10

15

20

25

30

WRSP Primer

Working Draft 0.3, 16 December 2002

Document identifier:

WSRP_Primer_0.3 (Word)

Location:
http://www.oasis-open.org/committees/wsia
http://www.oasis-open.org/committees/wsrp

Editors:
Gil Tayar, WebCollage <gil.tayar@webcollage.con®

Pbstract

)

/(Comment: Woefully inadequate.

This document’s purpose is threefold:

Approach the spec from a more tutorial point of view by giving examples of all SOAP
messages and by giving a step by step underganding of a Consumer and Producer. For
conciseness sake, only the body of the SOAP message is given. Also, the data in the XML
which is part of the example is in italics, while the information that is required and must be a
part of a Producer or Consumer that implements the scenario is in a regular style.

Describe Consumer and Producer scenarios.

Describe what the Consumer and Producer are required to do in order to implement a
successful WSRP implementation.

Status:

This draft is an early version. Various concepts continue to be debated. Points needing
clarification as this evolves into the final specification are much appreciated and may be
emailed to Gil Tayar.

If you are on the wsia-wsrp@lists.oasis-open.org, wsia@lists.oasis-open.org or
wsrp@lists.oasis-open.org list for committee members, send comments there. If you are not on
that list, subscribe to the wsia-comment@lists.oasis-open.org or wsrp-comment@lists.oasis -
open.orglist and send comments there. To subscribe, send an email message to wsia-
comment-request@lists.oasis -open.org or wsrp-comment -request@lists.oasis-open.org with
the word "subscribe" as the body of the message.

The errata page for this specification is at
http://www.oasis-open.org/committees/wsrp/requirements_v1_errata.html

Copyright © 2002, 2003 The Organization for the Advancement of Structured Information
Standards [OASIS]

WRSP Primerl

10

15

20

25

30

35

Table Of Contents

O [0} Ao Yo [0 Tod A o] o IR SPPRPRPRNY 5

1.1 INtroduCtion t0 WSRPot e
1.1.1 The Markup Interface.
1.1.2 The Service Description Interface....................
1.1.3 The Portlet Entity Management Interface.
1.14 The Registration Interface

1.2 Conventions used iN thiS teXL..........oiiiiiiiiiiiiii e
P 11 T 0= U o o e [o= PP 9
2.1 Implementation SUMMEIYco.uu it e et e e et e e e aaai o aaeaeeabaa e eaeeeneans 10
2.2 Get Ser Vi CeDESCI i PLi ON LOGIC ... iiiiiiiiieeeiiie et 10
2.3 GET MBI KUP LOGIC .ttt ettt e e et eeeeaaas 10
3 Producer Portlet with More Than One Page — Producer URL Writing.............occvvvvnnnnnn. 11
3.1 Implementation SUMMEIYco.uuiiiieiii et e e e e e e e e e e e eetb e e e eenaans 12
3.2 get Servi ceDescCri ption LOGIC.....c.uuiiiiiiiiiiiiiciiii e 12
3.3 GEE IVAI KUP LOGIC ..ttt 12
4 Producer Portlet with More Than One Page — Consumer URL Writing...........c..ccceuunn... 13
4.1 Implementation SUMIMATYooiiiiiiiiii e e e 13
4.2 get Servi ceDesCri pti 0N LOGIC...coouuuiiiiiiiiiii e 14
4.3 GET VAN KUP LOGIC ..ttt 14
5 MINIMal CONSUME ...ttt e et e et et et e n e e e e e e e e e eeeees 15
5.1 Implementation SUMMEIYuuiiiieiie e e et e e et e e e et s e e eaaeabaa e eaeeenaans 15
5.2 Producer-Initialization FIOWccooiiiiiiiiiiiiii e 16
5.3 End-User-Initialization FIOW...........cooiiiiiiiiiii e 17
5.4 First Page Composition FIOW............uuiiiiiiiiiiiiii et 17
5.4.1 secur eCli ent CONMUNI CAL i ONS ...iiiiiiiiiiiiie e 18

5.4.2 templates ..

5.4.3 Processing the mar kupResponse
5.4.4 Consideration on usesMet hodGet

545 Processing “RESOUICE” FEQUESESuuuuiiiiiiii e
5.5 Next Page CompoSition FIOWccouuuiiiiiiiiiiiiiiiis e

5.5.1 Processing the Ur | Ty D@ ... e et

5.5.2 Invoking per f or nBl ocki ngl nteraction....

553 Invoking perform nteraction

5.5.4 Continuing with the Markup ... e

WRSP Primer2

10

15

20

25

30

35

5.6 Producer-Termination FIOW...........iiiuiiiiiie e e e e e e e e e e e e e eanees 23

6 Producer with More Than One PoOrtlet.o e 23
6.1 Implementation SUMMEIYoiiiiiiiii et et reenaaes 23
6.2 get Servi ceDesCri pti 0N LOGIC . ..coouuuuiiiiiiiii e 23
6.3 GET VAN KUP LOGIC ..ttt 24

7 Consumer with Two Entities From Same ProduCer..........c.cooovieiiiiiiiiiiiiiiiice e 24
7.1 Implementation SUMMEIYco.uuiiiiaiii et e e et e e e eaa e e e e e eeaaba e e eeeennans 25
7.2 Producer-Initialization FIOWiiiiiiiii e e 25
7.3 End User INitialization FIOW..........coooiiiiiiiiiiiii e 25
7.4 First Page Composition FIOW............uuiiiiiiiiiiiiiii e

7.4.1 secureCl i ent CoMMUNI CALT ONS ..ivviiiiiiiii e e e e
7.4.2 L BIP L At S it e e
7.4.3 Processing the mar KUPRESPONSEuiiiiiiiiiiiiiiii e
7.4.4 Consideration on usesMet hodGet

745 Processing “Resource” requests

7.5 Next Page Composition Flow
75.1 Invoking per f or nBl ocki ngl nteraction....
7.5.2 Invoking per f or m Nt eract i ON ..o e
7.5.3 Continuing with the Markup...........cooooii
7.6 Producer-Termination FIOW..........ccooiiiiiiiiiiiiii e 29
8 Producer Portlet with POST and SeSSION.....cccuuuuiiiiiiiiiiiee it 29
8.1 Implementation SUMMEIYciiiiiiiiiie et e e e e eeaiees 29
8.2 get Servi ceDesCri pti 0N LOGIC...coouuuiiiiiiiii e 30
8.3 GT VAN KUP LOGIC .. iiiiii e 30
8.4 perform Nt eract i 0N LOGIC....couuuuuiiiiiiiii et 31
9 Producer Portlet with POST & REAITECT.......uuiiiiiiiiiieeeiii e 32
9.1 IMplementation SUMMEIYiiiiiiii et e et e e e 32
9.2 get Servi ceDesCri pti 0N LOGIC...coouuuiiiiiiiiiie e 32
9.3 GET VAN KUP LOGIC ..ttt 33
9.4 perfornmBl ocki Ngl Nt eracti 0N LOGIC......ccuuuuiiieiiiiiii e e A
10 Producer that Includes Resources to be ProXied...........ccoviiiiiiiiiiiiice i, 35
10.1 IMplementation SUMMATYoiuiuiiii et e e e e et e e eees 35
10.2 getServi CeDesSCri Pti ON LOGIC ... uuiiuuuuiaiiiiiiiae et e et eeenes 35
10. 3 GEEMAIKUP LOGIC .tuueiiitiieee ettt e e e e 35
11 Producer that USeS MOre MOGES......c.uuiiiiiiiiiieiii et e e e e eeeeiaaens 36

WRSP Primer3

12 Consumer that SUPPOItS MOTre MOGES.......uiiiiiiiiii e e

13 Producer that Uses More Window StateS..........covvieeieiiiiiiiiiiiiii e
14 Consumer that Supports More Window StatesS..........ccceuuiiiiiiiiiiiiiiiiiii e
15 Producer that USes RegQiSTration..........oiiiuniiiiiiieiiiie e e e e eeeeiiaens
16 Producer that Supports Consumer Configured Entitiescccoeviiiiniiiinininnnnnn.
17 Consumer that Uses Consumer Configured Entitiesccccooviiiiiiiiiiiiiiiiiniennnn,

WRSP Primer4

10

15

20

25

30

35

40

Comment: Woefully inadequate.

)

1 [ntroduction|

This document’s purpose is threefold:

Approach the spec from a more tutorial point of view by giving examples of all SOAP
messages and by giving a step by step understanding of a Consumer and Producer. For
conciseness sake, only the body of the SOAP message is given. Also, the data in the XML
which is part of the example is in italics, while the information that is required and must be a
part of a Producer or Consumer that implements the scenario is in a regular style.

Describe Consumer and Producer scenarios.

Describe what the Consumer and Producer are required to do in order to implement a
successful WSRP implementation.

The document consists mainly of a list of scenarios. Each scenario is described, and its sub-
sections describe what the Producer or Consumer need (or can) do to implement the scenario.
If a sentence or paragraph are a requirement from the spec, the requirement is highlighted in
this format [requirement]. [I will cross-reference the requirements to the spec when the spec is
a bit more stabilized].

This document also includes a section that is an introduction to WSRP. This section assumes
no knowledge of WSRP and introduces the ideas and “actors” that govern the scenarios and,
ultimately, the spec, and introduces the reader to the main concepts behind WSRP. Some of
the other concepts are introduced when introducing and explaining the scenarios.

The scenarios themselves are not meant to be full, but rather to be modular scenarios which
real implementer can mix and match to create their own scenarios. Because of their modularity
they tend to be minimal.

Most scenarios are based on two basic scenarios — the Minimal Producer scenario and the
Minimal Consumer scenario, which enables their description to include only the changes.

1.1 Introduction to WSRP

Web Services for Remote Portlets (WSRP) is a specification, based on SOAP, which defines

SOAP operations that enable a Web Service to return an HTML fragment that can be
embedded in an HTML page.

Moreover, an End User that navigates to the HTML page can click on a link (that was included
in the Web Service’s HTML fragment) that will navigate the user to another HTML page, where

the end user will see another HTML fragment the Web Service returned.

Thus the user’s perception is of a small Web application embedded inside another HTML
application. As HTML does not support this kind of functionality, a standards body rose to
define the protocol between the “container” HTML page and the Web Service that returns the

HTML fragment, a protocol that enables this supposed embedding.
We have seen three “actors” in this scenario.

Producer: The Web Service that return the HTML fragments and acts as a “mini”
application.

Consumer: The HTML page (or application) that embeds the Producer “mini” application.
End user: The end user, who via the browser, sees the two combined applications.

There is also another term to discuss, which is:

WRSP Primer5

10

15

20

25

30

35

40

45

Portlet Entity: a Producer Web Service can implement multiple Portlets via one Web
Service. For example, a “stock quote” Portlet and a “weather” Portlet. Each Portlet is
exposed via one or more Portlet Entities, which are customizations of the basic Portlet, and
which the Producer provides — these are named Producer Offered Portlet Entities.
Usually, for each Portlet, there is only one Portlet Entity that the Producer offers. The
Consumer can create more customizations of these Portlet Entities to create Consumer
Configured Portlet Entities.

To differentiate between the two types of entities, the text will use the word “Portlet” for

Producer Offered Entities, and the word “Portlet Entity” exactly like it is used in the
specification - for Portlet Entities that are both Producer Offered an Consumer Configured.

Note that the above discusses browsers, HTML, and Web applications. WSRP is intended to
be more specific than that, and also enables things like embedding multiple WML/WAP
applications into cell phones, or embedding Voice applications (using VoiceML) inside normal
Web applications.

That is why the specification speaks of “markup” and not HTML, and discusses the “user agent”
and not just a “browser”. To simplify things, this tutorial will assume the simplest case —the
markup is a plain HTML fragment, the “user agent” is a browser, and the Consumer is showing
a typical web application to the end user.

WSRP is also more than that. It's mission is to be the protocol that binds portal servers and

their portlets. A portlet, in essence, is a mini-application embedded inside another application,
something which, as we have discussed, is what WSRP is all about.

But a portlet inside a portal needs more than an ability to embed itself inside a portal. It also
wants to enable the portal or the end user to configure the portal. For example, our stock quote
portlet would like to be configured to display on certain stocks. In WSRP parlance, this means
that itwants to enter “edit mode ” where it can display the configuration Ul which configures
itself. Or maybe it would like the portal to display its own Ul which enables the list of
“properties” to be configured.

Likewise, a portal would like to display the portlet HTML in certain Window states: “minimized”,
“maximized”, etc...

[Discuss roles (if they survive!) ...]

And finally, the Producer would like all portal applications to register themselves, and the
Consumer would like to programmatically understand what entities this Producer is offering,
and what customization properties they have.

To this end, the WSRP protocol is divided into four distinct “interfaces”:

Markup: an interface which includes operations that enable the embedding of the Producer
HTML inside the Consumer, enables the interaction of the End user with the Producer
HTML, while still staying embedded in the Consumer application, and includes support for
modes and window states. This interface must be implemented by the Producer.

Service Description: an interface which includes an operation that enable the Consumer
to query the Producer about its entities. This interface must be implemented by the
Producer.

Portlet Entity Management: an interface which includes operations that enable the
Consumer to customize entities, and even create entities of their own, entities named
Consumer Configured Entities in the specification. This interface does not have to be
implemented by the Producer.

Registration: an interface which includes operations that enable the Consumer to register
itself with the Producer. This interface does not have to be implemented by the Producer.

The following sections will briefly discuss the four interfaces:

WRSP Primer6

10

15

20

25

30

35

40

1.1.1 The Markup Interface

This interface is the most important interface, but unfortunately is the most difficult to

understand as it includes operations, which, if used in a certain way, will give the end user a
perception of a portlet embedded within another application.

The difficulty with understanding this interface is not only in understanding the operations, but
more in understanding how to choreograph between themselves, and between the end user
interactions.

But before tackling the choreography, let's tackle the operations themselves:

get Mar kup: this operation is invoked by the Consumer in order to get the “current” HTML
(we will discuss what “current” means momentarily), which will be embedded in the
Consumer page.

perform nteraction/ perfornBl ocki ngl nteracti on: these operation is invoked
by the Consumer after the end user interacted with the Producer HTML in the combined

Consumer page (e.g. clicked on a link, or submitted a form in the Producer HTML). How
interactions that originated from Producer HTML arrive at the Consumer application is a

question dealt with in End User Interactions.

i ni t Cooki e: this minor operation may be invoked by the Consumer. This operation helps
Producers which use HTTP cookies in their operations, but this Primer will only cursively
discuss this operation and its uses, and does not use its capabilities.

1.1.1.1End User Interactions

In the previous section, we understood that per f or m nt eracti on and
per f or mBl ocki ngl nt eracti on are invoked by the Consumer whenever the end user

interacts with the Producer HTML in the combined Consumer page, where interaction in HTML
is a click on a link, or a form submit.

This means that all links and form submissions in the Producer HTML fragment point to the
Consumer application. The specification and this tutorial refer to these links (links in the
Producer which point to the Consumer in order to perform an interaction) as interaction URLs.

The Producer usually passes information to the Consumer in the interaction URLs. This
information is referred to in the specification and the tutorial as interaction parameters. These
parameters indicate to the Consumer information that needs to be passed in the subsequent

perform nteraction and perfornBl ocki ngl nteracti on (and likewise indicates which
of these two operations to call, or even whether to call these operation and not just call the next

page’s get Mar kup).

The Producer knows what the interaction URL is, and where to insert the interaction
parameters using two methods:
Producer URL-writing: In this method, the Consumer passes a template of the interaction

URL to the Producer. The producer uses placeholders in the template to insert the
interaction parameters and inserts the resultant URLs in the HTML it returns.

Consumer URL -writing: In this method, the Producer inserts the interaction parameters in
the HTML between two placeholders. The Consumer must then search for these

placeholders, read the interaction parameters, and replace this with a correct interaction
URL.

A typical flow between our three actors, would essentially look like this:

WRSP Primer7

i Consumer Producer
nd Use

T

E

I
| |
e 1.1 initCoakie |

e.g. User clicks link, [—u
ar browser refresh 2 Request markup .
bl 2.1 getMarkup 1
o " " MarkupR Handles request, N
onsumer aggregates markup, BI arkupResponse % generates markup

returns generated page
|
e —————————— L
|

|
User clicks a button, [3 Submit"safe” interaction | |
2., Mext Page pm-—L 3.1: performinteraction . |
Siore navigational bl Pracess the action,
Y Interaction and Markup Response refurn markup, new navState

state for use on page
refresh

|

|

Consumer aggregates markup, |
retuims generated page }
|

|

4.1: perfarmBlockinginteraction |

e.g. User submits a I 4. Submit"blocking” interaction e

form fou-L
’—M Process the blocking action, [

nassinle HTTF redirect [Interaction and Markup Response relurn markup, new navStats

1. User logs in

Ifthis Producer indicates it wants Consumer
for iniiali its

[need to simplify this picture]

One of the most important interaction parameters is navi gat i onal St at e. This parameter is
important because it is the equivalent to a URL in a normal Web application. Just as giving a
5 browser a URL will return HTML that this URL references, thus giving get Mar kup a
navi gat i onal St at e will return an HTML fragment that this navi gat i onal St at e
references. And just as a link makes the browser change it's current URL and request HTML
from the new URL, thus a link which passes the navi gat i onal St at e interaction parameter
to the Consumer makes the Consumer change the navi gati onal St at e for the portlet, and
10 request HTML for the newnavi gat i onal St at e using get Mar kup.

1.1.1.2Sessions

And just like WSRP has the equivalent of the URL, so WSRP has the equiv alent of Web

sessions. In the Markup interface operations, all operations can return a new session. This
session should be preserved by the Consumer and sent to all invocations of the Markup
15 interface operations, usually for the duration of the end users session.

1.1.2 The Service Description Interface
The Service description interface includes just one simple operation:

get Servi ceDescri pti on: this operation returns a description of the Producer, and the

list of entities this Producer supports. This information & also called the Producer meta-
20 data and the Portlet meta-data. For example, it returns information about whether

i ni t Cooki e needs to be called for this Producer, or which modes a Portlet supports.

WRSP Primer8

10

15

20

25

30

35

1.1.3 The Portlet Entity Management Interface

The Portlet Entity Management Interface enables the Consumer to customize a Portlet Entity.

Customization is done by setting Portlet Entity Properties. This interface also enables the
Consumer to create more entities by cloning the ones defined by the Producer (named
Producer Offered Entities) to create Consumer Configured Entities .

The interface includes the following operations:

get Portl et EntityPropertyDescri pti on: returns the list of properties available for a
Portlet Entity, including their names, types, and human readable titles.

set Portl et EntityProperti es: sets the property values of entities, in effect
customizing them.

get Portl et EntityProperti es: gets the property values of entities.

clonePortl etEntity: clones an entity to create a new Consumer Configured Portlet
Entiy.

destroyPortl etEntities: destroys a previously created Consumer Configured Portlet
Entity.

get Portl et EntityDescription: returns a description of a whole Portlet Entity.

1.1.4 The Registration Interface

The Registration Interface enables the Consumer to register itself at the Producer, and to
receive a registration handle which must be used in all subsequent operations. Note that there
will be Producers that require registration, Producers that make registration optional, and
Producers that do not have the regstration interface.

The interface includes the following operations:
The interface includes the following operations:

regi st er: register the Consumer at the Producer. The Consumer passes information

about itself, and is returned a r egi st rati onCont ext which should be used in
subsequent operations.

der egi st er : the inverse operation, which enables the Consumer to end its relationship
with the Producer.

nodi f yRegi strati on: enables the Consumer to notify the Producer of changes in the
data the Consumer sent in the previous r egi st er operation.

1.2 Conventions used in this text
[Discuss white space in the examples]

[Discuss style conventions and what they mean]

2 Minimal Producer

In this scenario, the Producer consists of one Portlet, which shows just one single-HTML-page
Producer with no links, in the locale en. This is practically the smallest Producer one can
generate and which conforms with all the requirements from the specification.

WRSP Primer9

2.1 Implementation Summary

In order to successfully implement WSRP, the Producer exposes a SOAP endpoint which
implements certain operations. It implement get Ser vi ceDescri pti onto enable a
Consumer to query information about which Portlets it has and about the meta-data, and it
implements the get Mar kup operation that returns the HTML.

in the example, the Portlet’s handle is ‘t heOnl yPor t | et ”. This simple portlet return a “Hello,
World” HTML.

The Producer implements the following operations [the Producer MUST implement them]:

get Servi ceDescri pti on: enables a Consumer to query information about w hich
Portlets the Producer has and about the meta data of the Portlets.

get Mar kup: returns the HTML with the “Hello, world”.

perform nteraction: because the HTML returned by get Mar kup contains no links, the
Consumer should never invoke this method. Thus. the implementation of this operation can
be an empty implementation which fails.

per f or nBl ocki ngl nt er act i on: because the HTML returned by get Mar kup contains
no links, the Consumer should never invoke this method. Thus. the implementation of this
operation can be an empty implementation which fails.

i ni t Cooki e: the implementation can be an empty implementation which returns “void”,
as the service description returns false in the field r equi r esl ni t Cooki e.

2.2 Get Servi ceDescri ption Logic

The Producer ignores desi redLocal es, sendAl | Local es, fields which enable the
Producer to return the information in multiple locales.

The Producer also ignores r egi st rat i onCont ext , which enables the Producer to
authenticate the Consumer, or maybe return a different list of Portlets, depending on who is
requesting the information.

For example, the Producer returns the following XML:

<get Servi ceDescri pti onResponse
xm ns="http://ww. oasi s-open. or g/ comni ttees/wsrp/vl/ wsdl/types">
<of feredEntities> [while not required, is essential for the Consuner
to send neta-data to consumer]
<portl et EntityHandl e>t heOnl yPortl et </ portl et EntityHandl e>
[requi red]
<mar kupTypes> [requi r ed]
<mar kupType>t ext/ ht m </ mar kupType> [requi red]
<l ocal es>en</| ocal es> [required]
<nodes>vi ew</ nodes> [requi red]
<wi ndowSt at es>nor mal </ Wi ndowSt at es> [requi r ed]
</ mar kupTypes>
</offeredEntities>
<requi r edRegi strati on>f al se</requi redRegi strati on>
</ get Servi ceDescri pti onResponse>

2.3 get Mar kup Logic
The Producer ignores all the parameters sent by the Consumer, for the following reasons:

regi strati onCont ext : no registration needed.

WRSP Primer10

10

15

20

25

30

35

40

portl et EntityCont ext, including:

portl et EntityHandl e: The producer only supports one Portlet, and assumes the
Consumer sent the correct handle [it is not a requirement for the Producerto check

this].

portl et EntityState: there is no persistent state for this one Portlet. (this Primer
will not discuss this field. See the specification for more information)

runt i meCont ext, including:

portl et Entityl nstancel D The producer does not need a unique ID. (this Primer
will not discuss this field. See the specification for more information)

sessi onHandl e: the Producer does not need session support.

user Cont ext: the Producer does not deal with users.

mar kupPar ans, including:

mar kupChar act er Set : the Producer returns the allowed UTF-8 character set. A
minimal Producer should always return UTF-8, as all Consumers must support this

character set. [which is a requirement for the Consumer].

node: the Producer only supported mode is “view”, and assumes that the Consumer
sent that mode [which is a requirement for the Consumer].

wi ndowSt at e: the Producer only supported windows state is “normal”, and assumes
that the Consumer sent that window state [which is a requirement for the

Consumer].

navi gat i onal St at e: Because the Producer has only one page, there is no meaning
tonavi gati onal St at e.

For example, the Producer returns the following XML:

<get Mar kupResponse
xm ns="http://ww. oasi s-open. org/ conmi ttees/ wsrp/vl/ wsdl/types">
<mar kupCont ext >
<mar kup>
<! [CDATA[
<div class="portlet-font"><p>Hel | o, world!</p></div>
>
</ nar]kup>
<l ocal e>en</ | ocal e>
<mar kupType>t ext / ht m </ mar kupType>
</ mar kupCont ext >
</ get Mar kupResponse>

Note the use of the class ‘port | et -f ont ”. This class enables the portlet to conform to the
Consumer’s look and feel.

3 Producer Portlet with More Than One Page —
Producer URL Writing

This scenario is based on the Minimal Producer scenario, and enhances it by making the
Portlet have two pages with links between one another. The Producer chooses to use Producer
URL when writing its Portlet.

WRSP Primer11l

10

15

20

25

30

35

40

3.1 Implementation Summary

The Producer implements the same operations as the base scenario (i.e. only
get Servi ceDescri pti on and get Mar kup).

This time, though, the get Mar kup can return one of two pages. The Producer knows which
HTML to return based on the navi gati onal St at e sent to it by the Consumer,
navi gat i onsal St at e which in turn is sent to the Consumer via interaction parameters.

E In the example, the Producer decides that the navi gat i onal St at e for the first page is simply
i the string “1” and for the second page it is the string “2”. This example also assumes the
1 Consumer URL templates are the ones in templatesin the Minimal Consumer scenario.

The Producer does not need per f or m nt er act i on because in the interaction URLs, it
directs the Consumer to directly invoke get Mar kup in the next page and to bypass

perform nteraction/perfornmBl ocki ngl nteraction.

This scenario implements interaction URLs using Producer URL writing.

3.2 get Servi ceDescri ption Logic

Exactly like the base scenario, except that the Portlet's doesUr | Tenpl at ePr ocessi ng
needs to be t r ue, as it uses Producer URL writing.

For example, the Producer returns the following XML:

<get Servi ceDescri pti onResponse
xm ns="http://ww. oasi s-open. org/ conmi ttees/ wsrp/vl/ wsdl/types">
<of feredEntities>
<portletEntityHandl e>theOnl yPort| et </ portl et EntityHandl e>
<mar kupTypes>
<mar kupType>t ext / ht Ml </ mar kupType>
<l ocal es>en</| ocal es>
<nmpdes>vi ew</ nodes>
<wi ndowst at es>nor mal </ wi ndowsSt at es>
</ mar kupTypes>
<doesUr | Tenpl at ePr ocessi ng>t r ue</ doesUr | Tenpl at ePr ocessi ng>
</ of feredEntities>
</ get Ser vi ceDescri pti onResponse>

3.3 get Mar kup Logic

As get Mar kup now needs to return two pages, it needs to receive this information. The
Producer sends this information to itself in the navi gat i onal St at e using the interaction

parameter wsr p- navi gati onal State.

The Producer ignores the same parameters as in the base scenario, except for
navi gati onal St at e. Based on the navi gat i onal St at e it will know which page to
display.

string “1” and for the second page it is the string “2".

Ifthe navi gat i onal St at e sent by the Consumer is “1”, the following XML will be returned:

<get Mar kupResponse
xm ns="http://ww. oasi s-open. org/ conmi ttees/ wsrp/vl/ wsdl/types">
<mar kupCont ext >
<mar kup>

For example, the Producer decides that the navi gat i onal St at e for the first page is simply the

WRSP Primer12

10

15

20

25

30

35

40

45

<! [CDATA[
<div class="portlet-font">
<p>Hello, world! This is the first page!</p>
<a href="

>
click here for the second page
</ a>
</ di v>
11>
</ mar kup>
<l ocal e>en</ | ocal e>
<mar kupType>t ext / ht m </ mar kupType>
</ mar kupCont ext >
</ get Mar kupResponse>

Note that the link for the second page uses the URL templates given by the Consumer (and

scenario).

<get Mar kupResponse
xm ns="http://ww. oasi s-open. or g/ conmi ttees/ wsrp/vl/ wsdl/types">
<mar kupCont ext >
<mar kup>
<! [CDATA[
<div class="portlet-font">
<p>Hello, world! This is the second page page! </ p>
<a href="

>
click here for the first page
</ a>
</ di v>
11>
</ mar kup>
<l ocal e>en</ | ocal e>
<mar kupType>t ext / ht m </ mar kupType>
</ mar kupCont ext >
</ get Mar kupResponse>

http://consuner. conl cont ai ner page?ut =Render &1s=2&n¥vi ew&ws=nor mal & es="

assumed to be the Consumer URL templates are the ones in templatesin the Minimal Consumer

Ifthe navi gat i onal St at e sent by the Consumer is “2”, the following XML will be returned:

http://consunmer.com cont ai ner page?ut =Render &1s=1&n¥vi ewd&ws=nor mal & es="

4 Producer Portlet with More Than One Page —
Consumer URL Writing

This scenario is based on the Minimal Producer scenario, and enhances it by making the
Portlet have two pages with links between one another. The Producer chooses to use

Consumer URL when writing its Portlet.

4.1 Implementation Summary

The Producer implements the same operations as the base scenario (i.e. only
get Servi ceDescri pti on and get Mar kup).

This time, though, the get Mar kup can return one of two pages. The Producer knows which

HTML to return based on the navi gat i onal St at e sent to it by the Consumer,
navi gati onsal St at e which in turn is sent to the Consumer via interaction parameters.

WRSP Primer13

10

15

20

25

30

35

40

45

the string “1” and for the second page it is the string “2”.

In the example, the Producer decides that the navi gat i onal St at e for the first page is simply

The Producer does not need per f or ml nt er act i on because in the interaction URLSs, it
directs the Consumer to directly invoke get Mar kup in the next page and to bypass
perform nteraction/ perfornBl ocki nglnteraction.

This scenario implements interaction URLs using Consumer URL writing.

4.2 get Servi ceDescri ption Logic

Exactly like the base scenario.

4.3 get Mar kup Logic

As get Mar kup now needs to return two pages, it needs to receive this information. The

Producer sends this information to itself in the navi gat i onal St at e using the interaction
parameter wsr p- navi gati onal State.

The Producer ignores the same parameters as in the base scenario, except for

navi gat i onal St at e. Based on the navi gat i onal St at e it will know which page to
display.

string “1” and for the second page it is the string “2".

Ifthe navi gat i onal St at e sent by the Consumer is “1”, the following XML will be returned:

<get Mar kupResponse
xm ns="http://ww. oasi s-open. or g/ comni ttees/wsrp/vl/ wsdl/types">
<mar kupCont ext >
<mar kup>
<! [DATA[
<div class="portlet-font">
<p>Hel lo, world! This is the first page!</p>
<a href="wsrp-rewite?Render &nsr p-
navi gat i onal St at e=2&wsr p- node=vi ew&wsr p- Wi ndowSt at e=nor mal / wsr p-
rewite”>
click here for the second page
</ a>
</div>
1>
</ mar kup>
<l ocal e>en</ | ocal e>
<mar kupType>t ext / ht m </ mar kupType>
<requiresU | Rewiting>true</requiresUl Rewiting>
</ mar kupCont ext >
</ get Mar kupResponse>

Ifthe navi gat i onal St at e sent by the Consumer is “2”, the following XML will be returned:

<get Mar kupResponse
xm ns="http://ww. oasi s-open. or g/ conmi tt ees/ wsrp/vl/ wsdl /types">
<mar kupCont ext >
<mar kup>
<! [CDATA[
<div class="portlet-font">

For example, the Producer decides that the navi gat i onal St at e for the first page is simply the

Note that the link for the second page uses the standard Consumer URL writing syntax, and that
requi resUrl Rewriting is setto true to indicate that the Consumer needs to rewrite URLS.

WRSP Primer14

<p>Hello, world! This is the second page page! </ p>
<a href="wsrp-rewite?Render &nsr p-
navi gat i onal St at e=1&wsr p- node=vi ew&wsr p- Wi ndowSt at e=nor mal / wsr p-
rewite”>
click here for the first page
</ a>
</ di v>
11>
</ mar kup>
<l ocal e>en</| ocal e>
<mar kupType>t ext/ ht M </ mar kupType>
<requiresU |l Rewiting>true</requiresUl Rewiting>
</ mar kupCont ext >
</ get Mar kupResponse>

5 Minimal Consumer

In this scenario, a Consumer wants to embed a specific Portlet of a specific Producer. The
Consumer knows the Producer endpoints. The Consumer wants to embed this entity in locale
en.

i In the example, the Portlet used is the t heOnePor t | et Portlet from either Producer Portlet with
i More Than One Page — Producer URL Writing or Producer Portlet with More Than One Page —
1

Consumer URL Writing.

The Consumer does not know anything about this Portlet’'s metadata, and wants to support it
no matter what metadata values the service description or Portlet description have.

5.1 Implementation Summary

As opposed to the Producer, the Consumer does not need to implement a Web Service.
Rather, it uses one, and specifically, a WSRP Web Service. As such, the Consumer does not
need to read any WSDL (as the interface to all WSRP Web Services is a common one) — it just
needs the URL of the Web Service endpoint.

Once it knows that, it goes through three phases:

Producer initialization: the Consumer invokes get Ser vi ceDescri pti on to obtain
information about the Web Service and about the Portlets it wants to use. If the Web

Service r equi r esRegi strati on, thenregi st er is also performed by the Consumer.

This is a one-shot operation invoked whenever the Consumer wants to initiate a
relationship with the Producer.

End User initialization: Some Producers, implementing SOAP over HTTP, use cookies.
Moreover, for performance and load balancing reasons, they would like these cookies to be
created in the context of the End user session. To this end, WSRP has the i ni t Cooki e
operation, which is invoked by the Consumer at the beginning of an End user session.

Page composition and interaction, comprised of:
First page composition: In the first page, only get Mar kup of the portlet is called.

Next page composition: The Consumer received a request for the “next page” via an
interaction URL of the Producer, and must invoke one of the interaction operations (or
skip it and go directly to get Mar kup). Of course, any subsequent interaction is also a

“Next Page” interaction.

WRSP Primer15

10

15

20

25

30

35

Producer termination: whenever the Consumer wants to terminate its relationship with the
Producer, it invokes der egi st er.
The following sections describes the flow of invocations and processing from the point of view

of the Consumer. This is the largest scenario of them all, and must be read with care,
especially First Page Composition Flow and Next Page Composition Flow , which are difficult as

they involve user interaction.

5.2 Producer-Initialization Flow

One time only, whenever the Consumer decides to use the Producer’s Portlet, the Consumer
invokes the get Ser vi ceDescri pti on operations to read the following flags:

requi resRegi stration®istrati onPropertyDescription

requi reslni t Cooki e
of feredPortl etEntity[portletEntityHandl e="theOnl yPortlet"]/

mar kupTypes[mar kupType="text/htm "]: to check whether HTML is supported.

mar kupTypes[mar kupType="text/htm "]/l ocal es[. ~=" en"] : to check
whether the “en” local is supported.

needSecur eCommuni cat i on: to check what type of communication needs to be
established, HTTP or HTTPS.

usesMet hodGet : See below.

doesUr | Tenpl at ePr ocessi ng: to check whether Producer needs Consumer URL
writing, or whether Consumer URL templates need to be passed to it.

If requi resRegi strati onis true, the Consumer registers at the Producer, using the
regi st er operation [MUST].

For example, the Consumer sends the following XML:

i
i <regi ster

| xm ns="http://ww. oasi s-open. or g/ conmi ttees/ wsrp/vl/ wsdl/types">

1 <consuner Nane>aConsuner </ consuner Nane> [r equi r ed]

i <consumer Agent >honmegr ownXM.. 1. 0</ consumer Agent > [requi red. Required
i format of agent]

1 </register>

If the operation fails, the Consumer ends processing [MUST]. Otherwise the Consumer stores
the r egi strati onCont ext returned from the operation for later incorporation into the other
operations. [MUST]

E See Producer that Supports Registration for an example of a response to this operation.

If registration was required, the Consumer invokes get Ser vi ceDescri pti on again (securely
if needSecur eConmuni cat i on is “al |1 ”) with the new r egi st rati onCont ext to get the
description of the service that fits the newr egi st r at i onHandl e. This may be a different
view of the Web Service.

WRSP Primer16

10

15

20

25

30

35

40

45

5.3 End-User-Initialization Flow

If requi resl ni t Cooki e is “per User ” or “per Gr oup”, and the Consumer and Producer are
communicating via HTTP/HTTPS, the Consumer invokes the i ni t Cooki e operation once for
each end user, and stores the returned cookies (returned in the Set - Cooki e headers) for later
incorporation into the other operations from the same end user [MUST]. (see End-User-
Initialization Flow in the Consumer with Two Entities From Same Producer scenario to
understand the difference between “per User " and “per Gr oup”)

For example, the Consumer snds the following XML:
<i ni t Cooki e
xm ns="http://ww. oasi s-open. or g/ conmi ttees/ wsrp/vl/ wsdl/types">
<regi strati onCont ext >
the context returned fromthe register operation, or nothing if no

registration
</registrationContext> [required if requiresRegistration is truel]

</ i ni t Cooki e>

If the operation fails, end processing [MUST]. Otherwise continue as usual.

5.4 First Page Composition Flow

To compose the markup of the first page of the Consumer, the Consumer retrieves the first
page’s markup using the get Mar kup operation.

For example, the Consumer sends the following XML:

<get Mar kup
xm ns="http://ww. oasi s-open. or g/ comni ttees/wsrp/vl/ wsdl/types">
<regi strati onCont ext >
the context returned fromthe register operation, or nothing if no
regi stration
</registrationContext> [required if requiresRegistration is true]
<portl et EntityContext>
<portl et EntityHandl e>t heOnl yPortl et </ portl et EntityHandl e>
[requi red]
<portletEntityState></portletEntityState> [required]?
</ portletEntityContext>
<runti neCont ext />
<user Cont ext >
<userContext|D /> [required but can be enpty]
</ user Cont ext >
<mar kupPar ans>
<cl i ent Dat a>
<user Agent >
Mozilla/4.5 (Macintosh; U PPC)
</ user Agent > [required]
</ cli ent Dat a>
<secur ed i ent Conmuni cat i ons>
fal se [see bel ow
</ secur eCd i ent Comruni cati ons> [required]
<user Aut hent i cati on>f al se</ user Aut henti cati on> [required?
<l ocal e>en</| ocal e> [required]
<mar kupChar act er Set >UTF-8</ mar kupChar act er Set > [r equi r ed]

YWwhat it no r equi resRegi strati on isfalse? Should the element be empty, or just not be t here?
2 There is nothing in the spec that says what entity state to send before invocation of an entity
management operation.

3 How does the Consumer know what to put here for the first page?

WRSP Primer17

10

15

20

25

30

<mar kupType>t ext/ ht m </ mar kupType> [requi r ed]
<nmpde>vi ew</ node> [required]
<wi ndowSt at e>nor nal </ wi ndowSt at e> [requi r ed]
<navi gat i onal St at e>???%</ navi gati onal State> [requi red?°]
<t enpl at es>
[see bel oW
</tenpl ates> [required if doesUrl Tenpl at eProcessing is true or
nanmespaci ng i s required]
</ mar kupPar ans>
</ get Mar kup>

5.4.1 secureC i ent Communi cati ons

If needSecur eConmruni cati on is “al | 7, then the Consumer must receive the markup via a
secure connection (e.g. use SSL when using HTTP) ® and if sending it back to the End User,
must send it back via a secure connection. Note that to send the markup securely back to the
End user, the original request for the Consumer page must have been HTTPS.

5.4.2 tenpl ates

If doesUr | Tenpl at ePr ocessi ng is true, the Consumer supplies templates to enable
Producer URL-writing [MUST].

If the Consumer wants to avoid the Producer “impinging” on markup lds and JavaScript names,
it should also send a unique NaneSpacePref i x .

For example, the Consumer sends the following XML:

<t enpl at es>
<Def aul t Tenpl at e>
http://consuner. conl cont ai ner page?ut ={ ur| Type} &s={wsr p-
navi gat i onal - st at e} &r={ wsr p- node} &ws={ wsr p- wi ndowSt at e} & es={wsrp-url} &
</ Defaul t Tenpl ate> [required only if not all the other non-secure
tenpl ates are defined]
<Secur eDef aul t Tenpl at e>
https://consuner. conl cont ai ner page?ut ={ ur| Type} &s={wsr p-
navi gati onal - st at e} &r={ wsr p- node} &s={ wsr p- wi ndowSt at e} & es={wsrp-url}
</ Secur eDef aul t Tenpl ate> [required only if not all the other
secure tenplates are defined]
<NameSpacePr ef i x>FJHL</ NameSpacePr ef i x>
</tenpl at es>

4 What is the information | need to put in for the first page?

5 Ambiguous requirement: Required by the spec, but not required by the WSDL.

6 Can a SOAP endpoint have a secure anda non-secure endpoint? If not, how do we solve this?

" Thereis no SHOULD or MUST in the spec about this.

8 The consumer is not really obligated to add the three above parameters to the template. Thus, the
consumer is not obligated in the next page to send them to the

get Mar kup/ perforntlnteracti on operations. | think a MUST should be added in the form: “if
the Consumer wishes to preserve the flow of the entity application, it MUST use these parametersin the
template, and MUST pass those parameters in the next invocation of the

get Mar kup/ perforntl nteracti on operations.” If this sentence will not be there, then even if
the Consumer does all the MUST -s, we won't have a working Producer which embeds its Ul flow inside
the Consumer! This type of sentence should probably occur in alot more places.

WRSP Primer18

10

15

20

25

30

5.4.3 Processing the mar kupResponse

Processing the markup consists of three phases —
Processing the session returned by the Producer.
Doing Consumer URL writing

Inserting the returned HTML into the Consumer page.

5.4.3.1Processing the Producer Session

If the mar kupResponse contains a sessi onCont ext , then the Consumer stores this
information so that later markup interface operations to this Portlet send it. [Although this is
not a MUST, failure to do so may in subsequent operations “likely not generate a markup
fragment meeting End User requirements” (section 5.1.1 in the v0.85 spec)g]. In general,
the session between a Consumer and a Portlet at the Producer maps to a client session with
the Consumer.

5.4.3.2Consumer URL Writing

The Consumer processes two fields — mar kup and r equi resUr | Rewri ti ng10 [If the
Consumers wants to use mar kup it MUST NOT ignore requi resUr | Rewri ti ng].

Ifrequi resUrl Rewritingis true, the Consumer rewrites the Markup according to the
algorithm in section 9.2.1 of the v0.85 spec. [MUST]

For example, if the markup included the string Wsrp -rewrite?Render&wsrp-
navigationalState=2&wsrp-mode=view&wsrp-windowState=normal/wsrp-rewrite” (see getMarkup
in Producer Portlet with More Than One Page — Consumer URL Writing for this string in the

proper context), then the Consumer would replace it with the following URL:

http://consumer.com/containerpage?ut=Render&ns=2&m=view&ws=normal

5.4.3.3Inserting the HTML into the Consumer page

After processing the markup, the Consumer inserts it into the Consumer page, allowing for the
fact that they may have different character sets.

5.4.4 Consideration on usesMet hodGet

IfusesMet hodGet ist r ue, and the Consumer wishes to support such a Producer, the
interaction URL-s resulting from the templates or the Consumer -URL rewrites and that are
embedded in an HTML <f or m net hod="get " >'s action attribute ™ must take into
consideration that most browsers strip the query part from the URL [MUST]. Two practical
ways of doing this:

All interaction URL-s embedded in the HTML will contain no query part, but rather embed
the interaction parameters as part of the path.

91 think this should be aMUST: “if the Consumer wishes to preserve the flow of the entity application, it
MUST preserve the sessi onCont ext and send it in subsequent invocations’

10 Are we uppercasing acronyms or not? In other words, isitr equi resUr | Rewri ti ngor

requi resURLRewri ti ng.

™ Thisis not defined as a MUST in the v0.85 spec. | think it should be.

WRSP Primer19

10

15

20

25

30

35

40

For example, the templates of such URL -s will look like the following (note the replacement of “?”
by *"):
<Def aul t Tenpl at e>

http://consuner. coni cont ai ner page; ut ={ url Type} &is={wsr p- navi gati onal -
st at e} &n={ wsr p- node} &ws={ wsr p- wi ndowsSt at e} & es={wsrp-url}
</ Def aul t Tenpl at e>
Another method of passing the information, is as a path:
<Def aul t Tenpl at e>

http://consuner. conl cont ai ner page/ ut ={ ur | Type} &s={wsr p- navi gati onal -
st at e} &n={ wsr p- node} &vs={ wsr p- Wi ndowsSt at e} & es={wsrp-url}
</ Def aul t Tenpl at e>

Both are poorly supported by application servers. Choose the one which fits you best.

The Consumer parses the HTML, remove the URL parameters in the URL-s of <f orm
met hod=" get ” >'s action attributes, and replace them with hidden fields with the
corresponding name and values of the removed URL parameters.

5.4.5 Processing “Resource” requests

The Producer may have generated markup that instructs the End user agent to send
“Resource” requests to the Consumer. If the Producer used Producer URL-writing, then the
Producer did so by inserting the Render Tenpl at e or Secur eRender Tenpl at e into the
markup, and if the Producer used Consumer URL-writing, then the Producer did so by using a
ur | Type with a value of “Resour ce”.

The Consumer should ™%, upon receiving a request to the “Resource” URL (usually an HTTP

GET), return the resource defined by requesting the resource defined in wsr p-ur | and
returning it, just like an HTTP reverse proxy (a.k.a. HTTP gateway) would.

5.5 Next Page Composition Flow

Although not required, the Consumer typically writes all “interaction URL-s” in the markup so
that they link back to the Consumer, while passing back the “interaction parameters” (e.g.

wsr p-navi gati onal St at e, wsr p- url) specified by the Producer. The flow which
composes the markup of the next page of the Consumer is similar to the flow of the first page,
except that the Consumer processes the interaction parameters passed in the interaction URL:

The Consumer processes the ur | Type in order to determine whether to invoke
per f or nBl ocki ngl nt er act i on before returning any markup to the end user is needed,

or whether to invoke per f or m nt er act i on before invoking get Mar kup is needed. This
is described in detail in Processing the urlType.

The Consumer processes the wsr p- node and wsr p- wi ndowSt at e interaction
parameters to determine whether a mode and/or window state change is requested by the
Producer. The Consumer usually allows these requests unless it has an overriding reason
not to (e.g. access control). The Consumer passes the new mode and window state to the
invocations of get Mar kup, per f orm nt eracti on, perfor Bl ocki ngl nt eracti on
for this next page.

The Consumer processes the wsr p- navi gat i onal St at e interaction parameter. The
Consumer passes its value to the invocations of get Mar kup, and
perform nteraction/ perfornBl ocki ngl nteracti on for this next page.

12| pelieve this should be a MUST: “if the Consumer wants the markup to look good, the Consumer
MUST...”

WRSP Primer20

10

15

20

25

30

35

5.5.1 Processing the url Type

The ur | Type enables the Producer to indicate to the Consumer which operations are to be
invoked on the next page request. Note that instead of passing back the ur | Type interaction
parameter in the interaction URL, the Consumer can choose to use different URL-s altogether.
In Producer URL-writing, this is accomplished by giving different URL-s in the various
templates, and in Consumer URL-writing this is accomplished by writing different URL-s
depending on the value of the ur | Type. As these methods are operationally identical to
passing the ur| Type interaction parameter, this document will continue to refer to “the value of
ur | Type” even though in some cases the ur | Type is not transferred.

Depending on the value of ur | Type, the Consumer does the following®®:

Bl ocki ngAct i on: The Consumer invokes per f or mBl ocki ngl nt eracti on. The
Consumer invokes this operation before returning any markup to the end user and before
invoking get Mar kup.

Act i on: The Consumer invokes per f or ml nt er act i on. The Consumer invokes the
operation before invoking get Mar kup.

Render : The Consumer invokes get Mar kup as usual.

5.5.2 Invoking per f or mBl ocki ngl nt eracti on

Invoking per f or nBl ocki ngl nt er acti on is similar to invoking get Mar kup. The same
regi strati onCont ext, portletEntityContext,runtimeContext,userCont ext,

and mar kupPar ans are passed to it, allowing for the fact that new window state, mode, and
navigational state may be passed, as described above. Additionally, this operation requires an

additional parameter —i nt er act i onPar ans.

For example, the Consumer sends the following | nt er act i onPar ans when it receives a POST
to its interaction URL-s:

<i nteracti onPar ans>
<portl et EntityStateChange>Faul t</portletEntityStateChange> [required]
<val i dNew\Vbdes>vi ew</ val i dNewMbdes> 4
<val i dNewW ndowsSt at es>nor nal </ val i dNewW ndowSt at es>
<upl oadCont ext >[see bel ow]
<upl oadDat a>nanme=G | +Tayar &ge=18</ upl oadDat a>
<m meType>appl i cati on/ x-www f or m ur| encoded</ upl oadDat a>
</ upl oadCont ext >
</interacti onParans >

5.5.2.1portl et EntitySt at eChange

A minimal Consumer will setthe portl et Entit ySt at eChange field to “Fault” to disable the
ability of the Producer to change its state, and handling this state change is not a minimal
requirement.

13 |s the Consumer allowed to do otherwise? E.g., to invoke per f or ml nt er act i on ona Render
ur | Type? The spec does not disallow it. It think it should.
% Thisfield is optional, yet the semantics of what it means notto have this field are not defined.

WRSP Primer21

10

15

20

25

30

35

If the user agent reached the interaction URL with data (e.g. with an HTTP POST), the
Consumer should send this data to the Producer, while indicating the mime type of the data.
[Although this is not a MUST, failure to send this data when user agent sends it to the
Consumer may result in not generating markup fragments meeting End User
requirements ¥]

5.5.2.2Processing the per f or nBl ocki ngl nt er acti on response

The Consumer processes r edi rect URL. If this field exists in the response, it indicates that the
Producer would like the Consumer to redirect the end user to the URL defined in

redi r ect URL. The Consumer should honor this request“’. Ifr edi r ect URL exists, all other
fields are ignored [MUST] .

IfnoredirectUrl field exists, the updat eResponse field is processed:

navi gati onal St at e: this field indicates that the Producer wishes to (again) change it's
navi gat i onal St at e. The Consumer stores this information so that future invocations of
get Mar kup for this page should use this value [MUST] . A good way of doing this is to
store the information in the Consumer URL, so that if the end user bookmarks this URL, it
will return the Producer to the correct state. Storing the information in the URL necessitates
the Consumer to redirect the user agent back to a Consumer URL which includes the new
navigational state.

sessi onCont ext: the Consumer stores this information so that later markup interface
operations to this Portlet send it.

portl et Enti tlyOont ext: this field will only appear if port| et Enti t ySt at eChange is
“OK” or “Clone™™", so a minimal Consumer can safely ignore this field.

newW ndowsSt at e/ newivbde: these fields indicate that the Producer wishes to change its
window state and/or mode. If the Consumer honors this request, then the Consumer stores
this information so that future invocations of get Mar kup for this page should use this value
[MUST]. A good way of doing this is to store the information in the Consumer URL, so that
if the end user bookmarks this URL, it will return the Producer to the correct state. Storing
the information in the URL necessitates the Consumer to redirect the user agent back to a
Consumer URL which includes the new window state and mode.

mar kupCont ext : the Producer can choose to return markup with this operation as an
optimization. The Consumer can use this mar kupCont ext instead of invoking get Mar kup
afterwards, or it can choose to ignore this markup and invoke get Mar kup again instead.

5.5.3 Invoking perform nteracti on

The Consumer invokes per f or ml nt er act i on the same way it invokes

per f or mBl ocki ngl nt er acti on, and processes the response in the same way, except for
the fact that the response does not include r edi rect URL, navi gati onal St at e,

newW ndowSt at e, newibde. Because these are not included, the Consumer can invoke this
operation after markup has been returned to the End user, as the Consumer need not because
of this operation.

15 This is not in the spec, but | believe it should be.
16 This should be a SHOULD, no?

7 The wording in the spec says “MUST", but not explicitly.

WRSP Primer22

5.5.4 Continuing with the markup

Invoking get Mar kup is optional if the Producer returned markup in per f orm nt eracti on or
per f or mBl ocki ngl nt er act i on. Otherwise the get Mar kup occurs just as defined above,
with the addition of the correctwindow state, mode, navi gat i onal St at e, and

sessi onCont ext.

5.6 Producer-Termination Flow

If the Consumer invoked the register operation at the beginning of its relationship with the
Producer, then the Consumer invokes the der egi st er operator at the end of its relationship
with the Producer [MUST], sending the r egi st r ati onCont ext it received when it
registered.

The relationship is considered ended when the invocation is successful. [MUST] This means
that the Co nsumer continues to invoke the deregister operation until successful.

6 Producer with More Than One Portlet

This scenario is based on the Minimal Producer scenario. In this scenario, the Producer
exposes more than one Portlet. The scenario will describe only the changes from the base
scenario.

6.1 Implementation Summary

The Producer still implements the same operations as the base operation. This time, though,
the get Servi ceDescri pti on returns two Portlet Entity descriptions. Also, get Mar kup

checks the portl et Enti t yHandl e to determine what markup to return.

i The example exposes two entities — t heFi rst Port| et and t heSecondPort| et .

6.2 get Servi ceDescri ption Logic

The get Ser vi ceDescri pti on operation will now returning the description of the two entities.

For example, the Producer returns the following XML:

<get Servi ceDescri pti onResponse
xm ns="http://ww. oasi s-open. or g/ conmi ttees/ wsrp/vl/ wsdl/types">
<of feredEntities
<portl et EntityHandl e>theFirstPortlet </portletEntityHandl e
<mar kupTypes>
<mar kupType>t ext / ht Ml </ mar kupType>
<l ocal es>en</| ocal es>
<nmpdes>vi ew</ nodes>
<wi ndowst at es>nor nal </ Wi ndowSt at es>
</ mar kupTypes>
</ of feredEntities>
<of feredEntities>
<portl et EntityHandl e>t heSecondPort| et</portletEntityHandl e>
<mar kupTypes>
<mar kupType>t ext / ht Ml </ mar kupType>
<l ocal es>en</| ocal es>
<nmpdes>vi ew</ nodes>

WRSP Primer23

5

10

15

20

25

30

35

40

<wi ndowSt at es>nor nal </ wi ndowSt at es>
</ mar kupTypes>
</of feredEntities>
</ get Servi ceDescri pti onResponse>

6.3 get Mar kup Logic

In this scenario, the Producer does not ignore the port | et Enti t yCont ext, instead it looks
atthe portl et Entit yHandl e to determine which markup to return.

For example, if the portl et EntityHandl e is t heFi rst Port| et, the Producer returns the
following XML:

<get Mar kupResponse
xm ns="http:// ww. oasi s-open. or g/ conmi ttees/ wsrp/vl/ wsdl/types">
<mar kupCont ext >
<mar kup>
<! [CDATA[
<div class="portlet-font"><p>Hel |l o, world!</p></div>
11>
</ mar kup>
<l ocal e>en</ | ocal e>
<mar kupType>t ext / ht M </ mar kupType>
</ mar kupCont ext >
</ get Mar kupResponse>

while if the port | et Entit yHandl eis t heSecondPort| et, it returns the following XML:

<get Mar kupResponse
xm ns="http://ww. oasi s-open. or g/ comni ttees/wsrp/vl/ wsdl/types">
<mar kupCont ext >
<mar kup>
<! [CDATA[
<div class="portlet-font"><p>CGoodbye, world!</p></div>
11>
</ mar kup>
<l ocal e>en</ | ocal e>
<mar kupType>t ext / ht m </ mar kupType>
</ mar kupCont ext >
</ get Mar kupResponse>

7 Consumer with Two Entities From Same
Producer

This scenario is based on the Minimal Consumer scenario and the Producer with More Than
One Portlet scenario. In this scenario, the Consumer embeds the two entities from the
Producer.

Just like in Minimal Consumer, the Consumer does not assume anything about the Producer’s
or entities’ meta data.

The scenario will describe only the changes from the base scenario.

WRSP Primer24

10

15

20

25

30

35

40

7.1 Implementation Summary

The Consumer flow is very similar to the one in the Minimal Consumer scenario, with two basic
additions:

The End User Initialization flow, where i ni t Cooki e may need to be called, has to now
take care of the “per Gr oup” flag in the Service description. In the Minimal Consumer
scenario, the i ni t Cooki e was called once per Portlet. In this scenario, because there is
more than one entity, the call has to be called once per group of Portlets, as defined by the
Producer.

When receiving a request to the interaction URL, the Consumer must set up a mechanism
whereby it can differentiate interactions coming from the first portlet from those coming
from the second portlet.

7.2 Producer-Initialization Flow

The same initialization is done, except that now the per-Portlet meta data is read for the two
entities it intends to embed.

Note that invoking r egi st er is per-Producer, and not per-Portlet. Thus, in this scenario,
regi st er is invoked only once.

7.3 End User Initialization Flow

If requi resl ni t Cooki e is “per User " and the Consumer and Producer are communicating
via HTTP, or ifr equi r esl ni t Cooki e is “per Gr oup” and the gr oupl D of all the entities it

wishes to embed is the same gr oupl D, then the Consumer invokes the i ni t Cooki es exactly
like in the base scenario.

If requi resl ni t Cooki e is “per Gr oup”, but the gr oupl! D of the two entities is different, then
the Consumer invokes the i ni t Cooki e operation twice (once for each group) for each end
user, and stores the returned cookies (returned in the Set - Cooki e headers) for later
incorporation into the other operations from the same end user and same group [MUST].

7.4 First Page Composition Flow

Like in the base scenario, the Consumer invokes get Mar kup to retrieve the markup it wishes
to incorporate into it's page. This time, it invokes get Mar kup twice — once for each Portlet an
the page. Note that the get Mar kups can be invoked in parallel.

For example, the Consumer sends the following XML for the first get Mar kup:

<get Mar kup
xm ns="http://ww. oasi s-open. org/ conmi ttees/ wsrp/vl/ wsdl/types">
<r egi strati onCont ext >
the context returned fromthe register operation, or nothing if no
registration
</regi strationContext>
<portl et EntityCont ext>
<portl et EntityHandl e>t heFirstPortl et </portletEntityHandl e>
<portletEntityState />
</ portletEntityContext>
<runti meContext />
<user Cont ext >
<user Context|D />
</ user Cont ext >

WRSP Primer25

10

15

20

25

30

35

40

45

<mar kupPar ans>
<cl i ent Dat a>
<user Agent >
Mozilla/ 4.5 (Macintosh; U PPC)
</ user Agent >
</ cli ent Dat a>
<secur eCl i ent Conmuni cati ons>
fal se [see bel oy
</ secur ed i ent Conmuni cat i ons>
<user Aut hent i cat i on>f al se</ user Aut henti cati on>
<l ocal e>en</ | ocal e>
<mar kupChar act er Set >UTF-8</ nar kupChar act er Set >
<mar kupType>t ext / ht M </ mar kupType>
<nmode>vi ew</ node>
<wi ndowSt at e>nor nal </ wi ndowSt at e>
<navi gat i onal St at e>???</ navi gati onal St at e>
<t enpl at es>
[see bel oW
</tenpl at es>
</ mar kupPar ans>
</ get Mar kup>

The second get Mar kup is identical except for the port| et Enti t yHandl ewhich is
t heSecondPort| et.

7.4.1 secureC i ent Communi cati ons

If needSecur eComuni cat i on of a Portlet is “al | 7, then the Consumer must receive the
markup via a secure connection (e.g. use SSL when using HTTP), and if sending it back to the
End User, must send it back via a secure connection. Note that in the case of two entities,
when sending the combined markup back to the end user, it is sufficient for one of the entities
to declare that it needSecur eConmuni cat i on for the returned markup to be returned
securely.

7.4.2 tenpl ates

If doesUr | Tenpl at eProcessi ng ist rue, the Consumer supplies templates to enable
Producer URL-writing [MUST]. To enable the Consumer to differentiate between these
interaction URL-s afterwards, the templates are usually different and indicate the invoker of the
interaction. The NameSpacePr ef i x should also be different.

For example, the Consumer sends the following XML to t heFi r st Port| et:

<t enpl at es>
<Def aul t Tenpl at e>
htt p: // consuner . cont cont ai ner page?ut ={ ur | Type} &is={ wsr p-
navi gati onal - st at e} &r={ wsr p- node} &s={ wsr p- wi ndowSt at e} & es={wsrp -
url} &h=t heFi rstPortl et
</ Def aul t Tenpl at e>
<Secur eDef aul t Tenpl at e>
htt ps: // consuner. com cont ai ner page?ut ={ur | Type} &s={wsr p-
navi gati onal - st at e} &r={ wsr p- node} &s={ wsr p- wi ndowSt at e} & es={wsrp -
url}&h=t heFirstPortl et
</ Secur eDef aul t Tenpl at e>
<NaneSpacePr ef i x>FJHL</ NameSpacePr ef i x>
</ tenpl at es>

WRSP Primer26

10

15

20

25

30

35

while it sends the following XML to t heSecondPor t | et (the only difference is in the eh URL
parameter and the NanmeSpacePr ef i x):

<t enpl at es>
<Def aul t Tenpl at e>
http://consuner. coni cont ai ner page?ut ={ ur | Type} &is={wsr p-
navi gati onal - st at e} &={ wsr p- nnde} &ws={ wsr p- wi ndowSt at e} & es={wsr p -
url } &h=t heSecondPort | et
</ Def aul t Tenpl at e>
<Secur eDef aul t Tenpl at e>
https://consumer. com cont ai ner page?ut ={url Type} & s={wsr p-
navi gati onal - st at e} &r={ wsr p- node} &s={ wsr p- wi ndowSt at e} & es={wsrp -
ur| } &h=t heSecondPort| et
</ Secur eDef aul t Tenpl at e>
<NaneSpacePr ef i x>FJH2</ NameSpacePr ef i x>
</tenpl at es>

Note that the mechanism used in the example above, whereby the differentiation is done by the
type of the Portlet Entity, will not work if embedding two Portlets of the same type. A more

general mechanism would wse a unique id chosen by the Consumer and which differentiates
between the two “instances” of the Portlet.

7.4.3 Processing the mar kupResponse

Processing the mar kupResponse is similar to the one in the base scenario, except that the
processing is done twice.

7.4.4 Consideration on usesMet hodGet

The processing is exactly the same as in the base scenario, except that the processing is done
once per Portlet on the page.

7.4.5 Processing “Resource” requests

The processing is exactly the same as in the base scenario.

7.5 Next Page Composition Flow

Processing the next page is similar to the base scenario, except for the following differences:

The interaction URL will indicate which Portlet on the page the end user interacted with. As

described above, atypical way to do this is to embed a Portlet identifier in the interaction
URL.

When invoking the per f or mBl ocki ngl nt eracti on, perform nteracti on, and/or
get Mar kup, the appropriate port| et Enti t yHandl e is sent.

The Consumer will invoke per f or nBl ock{sngl nteractionorperformnteraction
only on the Portlet the user interacted with™.

18 This should be a MUST.

WRSP Primer27

10

15

20

25

30

35

40

For the other entities (and optionally for the Portlet the user interacted with, if the
perform nteraction/perfornBl ocki ngl nteracti on did not return markup) the
Consumer invokes their get Mar kup as defined in the base scenario [SHOULD] . The
get Mar kup-s can be invoked in parallel if the Consumer wants to, except for the Portlet
the user interacted with, whose get Mar kup is invoked after the

perform nteraction/perfornBl ocki ngl nteraction [MUSTlg].

If the interaction URL’s ur | Type indicates to the Consumer to invoke
per f or nBl ocki ngl nt eracti on, then the Consumer invokes it before invoking the
get Mar kup-s [MUST].

7.5.1 Invoking per f or mBl ocki ngl nt eracti on

Invoking the per f or nBl ocki ngl nt er acti on is similar to the base scenario, except that the
Consumer must send the port| et Entit yHandl e of the Portlet which performed the
interaction, and pass the correct sessi onCont ext of the Portlet.

7.5.1.1Processing the per f or nBl ocki ngl nt eracti on response

Processing the response is a bit different than the base scenario, so it will be reconstructed
here:

The Consumer processes redi rect URL like in the base scenario.
IfnoredirectUrl field exists, the updat eResponse field is processed:

navi gat i onal St at e: this field indicates that the Portlet wishes to (again) change it's
navi gat i onal St at e. The Consumer stores this information so that future invocations of
get Mar kup for this page and Portlet should use this value [MUST]. Storing this
information in the URL (as discussed in the base scenario) is still a good way to do this,
although it should store the navi gati onal St at e in a URL parameter that is specific to
that Portlet so that the navi gati onal St at e of each Portlet is independent. This
approach will not scale to more than two a three entities, so a different approach is needed
if the Consumer wishes to enable simultaneous navigation of more than three entities. An
alternative approach would be to store this information in the Consumer’s end user
session.

sessi onCont ext: the Consumer stores this information per Portlet on the page and per
user so that later markup interface operations to this Portlet send it.

newW ndowsSt at e/ newivbde: these fields indicate that the Portlet on the page wishes to
change its window state and/or mode. The Consumer stores this information so that future
invocations of get Mar kup for this page and Portlet should use this value [MUST]. Storing
this information in the URL (as discussed in the base scenario) is still a good way to do this,
although it should store the information in a URL parameter that is specific to that Portlet on
the page so that the information for each Portlet on the page is independent. This approach
will not scale to more than two or three entities, so a different approach is needed if the
Consumer wishes to enable simultaneous navigation of more than three entities. An
alternative approach would be to store this information in the Consumer’s end user

session.
mar kupCont ext : the Producer can choose to return markup with this operation. The

Consumer can use this mar kupCont ext instead of invoking get Mar kup afterwards, or it
can choose to ignore this markup and invoke get Mar kup again instead.

1% Thisis not a MUST, but it MUST be!

WRSP Primer28

10

15

20

25

30

35

7.5.2 Invoking perform nteraction

Invoking the per f or nBl ocki ngl nt er acti on is similar to the base scenario, except that the
Consumer must send the portl et Enti t yHandl e of the Portlet on the page which performed
the interaction, and pass the correct sessi onCont ext of the Portlet on the page.

This operation can also be invoked in parallel to the get Mar kup of the other Portlet on the
page (the Portlet that did not interact with the end user), although not in parallel with the
get Mar kup of the interacting Portlet.

7.5.3 Continuing with the markup

The Consumer invokes get Mar kup for the first and second Portlet, passing the correct
portl et EntityHandl e, sessi onCont ext, navi gati onal St at e,wi ndowSt at e, and
mode. These can be invoked in parallel with each other.

Handling the get Mar kup of the interacting Portlet is optional if the Producer returned markup
in perform nteracti on orperformnmBl ocki ngl nteraction.

7.6 Producer-Termination Flow

This is exactly like the process in the base scenario.

8 Producer Portlet with POST and Session

This scenario is based on the Minimal Producer scenario, except that the end user can POST
information in the first page, which the Producer processes to show a second page.

8.1 Implementation Summary

Just like in Producer Portlet with More Than One Page — Producer URL Writing, the Producer
needs to differentiate between get Mar kup for the first page, and get Mar kup for the second
page. And just like in that scenario, the tool for that is the navi gat i onal St at e field in

get Mar kup and the interaction parameter wsr p- navi gat i onal St at e.

Unlike that scenario, the second page’s get Mar kup needs information — information that was
posted from the first page. This information can be stored in two places —

The Producer session. This makes the amount of information theoretically limitless, but
makes the Producer stateful and session-based.

the navi gat i onal St at e. This enables the Producer to remain stateless, but limits the
amount of information that can be stored.

This scenario will use the first method. A similar scenario, Producer Portlet with POST &
Redirect, will use the second method.

In the example, the first page queries for name and age of the user, which it posts to the second
page, which displays them.

The Producer implements the following operations [the Producer MUST implement them]:
get Servi ceDescri ption

get Mar kup

WRSP Primer29

10

15

20

25

30

35

40

45

per formn nteracti on: because getting the POST information can only be done using
perform nteraction and per fornBl ocki ngl nteracti on (via the upl oadDat a
field), the Producer chooses to use per f or m nt er act i on because it doesn'’t restrict the
Consumer as much as per f or nBl ocki ngl nt er act i on, and the Producer does not
need the additional capabilities of per f or mBl ocki ngl nt er acti on.

per f or nBl ocki ngl nt er act i on: the implementation can be an empty implementation
which fails.

i ni t Cooki e: the implementation can be an empty implementation which returns “void”.

Note that using per f or ml nt er act i on should be done with care. Using it means that it may
be invoked in parallel with other get Mar kups, and specifically with get Mar kup from other
Portlets in the same Producer. If this can happen, care must be taken the parallel invoking of
perform nteracti onand get Mar kup will be OK.

8.2 get Servi ceDescri ption Logic

Exactly like the base scenario, except that the Portlet's doesUr | Tenpl at ePr ocessi ng
needs to be t r ue, as the Producer implements Producer URL Writing.

For example, the Producer returns the following XML:

<get Servi ceDescri pti onResponse
xm ns="http://ww. oasi s-open. org/ conmi ttees/ wsrp/vl/ wsdl/types">
<of feredEntities>
<portl et EntityHandl e>t heOnl yPortl et </Portlet EntityHandl e>
<mar kupTypes>
<mar kupType>t ext / ht Ml </ mar kupType>
<l ocal es>en</| ocal es>
<nmpdes>vi ew</ nodes>
<wi ndowst at es>nor nal </ Wi ndowSt at es>
</ mar kupTypes>
<doesUr | Tenpl at ePr ocessi ng>t r ue</ doesUr | Tenpl at eProcessi ng>
</of feredEntities>
</ get Ser vi ceDescri pti onResponse>

8.3 get Mar kup Logic

The Producer ignores the same parameters as in the base scenario, except for

navi gati onal St at e and sessi onHandl e. Based on the navi gat i onal St at e it will know
which page to display. The sessi onHandl e will point to the Producer session which holds the
name and age inputted in the first page (see performinteraction to understand how the
information got into the session).

For example, the Producer decides that the navi gat i onal St at e for the first page is simply the
string “1” and for the second “result” page it is the string “1result”. This example also assumes
the Consumer URL templates are the ones in templates defined in the Minimal Consumer
scenario.

Ifthe navi gat i onal St at e sent by the Consumer is “1”, the following XML will be returned:

<get Mar kupResponse
xm ns="http://ww. oasi s-open. org/ conmi tt ees/ wsrp/v1l/ wsdl/types">
<mar kupCont ext >
<mar kup>
<! [CDATA[
<p>Hel l o, world! This is the first page!</p>

WRSP Primer30

10

15

20

25

30

35

40

45

<f or m net hod="PCST” acti on="
http://consunmer.com cont ai ner page?ut =Act i on& s=2&nrvi ewd&ws=nor mal & es="
>
<div class="portlet-fornP??2” >Enter your name: </div>
<i nput class="forminput-field”
type="input” id="FJH1_Nanme”></i nput >
<div class="portlet-fornP??”>Enter your age:</div>
<input class="forminput-field”
type="i nput” id="FJHl_Age” ></i nput >
</ form
11>
</ mar kup>
<l ocal e>en</ | ocal e>
<mar kupType>t ext / ht m </ mar kupType>
</ mar kupCont ext >
</ get Mar kupResponse>

Ifthe navi gat i onal St at e sent by the Consumer is “lresult”, the following XML will be
returned (assuming the information in the Producer was that the nane is G 1 Tayar and the
ageis 182%:
<get Mar kupResponse
xm ns="http://ww. oasi s-open. or g/ conmi ttees/ wsrp/vl/ wsdl/types">
<mar kupCont ext >
<mar kup>
<! [CDATA[
<div class="portlet-font">
<p>Hel lo, G| Tayar! Wat an age 18 is!</p>
</ div>
11>
</ mar kup>
<l ocal e>en</ | ocal e>
<mar kupType>t ext / ht m </ mar kupType>
</ mar kupCont ext >
</ get Mar kupResponse>

Note the fact that even if this Portlet had used Consumer URL writing, the

requi resUr | Rew i tingin the second XML would still have been f al se, because there are
no links in that page.

8.4 perform nteractionLogic

Because the first page includes a <f or m net hod=post >, and that POST data reaches the
Consumer (through the mechanism of URL writing), the Producer can receive it only by
implementing per f or m nt er acti on or per f or nBl ocki ngl nt er acti on. This Producer
chooses to use per f or ml nt er act i on because it doesn't restrict the Consumer as much as
per f or nBl ocki ngl nt eracti on, and the Producer does not need the additional capabilities
of per f or mBl ocki ngl nt er acti on (e.g. changing navi gati onal St at e because of the
interaction).

The Producer ignores the same parameters as in the base scenario’s get Mar kup. Note that it
also ignores sessi onHandl e because it does not need to read information from the session in
per form nteraction, only to write information to it. Reading the information from the
session is done in getMarkup.

201’ m not sure what the class for an input field label is.
2! One can dream...

WRSP Primer31

10

15

20

25

30

35

40

The Producer ignores most of the fields ini nt er act i onPar ans too, except for the
upl oadCont ext which contains the POST-ed data.

For an example of such an upl oadCont ext, see Invoking performBlockingInteraction in
Minimal Consumer. Assuming such an upl oadCont ext , the Producer returns the following XML
(assuming it doesn’t return markup):

<perform nteracti onResponse
xm ns="http://ww. oasi s-open. or g/ conmi ttees/ wsrp/vl/ wsdl/types">
<sessi onCont ext >
<sessi onHandl e>
a handle to the Producer session which includes the nane and
age sent in the uploadData. This is producer-inpl enentation-dependent.
</ sessi onHand| e>
<expi r es>3600</ expi r es>
</ sessi onCont ext >
</ perform nteracti onResponse>

9 Producer Portlet with POST & Redirect

This scenario is based on Producer Portlet with POST, except for the fact that it stores the

information in the navi gat i onal St at e and not in the session (see getMarkup in Producer
Portlet with POST for a description of the differences between the two methods).

9.1 Implementation Summary

This necessitates per f or m nt er act i on to change the navi gat i onal St at e, but because
the this operation cannot change the navi gat i onal St at e, the Producer uses

per f or mBl ocki ngl nt eracti on. This is very similar to existing Web applications redirecting
as a result of a POST. In fact, if the Producer returns new navi gat i onal St at e froma

per f or mBl ocki ngl nt er act i on operation, some Consumers will redirect the user agent to
reflect the change in the navi gati onal St at e (see Processing the
performBlockinglnteraction response in Next Page Composition Flow of the Minimal Consumer
scenario).

The Producer implements the following operations [the Producer MUST implement them]:
get Servi ceDescri ption
get Mar kup
perform nteraction: the implementation can be an empty implementation which fails.

per f or nBl ocki ngl nt er act i on: because getting the POST information and returning a
new navi gati onal St at e as a result can only be done using
per f or nBl ocki ngl nt eracti on the Producer chooses to implement this operation.

i ni t Cooki e: the implementation can be an empty implementation which returns “void”.

9.2 get Servi ceDescri ption Logic

Exactly like the base scenario, except that the Portlet's doesUr | Tenpl at ePr ocessi ng
needs to be true.

For example, the Producer returns the following XML:

<get Servi ceDescri pti onResponse

WRSP Primer32

10

15

20

25

30

35

40

45

xm ns="http://ww. oasi s-open. or g/ conmi ttees/ wsrp/vl/ wsdl/types">
<of feredEntities>
<portl et EntityHandl e>t heOnl yPortl et </ portl et EntityHandl e>
<mar kupTypes>
<markupType>t ext/ht m </ mar kupType>
<l ocal es>en</| ocal es>
<nodes>vi ew</ nodes>
<wi ndowst at es>nor mal </ Wi ndowSt at es>
</ mar kupTypes>
<doesUr| Tenpl at eProcessi ng>t rue</ doesUr | Tenpl at ePr ocessi ng>
</of feredEntities>
</ get Servi ceDescri pti onResponse>

9.3 get Mar kup Logic

Just like in Producer Portlet with More Than One Page — Producer URL Writing, the Producer
needs to differentiate between get Mar kup for the first page, and get Mar kup for the second

page. And just like in that scenario, the tool for that is the navi gat i onal St at e field in
get Mar kup and the interaction parameter wsr p- navi gati onal St at e.

Unlike that scenario, the second page’s get Mar kup needs information — information that was

posted from the first page. As discussed above, This information will be stored by
per f or mBl ockl nt eracti oninthe navi gati onal St ate.

The Producer ignores the same parameters as in the base scenario, except for

navi gat i onal St at e. Based on the navi gat i onal St at e it will know which page to display

and what information to display in it.

For example, the Producer decides that the navi gat i onal St at e for the first page is simply the
string “1” and for the second “result” page it is the string “1r esul t ?nane=nanme&age=age”. This
example also assumes the Consumer URL templates are the ones in templates.

Ifthe navi gat i onal St at e sent by the Consumer is “1”, the following XML will be returned:

<get Mar kupResponse
xm ns="http://ww. oasi s-open. org/ conmi ttees/ wsrp/vl/ wsdl/types">
<mar kupCont ext >
<mar kup>
<! [CDATA[
<p>Hell o, world! This is the first page!</p>
<f or m net hod="PCST” acti on="
http://consuner. com cont ai ner page?ut =Bl ocki ngAct i on&ns=2&mrvi ewdws=nor m
al & es=">
<div class="portl et-fornP??2?">Enter your name:</div>
<i nput class="forminput-field”
type="input” id="FJHL_Nane”></i nput >
<div class="portlet-fornP???”>Enter your age: </div>
<i nput class="forminput-field”
type="input” id="FJHl_Age”></i nput>
</ fornm
11>
</ mar kup>
<l ocal e>en</ | ocal e>
<mar kupType>t ext / ht M </ mar kupType>
</ mar kupCont ext >
</ get Mar kupResponse>

22 1’m not sure what the class for an input field |abel is.

WRSP Primer33

10

15

20

25

30

35

40

Ifthe navi gat i onal St at e sent by the Consumer is
“Iresul t ?name=G | +Tayar &ge=182%", the following XML will be returned:

<get Mar kupResponse
xm ns="http://ww. oasi s-open. or g/ conmi ttees/ wsrp/vl/ wsdl/types">
<mar kupCont ext >
<mar kup>
<! [CDATA[
<div class="portlet-font">
<p>Hello, G| Tayar! Wat an age 18 is!</p>
</ a>
</ di v>
11>
</ mar kup>
<l ocal e>en</ | ocal e>
<mar kupType>t ext / ht m </ mar kupType>
</ mar kupCont ext >
</ get Mar kupResponse>

Note the fact that even if this Portlet had used Consumer URL writing, the
requi resUr | Rewr i tinginthe second XML would still have been f al se, because there are
no links in that page.

9.4 perfornBl ocki ngl nteracti on Logic

Because the first page includes a <f or m met hod=post >, and that POST data reaches the
Consumer (through the mechanism of URL writing), the Producer can receive it only by
implementing per f or m nt eracti on or per f or nBl ocki ngl nt er acti on. because getting
the POST information and returning a newnavi gat i onal St at e as a result can only be done
using per f or mBl ocki ngl nt er act i on the Producer chooses to implement this operation.

The Producer ignores the same parameters as in the base scenario’s get Mar kup. Note that it
also ignores sessi onHandl e because it does not need to read information from the session in
perform nteraction, only to write information to it. Reading the information from the
session is done in getMarkup.

The Producer ignores most of the information in i nt er act i onPar ans, except for the
upl oadCont ext which contains the POST-ed data.

For an example of such an upl oadCont ext, see Invoking performBlockingInteraction in
Minimal Consumer. Assuming such an upl oadCont ext , the Producer returns the followi ng XML
(assuming it doesn’t return markup):
<per f or nBl ocki ngl nt er act i onResponse
xm ns="http://ww. oasi s-open. or g/ conmi ttees/ wsrp/vl/ wsdl/types">
<updat eResponse>
<navi gati onal St at e>
1resul t ?2nane=G | +Tayar &age=18
</ navi gati onal St at e>
</ updat eResponse>
</ per f or nBl ocki ngl nt er act i onResponse>

2 One can dream...

WRSP Primer34

10

15

20

25

30

35

40

45

10Producer that Includes Resources to be
Proxied

This scenario is based on Minimal Producer, but the single HTML page returned includes an
image, which the Consumer has to proxy (as described in Processing “Resource” requests in
the Minimal Consumer scenario). The Producer uses Producer URL writing.

10.1Implementation Summary

The Producer implements the same operations as in the basic scenario. The only difference is
that in the markup returned, it uses Resource writing — the Consumer should have put the
{ws-url} interaction parameter in the interaction URL. The Producer just needs to change t
to point to the resource in question.

10.2get Servi ceDescri pti on Logic

The get Ser vi ceDescri pti on implementation is similar to the basic scenario’s, except that
doesUr | Tenpl at ePr ocessi ng is true.

For example, the Producer returns the following XML:

<get Servi ceDescri pti onResponse
xm ns="http://ww. oasi s-open. or g/ conmi ttees/ wsrp/vl/ wsdl/types">
<offeredEntities> [while not required, is essential for the Consuner
to send neta-data to consuner]
<portl et EntityHandl e>t heOnl yPortl et </ portl et EntityHandl e>
[required]
<mar kupTypes> [requi r ed]
<mar kupType>t ext / ht Ml </ mar kupType> [requi r ed]
<l ocal es>en</| ocal es> [required]
<npdes>vi ew</ nodes> [requi r ed]
<wi ndowst at es>nor mal </ Wi ndowSt at es> [requi r ed]
</ mar kupTypes>
<doesUr | Tenpl at ePr ocessi ng>t r ue</ doesUr | Tenpl at ePr ocessi ng>
</ of feredEntities>
</ get Servi ceDescri pti onResponse>

10.3get Mar kup Logic

The Producer ignores the same parameters and fields as in the basic scenario. The only
difference is in the markup returned.

For example, the Producer returns the following XML (assuming the Consumer sends the
templates defined in templatesin the Minimal Consumer scenario):

<get Mar kupResponse
xm ns="http://ww. oasi s-open. or g/ conm ttees/wsrp/vl/ wsdl/types">
<mar kupCont ext >
<mar kup>
<! [CDATA[
<div class="portlet-font"><p>Hell o, world!</p></div>
<ing src="
http://consuner. conl cont ai ner page?ut =Resour ce&ns=&mr&ws=&r es=htt p:// pro
ducer. coni i nages/ sayhel | 0. j pg” ></i ng>
11>
</ mar kup>
<l ocal e>en</ | ocal e>

WRSP Primer35

i <mar kupType>t ext / ht m </ mar kupType>

! <requiresU | Rewiting>true</requiresU | Rewiting>
</ mar kupCont ext >

| </ get Mar kupResponse>

s 11Producer that Uses More Modes
12Consumer that Supports More Modes
13Producer that Uses More Window States
14Consumer that Supports More Window States
15Producer that Uses Registration

10 16Producer that Supports Consumer Configured
Entities

17Consumer that Uses Consumer Configured
Entities

WRSP Primer36

