets Specification 33

5.1.5 Templates

The Templates structure contains a set of fields that enable Producer URL writing. The
template style format of these fields is defined in section 9.2.2.

Templates
 [O] string DefaultTemplate 5
 [O] string ActionTemplate
 [O] string BlockingActionTemplate
 [O] string RenderTemplate
 [O] string ResourceTemplate
 [O] string SecureDefaultTemplate 10
 [O] string SecureActionTemplate
 [O] string SecureBlockingActionTemplate
 [O] string SecureRenderTemplate
 [O] string SecureResourceTemplate
 [O] string NameSpacePrefix 15
 [O] Extension extensions[]

Members:

• DefaultTemplate: This template provides the default value for all of the other
template fields. Note that the SecureDefaultTemplate field MAY provide a first-level
override of this default value for the fields whose names begin with “Secure”, as these 20
frequently involve a different protocol specification.

• ActionTemplate: This template provides the template for URLs that will be directed to
the Consumer and processed as a performInteraction() on the entity.

• BlockingActionTemplate: This template provides the template for URLs that will be
directed to the Consumer and processed as a performBlockingInteraction() on the 25
entity.

• RenderTemplate: This template provides the template for URLs that will be directed to
the Consumer and processed as a getMarkup() on the entity.

• ResourceTemplate: This template provides the template for URLs that will be directed
to the Consumer and processed as an HTTP GET on the named resource. 30

• SecureDefaultTemplate: This template provides the default value for all the secure
template fields.

• SecureActionTemplate: This template provides the template for secure URLs that will
be directed to the Consumer and processed as a performInteraction() on the entity
using a secure protocol. 35

• SecureBlockingActionTemplate: This template provides the template for secure
URLs that will be directed to the Consumer and processed as a
performBlockingInteraction() on the entity using a secure protocol.

• SecureRenderTemplate: This template provides the template for secure URLs that will
be directed to the Consumer and processed as a getMarkup() on the entity using a 40
secure protocol.

• SecureResourceTemplate: This template provides the template for secure URLs that
will be directed to the Consumer and processed as an HTTP GET over SSL/TLS on the
named resource.

• NameSpacePrefix: This field provides a string the entity MAY use to prefix tokens that 45
need to be unique on the aggregated page (e.g. JavaScript variables, html id attributes,
etc.).

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace.

Web Services for Remote Portlets Specification 34

5.1.6 MarkupParams

The MarkupParams structure contains a set of fields needed for the entity to generate markup
that will enable the End-User to visualize the state of the entity.

MarkupParams
 [R] ClientData clientData 5
 [R] boolean secureClientCommuncations
 [R] string userAuthentication
 [R] string locale[]
 [R] string markupCharacterSet
 [R] string markupType[] 10
 [R] string mode
 [R] string windowState
 [R] string navigationalState
 [O] Property requestParameters[]
 [O] Templates templates 15
 [O] string validateTag
 [O] Extension extensions[]

Members:

• clientData: A structure (defined in section 11.3) that provides information (including
userAgent) about the client device which will render the markup. 20

• secureClientCommunications: A flag indicating whether or not the delivery channel
between a client and Consumer is secure [R401]. The Consumer MUST set the
secureClientCommunications flag as the entity MAY render different content when it
knows the delivery channel is secure.

• userAuthentication: String indicating how the End-User was authenticated. 25
Common values include:

a. “None”: No authentication was done, user information is asserted for
informational purposes only.

b. “Password”: The End-User identified themselves using the common
userid/password scenario. 30

c. “Certificate”: The End-User presented a security certificate to validate their
identity.

d. Other strings: Some authentication was done outside this limited set of
possibilities.

• locale: An array of locales where the order in the array is the order in which the 35
Consumer would prefer the entity generate the markup (e.g. “en-US”). Note that current
practice on the Internet uses the format [2 char language code] 6 “-” [2 char country
code] 7 as per the provided example. The Consumer SHOULD supply this information
based on the setting the End-User has requested.

6 http://lcweb.loc.gov/standards/iso639-2/langcodes.html
7 http://www.din.de/gremien/nas/nabd/iso3166ma/codlstp1/en_listp1.html

Web Services for Remote Portlets Specification 35

• markupCharacterSet: The characterSet8 (e.g. “UTF -8”, “ISO-10646-Unicode-
Latin1”, etc.) the Consumer would like the entity to use for encoding the markup (i.e.
the character set for the aggregated page). This encoding may be different from the
character set used for the transport of the invocation from the Consumer to Producer.
The Producer MUST either use this character set for the response message or properly 5
escape any characters that would otherwise not be properly represented in the
character set of the response message.

• markupType: An array of Mime types 9 (e.g. “text/html”, “application/xhtml+xml”, etc.)
where the order in the array is the order in which the Consumer would prefer the entity
generate the markup (i.e. first is most preferred, second is next preferred, etc.). In 10
addition to these fully specified Mime types, use of “*” (indicates all Mime types are
acceptable) and type/* (where type includes things such as “text”) from the HTTP
definition10 MAY be specified. Entities SHOULD generate markup in one of the
specified Mime types.

• mode: The mode for which the entity should render its output. A set of modes is defined 15
in this specification (see section 5.10). The Consumer SHOULD inspect the entity’s
metadata to determine which of these modes the entity supports in addition to any
Producer-defined modes. The Consumer MUST specify either one of the modes from
the entity’s metadata or ”normal” (all entities are required to support this mode).

• windowState: The state of this entity’s virtual window relative to other entities on the 20
aggregated page. Constants and definitions for the specification-defined states are
found in section 5.11.

• navigationalState: This field contains the opaque navigational state for this entity
either from the appropriate URL parameter (see section 9.2.1.1) or the most recently
returned value for this End-User. 25

• requestParameters: Name/value pairs reflected from the query string of the activated
URL. These are the query string parameters the Consumer did not consume by
processing them itself. Other name value pairs (e.g. HTTP headers from the client or
additional Consumer-supplied data) should be placed in the extensions array.

• templates: If this entity declared doesUrlTemplateProcessing as ”true” in its 30
EntityDescription, then this field contains the templates the Consumer is supplying
for that processing. If the EntityDescription also has templatesStoredInSession set
to ”true”, then the Consumer MAY elect to only send these once for a sessionHandle.

• validateTag: This field MAY contain a validateTag previously supplied to the
Consumer in a MarkupContext structure. When this field is non-null, the Consumer is 35
indicating it has markup cached for the entity, but the CacheControl structure
governing the use of that cached markup no longer indicates it is valid. The Consumer
is supplying the validateTag as a means for the entity to avoid generating new
markup if the cached markup can be validated. The entity sets the useCachedMarkup
field in the returned MarkupContext to ”true” to indicate the markup referenced by the 40
validateTag is still valid.

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace.

8 http://www.iana.org/assignments/character-sets
9 http://www.isi.edu/in-notes/iana/assignments/media-types/media-types
10 http://www.ietf.org/rfc/rfc2616.txt

Web Services for Remote Portlets Specification 36

5.1.7 MarkupContext

The MarkupContext structure contains fields relative to returning markup from various
invocations.

MarkupContext
 [O] boolean useCachedMarkup 5
 [O] string markup
 [O] string locale
 [O] string markupType
 [O] boolean requiresUrlRewriting
 [O] CacheControl cacheControl 10
 [O] string preferredTitle
 [O] Extension extensions[]

Members:

• useCachedMarkup: A boolean used to indicate whether the markup the Consumer
indicated it has cached is still valid. The default value of this field is ”false” (i.e. new 15
markup is being returned for the Consumer’s use). When this field’s value is “true” the
markup field MUST NOT be returned. If field’s value is “true”, any supplied
cacheControl field MUST be processed as an update to the cacheControl originally
supplied with the cached markup.

• markup: The markup to be used for visualizing the current state of the entity. This is a 20
string in order to support non-XML markup (e.g. HTML). If this is encoded in a SOAP
message (i.e. XML), various characters will likely need to be escaped, either by the
entity or the Producer’s runtime (e.g. “<“ and “>“). The character set of the markup an
entity returns MUST either match that requested in MarkupParams or be UTF-8. When
a SOAP binding is used, the character set of the markup returned by the Producer 25
MUST match the character set of the SOAP envelope. This field is only missing when
the useCachedMarkup flag is “true”.

• locale: The locale of the returned markup. This field MUST be specified whenever
markup is returned.

• markupType: The Mime type of the returned markup. This field MUST be specified 30
whenever markup is returned.

• requiresUrlRewriting: A flag by which the entity/Producer indicates whether or not
Consumer-side URL rewriting (see section 9.2.1) is required. The Consumer MUST
parse the markup for URL rewriting if this flag is set to ”true”. The default value for this
flag is “false”. 35

• cacheControl: Defines the caching policies for the returned markup fragment. If this
field is not supplied, the Consumer MUST treat the returned markup as not cachable.

• preferredTitle: The title the entity would prefer to be used in any decoration of the
markup.

• extensions: A mechanism implementations MAY choose to use for extending this 40
structure provided those extensions come from a different namespace.

Web Services for Remote Portlets Specification 37

5.1.8 MarkupResponse

The MarkupResponse structure contains fields for returning various items in response to a
getMarkup() invocation.

MarkupResponse
 [O] SessionContext sessionContext 5
 [O] MarkupContext markupContext
 [O] Extension extensions[]

Members:

• sessionContext: This structure contains session-oriented fields that may be returned
from various operations, including a new sessionHandle and the duration before it 10
expires.

• markupContext: A structure carrying the returned markup and fields related to the
markup.

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace. 15

5.1.9 InteractionResponse

The InteractionResponse structure contains the various items performInteraction() can
return.

InteractionResponse
 [R] string navigationalState 20
 [O] SessionContext sessionContext
 [O] Entitycontext entityContext
 [O] MarkupContext markupContext
 [O] Extension extensions[]

Members: 25

• navigationalState: Opaque representation of navigational state which the entity is
returning to the Consumer to indicate the navigational state to be supplied to
getMarkup() including for page refreshes and page bookmarks. The Consumer MUST
supply this value as the navigationalState on the subsequent invocations for this
use of the entity for at least the duration of the End-User’s interactions with this 30
aggregated page. The Consumer is not required to persist the navigationalState for
longer than this set of interactions, but MAY provide such a persistence if desired.

• sessionContext: This structure contains session-oriented fields that may be returned
from various operations, including a new sessionHandle and the duration before it
expires. 35

• entityContext: This structure is where an entity using Consumer-side persistent
storage may return a change in its persistent state, provided the entityStateChange
flag in InteractionParams had been set to ”OK” or ”Clone”. When the
entityStateChange flag had been set to ”Clone”, this may also include a new
entityHandle. The sequence by which an entity can otherwise request changing this 40
state is described in section 5.3.3.

• markupContext: Markup may be returned at the end of interaction processing as an
optimization that avoids an additional remote invocation.

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace. 45

Web Services for Remote Portlets Specification 38

5.1.10 UpdateResponse

The UpdateResponse structure contains the items normally returned by
performBlockingInteraction().

UpdateResponse
 [R] string navigationalState 5
 [O] SessionContext sessionContext
 [O] EntityContext entityContext
 [O] string newWindowState
 [O] string newMode
 [O] MarkupContext markupContext 10

Members:

• navigationalState: Opaque representation of navigational state which the entity is
returning to the Consumer to indicate the navigational state to be supplied to
getMarkup() including for page refreshes and page bookmarks. The Consumer MUST
supply this value as the navigationalState on the subsequent invocations for this 15
use of the entity. This ensures the correct state of the entity is used when processing
the invocation.

• sessionContext: This structure contains session-oriented fields that may be returned
from various operations, including a new sessionHandle and the duration before it
expires. 20

• entityContext: This structure is where an entity using Consumer-side persistent
storage may return a change in its persistent state, provided the entityStateChange
flag in InteractionParams had been set to ”OK” or ”Clone”. When the
entityStateChange flag had been set to ”Clone”, this may also include a new
entityHandle. The sequence by which an entity can otherwise request changing this 25
state is described in section 5.3.3.

• newWindowState: A request from the entity to change the window state. The
Consumer MAY choose to respect this request, but since the entity cannot depend on
that choice it MUST NOT encode this new window state into any of its stateful settings.
Rather, the entity MUST compute any such impact on stateful settings after the 30
Consumer has actually changed the window state.

• newMode: A request from the entity to change the mode. The Consumer MAY choose
to respect this request, but since the entity cannot depend on that choice it MUST NOT
encode this new mode into any of its stateful settings. Rather, the entity MUST
compute any such impact on stateful settings after the Consumer has actually changed 35
the mode.

• markupContext: Markup may be returned at the end of interaction processing as an
optimization that avoids an additional remote invocation.

5.1.11 BlockingInteractionResponse
The BlockingInteractionResponse structure contains the various items 40
performBlockingInteraction() can return.

BlockingInteractionResponse
 [O] UpdateResponse updateResponse
 [O] string redirectURL
 [O] Extension extensions[] 45

Members:

Web Services for Remote Portlets Specification 39

• updateResponse: This field captures the items returned when the entity is not directing
the user to a different URL. It is mutually exclusive with the redirectURL field.

• redirectURL: As a result of processing this interaction, the entity may indicate to the
Consumer that it would like the End-User to view a different URL. It is mutually
exclusive with the updateResponse field. 5

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace.

5.1.12 StateChange

This type is a restriction on the string type that is constrained to the values “OK”, “Clone” or
“Fault”. 10

5.1.13 UploadContext

The UploadContext structure contains fields specific to uploading data to the entity.

UploadContext
 [R] base64Binary uploadData
 [R] string mimeType 15
 [O] Extension extensions[]

Members:

• uploadData: A binary data blob that is being uploaded.

• mimeType: Mime type of what is in the uploadData field.

• extensions: A mechanism implementations MAY choose to use for extending this 20
structure provided those extensions come from a different namespace.

5.1.14 InteractionParams

The InteractionParams structure contains fields specific to invoking either
performInteraction() or performBlockingInteraction() operations.

InteractionParams 25
 [R] StateChange entityStateChange
 [O] string validNewModes[]
 [O] string validNewWindowStates[]
 [O] UploadContext uploadContext
 [O] Extension extensions[] 30

Web Services for Remote Portlets Specification 40

Members:

• entityStateChange: A flag by which a Consumer indicates whether or not the
processing of the interaction is allowed to return a modified entityState. This flag is
needed; as only the Consumer knows whether or not such a state change would be
acceptable. In many cases where the Consumer does not authorize the End-User to 5
modify the persistent state of the entity in use, it may permit the Producer to clone the
entity (i.e. set entityStateChange to ”Clone”) and return a clone of the entity in
addition to any other return parameters. The full use of this flag is described in section
5.3.3.

• validNewModes: An array of modes which the Consumer is indicating as available to 10
be requested as a newMode in InteractionResponse. It should be noted that this is no
guarantee that a requested transition will be honored, as factors not easily represented
may cause the Consumer to reject a requested transition. The primary reason for
supplying this information is to assist the entity in preparing a user interface that does
not contain links the Consumer will not honor. 15

• validNewWindowStates: An array of windowStates which the Consumer is indicating
as available to be requested as a newWindowState in InteractionResponse. It should
be noted that this is no guarantee that a requested transition will be honored, as factors
not easily represented may cause the Consumer to reject a requested transition. The
primary reason for supplying this information is to assist the entity in preparing a user 20
interface that does not contain links the Consumer will not honor.

• uploadContext: An optional field where binary data may be uploaded.

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace.

5.2 getMarkup() Operation 25

The Consumer requests the markup for rendering the current state of an entity by invoking:

markupResponse = getMarkup(registrationContext, entityContext , runtimeContext,
 userContext, markupParams);
Faults: Security.AccessDenied, Security.InvalidProducerRole,
 Security.InconsistentParameters, Security.InvalidRegistration, 30
 Interface.MissingParameters, Interface.OperationFailed,
 Interface.InvalidHandle, Interface.InvalidCookie,
 Interface.UnsupportedMode, Interface.UnsupportedWindowState
 Interface.UnsupportedLocale, Interface.UnsupportedMarkuptype

5.2.1 Caching of markup fragments 35

For performance reasons the Consumer might prefer to cache markup across a series of
requests. The Producer passes information about the cachability of the markup fragment in the
cacheControl structure returned in MarkupContext. The Consumer can infer from this
information when it may cache markup and when the cached markup needs to be invalidated
and updated by a new call to getMarkup(). 40

5.2.1.1 Cachability
Whenever the cacheControl field of MarkupResponse is filled in the Consumer MAY cache
the markup fragment. The Consumer MUST follow the defined invalidation policies to keep
the cache up-to-date. If the cacheControl field is empty the Consumer MUST NOT cache
the markup fragment. 45

Web Services for Remote Portlets Specification 41

5.2.1.2 Cache Invalidation
The expires field of the cacheControl provides a time duration for when the markup
SHOULD be considered valid. Once this time has elapsed, counting from the point in time
when the markupContext was returned, the Consumer SHOULD use the validateTag field
of the MarkupParams structure to inquire whether the markup is still valid, as this potentially 5
avoids having the entity regenerate the same markup. When the MarkupParams structure
supplied for generating the markup changes, the Consumer MUST treat the cached markup
as if the expires duration had already elapsed.

5.3 Interaction Operations
End-User interactions with the generated markup may result in invocations for the entity to 10
respond to the interactions [A400]. In the case where the invocations may change the
navigationalState or some data the entity is storing in a shared data area (including a
database), an operation is needed to carry the semantics of this type of update. Two operations
are defined for processing interactions and the state changes they may cause, one carrying the
additional semantics of blocking the Consumer from both beginning the generation of the 15
aggregated page and gathering markup from other entities on the page.

5.3.1 performInteraction() Operation
This operation does not carry the semantics of blocking the Consumer’s processing:

interactionResponse = performInteraction(registrationContext, entityContext,
 runtimeContext, userContext, 20
 markupParams, interactionParams);
Faults: Security.AccessDenied, Security.InvalidProducerRole,
 Security.InconsistentParameters, Security.InvalidRegistration,
 Interface.MissingParameters, Interface.OperationFailed,
 Interface.InvalidHandle, Interface.InvalidCookie, 25
 Interface.UnsupportedMode, Inte rface.UnsupportedWindowState
 Interface.UnsupportedLocale, Interface.UnsupportedMarkuptype
 Interface.EntityStateChangeRequired

Since this operation potentially returns state to the Consumer for storage, this allows
Consumers who wish to store this by pushing it to their client to do so before opening the 30
stream for the aggregated page. Consumers doing this also enable End-User bookmarking of
the aggregated page for later use.

5.3.2 performBlockingInteraction() Operation
This operation also carries the semantics of blocking both the Consumer beginning the
generation of the aggregated page (often because the invocation MAY return a redirectURL) 35
and the gathering of markup from other entities (often because shared state, including via a
database, impacts the markup of other entities):

blockingInteractionResponse = performBlockingInteraction(registrationContext,
 entityContext, runtimeContext, userContext,
 markupParams, interactionParams); 40
Faults: Security.AccessDenied, Security.InvalidProducerRole,
 Security.InconsistentParameters, Security.InvalidRegistration,
 Interface.MissingParameters, Interface.OperationFailed,
 Interface.InvalidHandle, Interface.InvalidCookie,
 Interface.UnsupportedMode, Interface.UnsupportedWindowState 45
 Interface.UnsupportedLocale, Interface.UnsupportedMarkuptype
 Interface.EntityStateChangeRequired

Web Services for Remote Portlets Specification 42

Since this is a blocking operation, the Consumer MUST wait for the response before invoking
getMarkup() on the entities it is aggregating. This permits any Producer-mediated sharing to
proceed safely (provided it happens in a synchronous manner). Since this operation potentially
returns state to the Consumer for storage, this operation also allows Consumers who wish to
store this by pushing it to their client to do so before opening the stream for the aggregated 5
page. Consumers doing this also enable End-User bookmarking of the aggregated page for
later use.

5.3.3 Updating Persistent Entity State
In designing how an entity and Consumer interact in order to update the persistent state of the
entity, the following items were considered: 10

1. Only the entity knows when such a state change is desired. While it is expected that
changes to persistent state will be relatively rare, they could occur on any interaction
the entity has with an End-User.

2. Only the Consumer knows whether or not a persistent state change would be safe.
Reasons for this include whether the persistent state is shared among a group of 15
users, the authorization level of the End-User to impact any shared persistent state and
Consumer policies regarding whether the persistent state is modifiable.

This combination requires that all persistent entity state changes happen in a manner that has
Consumer approval for the change to occur, while the entity decides both when the change is
required and its exact character. The Consumer indicates whether or not it is safe for the entity 20
to modify its persistent state by setting the entityStateChange field in the
interactionParams structure. If the Consumer has set the entityStateChange flag to ”OK”,
the entity MAY modify its persistent state regardless of whether it is persisted on the Producer
or Consumer.

 25

If the Consumer has set the entityStateChange field to ”Clone”, persistent state changes are
allowed only if the Producer first clones the entity. If the Producer does not clone the entity,
processing attempts to modify persistent state MUST proceed as if the Consumer had specified
“Fault” for entityStateChange. If the Producer clones the entity, processing attempts to
modify persistent state on the new entity SHOULD proceed as if the Consumer had specified 30
“OK” for entityStateChange. The Producer returns the impact of any cloning to the Consumer,
regardless of whether the entityState is persisted on the Producer or Consumer. If the
Producer returns a new entityHandle without returning a new sessionHandle, the Consumer
MUST associate the current sessionHandle with the new entityHandle rather than the
previous entityHandle. 35

If the Consumer has set the entityStateChange flag to ”Fault”, the entity MUST NOT modify
its persistent state regardless of whether it is persisted on the Producer or Consumer and
MUST throw a fault message if processing the interaction requires changing its persistent state.
Commonly Consumer’s will only set the entityStateChange flag to ”Fault” for End-Users that 40
are not authorized to clone or personalize the entity (e.g. an End-User using a guest account).

If the Producer implements access control that prevents entities from updating persistent state
and an entity is unable to process the interaction without such an update, then the fault
“Interface.EntityStateChangeRequired” MUST be thrown indicating the interaction 45
processing failed.

This set of possibilities is depicted in the following figure:

Web Services for Remote Portlets Specification 43

5.4 initCookie() Operation
In general, the Producer completely manages its own environment, including items such as the
initialization of cookies when using the HTTP transport. There are cases, however, when 5
assistance from the Consumer in initializing these cookies is useful. Cookies needed to
manage distribution of requests within a load balanced environment are an example of such.
This operation is how the Consumer provides such assistance:

ReturnAny initCookie(registrationContext);
Faults: Security.AccessDenied, Security.InvalidRegistration, 10

 Interface.MissingParameters, Interface.OperationFailed,
 Interface.InvalidHandle

If the Producer’s metadata has set the requiresInitCookie field to any value other than
“none”, then the Consumer MUST invoke initCookie() and supply the returned cookie
according to the semantics of the value of requiresInitCookie as defined in section 4.1.2. If 15
at any time the Producer throws a fault message (“Interface.InvalidCookie”) indicating the
supplied cookie has been invalidated at the Producer, then the Consumer MUST again invoke
initCookie() and SHOULD reprocess the invocation that caused the fault message to be
thrown.

5.5 releaseSessions() Operation 20

The Consumer MAY inform the Producer that it will no longer be using a set of sessions by
invoking releaseSessions() (e.g. the Consumer is releasing resources related to the
sessionHandles):

ReturnAny = releaseSessions(registrationContext, sessionHandles);
Faults: Security.AccessDenied, Interface.MissingParameters, 25

 Interface.OperationFailed, Interface.InvalidHandle

After invoking releaseSessions() the Consumer MUST NOT include any of the supplied
sessionHandles on subsequent invocations.

Web Services for Remote Portlets Specification 44

5.7 Load Balancing
Load balancing is a part of the Producer environment that cannot easily be managed from
within the protocol. Load balancing is highly dependent on mechanisms in the transport, for
example the use of cookies in HTTP. In order to permit load balancing to function, regardless
of the transport binding in use, the Consumer MUST manage transport level issues itself. 5
Using HTTP as an example, if the Producer requires such support of Consumers, it MUST
indicate so by setting the requiresInitCookie metadata to a value other than ”none”. If the
Producer set requiresInitCookie to a value other than ”none”, the Consumer MUST ensure
the cookie is properly supplied in subsequent requests for the End-User.

5.8 Consumer Transitions across Bindings 10

Consumers SHOULD be careful about the support supplied by the web stack with regards to
multiple bindings that will be offered by many Producers. If a Producer indicates that it uses
cookies, the Consumer MUST ensure that any cookies the Producer sets are available on all
invocations regardless of whether the operation is in the same binding that set the cookie.
Another implication of the Producer indicating it uses cookies is that the Consumer SHOULD 15
NOT do any protocol transitions (e.g. from HTTP to HTTPS) as cookies are often managed in a
manner that does not allow the information to be shared across such a transition. Switching
between protocols (e.g., going from HTTP to HTTPS) will likely break transport-level load
balancing on the Producer. This is because the request being routed via the new binding will
almost certainly go through a different load balancer and likely a different session manager. In 20
addition, since providing the information stored in cookies when using HTTPS for a later HTTP
connection opens security issues, Consumers MUST NOT move cookies from an HTTPS
service endpoint to an HTTP service endpoint. Also, since cookies asserted using HTTPS are
considered a trusted portion of the message, Consumers SHOULD NOT move cookies from an
HTTP to an HTTPS service endpoint. 25

5.9 Stateful Entity Scenarios
There are several common scenarios for entities with varying needs regarding statefulness
[A202][A203]. This section explains how they map into the operational signatures above.

5.9.1 No State
This type of entity maintains no state, but encodes everything required to generate the markup 30
on the URL causing the invocation of getMarkup() [A201]. Often these entities involve only a
single page, but could provide links on that page that cause the generation of a completely
different markup due to the parameters passed when the link is activated.

Note: Invocations of performBlockingInteraction() MAY happen in this scenario if the entity 35
impacts some backend system as a result of the invocation as this impact could change the
markup some other entity will generate.

The following table outlines the values for certain key parameters that support this scenario.

Method Parameter/Field Value Comments

performInteraction

or

performBlockingInteraction

sessionContext /
sessionHandle

Producer_Offered_Entity or
Consumer_Configured_Entity

Always null as this
entity uses no
Producer-side state.

 markupParameters /
navigationalState

Consumer extracts value
from link.

Navigational state
encoded on the URLs

Web Services for Remote Portlets Specification 45

in the markup only.

 interactionResponse
/ navigationalState

This type of entity does not
return navigationalState.

getMarkup sessionContext /
sessionHandle

Producer_Offered_Entity or
Consumer_Configured_Entity

Always null as this
entity uses no
Producer-side state.

 markupParameters /
navigationalState

Consumer extracts value
from link.

Navigational state
from the URL.

5.9.2 Navigational State Only
This type of entity does not maintain state at the Producer, but does push navigational state out
to the Consumer. Both to support these entities and to assist Consumers in properly supporting
End-User page refreshes and bookmarks, entities are allowed to return their navigational state
(navigationalState field) back to the Consumer. It is then the responsibility of the Consumer 5
to retransmit the navigationalState to the Producer with each request [A206].

A stateless Consumer can store the navigationalState for all of its aggregated entities by
returning them to the client, for example by encoding them in the URL. Since this
implementation option requires the URL to be generated before the output stream is opened, 10
the navigationalState of all entities must be known before the Consumer begins generating
the output stream. In order to allow the Consumer to open the output stream before it has
collected markup from all entities aggregated on the page, a getMarkup() invocation is not
allowed to modify the navigationalState. Only invocations of performInteraction() or
performBlockingInteraction() are allowed to modify the navigationalState of an entity. 15

The following table outlines the values for certain key parameters that support this scenario.

Method Parameter/Field Value Comments

performInteraction

or

performBlockingInteraction

sessionContext /
sessionHandle

Producer_Offered_Entity or
Consumer_Configured_Entity

Always null as this
entity uses no
Producer-side state.

 markupParameters /
navigationalState

Consumer extracts value
from link or previous value.

 interactionResponse
/ navigationalState

Entity may compute a
changed navigationalState.

getMarkup sessionContext /
sessionHandle

Producer_Offered_Entity or
Consumer_Configured_Entity

Always null as this
entity uses no
Producer-side state.

 markupParameters /
navigationalState

From link or previous value
or from performInteraction.

Web Services for Remote Portlets Specification 46

5.9.3 Local state
Entities storing state locally on the Producer establish a Session and return an opaque
reference (a sessionHandle) the Consumer is then required to return on all subsequent
invocations on the entity for this End-User. These entities MAY also push navigational state to
the Consumer such that an End-User may bookmark some portion of the state for use in later 5
conversations. The means by which the Consumer enables this functionality for the End-User
is a Consumer implementation choice [A304].

The following table outlines the values for certain key parameters that support this scenario.

Method Parameter/Field Value Comments

performInteraction

or

performBlockingInteraction

sessionContext /
sessionHandle

Producer_Offered_Entity or
Consumer_Configured_Entity
or refined handle that also
encodes session info

With Producer side
state, the session
handle offers ability to
store information
without impacts
message size to
Consumer.

 markupParameters /
navigationalState

Consumer extracts value
from link or previous value.

 interactionResponse
/ navigationalState

Entity may compute a
changed navigationalState.

getMarkup sessionContext /
sessionHandle

Producer_Offered_Entity or
Consumer_Configured_Entity
or refined handle that also
encodes session info

With Producer side
state, the session
handle offers ability to
store information
without impacts
message size to
Consumer.

 markupParameters /
navigationalState

From link or previous value
or from performInteraction.

5.10 Modes 10

An entity should render different content and perform different activities depending on its
current state, the operation (with parameters) currently being processed, and the functionality
requested by the End-User. A base set of functions is defined which reflects those common for
portal-portlet interactions. They are referred to as modes and should be thought of as how the
Consumer is managing the interaction with the End-User. Entities may request mode changes 15
either through parameters on a link that an End-User activates or by returning a newMode in a
BlockingInteractionResponse. Whether or not such a request is honored is up to the
Consumer and often will depend on access control settings for the End-User.

An entity MUST support the view mode and SHOULD support the edit and help modes. 20
During getMarkup(), performInteraction(), and performBlockingInteraction() invocations
the Consumer indicates to the entity its current mode via the MarkupParams data structure.

Web Services for Remote Portlets Specification 47

5.10.1 “view” Mode

The expected functionality for an entity in view mode is to render markup reflecting the current
state of the entity. The view mode of an entity will include one or more screens that the End-
User can navigate and interact with or it may consist of static content devoid of user
interactions. 5

The behavior and the generated content of an entity in the view mode may depend on
configuration, personalization and all forms of state.

All entities MUST support the view mode. 10

5.10.2 “edit” Mode
Within the edit mode, an entity should provide content and logic that let a user customize the
behavior of the entity. The edit mode may include one or more screens which users can
navigate to enter their customization data.

 15

Typically, entities in edit mode will set or update entity state by making these changes
persistent for the entity. How such changes impact Consumer management of entity usage by
End-Users is discussed in section 5.3.3.

5.10.3 “help” Mode

When in help mode, an entity may provide help screens that explains the entity and its 20
expected usage. Some entities will provide context-sensitive help based on the markup the
End-User was viewing when entering this mode.

5.10.4 “preview” Mode
In preview, an entity should provide a rendering of its standard view mode content, as a visual
sample of how this entity will appear on the End-User’s page with the current configuration. 25
This could be useful for a Consumer that offers an advanced layout capability.

5.10.5 Custom Modes

The extensible RegistrationData structure provides a field for Consumers to declare
additional custom modes. In addition, the extensible EntityDescription structure provides a
field for entities to declare what modes they understand. A Consumer SHOULD NOT set a 30
mode an entity does not understand. An entity MUST map any mode it does not understand to
the view mode.

5.11 Window States
Window state is an indicator of the amount of page space that will be assigned to the content
generated by an entity. This hint is provided by the Consumer for the entity to use when 35
deciding how much information to render in the generated markup.

An entity MUST support the normal window state and SHOULD support the minimized and
maximized window states.

Web Services for Remote Portlets Specification 48

5.11.1 “normal” Window State

The normal window state indicates the entity is likely sharing the aggregated page with other
entities. It MAY also indicate that the target device has limited display capabilities. Therefore,
an entity SHOULD restrict the size of its rendered output in this window state.

 5

All entities MUST support the normal window state.

5.11.2 “minimized” Window State
When the window state is minimized, the entity SHOULD NOT render visible markup, but is
free to include non-visible data such as javascript or hidden forms. The Producer MUST expect
the getMarkup() operation to be invoked for the minimized state just as for all other window 10
states

5.11.3 “maximized” Window State

The maximized window state is an indication the entity is likely the only entity being rendered
in the aggregated page, or that the entity has more space compared to other entities in the
aggregated page. An entity SHOULD generate richer content when its window state is 15
maximized.

5.11.4 “solo” Window State

The solo window state is an indication the entity is the only entity being rendered in the
aggregated page. An entity SHOULD generate richer content when its window state is solo.

5.11.5 Custom Window States 20

The extensible RegistrationData structure provides a field for Consumers to declare
additional custom window states. In addition, the extensible EntityDescription structure
contains a field for entities to declare what window states they understand. A Consumer
SHOULD NOT set a window state an entity does not understand. An entity MUST map any
window state it does not understand to normal. 25

6 Registration Interface
A Producer that supports in-band registration of Consumers exposes the optional registration
portType. Regardless of whether or not the registration portType is exposed, Producers MAY
offer out-of-band processes to register a Consumer. All Producer registration processes MUST
result in a unique, opaque token that may be used to refer to the registration. This specification 30
calls this token a registrationHandle (defined in section 4.1.10).

6.1 Data Structures
The normative definitions for all data structures are contained in the WSDL referenced in
section 15. For the convenience of the reader, this non-normative section uses an IDL like
syntax to describe these structures, where the leading [R] indicates a field is required and [O] 35
indicates it is optional. The operations in this section introduce the following data structures:

Web Services for Remote Portlets Specification 49

6.1.1 RegistrationData

The RegistrationData structure provides the means for the Consumer to supply the data
required for registration with a Producer as well as protocol extensions that it supports
[R355][R356].

 RegistrationData 5
 [R] string consumerName
 [R] string consumerAgent
 [O] string consumerModes[]
 [O] string consumerWindowStates[]
 [O] string customUserProfileData[] 10
 [O] Property registrationProperties[]
 [O] Extension extensions[]

Members:

• consumerName: A name (preferably unique) that identifies the Consumer [R355]. An
example of such a name would be the Consumer’s URL. 15

• consumerAgent: Name and version of the Consumer’s vendor [R356]. This string
MUST start with “productName.majorVersion.minorVersion” where “productName”
identifies the product the Consumer installed for its deployment, and majorVersion and
minorVersion are vendor-defined indications of the version of its product. This string
MAY then contain any additional characters/words the product or Consumer wish to 20
supply.

• consumerModes: An array of modes the Consumer is willing to manage. This
specification defines a set of constants for a base set of modes (see section 13). This
array may reference both those constants and additional custom modes of the
Consumer. 25

• consumerWindowStates: An array of window states the Consumer is willing to
manage. This specification defines a set of constants for a base set of window states
(see section 13). This array may reference both those constants and additional custom
window states of the Consumer.

• customUserProfileData: An array of strings each of which name a userProfile 30
extension the Consumer supports.

• registrationProperties: List of registration properties. The names of these
properties SHOULD be from the set declared in the
registrationPropertyDescription from the Producer’s ServiceDescription and
are not part of this specification. 35

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace.

6.2 register() Operation
Registration describes the transition between Producer state 1 (known) and state 2 (active) as
described in section 3.12 [R352]. The Consumer establishes a relationship with the Producer 40
that will be referenced via an opaque handle in subsequent invocations the Consumer makes
of the Producer within this relationship [R350]. Both the Consumer and the Producer are free to
end this relationship at any time [R500]. When the Consumer chooses to end the relationship, it
MUST attempt an invocation of the deregister() operation so that the Producer may release
related resources. The Producer MAY end the registration by invalidating the registration 45
identifier and MUST inform the Consumer of this through a fault message on the next
invocation so that the Consumer may release related resources.

registrationContext = register(registrationData);

Web Services for Remote Portlets Specification 50

Faults: Security.AccessDenied, Security.AuthenticationFailure,
 Interface.MissingParameters, Interface.OperationFailed

The returned registrationContext is used in all subsequent invocations to reference this
registration [R362]. If the Producer’s metadata declares registration is not supported (i.e.
requiresRegistration flag was set to ”false”), then it MUST be valid to pass a null 5
registrationHandle to operations that have a registrationContext parameter. If the
registration fails (e.g. failed authentication), a fault message MUST be thrown indicating this to
the Consumer [R363].

A Consumer MAY register itself multiple times to a Producer with potentially different settings 10
(e.g. security settings) resulting in multiple registrationHandles [R351]. Different registration
contexts MUST be identified by different registrationHandles.

6.3 modifyRegistration() Operation
This operation provides means for the Consumer to modify a relationship with a Producer
[R353]. 15

registrationState = modifyRegistration(registrationContext, registrationData);
Faults: Security.AccessDenied, Security.InconsistentParameters,

 Security.InvalidRegistration, Security.AuthenticationFailure,
 Interface.MissingParameters, Interface.OperationFailed

The supplied parameters reference a pre-existing registration and the modifications desired. If 20
the Producer chooses to have the Consumer provide persistent storage, the change in
registration state is carried in the registrationState field of the returned
RegistrationState structure.

6.4 deregister() Operation
The Consumer MUST NOT consider a relationship with a Producer ended until a successful 25
invocation of deregister().

ReturnAny deregister(registrationContext);
Faults: Security.AccessDenied, Security.InvalidRegistration,

 Interface.OperationFailed

After this operation is invoked, all handles created within the context of the 30
registrationContext become invalid [R500][R501][R503]. It is a Producer implementation
choice whether this immediately aborts in-progress operations or waits until all transient
resources time out. In either case, a Consumer MUST NOT attempt to use the invalidated
registrationHandle for subsequent invocations. An attempt to use an invalidated
registrationHandle MUST result in a fault message indicating the registration is not valid. If 35
the deregister() operation fails, the Producer MUST return a fault message specifying the
reason for the failure.

7 Entity Management Interface
Producers MUST expose one or more logically distinct ways of generating markup and
handling interaction with that markup [A205], which this specification refers to as Entities. The 40
Producer declares the entities it exposes through its description [A104]. This declaration
contains a number of descriptive parameters; in particular it includes an entityHandle that
Consumers use to refer to the so-called “Producer_Offered_Entity”. These entities are pre-
configured and non-modifiable by Consumers.

Web Services for Remote Portlets Specification 51

In addition to the Producer_Offered_Entities, a Producer MAY expose the EntityManagement
portType and thereby allow Consumers to clone and customize the entities the Producer offers.
A Consumer MAY request a unique configuration of one of these entities, either in an opaque
manner (e.g. the “edit” button common on aggregated pages which invokes an entity-generated 5
page for setting the configuration) or by using the property definitions found in the entity’s
metadata to configure it in an explicit manner [R600]. Such a configured entity is called a
“Consumer_Configured_Entity”.

7.1 Data Structures
The normative definitions for all data structures are contained in the WSDL referenced in 10
section 15. For the convenience of the reader, this non-normative section uses an IDL like
syntax to describe these structures, where the leading [R] indicates a field is required and [O]
indicates it is optional. The operations in this section introduce the following data structures:

7.1.1 MarkupType Type
The MarkupType data structure is used to carry entity metadata that is markupType specific. 15

MarkupType
 [R] string markupType
 [R] string locales[]
 [R] string modes[]
 [R] string windowStates[] 20
 [O] Extension extensions[]

Members:

• markupType: A mimeType supported by the entity(e.g. HTML, XHTML, WML,
VoiceXML, cHTML) for which the remainder of this structure applies.

• locales: An array of locales for which this markupType is available. 25

• modes: The modes (defined in section 5.10) that are supported by the entity for this
markupType.

• windowStates: The windowStates (defined in section 5.11) that are supported by the
entity for this markupType.

• extensions: A mechanism implementations MAY choose to use for extending this 30
structure provided those extensions come from a different namespace

Web Services for Remote Portlets Specification 52

7.1.2 EntityDescription

The EntityDescription structure contains a set of fields that provide the metadata to
describe the entity.

EntityDescription
 [R] Handle entityHandle 5
 [R] MarkupType markupTypes[]
 [O] string groupID
 [O] LocalizedString description
 [O] LocalizedString shortTitle
 [O] LocalizedString title 10
 [O] LocalizedString keywords[]
 [O] string[] producerRoles
 [O] string[] userProfileItems
 [O] string needSecureCommunications
 [O] boolean usesMethodGet 15
 [O] boolean userContextStoredInSession
 [O] boolean templatesStoredInSession
 [O] boolean hasUserSpecificState
 [O] boolean doesUrlTemplateProcessing
 [O] Extension extensions[] 20

Members:

• entityHandle: The handle by which Consumers MAY refer to this
Producer_Offered_Entity. Note that Handles are restricted to a maximum length of 255
bytes.

• markupTypes: Each member of this array specifies metadata for a single markupType. 25

• groupID: Identifier for the group within which the Producer places this entity or any
entities derived from it via the cloning process.

• description: Localized descriptions of the entity. This is intended for display in
selection dialogs, etc.

• shortTitle: Localized short title for the entity. 30

• titles: Localized title for the entity.

• keywords: Array of localized keywords describing the entity which can be used for
search, etc.

• producerRoles: Array of names for the Producer’s roles that the entity can manage.
Note: This support MAY be provided by the Producer service on behalf of the entity. 35
Each role declared as supported by the entity MUST have a RoleDescription
available to the Consumer through the Producer’s ServiceDescription. [R416]

• userProfileItems: An array of strings that enumerate what portions of the
UserContext structure the entity needs to provide full functionality. For the fields this
specification defines, the named profile items an entity uses MUST all come from the 40
“Profile Name” column of the table found in section 10.

• needSecureCommunications Flag that indicates whether this entity requires secure
communications on all hops from the End-User to the entity, for either its markup or
user interactions. Possible values are:

o ”none” - secure client communications not needed (default value) 45

o “some” - secure client communications needed by some markup or user
interactions

o ”all” - secure client communications required for all markup and user
interactions.

Web Services for Remote Portlets Specification 53

• usesMethodGet: A flag indicating the entity generates markup that uses method=get in
an HTML form. This will require the Consumer format its URLs in a manner that keeps
browsers from throwing away information (see section 9.2.4 for a description of the
difficulties in using forms with method=get). The default value of this flag is ”false”.

• userContextStoredInSession: A flag indicating the entity will store any supplied 5
UserContext in the current session. Setting this flag to ”true” allows the Consumer to
optimize when the UserContext is included on operation invocations. Since some data
in the UserContext is sensitive, many Consumers will require that secure
communications be used when the information is passed. Not requiring this of all
invocations can result in a significant performance difference. The default value of this 10
flag is ”false”.

• templatesStoredInSession: A flag indicating the entity will store any supplied
templates in the current session. Setting this flag to ”true” allows the Consumer to
optimize when the templates structure is set in MarkupParams. Since the content of
the templates structure can get quite large, not requiring it to be passed can result in a 15
significant performance difference. The default value of this flag is ”false”.

• hasUserSpecificState: A flag indicating the entity will store persistent state specific
to each End-User. For entities setting this flag to ”true”, Consumers MAY choose to
clone the entity when it is placed on an aggregated page rather than waiting for the
processing described in section 5.3.3. The default value of this flag is ”false”. 20

• doesUrlTemplateProcessing: A flag indicating the entity will process any templates
supplied so as to correctly write URLs in its markup. For entities setting this flag to
”true”, Consumers MUST provide the URL writing templates. The default value of this
flag is ”false”.

• extensions: A mechanism implementations MAY choose to use for extending this 25
structure provided those extensions come from a different namespace.

7.1.3 DestroyFailed
The DestroyFailed structure contains an entityHandle that was not destroyed and the
reason for the failure.

DestroyFailed 30
 [R] string entityHandle
 [R] string reason

Members:

• entityHandle: The entityHandle that was not destroyed.

• reason: A fault code from section 0 describing the reason the destroy failed. 35

7.1.4 DestroyEntitiesResponse

The DestroyEntitiesResponse structure carries an array of failed destroys.

DestroyEntitiesResponse
 [R] DestroyFailed destroyFailed[]
 [O] Extension extensions[] 40

Members:

• destroyFailed: An array of failures returned by destroyEntities. This is carried as a
return message since not all web stacks properly handled typed information in fault
messages.

Web Services for Remote Portlets Specification 54

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace.

7.1.5 Property Type
The Property data structure is used to carry typed information from the Consumer to the
Producer. 5

Property
 [R] string name
 [R] string xmlLang
 [R] string resourceName
 [O] Object[] value 10

Members:

• name: Name of the property, must not be null

• xmlLang: The locale for the supplied localized value. This is carried in the WSDL using
the xml:lang attribute.

• resourceName: The name assigned to this localized string for dereferencing into a 15
ResourceList (defined in section 4.1.3) for values from other locales.

• value: The property’s value. The type information needed to properly serialize /
deserialize this value is carried in the relevant PropertyDescription.

7.1.6 ResetProperty Type
The ResetProperty data structure carries the name of a Property for which the Consumer 20
wants the value reset to the default.

ResetProperty
 [R] string name

Members:

• name: Name of the property, must not be null 25

7.1.7 PropertyList
A PropertyList gathers a set of Property structures together for transmitting between the
Consumer and Producer.

PropertyList
 [R] Property properties[] 30
 [R] ResetProperty resetProperties[]
 [O] ResourceList resourceList
 [O] Extension extensions[]

Members:

• properties: Each member in this array is a Property structure carrying information 35
concerning one property.

• resetProperties: Each member in this array is a ResetProperty structure carrying a
property to reset to its default value.

• resourceList: A ResourceList for carrying localized information for other locales.

• extensions: A mechanism implementations MAY choose to use for extending this 40
structure provided those extensions come from a different namespace.

Web Services for Remote Portlets Specification 55

7.1.8 PropertyDescription
Each property of an entity is described using the following structure.

 PropertyDescription
 [R] string name
 [R] QName type 5
 [O] LocalizedString label
 [O] LocalizedString hint
 [O] Extension extensions[]

Members:

• name: Name of the property, must not be null. 10

• type: Type of the property. We would encourage these to either be from the set of
schema-defined types or be explicitly typed in the Producer’s WSDL file. This allows
the Consumers to prepare the appropriate serializer/deserializer. Other possibilities for
declaring these types are the schema element of a ModelDescription or the use of the
schema-defined “schemaLocation” attribute. 15

• label: A short, human-readable name for the property. Intended purpose is for display
in any Consumer-generated user interface for administering the entity.

• hint: A relatively short description of the property. Intended for display, for example,
as a tooltip in any Consumer-generated user interface for editing the property.

• extensions: A mechanism implementations MAY choose to use for extending this 20
structure provided those extensions come from a different namespace.

7.1.9 ModelDescription
The set of properties of an entity are described in its metadata using the following structure.

ModelDescription
 [R] PropertyDescription propertyDescriptions[] 25
 [O] Schema schema
 [O] ResourceList resourceList
 [O] Extension extensions[]

Members:

• propertyDescriptions: Array of property descriptions, must not be null. 30

• schema: An XML schema defining any entity-specific datatypes referenced in the
propertyDescriptions.

• resourceList: A ResourceList for carrying localized information for other locales.

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace. 35

Web Services for Remote Portlets Specification 56

7.2 getEntityDescription() Operation
This operation allows a Producer to provide information about the entities it offers in a context-
sensitive manner.

entityDescription = getEntityDescription(registrationContext, entityContext, userContext,
 desiredLocales, sendAllLocales); 5
Faults: Security.AccessDenied, Security.InvalidProducerRole,

 Security.InconsistentParameters, Security.InvalidRegistration,
 Security.AuthenticationFailure, Interface.MissingParameters,
 Interface.OperationFailed, Interface.InvalidHandle

Producers may choose to restrict the information returned in entityDescription based on the 10
supplied registration and user contexts. Consumers may choose to alter how they interact with
an entity based on the metadata contained in the returned entityDescription. For security
reasons related to exposing the existence of something the caller is not allowed to access, it is
RECOMMENDED that a Security.AccessDenied fault be generated both for the case of the
supplied entityHandle not being a valid reference in the scope of the supplied 15
registrationHandle and for the case of the user not having access to a valid reference (i.e.
by definition access is denied when the entity reference is invalid).

When generating the EntityDescription response the Producer MUST use the
desiredLocales to control what locales are supplied for localized strings and sendAllLocales 20
to control whether values for all available locales are included.

7.3 cloneEntity() Operation
This operation allows the Consumer to request the creation of a new entity from an existing
entity. 25

entityContext = cloneEntity(registrationContext, entityContext, userContext);
Faults: Security.AccessDenied, Security.InvalidProducerRole,

 Security.InconsistentParameters, Security.InvalidRegistration,
 Security.AuthenticationFailure, Interface.MissingParameters,
 Interface.OperationFailed, Interface.InvalidHandle, 30
 Interface.NoCloneGenerated

The supplied entityContext MUST refer to either a Producer_Offered_Entity or a previously
cloned Consumer_Configured_Entity. The initial state of the new entity MUST be equivalent to
the state of the entity the supplied handle references. In the case of a
Consumer_Configured_Entity that pushes the entity’s persistent state to the Consumer, the 35
entityState field of the returned entityContext structure will supply that state. The new
entityHandle MUST be scoped by the registrationHandle in the supplied
registrationContext and be unique within this registration.

If a Producer chooses to push the persistent state of its entities to the Consumer, it is 40
RECOMMENDED that the entityHandle encode the supplied registrationHandle. In this
case, it is also RECOMMENDED that the entityState encode the entityHandle so that the
Producer MAY do reasonable cross checks that it is receiving a consistent set of handles and
state.

 45

Web Services for Remote Portlets Specification 57

The returned entityContext contains both the entityHandle and entityState fields for use
in subsequent invocations on the configured entity. No relationship between the supplied entity
and the new entity is defined by this specification. The Consumer MUST attempt to release the
new entityHandle by invoking destroyEntities() when it is no longer needed.

 5

If the Producer’s metadata declares registration is not supported (i.e. requiresRegistration
flag was set to “false”), then the Consumer MUST invoke destroyEntities() when it would have
deregistered, passing each entityHandle that would have been scoped by a registration.

7.4 destroyEntities() Operation
The Consumer MUST inform the Producer that a Consumer_Configured_Entity will no longer 10
be used by invoking destroyEntities() and MUST NOT consider an entity to have been
destroyed until destroyEntities() has been successfully invoked for that entity.

DestroyEntitiesResponse destroyEntities(registrationContext, entityHandles);
Faults: Security.AccessDenied, Security.InvalidProducerRole,

 Security.InconsistentParameters, Security.InvalidRegistration, 15
 Security.AuthenticationFailure, Interface.MissingParameters,
 Interface.OperationFailed

The supplied entityHandles is an array of type entityHandle, each of which the Consumer is
informing the Producer it will no longer use. The Producer returns failures to destroy supplied
entityHandles in the DestroyEntitiesResponse structure. It is a choice of the Producer’s 20
implementation whether the resources related to the entityHandles are immediately
reclaimed or whether transient resources are allowed to timeout first. A Consumer MUST NOT
reference any of the supplied entityHandles after successfully invoking destroyEntities()
and MAY reclaim resources related to the supplied entityHandles (e.g. entityState).

7.5 setEntityProperties() Operation 25

The entity state in the previous operations was opaque to the Consumer (e.g. as
entityState). In addition, means are defined by which a Producer may publish information
about state in an entity-specific manner. This is enabled through Properties that are declared
in the metadata specific to an entity. Each property declaration includes a name and type
(default = xsd:string) [A505][A507]. This operation enables the Consumer to interact with 30
this published portion of an entity’s state.

entityContext = setEntityProperties(registrationContext, entityContext , userContext,
 propertyList);

Faults: Security.AccessDenied, Security.InvalidProducerRole,
 Security.InconsistentParameters, Security.InvalidRegistration, 35
 Security.Authenticationfailure, Interface.MissingParameters,
 Interface .OperationFailed, Interface.InvalidHandle

Since setEntityProperties() is interacting only with the published portion of the entity’s state, it
MUST always be safe for the entity to modify its state (i.e. equivalent to entityStateChange
set to “OK” for a performInteraction() invocation). The supplied set of property changes MUST 40
be processed together. In particular, validation SHOULD only be done considering the entire
set as partial updates could easily create an internally inconsistent set of properties. The
storage of the update caused by applying the set of property updates SHOULD only occur after
the Producer/entity executes this validation. It should also be noted that the Producer SHOULD
serialize invocations of setEntityProperties() for any one entityHandle. 45

Web Services for Remote Portlets Specification 58

7.6 getEntityProperties() Operation
This operation provides the means for the Consumer to fetch the current values of the
published entity’s properties. The intention is to allow a Consumer-generated user interface to
display these for administrative purposes.

propertyList = getEntityProperties(registrationContext, entityContext, userContext, 5
 names);
Faults: Security.AccessDenied, Security.InvalidProducerRole,

 Security.InconsistentParameters, Security.InvalidRegistration,
 Security.AuthenticationFailure, Interface.MissingParameters,
 Interface.OperationFailed, Interface.InvalidHandle 10

The supplied names parameter is an array of strings each of which declares a property for
which the Consumer is requesting its value. The returned propertyList declares the current
values for these properties. If the Consumer passes a null names parameter, the Producer /
entity MUST treat this as a request to enumerate the properties of the entity.

7.7 getEntityPropertyDescription() Operation 15

This operation allows the Consumer to discover the published properties of an entity and
information (e.g. type and description) that could be useful in generating a user interface for
editing the entity’s configuration.

modelDescription = getEntityPropertyDescription(registrationContext, entityContext ,
 userContext, desiredLocales, 20
 sendAllLocales);
Faults: Security.AccessDenied, Security.InvalidProducerRole,

 Security.InconsistentParameters, Security.InvalidRegistration,
 Security.AuthenticationFailure, Interface.MissingParameters,
 Interface.OperationFailed, Interface.InvalidHandle 25

The modelDescription returned is a typed property view onto the portion of the entity’s
persistent state that the user (referenced through the userContext) is allowed to modify. While
it is possible the set of properties MAY change with time (e.g. the entity dynamically creates or
destroys properties), Producers/entities SHOULD make the returned modelDescription as
complete as possible. 30

When generating the ModelDescription response the Producer MUST use the
desiredLocales to control which locales are supplied for localized strings and
sendAllLocales to controls whether values for all available locales are included.

 35

8 Security
WSIA and WSRP compliant systems will be exposed to the same security issues as other web
service systems. For a representative summary of security concerns, refer to the Security and
Privacy Considerations document produced by the XML-Based Security Services Oasis TC.

 40

It is a goal within this specification to leverage standards efforts that address web services
security and to avoid defining mechanisms that will be redundant with those standards efforts.
These standards generally fall into two main categories: document-level mechanisms and
transport-level mechanisms.

Web Services for Remote Portlets Specification 59

The uses of document -level security mechanisms are not covered in this version of the
specification since several important standards (particularly security policy declarations) are not
yet available. Producers and Consumers wishing to apply document -level security techniques
are encouraged to adhere to the mechanisms defined by WS-Security, SAML, XML-Signature, 5
XML-Encryption, and related specifications. It is anticipated that as the web services security
roadmap becomes more fully specified by standards, and support for those standards becomes
widely available from infrastructure components, that these will play an important role in future
versions of this specification.

 10

For this version of the specification, emphasis is placed on using transport -level security
standards (e.g. SSL/TLS) to address the security issues involved in Consumers invoking
Producers on behalf of End-Users. These only require that a Producer’s WSDL declare
bindings for an HTTPS service entry point. Consumer’s can only determine that secure
transport is support ed by parsing the URL for the service entry point. 15

8.1 Authentication of Consumer
Producer authentication of a Consumer may be achieved at the transport level through the use
of client certificates in conjunction with SSL/TLS. Certificate provisioning by a Producer to a
Consumer happens outside the scope of this protocol, typically as part of establishing a
business relationship between the Producer and Consumer. 20

8.2 Confidentiality & Message Integrity
SSL/TLS may be used to ensure the contents of messages are neither tampered with nor
decipherable by an unauthorized third party. Consideration needs to be given to both the
communication between Producer and Consumer and communication between the End-User
client and the Consumer. 25

For Producer - Consumer communications, the Producer declares the use of SSL/TLS in the
service’s WSDL by declaring an HTTPS service endpoint.

For Consumer – End-User client communications, the Consumer indicates in the 30
MarkupParams structure whether or not communications with the End-User are happening in a
secure manner. The entity MAY choose to change behavior based on this value, for example it
may generate markup that redirects the End-User to the equivalent secure page or throw a
fault indicating secure client communications are required.

8.3 Access control 35

A Consumer MAY implement access control mechanisms that restrict which End-Users may
access which entities and operations on those entities. Additionally, a Producer MAY
implement access control programmatically through the use of facilities such as an
authenticated user identity or Producer roles. A standard set of roles has been defined to
facilitate easy mapping of common roles. A Producer’s ServiceDescription MAY declare 40
support for roles including both these standard roles and any additional roles it defines. A
Consumer MAY map End-Users to the roles a Producer declares in any manner it chooses,
including ignoring them. Producers that use roles (standard or custom) SHOULD implement
appropriate default behavior in the event a Consumer does not assert any role for the End-
User. 45

Web Services for Remote Portlets Specification 60

8.4 Producer Roles
A Producer optionally declares the producerRoles each entity is capable of supporting in the
EntityDescription structure described in section 7.1.2. The purpose of this declaration is to
indicate to the Consumer a set of Access Controls that may be asserted for invocations on the
behalf of a user. 5

8.4.1 Role Assertions
Since roles are an optional means for the Producer and Consumer to cooperatively apply
access controls that are relevant to the user, the following examines the various combinations
of Producer and Consumer choices:

1. Neither Producer nor Consumer support roles. In this case the EntityDescription 10
structures from the Producer will not declare any roles and the Consumer will never
assert any roles in the UserContext structure. Any cooperative access control issues
are likely dealt with by other techniques, such as the user’s identity being a shared
identity.

2. Both the Producer and Consumer support roles. In this case the EntityDescription 15
structures from the Producer will declare roles. The Consumer will need to map its
roles for the user to this set from the Producer when asserting roles in the
UserContext structure in order to satisfy the requirement that the asserted roles come
only from the Producer published roles. The Consumer controls the mechanism by
which this mapping occurs. 20

3. Producer supports roles, but the Consumer does not. In this case the
EntityDescription structures from the Producer declare roles, but the Consumer will
never assert any roles in the UserContext structure. The Producer will need to default
the role it uses to process invocations.

4. The Producer does not support roles, but the Consumer does. In this case the 25
EntityDescription structures from the Producer will not declare any roles and the
Consumer will need to map all of its roles to null. This results in the Consumer being
able to process invocations normally without violating the requirement that only the
roles a Producer publishes being used in the UserContext structure.

8.4.2 Standard Roles 30

To ease the mapping of End-Users to roles and to facilitate plug-and-play, the following
standard role names are provided along with an abstract definition of semantics associated
with each. These definitions suggest progressively restrictive levels of access to the entity and
are provided as guidelines only. The specific semantics of these roles are left to each
Producer’s implementation. 35

Administrator: This role typically grants the highest level of access to functionality of an
entity.

User: This role is typically associated with End-Users who may personalize
some set of properties for an entity.

Guest: This role is typically associated with End-Users who may view an entity 40
on a page but not modify any of its properties

9 Markup
This section covers the issues related to entities generating markup that Consumers could
safely aggregate into a page and then properly process End-User interactions [A301].

Web Services for Remote Portlets Specification 61

9.1 Encoding
The Consumer MUST indicate to the entity the preferred character encoding, using the
characterSet field of the markupParams structure. It is up to the entity to generate markup
that complies with this encoding. The entity may generate markup in the UTF -8 character set
encoding if it is unable to generate the requested characterSet. If it is unable to generate 5
markup in either of these character sets, the entity MUST return a fault message to the
Consumer. The Producer MUST use the same character set for the XML response message as
was used to generate the markup.

9.2 URL Considerations
As part of its markup, an entity will often need to create URLs that reference the entity itself. 10
For example, when an End-User activates one of these URLs, by clicking a link or submitting a
form, the result should be a new invocation targeted to the entity. This section deals with the
different possibilities for how the entity can encode these URLs in its markup.

URLs embedded in a markup fragment often cannot (or should not) be direct links to the 15
Producer for a number of reasons:

• URLs the entity writes in its markup will be invoked or accessed by the End-User
operating on the client. In the general case however it is only guaranteed that the client
has direct access to the Consumer; the Producer may be shielded from the client via a
firewall. So the Consumer needs to intercept URLs and route them to the Producer 20
[A103].

• The Consumer may want to intercept URLs to perform additional operations, enrich the
request with context information or do some book keeping

• The client might not be able to directly invoke the Producer, e.g. if the client is a
browser that cannot issue SOAP requests to the Producer but can only talk HTTP to 25
the Consumer. In this case the Consumer must translate the request into the correct
protocol.

This implies that URLs must be encoded so that the Consumer intercepts them and re-routes
them to the correct entity at the Producer, including the proper context. Because the same
entity can be instantiated more than once in a single page, encoded URLs will have to allow the 30
Consumer to track the entity to which the request is targeted. The problem is that the Producer
requires Consumer-dependent information to write such a link. In principle there exist two
options to make the encoded URLs point back to the Consumer and consist of all necessary
information for the Consumer to properly process the activation of an URL:

• The Consumer can pass information on its context to the entity. The entity exploits this 35
information during URL encoding so the resulting URL can be passed without further
modification to the client. The advantages of this technique are efficiency and
exploitation of these settings, even in client-side scripting. The disadvantage is that the
entity will not be able to serve static content as the content depends on Consumer
runtime settings. 40

Web Services for Remote Portlets Specification 62

• The entity can use a special syntax to encode its URLs. It is then the task of the
Consumer to detect URLs in the markup and modify them according to its
requirements. The markup generated by the entity is now Consumer-independent,
allowing the entity to exploit caching mechanisms or even to serve static content.
However, the Consumer will be more complex, as it needs to parse the markup to 5
locate and rewrite the URLs, requiring extra processing time. Consumers SHOULD
seek to minimize this impact on performance by using efficient encoding and parsing
mechanisms (for example, the Boyer-Moore algorithm11).

 As there is no clear advantage to either technique, both styles of URL encoding are supported
(see sections 9.2.1 and 9.2.2). This facilitates the capabilities both of the Producer and the 10
Consumer with regards to the ability to adapt the generated markup and requires that the
following semantics be followed:

1. IF an entity’s metadata declares it is willing to process URL templates, then the
Consumer MUST supply templates for the entity to use.

2. IF an entity is unable to completely write the URLs for its markup, it MUST set the 15
needsUrlRewriting flag in MarkupResponse to “true”.

3. If the needsUrlRewriting flag in MarkupResponse is “true”, then the Consumer MUST
parse the returned markup and rewrite URLs conforming to the definitions in Section 9 of
this specification.

 20

Note: In principle it would not be necessary to mark URLs in a special way. The Consumer
could always analyze the markup semantically and syntactically, detect URLs and rewrite them.
This approach however would be very difficult and time consuming to implement for the
Consumer, for reasons including that such a rewriting algorithm would be dependent on the
markup type and version. Therefore both the Consumer and the Producer URL writing 25
scenarios are introduced for convenience.

Entities MUST adopt the following convention for including non-ASCII characters within URLs
in order to comply with W3C recommendations.

1. Represent each character in UTF -8 (see [RFC2279]) as one or more bytes. 30
2. Escape these characters with the URI escaping mechanism (i.e., by converting each byte

to %HH, where HH is the hexadecimal notation of the character value).

This procedure results in a syntactically legal URI (as defined in [RFC1738], section 2.2 or
[RFC2141], section 2) that is independent of the character encoding12 to which the document
carrying the URI may have been transcoded. 35

11 http://www.cs.utexas.edu/users/moore/best-ideas/string-searching/
12 http://www.w3.org/TR/html40/charset.html - doc-char-set

Web Services for Remote Portlets Specification 63

9.2.1 Consumer URL Writing
All URLs the Consumer needs to write are demarcated in the markup by a token (wsrp-rewrite)
both at the start (with a “?” appended to clearly delimit the start of the name/value pairs) and
end (preceded by a “/” to form the end token) of the URL declaration. The Consumer will have
to locate the start and end token in the markup stream and use the information between the 5
tokens to write the URL correctly. Details on this URL writing process are Consumer-specific
and out of scope for this specification. The content between this pair of tokens follows the
pattern of a query string (name/value pairs separated by “&” characters) with several well-
known parameter names specifying what the Consumer needs in order to both correctly write
the URL and then process it when an End-User activates it. This results in an URL declaration 10
of the form:

 [3rd F2F: Change token to wsrp-rewrite for now. Revisit value of less human readable token
once an implementation is available to test the impact.]

wsrp-rewrite?urlType&name1=value1&name2=value2 .../wsrp -rewrite

The Consumer is NOT REQUIRED to process URLs not conforming to this format and MAY 15
choose to pass them unchanged, replace them with error text, do a best effort processing or
invalidate the entire markup fragment. The Consumer is NOT REQUIRED to process escaped
characters in parameter names, but rather MAY pass them unchanged to either the User Agent
(during URL rewriting) or the Producer (during processing of an activated URL).

 20

The following well-known parameter names (e.g. replacing “urlType”, “name1” and “name2”
above) are defined:

9.2.1.1 urlType
This parameter MUST be specified first by replacing the string “urlType” in the template above
with one of the following values. Well-known parameter names that are valid for only one of the 25
urlTypes are described relative to that urltype while the remainder are described later. The
following values are defined for “urlType”:

9.2.1.1.1 Action

Activation of the URL will result in an invocation of processInteraction() on the entity that
generated the markup. Prior to invoking this method the Consumer MUST analyze the 30
query string parameters of the URL to determine if a mode and/or window change is
specified. The Consumer MUST process all mode and window state change requests
invoking the operation. All query string parameters not defined by this specification MUST
be passed to processInteraction() as requestParameters. In addition the Consumer
MUST check for the presence of the wsrp-navigationalState parameter. If this 35
parameter is present its value MUST be passed in the navigationalState field of the
MarkupParams structure. If there is no such parameter, the Consumer MUST supply the
current navigational state of the entity instead.

Web Services for Remote Portlets Specification 64

9.2.1.1.2 BlockingAction

Activation of the URL will result in an invocation of processBlockingInteraction() on the
entity that generated the markup. Prior to invoking this method the Consumer MUST
analyze the query string parameters of the URL to determine if a mode and/or window
change is specified. The Consumer MUST process all mode and window state change 5
requests invoking the operation. All query string parameters not defined by this
specification MUST be passed to processBlockingInteraction() as requestParameters.
In addition the Consumer MUST check for the presence of the wsrp-navigationalState
parameter. If this parameter is present its value MUST be passed in the
navigationalState field of the MarkupParams structure. If there is no such parameter, the 10
Consumer MUST supply the current navigational state of the entity instead.

9.2.1.1.3 Render

Activation of the URL will result in an invocation of getMarkup(). This mechanism permits
an entity’s markup to contain URLs, which do not involve changes to local state, to avoid
the overhead of two-step processing by directly invoking getMarkup(). The URL MAY 15
specify a wsrp-navigationalState parameter different from the current
navigationalState for the entity as this allows state changes resulting in different markup
being rendered. The Consumer MUST pass all the URL’s query string parameters not
defined by this specification as requestParameters in the MarkupParams data structure.

9.2.1.1.4 Resource 20

Activation of the URL will result in the Consumer fetching the underlying resource, possibly
in a cached manner, and returning it to the End-User. For the HTTP protocol this maps to a
“get” on the underlying resource. The URL for the resource (including any query string
parameters) is encoded as the value of the wsrp-url parameter.

9.2.1.1.4.1 wsrp-url 25

This parameter provides the actual URL to the resource. Note that this needs to be an
absolute URL as the resource fetch will likely use HTTP GET instead of a web service
invocation. Also note that since this URL will appear as a parameter value, it MUST be
strictly encoded (i.e. “&”, “=“, “/”, and “?” url-escaped) so that special URL characters do
not invalidate the processing of the enclosing URL. 30

9.2.1.1.4.2 wsrp-rewriteResource

This boolean informs the Consumer that the resource needs to be parsed for URL
rewriting. Normally this means that there are names that will be cross-referenced
between the markup and this resource (e.g. javascript references). Note that this means
the Consumer needs to deal with rewriting unique “namespaced” names in a set of 35
documents, rather than treating each document individually. Consumers MAY want to
process such resources in a manner that allows caching of the resulting resource by the
End-User’s browser. In particular, Consumers MAY process namespace rewriting by
using a prefix that is unique to the user/entity pair provided any such prefix is held
constant for the duration of the user’s session with any one entity. 40

Web Services for Remote Portlets Specification 65

9.2.1.1.5 Namespace

This tells the Consumer that the “URL” contains a name that needs to be unique on the
aggregated page (e.g. a form field’s name or the name of a javascript method). While this is
not technically a URL, providing this functionality in this manner limits the performance
impacts of Consumer parsing to a single pass of the markup. The actual name that needs 5
to be rewritten is encoded in the wsrp-token parameter. See section 9.2.4 for more details
on namespace rewriting.

9.2.1.1.5.1 wsrp-token

This parameter provides the actual token that is to be namespaced.

9.2.1.2 wsrp-navigationalState 10

The value of this parameter defines the navigational state the Consumer MUST send to the
Producer when the URL is activated. If this parameter is missing, the Consumer MUST send
the current navigational state.

9.2.1.3 wsrp-mode
Activating this URL includes a request to change the mode parameter in markupParams into the 15
mode specified as the value for this parameter name. This must be one of the modes detailed
in section 5.10 or a custom mode the Consumer specified as supported during registration. The
Consumer MUST process this URL request to change the mode prior to invoking operations on
the entity. If the requested mode change is for an invalid or unavailable mode (e.g. policy
prohibits this End-User from entering that mode), the Consumer SHOULD leave the mode 20
unchanged.

9.2.1.4 wsrp-windowState
Activating this URL includes a request to change the windowState parameter in markupParams
into the window state specified as the value for this parameter name. This must be one of the
values detailed in section 5.11 or a custom window state the Consumer specified as supported 25
during registration. The Consumer MUST process this URL request to change the window state
prior to invoking operations on the entity. If the requested window state change is for an invalid
or unavailable window state (e.g. policy prohibits this End-User from entering that window
state), the Consumer SHOULD leave the window state unchanged.

9.2.1.5 wsrp-secureURL 30

A boolean indicating the resulting URL should involve secure communications between the client
and Consumer, as well as between the Consumer and Producer. The default value of this
boolean is “false”.

9.2.1.6 URL examples
Here are some examples of what “URL”s following this format: 35

• Load a resource http://test.com/images/test.gif:

o wsrp-rewrite?Resource&wsrp-
url=http%3A%2F%2Ftest.com%2Fimages%2Ftest.gif/wsrp-rewrite

• Declare this token as needing namespacing:

o wsrp-rewrite?Namespace&wsrp-token=myFunc/wsrp-rewrite 40

• Declare a secure interaction back to the entity:

Web Services for Remote Portlets Specification 66

o wsrp-rewrite?Action&wsrp-secureURL=true&wsrp-
navigationalState=a8h4K5JD9&myParam=foobar/wsrp-rewrite

• Request the Consumer render the entity in a different mode and window state:

o wsrp-rewrite?Render&wsrp-mode=help&wsrp-windowState=maximized/wsrp-
rewrite 5

9.2.2 Producer URL Writing
Producers and entities often are willing to properly write URLs for the Consumer, as this
decentralizes the preparation of the page for rendering and thereby may provide better page
load performance to the End-User. At other times, entities choose to dynamically compute the
URL in script on the End-User’s machine just before activating the URL. To enable these 10
functionalities, several templates are defined by which the Consumer indicates how it needs
URLs formatted in order to process them properly. These all take the form of a simple template,
for example:

 http://www.Consumer.com/path/urlType_{urlType}?mode={wsrp-mode}&…

The definition of the content of this template is completely up to the Consumer. It may consist 15
of zero or more replacement tokens. These tokens are enclosed in curly braces (i.e. “{“ and “}”)
and contain the name of the parameter that should be replaced. All content outside the {} pairs
MUST be treated by the Producer/entity as constants the Consumer wishes to receive when
the URL is activated. The list of defined parameter names matches those in section 9.2.1, with
the addition of wsrp-requestParameters. This parameter defines where the entity should 20
place data items it needs in the requestParameters field of the markupParams data structure
when the URL is activated. The value replacing wsrp-requestParameters should follow the
pattern of a URL query string (properly encoded name/value pairs separated by the “&”
character) and be strictly encoded (i.e. “&”, “=“, “/”, and “?” url-escaped) as it likely will be the
value of a parameter in the query string of the full URL. 25

This specification defines a Templates structure that supplies these values. The Consumer
MUST supply these templates for entities specifying doesUrlTemplatesProcessing as “true”.
Entities also specifying templatesStoredInSession as “true” enable the Consumer to only
send these until the Producer returns a sessionHandle. The following describe in more detail 30
the usage of the fields from the Templates structure.

9.2.2.1 ActionTemplate
Activation of the URL will result in an invocation of performInteraction(). The Consumer
SHOULD integrate placeholders for the tokens wsrp-navigationalState, wsrp-entityMode
and wsrp-windowState in its template. The Consumer MUST apply changes in mode or state 35
before invoking performInteraction().

9.2.2.2 SecureActionTemplate
Equivalent to ActionTemplate using secure communications.

9.2.2.3 BlockingActionTemplate
Activation of the URL will result in an invocation of performBlockingInteraction(). The 40
Consumer SHOULD integrate placeholders for the tokens wsrp-navigationalState, wsrp-
entityMode and wsrp-windowState in its template. The Consumer MUST apply changes in
mode or state before invoking performBlockingInteraction().

Web Services for Remote Portlets Specification 67

9.2.2.4 SecureBlockingActionTemplate
Equivalent to BlockingActionTemplate using secure communications.

9.2.2.5 RenderTemplate
Activation of the URL will result in an invocation of getMarkup(). The Consumer SHOULD
integrate placeholders for the tokens wsrp-navigationalState, wsrp-entityMode and 5
wsrp-windowState in its template. The Consumer MUST apply changes in mode or state
before invoking getMarkup().

9.2.2.6 SecureRenderTemplate
Equivalent to RenderTemplate using secure communications.

9.2.2.7 ResourceTemplate 10

Activation of the URL will result in the Consumer fetching the underlying resource, possibly in a
cached manner, and returning it to the End-User. For the HTTP protocol this maps to a “get” on
the underlying resource. The Consumer SHOULD integrate placeholders for the token wsrp-
url to allow the entity to place the address of the URL.

9.2.2.8 SecureResourceTemplate 15

Equivalent to ResourceTemplate using secure communications.

9.2.2.9 DefaultTemplate
A template whose value is to be used as the default value for any template whose value is not
supplied. Consumers setting just this template value SHOULD also set a separate default for
the secure communications templates using SecureDefaultTemplate, unless the default 20
template already uses secure communications. Consumers not supplying all the other
templates MUST set a value for this template.

9.2.2.10 SecureDefaultTemplate
This template provides a value that overrides the one supplied for DefaultTemplate for those
templates whose names begin with “Secure”. 25

9.2.2.11 NamespacePrefix
The Producer can use the content of this field as a prefix for tokens that need to be unique on
the aggregated page.

Web Services for Remote Portlets Specification 68

9.2.3 BNF Description of URL formats
ConsumerURL = BeginToken UrlType NameValuePairs EndToken
BeginToken = “wsrp-rewrite?”
EndToken = “/wsrp-rewrite”
UrlType = “Action” | “BlockingAction” | “Render” | “Resource” | “Namespace” 5
NameValuePairs = (“&” NameValuePair)*
NameValuePair = TextPair | BooleanPair | EntityPair
TextPair = TextName “=“ Text
TextName = “wsrp-navigationState” | “wsrp-mode” | “wsrp-windowState” | “wsrp-
url” | “wsrp-token” 10
BooleanPair = BooleanName “=“ BooleanValue
BooleanName = “wsrp-secureURL” | “wsrp-rewriteResource”
BooleanValue = (“true” | “false”)
EntityPair = Text “=“ Text
Text = <any URL-encoded textual characters> 15

ProducerURLTemplate = (Text* ReplacementToken*)*
ReplacementToken = “{“ ParameterName “}”
ParameterName = TextName | BooleanName | “UrlType” | “wsrp-requestParameters”

9.2.4 Method=get in HTML forms 20

Browsers often throw away any query string from the URL indicated with the form’s action
attribute when generating the URL they will activate when the form’s method is “get ”. This is the
simplest means for them to generate a valid query string. The difficulty this causes is that
Consumer’s often prefer to store the information they will use when the URL is activated as
query string parameters. As a result, entities that use HTML forms with method=get MUST 25
specify usesMethodGet as “true” in their EntityDescription. Consumers choosing to use
such entities MUST format their URLs such that URL activations are processed correctly,
regardless of whether Consumer or Producer URL writing is in use.

9.3 Namespace Encoding
Aggregating multiple entities from different sources can potentially result in naming conflicts for 30
various types of elements: named attributes, form fields, JavaScript functions and variables,
etc. Such tokens must therefore be encoded to an entity-instance specific namespace [A301].
The entity does this by prefixing the name of the resource with a namespace prefix.

If namespace encoding is used for form parameters or other data the entity receives as in 35
markupParams, then the Consumer MUST strip the namespace prefix from the parameter
names before passing them to the Producer. This means the entity logic can be agnostic
regarding namespace issues except when encoding parameters in the markup.

Similar to the case of URL rewriting, two options exist to obtain a namespace prefix. 40

Web Services for Remote Portlets Specification 69

9.3.1 Consumer Rewriting
The entity uses the static, predefined method (section 9.2.1) to denote tokens that need a
namespace prefix. The Consumer parses the markup fragment to locate these tokens and
replace them with a namespaced token unique in the context of the page aggregation. This
namespaced token MUST be the same for occurrences of a token in the set of documents 5
being processed while building the aggregated page. This is done using the same method as
URL rewriting and is described in that section. It is expected that the length this method adds to
names might make it unwieldy to content authors, but the expectation that tooling/runtime
support can alleviate most of this burden led to reusing this singular technique for the
Consumer parsing/rewriting the markup. 10

9.3.2 Producer Writing
The entity uses a namespace provided by the Consumer to prefix these tokens in its markup.
The Consumer ensures this prefix is unique for the page aggregation, so the Consumer is not
required to process the markup. The Consumer supplies the prefix the entity needs to use via
the NamespacePrefix field in the Templates structure. 15

9.4 Markup Fragment Rules
Because the Consumer aggregates the markup fragments produced by entities into a single
page, some rules and limitations are needed to ensure the coherence of the resulting page to
be displayed to the End-User. For efficiency reasons, Consumers are not required to validate
the markup fragments returned by the entity. So in order to be aggregated, the entity MUST 20
ensure its markup conforms to the following general guidelines [A300][A302].

The disallowed tags listed below are those tags that impact other entities or may even break
the entire aggregated page. Inclusion of such a tag invalidates the whole markup fragment,
which the Consumer MAY replace with an error message. 25

9.4.1 HTML

9.4.1.1 Disallowed Tags
Since the Consumer may implement its aggregation in many ways, including using frames,
some Consumers may actually support these disallowed tags. However, in order to be certified
as being a cross-platform entity, an entity MUST NOT use the following tags: 30

 base

 body

 frame

 frameset

 head

Web Services for Remote Portlets Specification 70

 html

 title

9.4.1.2 Other Tags
There are some tags that are specifically prohibited by the HTML specification from occurring
outside the <head> of the document. However, browser implementations offer varying levels of
support. For example, current versions of Internet Explorer and Netscape Navigator both
support the style tag anywhere within the document. 5

It is up to the entity developer to decide when using such tags is appropriate. Here is a list of
tags that fit this description:

link

meta

style

9.4.2 XHTML 10

9.4.2.1 Disallowed Tags

base

body

head

html

title

9.4.2.2 Other Tags

link

meta

style

9.4.3 XHTML Basic

9.4.3.1 Disallowed Tags

 base

 body

 head

 html

Web Services for Remote Portlets Specification 71

 title

9.4.3.2 Other Tags

link

meta

style

9.5 CSS Style Definitions
One of the goals of an aggregated page is a common look-and-feel across the entities
contained on that page. This not only affects the decorations around the entities, but also their 5
content. Using a common CSS style sheet for all entities, and defining a set of standard styles,
provides this common look-and-feel without requiring the entities to generate Consumer-
specific markup. Entities SHOULD use these style definitions in order to participate in a uniform
display of their content by various Consumers.

 10

This section defines styles for a variety of logical units in the markup.

9.5.1 Links (Anchor)
A custom CSS class is not defined for the <a> tag. The entity should use the default classes
when embedding anchor tags.

9.5.2 Fonts 15

The font style definitions affect the font attributes only (i.e. font face, size, color, style, etc.).

Style Description Example

portlet -font Font attributes for the “normal” fragment font. Used for
the display of non-accentuated information.

Normal
Text

portlet -font-dim Font attributes similar to the portlet-font but the color is
lighter.

Dim Text

If an entity author wants a certain font type to be larger or smaller, they should indicate this
using a relative size.

Example1: <div class="portlet-font" style="font-size:larger">Important information</div> 20

Example1: <div class="portlet-font-dim" style="font-size:80%">Small and dim</div>

9.5.3 Messages
Message style definitions affect the rendering of a paragraph (i.e. alignment, borders,
background color, etc.) as well as text attributes.

Style Description Example

portlet -msg-status Status of the current operation. Progress: 80%

Web Services for Remote Portlets Specification 72

portlet -msg-info Help messages, general
additional information, etc.

Info about

portlet -msg-error Error messages. Portlet not available

portlet -msg-alert Warning messages. Timeout occurred, try again
later

portlet -msg-success Verification of the successful
completion of a task.

Operation completed
successfully

9.5.4 Sections
Section style definitions affect the rendering of markup sections such as table, div and span
(i.e. alignment, borders, background color, etc.) as well as their text attributes.

Style Description

portlet -section-header Table or section header

portlet -section-body Normal text in a table cell

portlet -section-alternate Text in every other row in the cell

portlet -section-selected Text in a selected cell range

portlet -section-subheader Text of a subheading

portlet -section-footer Table or section footnote

portlet -section-text
Text that belongs to the table but does not fall in one of the
other categories (e.g. explanatory or help text that is
associated with the section).

9.5.5 Forms
Form styles define the look-and-feel of the elements in an HTML form. 5

Style Description

portlet-form-label
Text used for the descriptive label of the whole form (not the
labels for fields.

portlet -form-input-field Text of the user-input in an input field.

portlet -form-button Text on a button

portlet -icon-label Text that appears beside a context dependent action icon.

portlet -dlg-icon-label Text that appears beside a “standard” icon (e.g. Ok, or Cancel)

portlet -form-field-label Text for a separator of fields (e.g. checkboxes, etc.)

portlet -form-field Text for a field (not input field, e.g. checkboxes, etc)

Web Services for Remote Portlets Specification 73

PortletPortlet

Enter password

Check an option

Enter Option
.wsia-form-label

.wsia-form-input-field

Click Here
.wsia-form-button

.wsia-form-field-label

.wsia-form-field

9.5.6 Menus
Menu styles define the look-and-feel of the text and background of a menu structure. This
structure may be embedded in the aggregated page or may appear as a context sensitive 5
popup menu.

Style Description

portlet -menu General menu settings such as background
color, margins, etc

portlet -menu-item Normal, unselected menu item.

portlet -menu-item-selected Selected menu item.

portlet -menu-item-hover Normal, unselected menu item when the
mouse hovers over it.

portlet -menu-item-hover-selected Selected menu item when the mouse
hovers over it.

portlet -menu-cascade-item Normal, unselected menu item that has
sub-menus.

portlet -menu-cascade-item-selected Selected sub-menu item that has sub-
menus.

portlet -menu-description Descriptive text for the menu (e.g. in a
help context below the menu)

portlet -menu-caption Menu caption

PortletPortlet

.wsia-menu-caption

.wsia-menu-description

.wsia-menu-item

.wsia-menu-cascade-item

Portlet Menu

Config

Misc
SubItem1
SubItem1

Edit

Portlet Menu

Config

Misc
SubItem1
SubItem1

Edit

Some text that
explains this menu

.wsia-menu-item-selected

Web Services for Remote Portlets Specification 74

10 User Information
This specification provides a mechanism for entities to use End-User information as a means
for personalizing behavior to the current user [A600][A606]. A standard set of user attributes
has been derived from P3P User Data and is defined in Section 11. Extensibility is supported
in both directions; the Consumer indicates to the Producer during registration what set of user 5
profile extensions it supports, and an entity’s metadata declares what user profile items it uses
(including any extended user profile items). The following table maps the nested profile
structures to profileNames:

Profile Name Structure 1 Structure 2 Field Name

name/prefix name prefix

name/given name given

name/family name family

name/middle name middle

name/suffix name suffix

name/nickName name nickName

birthDate birthDate

gender gender

employerInfo/employer employerInfo employer

employerInfo/department employerInfo department

employerInfo/jobTitle employerInfo jobTitle

homeInfo/address/name homeInfo address name

homeInfo/address/street homeInfo address street

homeInfo/address/city homeInfo address city

homeInfo/address/stateprov homeInfo address stateprov

homeInfo/address/country homeInfo address country

homeInfo/address/org homeInfo address org

homeInfo/telephone homeInfo telephone

homeInfo/email homeInfo email

homeInfo/online homeInfo online

workInfo/address/name workInfo address name

workInfo/address/street workInfo address Street

workInfo/address/city workInfo address City

workInfo/address/stateprov workInfo address stateprov

workInfo/address/country workInfo address country

Web Services for Remote Portlets Specification 75

workInfo/address/org workInfo address org

workInfo/telephone work Info telephone

workInfo/email workInfo email

workInfo/online workInfo online

Entities that need access to user information MUST declare in its metadata the specific user
profile fields it needs using the names specified above.

Consumers supplying additional custom profile fields are encourage to publish a similar 5
mapping between profileNames and the custom fields.

10.1 Passing User Information
User information MAY be passed to the Producer when a Consumer invokes certain
operations. A Consumer SHOULD provide the specific fields the entity declared it needs,
unless the information is not available or is restricted by policy (e.g. privacy policy). 10

10.2 User Identity
Mechanisms that support federation of user identity between web services systems are defined
in other specifications, such as WS-Security and SAML. If a Consumer and Producer need to
share a common identity for an End-User, it is recommended that compliance with these
standards be the means to passing the required information. 15

It is anticipated that some entities will interact with one or more back-end applications that
require a user identity for the End-User. If the user identity required by the back-end application
is not the same as that authenticated or otherwise supplied by the Consumer, the entity MAY
request the End-User to provide the necessary information (preferably using secure transport) 20
for use with the back-end application via markup interactions (e.g. display a form that prompts
for a user identity and any security tokens (such as a password) for the back-end system).

11 Data Structures
It is often necessary to pass data to operations. Wherever possible typed data object are
defined as the transport mechanism for this data [A504][A505]. Extensibility elements are also 25
provided for vendor or application-specific data extensions. Many of these data structures have
been described in the sections describing the operations in which they are referenced here
(with hyperlinks back to those explanations) in order to have all the structures defined in one
place. This non-normative section uses an IDL like syntax for describing these structures for
the convenience of the reader. The normative definitions for these structures are defined by the 30
WSDL referenced in section 15.

Extensibility of all the data structures is defined using the schema syntax for including arbitrary
content from other namespaces.

Web Services for Remote Portlets Specification 76

11.1 BlockingInteractionResponse Type
The BlockingInteractionResponse structure contains the various items
performBlockingInteraction() can return. This data structure is defined in section 5.1.10.

11.2 CacheControl Type
The CacheControl structure contains a set of fields needed for the entity to manage cached 5
markup fragments. This data structure is defined in section 5.1.4.

11.3 ClientData Type
The MarkupParam structure types carries information concerning the user agent and client
device using this type.

 ClientData 10
 [R] string userAgent
 [O] Extension extensions[]

Members:

• userAgent: String identifying the UserAgent of the End-User.

• extensions: A mechanism implementations MAY choose to use for extending this 15
structure provided those extensions come from a different namespace.

11.4 EntityContext Type
The EntityContext structure is used as a parameter on many operations to supply the entity
information that was pushed to the Consumer. This data structure is defined in section 5.1.3.

11.5 EntityDescription Type 20

The EntityDescription structure contains a set of fields that provide the metadata to
describe the entity. This data structure is defined in section 7.1.2.

11.6 Extension Type
The Extension structure contains the payload extension mechanism for vendor and application
extensions. This data structure is defined in section 4.1.1. 25

11.7 DestroyFailed Type
• The DestroyFailed structure contains a set of fields that provide the metadata to

describe the entity and in described in section 7.1.3.

11.8 DestroyEntitiesResponse Type
• The DestroyEntitiesResponse structure carries an array of failed destroys and is 30

described in section 7.1.4.

11.9 Handle Type
Handles are opaque references that are passed between the Consumer and Producer.

Handles are represented as restricted strings in the protocol. Although a string is principally
unlimited in length, the length of the handle is restricted for the following reasons: 35

• Handles may be stored in databases and may be used for indexing.

Web Services for Remote Portlets Specification 77

• The Consumer will likely embed handles in client URLs.

• Comparison of handles should be efficient.

The maximum length of a handle is restricted to 255 bytes. The Consumer MAY ignore any
character in a handle that falls outside this range.

 Handle extends string (maximum length = 255) 5

11.10 InteractionParams Type
The InteractionParams structure contains fields specific to invoking the performInteraction()
operation. This data structure is defined in section 5.1.14.

11.11 InteractionResponse Type
The InteractionResponse structure contains the various items performInteraction() can 10
return. This data structure is defined in section 5.1.9.

11.12 LocalizedString Type
The LocalizedString structure carries the value for the string in a particular locale, which
locale the value is for, and a resourceName for locating values for other locales. This data
structure is defined in section 4.1.2. 15

11.13 MarkupContext Type
The MarkupContext structure contains a set of fields related to and including the markup an
entity has generated. This data structure is defined in section 5.1.7.

11.14 MarkupParams Type
The MarkupParams structure contains a set of fields needed for the entity to generate markup 20
that will enable the End-User to visualize the state of the entity. This data structure is defined in
section 5.1.6.

11.15 MarkupResponse Type
The MarkupResponse structure contains fields for returning various items in response to a
getMarkup() invocation. This data structure is defined in section 5.1.8. 25

11.16 MarkupType Type
The MarkupType structure contains fields for describing entity metadata that is specific to a
markupType. This data structure is defined in section 7.1.1.

Web Services for Remote Portlets Specification 78

11.17 ModelDescription Type
The ModelDescription structure is used to collect a set of PropertyDescriptions and a
schema they may reference for type information. This data structure is defined in section 7.1.9.

11.18 Property Type
The Property structure is used to transmit a new value for a particular property. This data 5
structure is defined in section 7.1.3.

11.19 PropertyDescription Type
The properties of an entity are described in its metadata using the PropertyDescription
structure. This data structure is defined in section 7.1.8.

11.20 PropertyList Type 10

A PropertyList gathers an array of Property structures and an array of ResetProperty
structures together for transmitting between the Consumer and Producer. This data structure is
defined in section 7.1.7.

11.21 RegistrationContext Type
The RegistrationContext structure contains fields related to a particular registration of a 15
Consumer with a Producer. It is returned by the register() operation and is a required
parameter on most other operations. This data structure is defined in section 4.1.10.

11.22 RegistrationState Type
The RegistrationState structure contains fields related to a particular registration of a
Consumer with a Producer. It is returned by the modifyRegistration() operation and contains 20
the fields of a registrationContext that allow a Producer to push the storage of state at
registration scope to the Consumer. This data structure is defined in section 4.1.9.

11.23 RegistrationData Type
The RegistrationData structure provides the means for the Consumer to supply the data
required for registration with a Producer as well as protocol extensions that it supports. This 25
data structure is defined in section 6.1.1.

11.24 ResetProperty Type
The ResetProperty structure is used to transmit a request to reset a property to its default
value. This data structure is defined in section 7.1.6.

11.25 Resource Type 30

The Resource structure gathers a set of ResourceValue structures together to describe the
locale dependent values of a single resource. This data structure is defined in section 4.1.4.

11.26 ResourceList Type
The ResourceList structure gathers a set of Resource structures together. This data structure
is defined in section 4.1.3. 35

Web Services for Remote Portlets Specification 79

11.27 ResourceValue Type
The ResourceValue structure carries the value of a resource for a particular locale. This data
structure is defined in section 4.1.5.

11.28 RoleDescription Type
The RoleDescription structure describes a role to the Consumer. This data structure is 5
defined in section 4.1.6.

11.29 RuntimeContext Type
The RuntimeContext structure is where the Consumer provides transient information to the
Producer. This data structure is defined in section 5.1.2.

11.30 ServiceDescription Type 10

The ServiceDescription structure contains a set of fields that describe the offered services of
the Producer. This data structure is defined in section 4.1.7.

11.31 SessionContext Type
The SessionContext structure carries session oriented information to the Consumer whenever
a Producer initializes a new session. This data structure is defined in section 5.1.1. 15

11.32 StateChange Type
The StateChange type is a restriction on string that can only take the values “OK”, “Clone”, and
“Fault”. This data structure is defined in section 5.1.12.

11.33 Templates Type
The Templates structure contains a set of fields that enable Producer URL writing. This data 20
structure is defined in section 5.1.5.

11.34 UploadContext Type
The UploadContext structure carries fields related to data uploading to the Producer as a
result of an interaction. This data structure is defined in section 5.1.13.

11.35 UserContext Type 25

The UserContext structure supplies End-User specific data to operations. Note that this does
not carry user authentication type information (e.g. userID / password) as quite flexible
mechanisms for communicating this information are being defined elsewhere (e.g. WS-Security
(see section 3.1.2) defines how to carry User Information in a SOAP header). This data
structure is defined in section 4.1.8. 30

11.36 User Profile Types
The UserProfile structure is used to carry information about the End-User. The entity uses
the userProfileItems in its metadata to describe the fields it uses to generate markup from
this set and any others the Consumer indicated were available when it registered. See section
10 for a complete description of this portion of the protocol. 35

 UserProfile

Web Services for Remote Portlets Specification 80

 [O] UserName name
 [O] DateTime birthdate
 [O] string gender
 [O] EmployerInfo employer
 [O] LocationInfo homeInfo 5
 [O] LocationInfo workInfo
 [O] Extension extensions[]

Members:

• name: A structure containing the various fields for the End-User’s name.

• birthdate: The End-User’s birthdate. This uses the schema-defined datatype for 10
DateTime rather than Date as not all web stacks serialize / deserialize Date properly.

• gender: The End-User’s gender (“M” = male, “F” = female).

• employer: A structure containing various fields for the End-User employer’s
information.

• homeInfo: The End-User’s home location information. 15

• workInfo: The End-User’s work location information.

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace.

11.36.1 UserName Type
The UserName structure carries the detailed fields for the parts of an End-User’s name. 20

 UserName
 [O] string prefix
 [O] string given
 [O] string family
 [O] string middle 25
 [O] string suffix
 [O] string nickName
 [O] Extension extensions[]

Members:

• prefix: Examples include Mr, Mrs, Ms, Dr, etc. 30

• given: The End-User’s first or given name.

• family: The End-User’s last or family name.

• middle: The End-User’s middle name(s) or initial(s).

• suffix: Examples include Sr, Jr, III, etc.

• nickName: The End-User’s preferred nick name. 35

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace.

11.36.2 EmployerInfo Type
The EmployerInfo structure contains the detailed fields concerning the End-User’s employer.

 Employerinfo 40
 [O] string employer
 [O] string department
 [O] string jobTitle

Web Services for Remote Portlets Specification 81

 [O] Extension extensions[]

Members:

• employer: The name of the employer.

• department: The name of the department the End-User works within.

• jobTitle: The title of the End-User’s job. 5

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace.

11.36.3 LocationInfo Type
The LocationInfo structure is used to describe a location for the End-User.

LocationInfo 10
 [O] Address address
 [O] string telephone[]
 [O] string email[]
 [O] string online[]
 [O] Extension extensions[] 15

Members:

• address: A structure for various fields holding portions of the postal address.

• telephone: An array of telephone numbers for the End-User.

• email: An array of email addresses for the End-User.

• online: An array of URIs for the End-User (usually web-sites). 20

• extensions: A mechanism implementations MAY choose to use for extending this
structure provided those extensions come from a different namespace.

11.36.4 Address Type
The Address structure carries the detailed fields describing a particular address.

Address 25
 [O] string name
 [O] string street[]
 [O] string city
 [O] string stateprov
 [O] string country 30
 [O] string org
 [O] Extension extensions[]

Members:

• name: The name to which items should be addressed.

• street: The street portion of the addess. This may involve multiple lines of an address. 35

• city: The city portion of the address.

• stateprov: The state or province portion of the address.

• country: The country portion of the address.

• org: Any organization needing to be specified in the address.

• extensions: A mechanism implementations MAY choose to use for extending this 40
structure provided those extensions come from a different namespace.

Web Services for Remote Portlets Specification 82

12 Producer Roles
Administrator This role typically grants the highest level of access to the

functionality of an entity.

User This role is typically associated with End-Users who may personalize
some set of properties for an entity.

Guest This role is typically associated with End-Users who may view an
entity on a page but not modify any of its properties or settings.

13 Constants
Type Value Description

Mode view Entity is expected to render markup reflecting its current state.

Mode edit Entity is expected to render markup useful for End-User
personalization.

Mode help Entity is expected to render markup useful for helping an End-User
understand the entity’s operation.

Mode preview
Entity is expected to render markup representative of its
configuration, as this might be useful to someone testing a page
layout.

Window
state

normal
The entity is sharing space with other entities and should restrict its
consumption of space accordingly.

Window
state

minimized
The entity, though still aggregated on the page, is expected to restrict
its consumption of space to a bare minimum.

Window
state

maximized
The entity is being offered significantly more that the normal share of
the space available to entities on the Consumer’s aggregated page.

Window
state

solo
The entity is the only entity being rendered on the Consumer’s
aggregated page.

Web Services for Remote Portlets Specification 83

14 Fault Messages
In addition to generic fault messages that may be generated by the web service stacks of the
Consumer and/or Producer, a variety of messages specific to this protocol are defined. WSDL
defines fault codes to be strings using “. ” as a delimiter to scope the error codes. The following
are defined for constructing a WSRP/WSIA error code within the same namespace as used for 5
the rest of the types defined by this specification:

Top
Level

Specific Code Description

Security AccessDenied Policy has denied access either to the End-User, the
asserted producerRole or the consumer’s
registration.

Security InvalidProducerRole The specified producerRole is not supported.

Security InconsistentParameters Used when a Consumer supplies an entityHandle
that is not scoped by the supplied
registrationHandle.

Security InvalidRegistration Used when a Consumer supplies a
registrationHandle/registrationState pair
that are not recognized by the Producer.

Security AuthenticationFailure The credentials supplied were not able to be
authenticated by the Producer.

Interface MissingParameters Used when required parameters are missing.

Interface OperationFailed Normal execution of the operation failed. Check the
detailed message for reasons why.

Interface InvalidHandle Used when the Consumer supplies an invalid
entityHandle.

Interface EntityStateChangeRequired Used when an entity needs to modify its persistent
state, but has been prevented from doing so.

Interface InvalidCookie Used only when the environment at the Producer
has timed out AND the Producer needs the
Consumer to invoke initCookie() again.

Interface UnsupportedMode The entity does not support generating markup for
the requested mode.

Interface UnsupportedWindowState The entity does not support generating markup for
the requested window state.

Interface UnsupportedLocale The entity does not support generating markup for
the requested locale.

Interface UnsupportedMarkupType The entity does not support generating markup for
the requested markupType.

Interface NoCloneGenerated The invocation of cloneEntity() did not produce a
new entity.

Web Services for Remote Portlets Specification 84

Interface DestroyEntitiesFailed

Web Services for Remote Portlets Specification 85

15 WSDL Interface Definition
The WSDL that MUST be referenced by Producers implementing this specification are located
at:

http://www.oasis-open.org/committees/wsrp/wsdl/v1/WSRP-v1-Interfaces.wsdl - Contains the
messages and portType definitions for this specification. 5

http://www.oasis-open.org/committees/wsrp/wsdl/v1/WSRP-v1-Bindings.wsdl - Contains the
standard binding definitions for this specification.

This WSDL defines the following portTypes:

1. WSRP_v1_Markup_PortType: All Producers MUST expose this portType. 10

2. WSRP_v1_ServiceDescription_PortType: All Producers MUST expose this portType.

3. WSRP_v1_Registration_PortType: Only Producers supporting in-band registration of
Consumers need expose this portType.

4. WSRP_v1_EntityManagement_PortType: Producers supporting the entity management
interface expose this portType. If this portType is not exposed, the entities of the 15
service are not configurable by Consumers.

Web Services for Remote Portlets Specification 86

16 References

16.1 Normative
[Character Sets] http://www.iana.org/assignments/character-sets
[Namespaces] http://www.w3.org/TR/REC-xml-names/
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 5

http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.
[Schema] http://www.w3.org/TR/xmlschema-0/
[SOAP] http://www.w3.org/TR/SOAP/
[SSL/TLS] http://www.ietf.org/html.charters/tls-charter.html
[URI/URL] http://www.ietf.org/rfc/rfc2396.txt 10
[WSDL] http://www.w3.org/TR/wsdl

16.2 Non-Normative
[Boyer-Moore] http://www.cs.utexas.edu/users/moore/best-ideas/string-searching/
[DIME] http://www.ietf.org/internet-drafts/draft-nielsen-dime-02.txt
[J2EE] http://java.sun.com/j2ee/ 15
[JSR168] http://www.jcp.org/jsr/detail/168.jsp
[.Net] http://www.microsoft.com/net/
[P3P] http://www.w3.org/TR/P3P/
[Requirements] http://www.oasis-open.org/committees/wsia/documents/Requirements2002-

09-17.html 20
[RLTC] http://www.oasis-open.org/committees/rights/
[SAML] https://www.oasis-open.org/committees/security/
[UDDI] http://www.uddi.org/specification.html
[WS-Attachments] http://www-106.ibm.com/developerworks/webservices/library/ws -

attach.html 25
[WS-I.org] http://www.ws -i.org/
[WSIL] http://www-106.ibm.com/developerworks/webservices/library/ws -wsilspec.html
[WSRP Whitepaper] Thomas Schaeck, Web Services for Remote Portlets (WSRP)

Whitepaper,
 http://www.oasis-open.org/committees/wsrp/documents/wsrp_wp_09_22_2002.pdf, 30

22 September, 2002.
[WS-Security] http://www.oasis-open.org/committees/wss/
[XACML] https://www.oasis-open.org/committees/xacml/
[XCBF] http://www.oasis-open.org/committees/xcbf/
[XForms] http://www.w3.org/TR/xforms/ 35
[XML Digital Signatures] http://www.w3.org/Signature/
[XML Encryption] http://www.w3.org/TR/xmlenc -core/

Web Services for Remote Portlets Specification 87

Appendix A. Glossary

Action A term often used elsewhere for what this specification calls
“Interaction”.

Administrator A person who installs or maintains a system (for example, a SAML-
based security system) or who uses it to manage system entities,
users, and/or content (as opposed to application purposes; see also
End User). An administrator is typically affiliated with a particular
administrative domain and may be affiliated with more than one
administrative domain.

Attribute

Also see “Service
Attribute”

A distinct characteristic of an object. An object’s attributes are said
to describe the object. Objects’ attributes are often specified in
terms of their physical traits, such as size, shape, weight, and color,
etc., for real-world objects. Objects in cyberspace might have
attributes describing size, type of encoding, network address, etc.
Salient attributes of an object is decided by the beholder.

Authentication To confirm a system entity’s asserted principal identity with a
specified, or understood, level of confidence.

Authorization The process of determining, by evaluating applicable access control
information, whether a subject is allowed to have the specified types
of access to a particular resource. Usually, authorization is in the
context of authentication. Once a subject is authenticated, it may be
authorized to perform different types of access.

Browser A system entity that is used by an end user to access a Web site. A
browser provides a run-time environment for distributed application
components on the client’s device.

Client a system entity (not a business entity) that accesses a Web service.
Contrast with Browser and Customer.

Consumer A business entity that accesses a Web service or a Web site.
Contrast with End user and Customer

A business entity creating Consumer Applications

Consumer
Application

A web application that uses one or more WSIA/WSRP Web
Services

Credential Data that is transferred to establish a claimed principal identity. [4]

Customer A business entity that purchases goods or services

End-User 1. A natural person who makes use of resources for application
purposes (as opposed to system management purposes; see
Administrator, User). [4]

2. A person who uses a device specific Browser to access a
Web site

Event A notification that some state in the system (that you are interested
in) has changed

Web Services for Remote Portlets Specification 88

Fragment A piece of markup that is not part of a full document

- part of aggregate

- not binary, but not necessarily XML

- generally a markup language

- can aggregate a bunch of fragments

Identity The unique identifier for a person, organization, resource, or
service.

Sign-On The process whereby a user presents credentials to an
authentication authority, establishes a simple session, and
optionally establishes a rich session.

Sign-Off The process of presenting credentials to an authentication authority,
establishing a simple session, and optionally establishing a rich
session.

Party Refers to any person who interacts with the system and/or the
network the system is managing.

Portal Page Complete document rendered by a portal

Portlet Component that generates fragment

Producer A business entity that hosts a Web service or a Web site

One or more WSIA/WSRP web services

A business entity creating, publishing and supporting WSIA/WSRP
Web Services

Role The combination of access rights available to a particular actor.

Session A lasting interaction between system entities, often involving a user,
typified by the maintenance of some state of the interaction for the
duration of the interaction.

Site An informal term for an administrative domain in geographical or
DNS name sense. It may refer to a particular geographical or
topological portion of an administrative domain, or it may
encompass multiple administrative domains, as may be the case at
an ASP site.

one portal-specific example of an administrative domain, user
group, etc.

System / System
Entity

An active element of a computer/network system. For example, an
automated process or set of processes, a subsystem, a person or
group of persons that incorporates a distinct set of functionality.

Time-Out A period of time after which some condition becomes true if some
event has not occurred. For example, a session that is terminated
because its state has been inactive for a specified period of time is
said to “time out”.

Uniform Resource
Locator (URL)

Defined as “a compact string representation for a resource available
via the Internet.” URLs are a subset of URI.

User A natural person who makes use of a system and its resources for

Web Services for Remote Portlets Specification 89

any purpose. See also administrator, end user.

A natural person who makes use of a system and its resources for
any purpose. See also end user.

Username/User
Identity

The unique identity for a user with a system

Web Service A Web Service is a software component that is described via WSDL
and is capable of being accessed via standard network protocols
such as but not limited to SOAP over HTTP.

WSIA Web
Service

A SOAP-compliant Web Service that adheres to one of more WSIA
interfaces.

Web Site A hosted application that can be accessed by an End user using a
browser

Window States Max, min, normal, detached

WSIA Interface A programmatic interface defined by the WSIA committee to support
the creation of Web Services that encapsulate and integrate user-
facing interactive applications.

WSRP Service Presentation oriented, interactive web services that can be
aggregated by consuming applications

- WSRP services can be published, found, and bound in a
standard manner, describing themselves with standardized
metadata

XML (Extensible
Markup Language)

Extensible Markup Language, abbreviated XML, describes a class
of data objects called XML documents and partially describes the
behavior of computer programs which process them. XML is an
application profile or restricted form of SGML, the Standard
Generalized Markup Language [ISO 8879]

XML Namespace A collection of names, identified by a URI reference, which are used
in XML documents as element types and attribute names. An XML
namespace is often associated with an XML schema. For example,
SAML defines two schemas, and each has a unique XML
namespace.

Web Services for Remote Portlets Specification 90

Appendix B. Acknowledgments

The following individuals were members of the WSIA committee during the development of this
specification:

• Sasha Aickin, Plumtree

• Patel Ashish, France Telecom 5

• Stefan Beck, SAP

• Dan Bongard, Kinzan

• Kevin Brinkley, Intel

• Jeffery C. Broberg, Novell

• Rex Brooks, Individual 10

• Tyson Chihaya, Netegrity

• Carlos Chue, Kinzan

• Terry Cline, Peregrine Systems

• William Cox, BEA

• Suresh Damodaran, Sterling Commerce 15

• Alan Davies, SeeBeyond

• Jacques Durand, Fujitsu

• John Evdemon, Vitria

• Sean Fitts, CrossWeave

• Greg Giles, Cisco 20

• Dan Gisolfi, IBM

• Timothy N. Jones, CrossWeave

• Aditi Karandikar, France Telecom

• John Kelley, Individual

• John Kneiling, Individual 25

• Ravi Konuru, IBM

• Alan Kropp, Epicentric

• Michael Mahan, Nokia

• Monica Martin, Drake Certivo

• Dale Moberg, Cyclone Commerce 30

• Dean Moses, Epicentric

• Peter Quintas, Divine

• T.V. Raman, IBM

• Shankar Ramaswamy, IBM

• Eilon Reshef, WebCollage 35

• Graeme Riddell, Bowstreet

• Don Robertson, Documentum

• Royston Sellman, HP

• Sim Simeonov, Macromedia

• Davanum Srinivas, Computer Associates 40

• Sandra Swearingen, DoD

• Rich Thompson, IBM

• Srinivas Vadhri, Commerce One

• Vinod Viswanathan, Pointgain Corp.

• Charles Wiecha, IBM (chair) 45

• Chad Williams, Epicentric

• Kirk Wilson, Computer Associates

• Garland Wong, Kinzan

Web Services for Remote Portlets Specification 91

The following individuals were members of the WSRP committee during the development of
this specification:

• Alejandro Abdelnur, Sun

• Olin Atkinson, Novell

• Sasha Aickin, Plumtree 5

• Jeff Broberg, Novell

• Chris Brown, Novell

• Mark Cassidy, Netegrity

• Richard Cieply, IBM

• Dave Clegg, Sybase 10

• Ugo Corda, SeeBeyond

• William Cox, BEA

• Michael C. Daconta, McDonald Bradley

• Ron Daniel Jr., Interwoven

• Brian Dirking, Stellent 15

• Angel Luis Diaz, IBM

• Gino Filicetti, Bowstreet

• Adrian Fletcher, BEA

• Michael Freedman, Oracle

• Tim Granshaw, SAP Portals 20

• Mike Hillerman, Peoplesoft

• Scott Huddleston, Divine

• Timothy N. Jones, CrossWeave

• Andre Kramer, Citrix

• Andreas Kuehne 25

• Aditi Karandika, France Telecom

• Alan Kropp, Epicentric

• Jon Klein, Reed-Elsivier

• Andreas Kuehne

• Carsten Leue, IBM 30

• Susan Levine, Peoplesoft

• Eric van Lydegraf, Kinzan

• Khurram Mahmood, Peoplesoft

• Lothar Merk, IBM

• Madoka Mitsuoka, Fujitsu 35

• Takao Mohri, Fujitsu

• Adam Nolen, Reed-Elsivier

• Petr Palas, Moravia IT

• Gregory Pavlik, HP

• Peter J Quintas, Divine 40

• Nigel Ratcliffe, Factiva

• Eilon Reshef, WebCollage

• Mark Rosenberg, Tibco

• Joe Rudnicki, U.S. Department Of the
Navy 45

• Thomas Schaeck, IBM (chair)

• Robert Serr, Divine

• Davanum Srinivas, Computer Associates

• Andrew Sweet, Perficient

• David Taieb, IBM 50

• Yossi Tamari, SAP Portals

• Rich Thompson, IBM

• Srinivas Vadhri, CommerceOne

• Stephen A. White, SeeBeyond

• Charles Wiecha, IBM55

Web Services for Remote Portlets Specification Version 0.85 11/26/2002

Appendix C. Revision History 56

Rev Date By Whom What

0.1 6/03/2002 Rich Thompson Initial Draft
0.1.1 6/04/2002 Carsten Leue Worked in some additional WSRP requirements
 6/05/2002 Rich Thompson Added exemplary section to overview
 6/06/2002 Carsten Leue Added request data to getFragment and

invokeAction
0.1.2 6/06/2002 Rich Thompson Added cloneEntities() & descriptive text
0.2 7/09/2002 Alan Kropp,

Rich Thompson

Modified as per face-2-face discussions

0.21 7/10/2002 Rich Thompson Refactored data objects
0.22 7/19/2002 Rich Thompson Reflect discussion on email list
0.23 7/25/2002 Carsten Leue

Rich Thompson

Added WSDL and included some explanations
Reformat style
Reflect discussion

0.3 8/01/2002 Rich Thompson Migrate to OASIS spec template
Reflect email list and concall discussions

0.31 8/08/2002 Rich Thompson
Alan Kropp
Chris Braun

Reflect discussion
Fill out more of spec template
Markup section
Environment initialization section

0.32 8/10/2002 Rich Thompson
Carsten Leue
Chris Braun

Incorporated misc. comments/discussion
Introduction section and explanation of sections
Updated Markup section

0.4 8/16/2002 Rich Thompson
Thomas Schaeck
Alan Kropp

Rewrote Markup section, reflect discussion
WSRP Use cases
Cross references to requirements

0.5 8/30/2002 Rich Thompson
Carsten Leue
Mark Cassidy

Incorporated misc. comments/discussion
UDDI, Additional data structure factoring
Updated Security section

0.7 9/27/2002 Rich Thompson
Carsten Leue
Alan Kropp
Charlie Wiecha

Reflect Sept. F2F discussion/decisions
Rewrite Intro
Propose caching support
Propose Properties support

0.8 10/22/2002 Rich Thompson
Carsten Leue
Alan Kropp

Reflect decisions from weekly TC calls

0.85 10/22/2002 Rich Thompson
Alan Kropp

Reflect decisions from Nov. F2F and TC calls

 57

ToDo: 58

1. Section 9.2.1 – “[3rd F2F: Change token to wsrp-rewrite for now. Revisit value of less 59
human readable token once an implementation is available to test the impact.]" 60

2. Revisit Glossary definitions 61

Appendix D. Notices 62

OASIS takes no position regarding the validity or scope of any intellectual property or other 63
rights that might be claimed to pertain to the implementation or use of the technology described 64
in this document or the extent to which any license under such rights might or might not be 65
available; neither does it represent that it has made any effort to identify any such rights. 66
Information on OASIS's procedures with respect to rights in OASIS specifications can be found 67
at the OASIS website. Copies of claims of rights made available for publication and any 68
assurances of licenses to be made available, or the result of an attempt made to obtain a 69
general license or permission for the use of such proprietary rights by implementors or users of 70
this specification, can be obtained from the OASIS Executive Director. 71

OASIS invites any interested party to bring to its attention any copyrights, patents or patent 72
applications, or other proprietary rights which may cover technology that may be required to 73
implement this specification. Please address the information to the OASIS Executive Director. 74

Copyright © The Organization for the Advancement of Structured Information Standards 75
[OASIS] 2001. All Rights Reserved. 76

This document and translations of it may be copied and furnished to others, and derivative 77
works that comment on or otherwe explain it or assist in its implementation may be prepared, 78
copied, published and distributed, in whole or in part, without restriction of any kind, provided 79
that the above copyright notice and this paragraph are included on all such copies and 80
derivative works. However, this document itself does not be modified in any way, such as by 81
removing the copyright notice or references to OASIS, except as needed for the purpose of 82
developing OASIS specifications, in which case the procedures for copyrights defined in the 83
OASIS Intellectual Property Rights document must be followed, or as required to translate it 84
into languages other than English. 85

The limited permissions granted above are perpetual and will not be revoked by OASIS or its 86
successors or assigns. 87

This document and the information contained herein is provided on an “AS IS” basis and 88
OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT 89
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT 90
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR 91
FITNESS FOR A PARTICULAR PURPOSE. 92

