
WRSP Primer 1

WRSP Primer

Working Draft 0.3, 16 December 2002

Document identifier:

WSRP_Primer_0.3 (Word)

Location: 5

http://www.oasis-open.org/committees/wsia

http://www.oasis-open.org/committees/wsrp

Editors:
Gil Tayar, WebCollage <gil.tayar@webcollage.com>

Abstract: 10

This document’s purpose is threefold:

• Approach the spec from a more tutorial point of view by giving examples of all SOAP
messages and by giving a step by step understanding of a Consumer and Producer. For
conciseness sake, only the body of the SOAP message is given. Also, the data in the XML
which is part of the example is in italics, while the information that is required and must be a 15
part of a Producer or Consumer that implements the scenario is in a regular style.

• Describe Consumer and Producer scenarios.

• Describe what the Consumer and Producer are required to do in order to implement a
successful WSRP implementation.

Status: 20

This draft is an early version. Various concepts continue to be debated. Points needing
clarification as this evolves into the final specification are much appreciated and may be
emailed to Gil Tayar.

If you are on the wsia-wsrp@lists.oasis-open.org, wsia@lists.oasis-open.org or
wsrp@lists.oasis-open.org list for committee members, send comments there. If you are not on 25
that list, subscribe to the wsia-comment@lists.oasis-open.org or wsrp-comment@lists.oasis -
open.org list and send comments there. To subscribe, send an email message to wsia-
comment-request@lists.oasis -open.org or wsrp-comment -request@lists.oasis-open.org with
the word "subscribe" as the body of the message.

The errata page for this specification is at 30
http://www.oasis-open.org/committees/wsrp/requirements_v1_errata.html.

Copyright © 2002, 2003 The Organization for the Advancement of Structured Information
Standards [OASIS]

Comment: Woefully inadequate.

WRSP Primer 2

Table Of Contents

1 Introduction5

1.1 Introduction to WSRP5
1.1.1 The Markup Interface..7
1.1.2 The Service Description Interface..8 5
1.1.3 The Portlet Entity Management Interface..9
1.1.4 The Registration Interface ...9

1.2 Conventions used in this text..9

2 Minimal Producer..9

2.1 Implementation Summary 10 10

2.2 GetServiceDescription Logic .. 10
2.3 getMarkup Logic .. 10

3 Producer Portle t with More Than One Page – Producer URL Writing........................... 11

3.1 Implementation Summary 12
3.2 getServiceDescription Logic .. 12 15

3.3 getMarkup Logic .. 12

4 Producer Portlet with More Than One Page – Consumer URL Writing......................... 13

4.1 Implementation Summary 13
4.2 getServiceDescription Logic .. 14
4.3 getMarkup Logic .. 14 20

5 Minimal Consumer 15

5.1 Implementation Summary 15
5.2 Producer-Initialization Flow 16
5.3 End-User-Initialization Flow................................ .. 17
5.4 First Page Composition Flow.. 17 25
5.4.1 secureClientCommunications .. 18
5.4.2 templates 18
5.4.3 Processing the markupResponse ... 19
5.4.4 Consideration on usesMethodGet 19
5.4.5 Processing “Resource” requests .. 20 30

5.5 Next Page Composition Flow 20
5.5.1 Processing the urlType................................ ... 21
5.5.2 Invoking performBlockingInteraction .. 21
5.5.3 Invoking performInteraction 22
5.5.4 Continuing with the markup 23 35

WRSP Primer 3

5.6 Producer-Termination Flow 23

6 Producer with More Than One Portlet................................ .. 23

6.1 Implementation Summary 23
6.2 getServiceDescription Logic .. 23

6.3 getMarkup Logic .. 24 5

7 Consumer with Two Entities From Same Producer.. 24

7.1 Implementation Summary 25
7.2 Producer-Initialization Flow 25
7.3 End User Initialization Flow 25
7.4 First Page Composition Flow.. 25 10
7.4.1 secureClientCommunications .. 26
7.4.2 templates 26
7.4.3 Processing the markupResponse ... 27
7.4.4 Consideration on usesMethodGet 27
7.4.5 Processing “Resource” requests .. 27 15

7.5 Next Page Composition Flow 27
7.5.1 Invoking performBlockingInteraction .. 28
7.5.2 Invoking performInteraction 29
7.5.3 Continuing with the markup 29

7.6 Producer-Termination Flow 29 20

8 Producer Portlet with POST and Session... 29

8.1 Implementation Summary 29
8.2 getServiceDescription Logic .. 30

8.3 getMarkup Logic .. 30
8.4 performInteraction Logic .. 31 25

9 Producer Portlet with POST & Redirect .. 32

9.1 Implementation Summary 32
9.2 getServiceDescription Logic .. 32
9.3 getMarkup Logic .. 33

9.4 performBlockingInteraction Logic 34 30

10 Producer that Includes Resources to be Proxied................................ 35

10.1 Implementation Summary 35
10.2 getServiceDescription Logic .. 35

10.3 getMarkup Logic .. 35

11 Producer that Uses More Modes.. 36 35

WRSP Primer 4

12 Consumer that Supports More Modes.. 36

13 Producer that Uses More Window States.. 36

14 Consumer that Supports More Window States... 36

15 Producer that Uses Registration.. 36

16 Producer that Supports Consumer Configured Entities ... 36 5

17 Consumer that Uses Consumer Configured Entities .. 36

WRSP Primer 5

1 Introduction
This document’s purpose is threefold:

• Approach the spec from a more tutorial point of view by giving examples of all SOAP
messages and by giving a step by step understanding of a Consumer and Producer. For
conciseness sake, only the body of the SOAP message is given. Also, the data in the XML 5
which is part of the example is in italics, while the information that is required and must be a
part of a Producer or Consumer that implements the scenario is in a regular style.

• Describe Consumer and Producer scenarios.

• Describe what the Consumer and Producer are required to do in order to implement a
successful WSRP implementation. 10

The document consists mainly of a list of scenarios. Each scenario is described, and its sub-
sections describe what the Producer or Consumer need (or can) do to implement the scenario.
If a sentence or paragraph are a requirement from the spec, the requirement is highlighted in
this format [requirement] . [I will cross-reference the requirements to the spec when the spec is
a bit more stabilized]. 15

This document also includes a section that is an introduction to WSRP. This section assumes
no knowledge of WSRP and introduces the ideas and “actors” that govern the scenarios and,
ultimately, the spec, and introduces the reader to the main concepts behind WSRP. Some of
the other concepts are introduced when introducing and explaining the scenarios.

The scenarios themselves are not meant to be full, but rather to be modular scenarios which 20
real implementer can mix and match to create their own scenarios. Because of their modularity
they tend to be minimal.

Most scenarios are based on two basic scenarios – the Minimal Producer scenario and the
Minimal Consumer scenario, which enables their description to include only the changes .

1.1 Introduction to WSRP 25

Web Services for Remote Portlets (WSRP) is a specification, based on SOAP, which defines
SOAP operations that enable a Web Service to return an HTML fragment that can be
embedded in an HTML page.

Moreover, an End User that navigates to the HTML page can click on a link (that was included
in the Web Service’s HTML fragment) that will navigate the user to another HTML page, where 30
the end user will see another HTML fragment the Web Service returned.

Thus the user’s perception is of a small Web application embedded inside another HTML
application. As HTML does not support this kind of functionality, a standards body rose to
define the protocol between the “container” HTML page and the Web Service that returns the
HTML fragment, a protocol that enables this supposed embedding. 35

We have seen three “actors” in this scenario.

• Producer : The Web Service that return the HTML fragments and acts as a “mini”
application.

• Consumer : The HTML page (or application) that embeds the Producer “mini” application.

• End user : The end user, who via the browser, sees the two combined applications. 40

There is also another term to discuss, which is:

Comment: Woefully inadequate.

WRSP Primer 6

• Portlet Entity: a Producer Web Service can implement multiple Portlets via one Web
Service. For example, a “stock quote” Portlet and a “weather” Portlet. Each Portlet is
exposed via one or more Portlet Entities, which are customizations of the basic Portlet, and
which the Producer provides – these are named Producer Offered Portlet Entities.
Usually, for each Portlet, there is only one Portlet Entity that the Producer offers. The 5
Consumer can create more customizations of these Portlet Entities to create Consumer
Configured Portlet Entities .

To differentiate between the two types of entities, the text will use the word “Portlet ” for
Producer Offered Entities, and the word “Portlet Entity” exactly like it is used in the
specification - for Portlet Entities that are both Producer Offered an Consumer Configured. 10

Note that the above discusses browsers, HTML, and Web applications. WSRP is intended to
be more specific than that, and also enables things like embedding multiple WML/WAP
applications into cell phones, or embedding Voice applications (using VoiceML) inside normal
Web applications.

That is why the specification speaks of “markup” and not HTML, and discusses the “user agent” 15
and not just a “browser”. To simplify things, this tutorial will assume the simplest case – the
markup is a plain HTML fragment, the “user agent” is a browser, and the Consumer is showing
a typical web application to the end user.

WSRP is also more than that. It’s mission is to be the protocol that binds portal servers and
their portlets. A portlet, in essence, is a mini-application embedded inside another application, 20
something which, as we have discussed, is what WSRP is all about.

But a portlet inside a portal needs more than an ability to embed itself inside a portal. It also
wants to enable the portal or the end user to configure the portal. For example, our stock quote
portlet would like to be configured to display on certain stocks. In WSRP parlance, this means
that it wants to enter “edit mode ” where it can display the configuration UI which configures 25
itself. Or maybe it would like the portal to display its own UI which enables the list of
“properties” to be configured.

Likewise, a portal would like to display the portlet HTML in certain Window states: “minimized”,
“maximized”, etc…

[Discuss roles (if they survive!) …] 30

And finally, the Producer would like all portal applications to register themselves, and the
Consumer would like to programmatically understand what entities this Producer is offering,
and what customization properties they have.

To this end, the WSRP protocol is divided into four distinct “interfaces”:

• Markup : an interface which includes operations that enable the embedding of the Producer 35
HTML inside the Consumer, enables the interaction of the End user with the Producer
HTML, while still staying embedded in the Consumer application, and includes support for
modes and window states. This interface must be implemented by the Producer.

• Service Description: an interface which includes an operation that enable the Consumer
to query the Producer about its entities. This interface must be implemented by the 40
Producer.

• Portlet Entity Management : an interface which includes operations that enable the
Consumer to customize entities, and even create entities of their own, entities named
Consumer Configured Entities in the specification. This interface does not have to be
implemented by the Producer. 45

• Registration : an interface which includes operations that enable the Consumer to register
itself with the Producer. This interface does not have to be implemented by the Producer.

The following sections will briefly discuss the four interfaces:

WRSP Primer 7

1.1.1 The Markup Interface
This interface is the most important interface, but unfortunately is the most difficult to
understand as it includes operations, which, if used in a certain way, will give the end user a
perception of a portlet embedded within another application.

The difficulty with understanding this interface is not only in understanding the operations, but 5
more in understanding how to choreograph between themselves, and between the end user
interactions.

But before tackling the choreography, let’s tackle the operations themselves:

• getMarkup: this operation is invoked by the Co nsumer in order to get the “current” HTML
(we will discuss what “current” means momentarily), which will be embedded in the 10
Consumer page.

• performInteraction/performBlockingInteraction : these operation is invoked
by the Consumer after the end user interacted with the Producer HTML in the combined
Consumer page (e.g. clicked on a link, or submitted a form in the Producer HTML). How
interactions that originated from Producer HTML arrive at the Consumer application is a 15
question dealt with in End User Interactions.

• initCookie: this minor operation may be invoked by the Consumer. This operation helps
Producers which use HTTP cookies in their operations, but this Primer will only cursively
discuss this operation and its uses, and does not use its capabilities.

1.1.1.1 End User Interactions 20

In the previous section, we understood that performInteraction and
performBlockingInteraction are invoked by the Consumer whenever the end user
interacts with the Producer HTML in the combined Consumer page, where interaction in HTML
is a click on a link, or a form submit.

This means that all links and form submissions in the Producer HTML fragment point to the 25
Consumer application. The specification and this tutorial refer to these links (links in the
Producer which point to the Consumer in order to perform an interaction) as interaction URLs.

The Producer usually passes information to the Consumer in the interaction URLs. This
information is referred to in the specification and the tutorial as interaction parameters . These
parameters indicate to the Consumer information that needs to be passed in the subsequent 30
performInteraction and performBlockingInteraction (and likewise indicates which
of these two operations to call, or even whether to call these operation and not just call the next
page’s getMarkup).

The Producer knows what the interaction URL is, and where to insert the interaction
parameters using two methods: 35

• Producer URL-writing : In this method, the Consumer passes a template of the interaction
URL to the Producer. The producer uses placeholders in the template to insert the
interaction parameters and inserts the resultant URLs in the HTML it returns.

• Consumer URL -writing: In this method, the Producer inserts the interaction parameters in
the HTML between two placeholders. The Consumer must then search for these 40
placeholders, read the interaction parameters, and replace this with a correct interaction
URL.

A typical flow between our three actors, would essentially look like this:

WRSP Primer 8

[need to simplify this picture]

One of the most important interaction parameters is navigationalState . This parameter is
important because it is the equivalent to a URL in a normal Web application. Just as giving a
browser a URL will return HTML that this URL references, thus giving getMarkup a 5
navigationalState will return an HTML fragment that this navigationalState
references. And just as a link makes the browser change it’s current URL and request HTML
from the new URL, thus a link which passes the navigationalState interaction parameter
to the Consumer makes the Consumer change the navigationalState for the portlet, and
request HTML for the new navigationalState using getMarkup. 10

1.1.1.2 Sessions
And just like WSRP has the equivalent of the URL, so WSRP has the equiv alent of Web
sessions. In the Markup interface operations, all operations can return a new session. This
session should be preserved by the Consumer and sent to all invocations of the Markup
interface operations, usually for the duration of the end users session. 15

1.1.2 The Service Description Interface
The Service description interface includes just one simple operation:

• getServiceDescription : this operation returns a description of the Producer, and the
list of entities this Producer supports. This information is also called the Producer meta-
data and the Portlet meta-data. For example, it returns information about whether 20
initCookie needs to be called for this Producer, or which modes a Portlet supports.

WRSP Primer 9

1.1.3 The Portlet Entity Management Interface
The Portlet Entity Management Interface enables the Consumer to customize a Portlet Entity.
Customization is done by setting Portlet Entity Properties . This interface also enables the
Consumer to create more entities by cloning the ones defined by the Producer (named
Producer Offered Entities) to create Consumer Configured Entities . 5

The interface includes the following operations:

• getPortletEntityPropertyDescription: returns the list of properties available for a
Portlet Entity, including their names, types, and human readable titles.

• setPortletEntityProperties: sets the property values of entities, in effect
customizing them. 10

• getPortletEntityProperties: gets the property values of entities.

• clonePortletEntity : clones an entity to create a new Consumer Configured Portlet
Entity.

• destroyPortletEntities: destroys a previously created Consumer Configured Portlet
Entity. 15

• getPortletEntityDescription : returns a description of a whole Portlet Entity.

1.1.4 The Registration Interface
The Registration Interface enables the Consumer to register itself at the Producer, and to
receive a registration handle which must be used in all subsequent operations. Note that there
will be Producers that require registration, Producers that make registration optional, and 20
Producers that do not have the registration interface.

The interface includes the following operations:

The interface includes the following operations:

• register: register the Consumer at the Producer. The Consumer passes information
about itself, and is returned a registrationContext which should be used in 25
subsequent operations.

• deregister: the inverse operation, which enables the Consumer to end its relationship
with the Producer.

• modifyRegistration : enables the Consumer to notify the Producer of changes in the
data the Consumer sent in the previous register operation. 30

1.2 Conventions used in this text
[Discuss white space in the examples]

[Discuss style conventions and what they mean]

2 Minimal Producer
In this scenario, the Producer consists of one Portlet, which shows just one single-HTML-page 35
Producer with no links, in the locale en. This is practically the smallest Producer one can
generate and which conforms with all the requirements from the specification.

WRSP Primer 10

2.1 Implementation Summary
In order to successfully implement WSRP, the Producer exposes a SOAP endpoint which
implements certain operations. It implement getServiceDescription to enable a
Consumer to query information about which Portlets it has and about the meta-data, and it
implements the getMarkup operation that returns the HTML. 5

in the example, the Portlet’s handle is “theOnlyPortlet”. This simple portlet return a “Hello,
World” HTML.

The Producer implements the following operations [the Producer MUST implement them]:

• getServiceDescription : enables a Consumer to query information about w hich
Portlets the Producer has and about the meta-data of the Portlets. 10

• getMarkup : returns the HTML with the “Hello, world”.

• performInteraction : because the HTML returned by getMarkup contains no links, the
Consumer should never invoke this method. Thus. the implementation of this operation can
be an empty implementation which fails.

• performBlockingInteraction: because the HTML returned by getMarkup contains 15
no links, the Consumer should never invoke this method. Thus. the implementation of this
operation can be an empty implementation which fails.

• initCookie: the implementation can be an empty implementation which returns “void”,
as the service description returns false in the field requiresInitCookie .

2.2 GetServiceDescription Logic 20

The Producer ignores desiredLocales, sendAllLocales, fields which enable the
Producer to return the information in multiple locales.

The Producer also ignores registrationContext , which enables the Producer to
authenticate the Consumer, or maybe return a different list of Portlets, depending on who is
requesting the information. 25

For example, the Producer returns the following XML:

<getServiceDescriptionResponse
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <offeredEntities> [while not required, is essential for the Consumer
to send meta-data to consumer] 30
 <portletEntityHandle>theOnlyPortlet</portletEntityHandle>
[required]
 <markupTypes> [required]
 <markupType>text/html</markupType> [required]
 <locales>en</locales> [required] 35
 <modes>view</modes> [required]
 <windowStates>normal</windowStates> [required]
 </markupTypes>
 </offeredEntities>
 <requiredRegistration>false</requiredRegistration> 40
</getServiceDescriptionResponse>

2.3 getMarkup Logic
The Producer ignores all the parameters sent by the Consumer, for the following reasons:

• registrationContext: no registration needed.

WRSP Primer 11

• portletEntityContext, including:

• portletEntityHandle: The producer only supports one Portlet, and assumes the
Consumer sent the correct handle [it is not a requirement for the Producer to check
this].

• portletEntityState : there is no persistent state for this one Portlet. (this Primer 5
will not discuss this field. See the specification for more information)

• runtimeContext, including:

• portletEntityInstanceID: The producer does not need a unique ID. (this Primer
will not discuss this field. See the specification for more information)

• sessionHandle: the Producer does not need session support. 10

• userContext: the Producer does not deal with users.

• markupParams , including:

• markupCharacterSet : the Producer returns the allowed UTF-8 character set. A
minimal Producer should always return UTF-8, as all Consumers must support this
character set. [which is a requirement for the Consumer]. 15

• mode: the Producer only supported mode is “view”, and assumes that the Consumer
sent that mode [which is a requirement for the Consumer].

• windowState: the Producer only supported windows state is “normal”, and assumes
that the Consumer sent that window state [which is a requirement for the
Consumer] . 20

• navigationalState: Because the Producer has only one page, there is no meaning
to navigationalState.

For example, the Producer returns the following XML:

<getMarkupResponse
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types"> 25
 <markupContext>
 <markup>
 <![CDATA[
 <div class="portlet-font"><p>Hello, world!</p></div>
]]> 30
 </markup>
 <locale>en</locale>
 <markupType>text/html</markupType>
 </markupContext>
</getMarkupResponse> 35

Note the use of the class “portlet-font”. This class enables the portlet to conform to the
Consumer’s look and feel.

3 Producer Portlet with More Than One Page –
Producer URL Writing

This scenario is based on the Minimal Producer scenario, and enhances it by making the 40
Portlet have two pages with links between one another. The Producer chooses to use Producer
URL when writing its Portlet.

WRSP Primer 12

3.1 Implementation Summary
The Producer implements the same operations as the base scenario (i.e. only
getServiceDescription and getMarkup).

This time, though, the getMarkup can return one of two pages. The Producer knows which
HTML to return based on the navigationalState sent to it by the Consumer, 5
navigationsalState which in turn is sent to the Consumer via interaction parameters.

In the example, the Producer decides that the navigationalState for the first page is simply
the string “1” and for the second page it is the string “2”. This example also assumes the
Consumer URL templates are the ones in templates in the Minimal Consumer scenario.

The Producer does not need performInteraction because in the interaction URLs, it 10
directs the Consumer to directly invoke getMarkup in the next page and to bypass
performInteraction/performBlockingInteraction.

This scenario implements interaction URLs using Producer URL writing.

3.2 getServiceDescription Logic
Exactly like the base scenario, except that the Portlet’s doesUrlTemplateProcessing 15
needs to be true, as it uses Producer URL writing.

For example, the Producer returns the following XML:

<getServiceDescriptionResponse
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <offeredEntities> 20
 <portletEntityHandle>theOnlyPortlet</portletEntityHandle>
 <markupTypes>
 <markupType>text/html</markupType>
 <locales>en</locales>
 <modes>view</modes> 25
 <windowStates>normal</windowStates>
 </markupTypes>
 <doesUrlTemplateProcessing>true</doesUrlTemplateProcessing>
 </offeredEntities>
</getServiceDescriptionResponse> 30

3.3 getMarkup Logic

As getMarkup now needs to return two pages, it needs to receive this information. The
Producer sends this information to itself in the navigationalState using the interaction
parameter wsrp-navigationalState .

The Producer ignores the same parameters as in the base scenario, except for 35
navigationalState. Based on the navigationalState it will know which page to
display.

For example, the Producer decides that the navigationalState for the first page is simply the
string “1” and for the second page it is the string “2”.

If the navigationalState sent by the Consumer is “1”, the following XML will be returned: 40
<getMarkupResponse
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <markupContext>
 <markup>

WRSP Primer 13

 <![CDATA[
 <div class="portlet-font">
 <p>Hello, world! This is the first page!</p>
 <a href="
http://consumer.com/containerpage?ut=Render&ns=2&m=view&ws=normal&res=”5
>
 click here for the second page

 </div>
]]> 10
 </markup>
 <locale>en</locale>
 <markupType>text/html</markupType>
 </markupContext>
</getMarkupResponse> 15

Note that the link for the second page uses the URL templates given by the Consumer (and
assumed to be the Consumer URL templates are the ones in templates in the Minimal Consumer
scenario).

If the navigationalState sent by the Consumer is “2”, the following XML will be returned:

<getMarkupResponse 20
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <markupContext>
 <markup>
 <![CDATA[
 <div class="portlet-font"> 25
 <p>Hello, world! This is the second page page!</p>
 <a href="
http://consumer.com/containerpage?ut=Render&ns=1&m=view&ws=normal&res=”
>
 click here for the first page 30

 </div>
]]>
 </markup>
 <locale>en</locale> 35
 <markupType>text/html</markupType>
 </markupContext>
</getMarkupResponse>

4 Producer Portlet with More Than One Page –
Consumer URL Writing 40

This scenario is based on the Minimal Producer scenario, and enhances it by making the
Portlet have two pages with links between one another. The Producer chooses to use
Consumer URL when writing its Portlet.

4.1 Implementation Summary
The Producer implements the same operations as the base scenario (i.e. only 45
getServiceDescription and getMarkup).

This time, though, the getMarkup can return one of two pages. The Producer knows which
HTML to return based on the navigationalState sent to it by the Consumer,
navigationsalState which in turn is sent to the Consumer via interaction parameters.

WRSP Primer 14

In the example, the Producer decides that the navigationalState for the first page is simply
the string “1” and for the second page it is the string “2”.

The Producer does not need performInteraction because in the interaction URLs, it
directs the Consumer to directly invoke getMarkup in the next page and to bypass
performInteraction/performBlockingInteraction . 5

This scenario implements interaction URLs using Consumer URL writing.

4.2 getServiceDescription Logic
Exactly like the base scenario.

4.3 getMarkup Logic
As getMarkup now needs to return two pages, it needs to receive this information. The 10
Producer sends this information to itself in the navigationalState using the interaction
parameter wsrp-navigationalState .

The Producer ignores the same parameters as in the base scenario, except for
navigationalState. Based on the navigationalState it will know which page to
display. 15

For example, the Producer decides that the navigationalState for the first page is simply the
string “1” and for the second page it is the string “2”.

If the navigationalState sent by the Consumer is “1”, the following XML will be returned:

<getMarkupResponse
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types"> 20
 <markupContext>
 <markup>
 <![CDATA[
 <div class="portlet-font">
 <p>Hello, world! This is the first page!</p> 25
 <a href="wsrp-rewrite?Render&wsrp-
navigationalState=2&wsrp-mode=view&wsrp-windowState=normal/wsrp-
rewrite”>
 click here for the second page
 30
 </div>
]]>
 </markup>
 <locale>en</locale>
 <markupType>text/html</markupType> 35
 <requiresUrlRewriting>true</requiresUrlRewriting>
 </markupContext>
</getMarkupResponse>

Note that the link for the second page uses the standard Consumer URL writing syntax, and that
requiresUrlRewriting is set to true to indicate that the Consumer needs to rewrite URLs. 40

If the navigationalState sent by the Consumer is “2”, the following XML will be returned:

<getMarkupResponse
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <markupContext>
 <markup> 45
 <![CDATA[
 <div class="portlet-font">

WRSP Primer 15

 <p>Hello, world! This is the second page page!</p>
 <a href="wsrp-rewrite?Render&wsrp-
navigationalState=1&wsrp-mode=view&wsrp-windowState=normal/wsrp-
rewrite”>
 click here for the first page 5

 </div>
]]>
 </markup>
 <locale>en</locale> 10
 <markupType>text/html</markupType>
 <requiresUrlRewriting>true</requiresUrlRewriting>
 </markupContext>
</getMarkupResponse>

5 Minimal Consumer 15

In this scenario, a Consumer wants to embed a specific Portlet of a specific Producer. The
Consumer knows the Producer endpoints. The Consumer wants to embed this entity in locale
en.

In the example, the Portlet used is the theOnePortlet Portlet from either Producer Portlet with
More Than One Page – Producer URL Writing or Producer Portlet with More Than One Page – 20
Consumer URL Writing.

The Consumer does not know anything about this Portlet’s metadata, and wants to support it
no matter what metadata values the service description or Portlet description have.

5.1 Implementation Summary
As opposed to the Producer, the Consumer does not need to implement a Web Service. 25
Rather, it uses one, and specifically, a WSRP Web Service. As such, the Consumer does not
need to read any WSDL (as the interface to all WSRP Web Services is a common one) – it just
needs the URL of the Web Service endpoint.

Once it knows that, it goes through three phases:

• Producer initialization: the Consumer invokes getServiceDescription to obtain 30
information about the Web Service and about the Portlets it wants to use. If the Web
Service requiresRegistration, then register is also performed by the Consumer.
This is a one-shot operation invoked whenever the Consumer wants to initiate a
relationship with the Producer.

• End User initialization: Some Producers, implementing SOAP over HTTP, use cookies. 35
Moreover, for performance and load balancing reasons, they would like these cookies to be
created in the context of the End user session. To this end, WSRP has the initCookie
operation, which is invoked by the Consumer at the beginning of an End user session.

• Page composition and interaction, comprised of:

• First page composition: In the first page, only getMarkup of the portlet is called. 40

• Next page composition: The Consumer received a request for the “next page” via an
interaction URL of the Producer, and must invoke one of the interaction operations (or
skip it and go directly to getMarkup). Of course, any subsequent interaction is also a
“Next Page” interaction.

WRSP Primer 16

• Producer termination: whenever the Consumer wants to terminate its relationship with the
Producer, it invokes deregister.

The following sections describes the flow of invocations and processing from the point of view
of the Consumer. This is the largest scenario of them all, and must be read with care,
especially First Page Composition Flow and Next Page Composition Flow , which are difficult as 5
they involve user interaction.

5.2 Producer-Initialization Flow
One time only, whenever the Consumer decides to use the Producer’s Portlet, the Consumer
invokes the getServiceDescription operations to read the following flags:

• requiresRegistration & registrationPropertyDescription 10

• requiresInitCookie

• offeredPortletEntity[portletEntityHandle="theOnlyPortlet"]/

• markupTypes[markupType="text/html"]: to check whether HTML is supported.

• markupTypes[markupType="text/html"]/locales[.~="en"]: to check
whether the “en” local is supported. 15

• needSecureCommunication: to check what type of communication needs to be
established, HTTP or HTTPS.

• usesMethodGet: See below.

• doesUrlTemplateProcessing: to check whether Producer needs Consumer URL
writing, or whether Consumer URL templates need to be passed to it. 20

If requiresRegistration is true, the Consumer registers at the Producer, using the
register operation [MUST].

For example, the Consumer sends the following XML:
<register
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types"> 25
 <consumerName>aConsumer</consumerName> [required]
 <consumerAgent>homegrownXML.1.0</consumerAgent> [required. Required
format of agent]
</register>

If the operation fails, the Consumer ends processing [MUST]. Otherwise the Consumer stores 30
the registrationContext returned from the operation for later incorporation into the other
operations. [MUST]

See Producer that Supports Registration for an example of a response to this operation.

If registration was required, the Consumer invokes getServiceDescription again (securely
if needSecureCommunication is “all”) with the new registrationContext to get the 35
description of the service that fits the new registrationHandle. This may be a different
view of the Web Service.

WRSP Primer 17

5.3 End-User-Initialization Flow

If requiresInitCookie is “perUser” or “perGroup”, and the Consumer and Producer are
communicating via HTTP/HTTPS, the Consumer invokes the initCookie operation once for
each end user, and stores the returned cookies (returned in the Set-Cookie headers) for later
incorporation into the other operations from the same end-user [MUST]. (see End-User-5
Initialization Flow in the Consumer with Two Entities From Same Producer scenario to
understand the difference between “perUser” and “perGroup”)

For example, the Consumer sends the following XML:

<initCookie
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types"> 10
 <registrationContext>
 the context returned from the register operation, or nothing if no
registration
 </registrationContext> [required if requiresRegistration is true1]
</initCookie> 15

If the operation fails, end processing [MUST]. Otherwise continue as usual.

5.4 First Page Composition Flow
To compose the markup of the first page of the Consumer, the Consumer retrieves the first
page’s markup using the getMarkup operation.

For example, the Consumer sends the following XML: 20

<getMarkup
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <registrationContext>
 the context returned from the register operation, or nothing if no
registration 25
 </registrationContext> [required if requiresRegistration is true]
 <portletEntityContext>
 <portletEntityHandle>theOnlyPortlet</portletEntityHandle>
[required]
 <portletEntityState></portletEntityState> [required]2 30
 </portletEntityContext>
 <runtimeContext />
 <userContext>
 <userContextID /> [required but can be empty]
 </userContext> 35
 <markupParams>
 <clientData>
 <userAgent>
 Mozilla/4.5 (Macintosh; U; PPC)
 </userAgent> [required] 40
 </clientData>
 <secureClientCommunications>
 false [see below]
 </secureClientCommunications> [required]
 <userAuthentication>false</userAuthentication> [required3] 45
 <locale>en</locale> [required]
 <markupCharacterSet>UTF-8</markupCharacterSet> [required]

1 What it no requiresRegistration is false? Should the element be empty, or just not be t here?
2 There is nothing in the spec that says what entity state to send before invocation of an entity
management operation.
3 How does the Consumer know what to put here for the first page?

WRSP Primer 18

 <markupType>text/html</markupType> [required]
 <mode>view</mode> [required]
 <windowState>normal</windowState> [required]
 <navigationalState>???4</navigationalState> [required?5]
 <templates> 5
 [see below]
 </templates> [required if doesUrlTemplateProcessing is true or
namespacing is required]
 </markupParams>
</getMarkup> 10

5.4.1 secureClientCommunications

If needSecureCommunication is “all”, then the Consumer must receive the markup via a
secure connection (e.g. use SSL when using HTTP) 6, and if sending it back to the End User,
must send it back via a secure connection. Note that to send the markup securely back to the
End user, the original request for the Consumer page must have been HTTPS. 15

5.4.2 templates

If doesUrlTemplateProcessing is true, the Consumer supplies templates to enable
Producer URL-writing [MUST].

If the Consumer wants to avoid the Producer “impinging” on markup Ids and JavaScript names,
it should also send a unique NameSpacePrefix 7. 20

For example, the Consumer sends the following XML:

 <templates>
 <DefaultTemplate>
 http://consumer.com/containerpage?ut={urlType}&ns={wsrp-
navigational-state}&m={wsrp-mode}&ws={wsrp-windowState}&res={wsrp -url} 8 25
 </DefaultTemplate> [required only if not all the other non-secure
templates are defined]
 <SecureDefaultTemplate>
 https://consumer.com/containerpage?ut={urlType}&ns={wsrp-
navigational-state}&m={wsrp-mode}&ws={wsrp-windowState}&res={wsrp -url} 30
 </SecureDefaultTemplate> [required only if not all the other
secure templates are defined]
 <NameSpacePrefix>FJH1</NameSpacePrefix>
 </templates>

4 What is the information I need to put in for the first page?
5 Ambiguous requirement: Required by the spec, but not required by the WSDL.
6 Can a SOAP endpoint have a secure and a non-secure endpoint? If not, how do we solve this?
7 There is no SHOULD or MUST in the spec about this.
8 The consumer is not really obligated to add the three above parameters to the template. Thus, the
consumer is not obligated in the next page to send them to the
getMarkup/perform*Interaction operations. I think a MUST should be added in the form: “if
the Consumer wishes to preserve the flow of the entity application, it MUST use these parameters in the
template, and MUST pass those parameters in the next invocation of the
getMarkup/perform*Interaction operations.” If this sentence will not be there, then even if
the Consumer does all the MUST-s, we won’t have a working Producer which embeds its UI flow inside
the Consumer! This type of sentence should probably occur in a lot more places.

WRSP Primer 19

5.4.3 Processing the markupResponse

Processing the markup consists of three phases –

• Processing the session returned by the Producer.

• Doing Consumer URL writing

• Inserting the returned HTML into the Consumer page. 5

5.4.3.1 Processing the Producer Session

If the markupResponse contains a sessionContext, then the Consumer stores this
information so that later markup interface operations to this Portlet send it. [Although this is
not a MUST, failure to do so may in subsequent operations “likely not generate a markup
fragment meeting End User requirements” (section 5.1.1 in the v0.85 spec)9] . In general, 10
the session between a Consumer and a Portlet at the Producer maps to a client session with
the Consumer.

5.4.3.2 Consumer URL Writing

The Consumer processes two fields – markup and requiresUrlRewriting10 [If the
Consumers wants to use markup it MUST NOT ignore requiresUrlRewriting]. 15

If requiresUrlRewriting is true, the Consumer rewrites the Markup according to the
algorithm in section 9.2.1 of the v0.85 spec. [MUST]

For example, if the markup included the string “wsrp -rewrite?Render&wsrp-
navigationalState=2&wsrp-mode=view&wsrp-windowState=normal/wsrp-rewrite” (see getMarkup
in Producer Portlet with More Than One Page – Consumer URL Writing for this string in the 20
proper context), then the Consumer would replace it with the following URL:

http://consumer.com/containerpage?ut=Render&ns=2&m=view&ws=normal

5.4.3.3 Inserting the HTML into the Consumer page

After processing the markup, the Consumer inserts it into the Consumer page, allowing for the
fact that they may have different character sets. 25

5.4.4 Consideration on usesMethodGet

If usesMethodGet is true, and the Consumer wishes to support such a Producer, the
interaction URL-s resulting from the templates or the Consumer -URL rewrites and that are
embedded in an HTML <form method=”get”>’s action attribute11 must take into
consideration that most browsers strip the query part from the URL [MUST]. Two practical 30
ways of doing this:

• All interaction URL-s embedded in the HTML will contain no query part, but rather embed
the interaction parameters as part of the path.

9 I think this should be a MUST: “if the Consumer wishes to preserve the flow of the entity application, it
MUST preserve the sessionContext and send it in subsequent invocations”
10 Are we uppercasing acronyms or not? In other words, is it requiresUrlRewriting or
requiresURLRewriting.
11 This is not defined as a MUST in the v0.85 spec. I think it should be.

WRSP Primer 20

For example, the templates of such URL -s will look like the following (note the replacement of “?”
by “;”):

<DefaultTemplate>
 http://consumer.com/containerpage;ut={urlType}&ns={wsrp-navigational-
state}&m={wsrp-mode}&ws={wsrp-windowState}&res={wsrp-url} 5
</DefaultTemplate>
Another method of passing the information, is as a path:

<DefaultTemplate>
 http://consumer.com/containerpage/ut={urlType}&ns={wsrp-navigational-
state}&m={wsrp-mode}&ws={wsrp-windowState}&res={wsrp-url} 10
</DefaultTemplate>

Both are poorly supported by application servers. Choose the one which fits you best.

• The Consumer parses the HTML, remove the URL parameters in the URL-s of <form
method=”get”>’s action attributes, and replace them with hidden fields with the
corresponding name and values of the removed URL parameters. 15

5.4.5 Processing “Resource” requests
The Producer may have generated markup that instructs the End user agent to send
“Resource” requests to the Consumer. If the Producer used Producer URL-writing, then the
Producer did so by inserting the RenderTemplate or SecureRenderTemplate into the
markup, and if the Producer used Consumer URL-writing, then the Producer did so by using a 20
urlType with a value of “Resource”.

The Consumer should 12, upon receiving a request to the “Resource” URL (usually an HTTP
GET), return the resource defined by requesting the resource defined in wsrp-url and
returning it, just like an HTTP reverse proxy (a.k.a. HTTP gateway) would.

5.5 Next Page Composition Flow 25

Although not required, the Consumer typically writes all “interaction URL-s” in the markup so
that they link back to the Consumer, while passing back the “interaction parameters” (e.g.
wsrp-navigationalState, wsrp-url) specified by the Producer. The flow which
composes the markup of the next page of the Consumer is similar to the flow of the first page,
except that the Consumer processes the interaction parameters passed in the interaction URL: 30

• The Consumer processes the urlType in order to determine whether to invoke
performBlockingInteraction before returning any markup to the end user is needed,
or whether to invoke performInteraction before invoking getMarkup is needed. This
is described in detail in Processing the urlType.

• The Consumer processes the wsrp-mode and wsrp-windowState interaction 35
parameters to determine whether a mode and/or window state change is requested by the
Producer. The Consumer usually allows these requests unless it has an overriding reason
not to (e.g. access control). The Consumer passes the new mode and window state to the
invocations of getMarkup, performInteraction, performBlockingInteraction
for this next page. 40

• The Consumer processes the wsrp-navigationalState interaction parameter. The
Consumer passes its value to the invocations of getMarkup, and
performInteraction/performBlockingInteraction for this next page.

12 I believe this should be a MUST: “if the Consumer wants the markup to look good, the Consumer
MUST…”

WRSP Primer 21

5.5.1 Processing the urlType

The urlType enables the Producer to indicate to the Consumer which operations are to be
invoked on the next page request. Note that instead of passing back the urlType interaction
parameter in the interaction URL, the Consumer can choose to use different URL-s altogether.
In Producer URL-writing, this is accomplished by giving different URL-s in the various 5
templates, and in Consumer URL-writing this is accomplished by writing different URL-s
depending on the value of the urlType. As these methods are operationally identical to
passing the urlType interaction parameter, this document will continue to refer to “the value of
urlType” even though in some cases the urlType is not transferred.

Depending on the value of urlType , the Consumer does the following13: 10

• BlockingAction: The Consumer invokes performBlockingInteraction . The
Consumer invokes this operation before returning any markup to the end user and before
invoking getMarkup.

• Action : The Consumer invokes performInteraction. The Consumer invokes the
operation before invoking getMarkup. 15

• Render : The Consumer invokes getMarkup as usual.

5.5.2 Invoking performBlockingInteraction

Invoking performBlockingInteraction is similar to invoking getMarkup. The same
registrationContext, portletEntityContext, runtimeContext, userContext,
and markupParams are passed to it, allowing for the fact that new window state, mode, and 20
navigational state may be passed, as described above. Additionally, this operation requires an
additional parameter – interactionParams.

For example, the Consumer sends the following InteractionParams when it receives a POST
to its interaction URL-s:
<interactionParams> 25
 <portletEntityStateChange>Fault</portletEntityStateChange> [required]
 <validNewModes>view</validNewModes> 14
 <validNewWindowStates>normal</validNewWindowStates>
 <uploadContext>[see below]
 <uploadData>name=Gil+Tayar&age=18</uploadData> 30
 <mimeType>application/x-www-form-urlencoded</uploadData>
 </uploadContext>
</interactionParams >

5.5.2.1 portletEntityStateChange

A minimal Consumer will set the portletEntityStateChange field to “Fault” to disable the 35
ability of the Producer to change its state, and handling this state change is not a minimal
requirement.

13 Is the Consumer allowed to do otherwise? E.g., to invoke performInteraction on a Render
urlType? The spec does not disallow it. It think it should.
14 This field is optional, yet the semantics of what it means not to have this field are not defined.

WRSP Primer 22

If the user agent reached the interaction URL with data (e.g. with an HTTP POST), the
Consumer should send this data to the Producer, while indicating the mime type of the data.
[Although this is not a MUST, failure to send this data when user agent sends it to the
Consumer may result in not generating markup fragments meeting End User
requirements15] 5

5.5.2.2 Processing the performBlockingInteraction response

The Consumer processes redirectURL . If this field exists in the response, it indicates that the
Producer would like the Consumer to redirect the end user to the URL defined in
redirectURL. The Co nsumer should honor this request16. If redirectURL exists, all other
fields are ignored [MUST] . 10

If no redirectUrl field exists, the updateResponse field is processed:

• navigationalState: this field indicates that the Producer wishes to (again) change it’s
navigationalState. The Consumer stores this information so that future invocations of
getMarkup for this page should use this value [MUST] . A good way of doing this is to
store the information in the Consumer URL, so that if the end user bookmarks this URL, it 15
will return the Producer to the correct state. Storing the information in the URL necessitates
the Consumer to redirect the user agent back to a Consumer URL which includes the new
navigational state.

• sessionContext: the Consumer stores this information so that later markup interface
operations to this Portlet send it. 20

• portletEntityContext: this field will only appear if portletEntityStateChange is
“OK” or “Clone”17, so a minimal Consumer can safely ignore this field.

• newWindowState/newMode: these fields indicate that the Producer wishes to change its
window state and/or mode. If the Consumer honors this request, then the Consumer stores
this information so that future invocations of getMarkup for this page should use this value 25
[MUST]. A good way of doing this is to store the information in the Consumer URL, so that
if the end user bookmarks this URL, it will return the Producer to the correct state. Storing
the information in the URL necessitates the Consumer to redirect the user agent back to a
Consumer URL which includes the new window state and mode.

• markupContext: the Producer can choose to return markup with this operation as an 30
optimization. The Consumer can use this markupContext instead of invoking getMarkup
afterwards, or it can choose to ignore this markup and invoke getMarkup again instead.

5.5.3 Invoking performInteraction

The Consumer invokes performInteraction the same way it invokes
performBlockingInteraction, and processes the response in the same way, except for 35
the fact that the response does not include redirectURL , navigationalState ,
newWindowState, newMode. Because these are not included, the Consumer can invoke this
operation after markup has been returned to the End user, as the Consumer need not because
of this operation.

15 This is not in the spec, but I believe it should be.
16 This should be a SHOULD, no?
17 The wording in the spec says “MUST”, but not explicitly.

WRSP Primer 23

5.5.4 Continuing with the markup
Invoking getMarkup is optional if the Producer returned markup in performInteraction or
performBlockingInteraction. Otherwise the getMarkup occurs just as defined above,
with the addition of the correct window state, mode, navigationalState , and
sessionContext. 5

5.6 Producer-Termination Flow
If the Consumer invoked the register operation at the beginning of its relationship with the
Producer, then the Consumer invokes the deregister operator at the end of its relationship
with the Producer [MUST], sending the registrationContext it received when it
registered. 10

The relationship is considered ended when the invocation is successful. [MUST] This means
that the Co nsumer continues to invoke the deregister operation until successful.

6 Producer with More Than One Portlet
This scenario is based on the Minimal Producer scenario. In this scenario, the Producer
exposes more than one Portlet. The scenario will describe only the changes from the base 15
scenario.

6.1 Implementation Summary
The Producer still implements the same operations as the base operation. This time, though,
the getServiceDescription returns two Portlet Entity descriptions. Also, getMarkup
checks the portletEntityHandle to determine what markup to return. 20

The example exposes two entities – theFirstPortlet and theSecondPortlet.

6.2 getServiceDescription Logic

The getServiceDescription operation will now returning the description of the two entities.

For example, the Producer returns the following XML:

<getServiceDescriptionResponse 25
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <offeredEntities
 <portletEntityHandle>theFirstPortlet</portletEntityHandle
 <markupTypes>
 <markupType>text/html</markupType> 30
 <locales>en</locales>
 <modes>view</modes>
 <windowStates>normal</windowStates>
 </markupTypes>
 </offeredEntities> 35
 <offeredEntities>
 <portletEntityHandle>theSecondPortlet</portletEntityHandle>
 <markupTypes>
 <markupType>text/html</markupType>
 <locales>en</locales> 40
 <modes>view</modes>

WRSP Primer 24

 <windowStates>normal</windowStates>
 </markupTypes>
 </offeredEntities>
</getServiceDescriptionResponse>

6.3 getMarkup Logic 5

In this scenario, the Producer does not ignore the portletEntityContext, instead it looks
at the portletEntityHandle to determine which markup to return.

For example, if the portletEntityHandle is theFirstPortlet, the Producer returns the
following XML:

<getMarkupResponse 10
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <markupContext>
 <markup>
 <![CDATA[
 <div class="portlet-font"><p>Hello, world!</p></div> 15
]]>
 </markup>
 <locale>en</locale>
 <markupType>text/html</markupType>
 </markupContext> 20
</getMarkupResponse>

while if the portletEntityHandle is theSecondPortlet, it returns the following XML:

<getMarkupResponse
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <markupContext> 25
 <markup>
 <![CDATA[
 <div class="portlet-font"><p>Goodbye, world!</p></div>
]]>
 </markup> 30
 <locale>en</locale>
 <markupType>text/html</markupType>
 </markupContext>
</getMarkupResponse>

7 Consumer with Two Entities From Same 35

Producer
This scenario is based on the Minimal Consumer scenario and the Producer with More Than
One Portlet scenario. In this scenario, the Consumer embeds the two entities from the
Producer.

Just like in Minimal Consumer, the Consumer does not assume anything about the Producer’s 40
or entities’ meta-data.

The scenario will describe only the changes from the base scenario.

WRSP Primer 25

7.1 Implementation Summary
The Consumer flow is very similar to the one in the Minimal Consumer scenario, with two basic
additions:

• The End User Initialization flow, where initCookie may need to be called, has to now
take care of the “perGroup” flag in the Service description. In the Minimal Consumer 5
scenario, the initCookie was called once per Portlet. In this scenario, because there is
more than one entity, the call has to be called once per group of Portlets, as defined by the
Producer.

• When receiving a request to the interaction URL, the Consumer must set up a mechanism
whereby it can differentiate interactions coming from the first portlet from those coming 10
from the second portlet.

7.2 Producer-Initialization Flow
The same initialization is done, except that now the per-Portlet meta data is read for the two
entit ies it intends to embed.

Note that invoking register is per-Producer, and not per -Portlet. Thus, in this scenario, 15
register is invoked only once.

7.3 End User Initialization Flow
If requiresInitCookie is “perUser” and the Consumer and Producer are communicating
via HTTP, or if requiresInitCookie is “perGroup” and the groupID of all the entities it
wishes to embed is the same groupID, then the Consumer invokes the initCookies exactly 20
like in the base scenario.

If requiresInitCookie is “perGroup”, but the groupID of the two entities is different, then
the Consumer invokes the initCookie operation twice (once for each group) for each end
user, and stores the returned cookies (returned in the Set-Cookie headers) for later
incorporation into the other operations from the same end-user and same group [MUST]. 25

7.4 First Page Composition Flow
Like in the base scenario, the Consumer invokes getMarkup to retrieve the markup it wishes
to incorporate into it’s page. This time, it invokes getMarkup twice – once for each Portlet on
the page. Note that the getMarkups can be invoked in parallel.

For example, the Consumer sends the following XML for the first getMarkup: 30

<getMarkup
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <registrationContext>
 the context returned from the register operation, or nothing if no
registration 35
 </registrationContext>
 <portletEntityContext>
 <portletEntityHandle>theFirstPortlet</portletEntityHandle>
 <portletEntityState />
 </portletEntityContext> 40
 <runtimeContext />
 <userContext>
 <userContextID />
 </userContext>

WRSP Primer 26

 <markupParams>
 <clientData>
 <userAgent>
 Mozilla/4.5 (Macintosh; U; PPC)
 </userAgent> 5
 </clientData>
 <secureClientCommunications>
 false [see below]
 </secureClientCommunications>
 <userAuthentication>false</userAuthentication> 10
 <locale>en</locale>
 <markupCharacterSet>UTF-8</markupCharacterSet>
 <markupType>text/html</markupType>
 <mode>view</mode>
 <windowState>normal</windowState> 15
 <navigationalState>???</navigationalState>
 <templates>
 [see below]
 </templates>
 </markupParams> 20
</getMarkup>

The second getMarkup is identical except for the portletEntityHandle which is
theSecondPortlet.

7.4.1 secureClientCommunications

If needSecureCommunication of a Portlet is “all”, then the Consumer must receive the 25
markup via a secure connection (e.g. use SSL when using HTTP), and if sending it back to the
End User, must send it back via a secure connection. Note that in the case of two entities,
when sending the combined markup back to the end user, it is sufficient for one of the entities
to declare that it needSecureCommunication for the returned markup to be returned
securely. 30

7.4.2 templates

If doesUrlTemplateProcessing is true, the Consumer supplies templates to enable
Producer URL-writing [MUST]. To enable the Consumer to differentiate between these
interaction URL-s afterwards, the templates are usually different and indicate the invoker of the
interaction. The NameSpacePrefix should also be different. 35

For example, the Consumer sends the following XML to theFirstPortlet:
 <templates>
 <DefaultTemplate>
 http://consumer.com/containerpage?ut={urlType}&ns={wsrp-
navigational-state}&m={wsrp-mode}&ws={wsrp-windowState}&res={wsrp -40
url}&eh=theFirstPortlet
 </DefaultTemplate>
 <SecureDefaultTemplate>
 https://consumer.com/containerpage?ut={urlType}&ns={wsrp-
navigational-state}&m={wsrp-mode}&ws={wsrp-windowState}&res={wsrp -45
url}&eh=theFirstPortlet
 </SecureDefaultTemplate>
 <NameSpacePrefix>FJH1</NameSpacePrefix>
 </templates>

WRSP Primer 27

while it sends the following XML to theSecondPortlet (the only difference is in the eh URL
parameter and the NameSpacePrefix):

 <templates>
 <DefaultTemplate>
 http://consumer.com/containerpage?ut={urlType}&ns={wsrp-5
navigational-state}&m={wsrp-mode}&ws={wsrp-windowState}&res={wsrp -
url}&eh=theSecondPortlet
 </DefaultTemplate>
 <SecureDefaultTemplate>
 https://consumer.com/containerpage?ut={urlType}&ns={wsrp-10
navigational-state}&m={wsrp-mode}&ws={wsrp-windowState}&res={wsrp -
url}&eh=theSecondPortlet
 </SecureDefaultTemplate>
 <NameSpacePrefix>FJH2</NameSpacePrefix>
 </templates> 15

Note that the mechanism used in the example above, whereby the differentiation is done by the
type of the Portlet Entity, will not work if embedding two Portlets of the same type. A more
general mechanism would use a unique id chosen by the Consumer and which differentiates
between the two “instances” of the Portlet.

7.4.3 Processing the markupResponse 20

Processing the markupResponse is similar to the one in the base scenario, except that the
processing is done twice.

7.4.4 Consideration on usesMethodGet

The processing is exactly the same as in the base scenario, except that the processing is done
once per Portlet on the page. 25

7.4.5 Processing “Resource” requests
The processing is exactly the same as in the base scenario.

7.5 Next Page Composition Flow
Processing the next page is similar to the base scenario, except for the following differences:

• The interaction URL will indicate which Portlet on the page the end user interacted with. As 30
described above, a typical way to do this is to embed a Portlet identifier in the interaction
URL.

• When invoking the performBlockingInteraction, performInteraction, and/or
getMarkup , the appropriate portletEntityHandle is sent.

• The Consumer will invoke performBlockingInteraction or performInteraction 35
only on the Portlet the user interacted with18.

18 This should be a MUST.

WRSP Primer 28

• For the other entities (and optionally for the Portlet the user interacted with, if the
performInteraction /performBlockingInteraction did not return markup) the
Consumer invokes their getMarkup as defined in the base scenario [SHOULD] . The
getMarkup-s can be invoked in parallel if the Consumer wants to, except for the Portlet
the user interacted with, whose getMarkup is invoked after the 5
performInteraction /performBlockingInteraction [MUST19] .

• If the interaction URL’s urlType indicates to the Consumer to invoke
performBlockingInteraction, then the Consumer invokes it before invoking the
getMarkup-s [MUST].

7.5.1 Invoking performBlockingInteraction 10

Invoking the performBlockingInteraction is similar to the base scenario, except that the
Consumer must send the portletEntityHandle of the Portlet which performed the
interaction, and pass the correct sessionContext of the Portlet.

7.5.1.1 Processing the performBlockingInteraction response

Processing the response is a bit different than the base scenario, so it will be reconstructed 15
here:

The Consumer processes redirectURL like in the base scenario.

If no redirectUrl field exists, the updateResponse field is processed:

• navigationalState: this field indicates that the Portlet wishes to (again) change it’s
navigationalState. The Consumer stores this information so that future invocations of 20
getMarkup for this page and Portlet should use this value [MUST]. Storing this
information in the URL (as discussed in the base scenario) is still a good way to do this,
although it should store the navigationalState in a URL parameter that is specific to
that Portlet so that the navigationalState of each Portlet is independent. This
approach will not scale to more than two or three entities, so a different approach is needed 25
if the Consumer wishes to enable simultaneous navigation of more than three entities. An
alternative approach would be to store this information in the Consumer’s end user
session.

• sessionContext: the Consumer stores this information per Portlet on the page and per
user so that later markup interface operations to this Portlet send it. 30

• newWindowState/newMode: these fields indicate that the Portlet on the page wishes to
change its window state and/or mode. The Consumer stores this information so that future
invocations of getMarkup for this page and Portlet should use this value [MUST]. Storing
this information in the URL (as discussed in the base scenario) is still a good way to do this,
although it should store the information in a URL parameter that is specific to that Portlet on 35
the page so that the information for each Portlet on the page is independent. This approach
will not scale to more than two or three entities, so a different approach is needed if the
Consumer wishes to enable simultaneous navigation of more than three entities. An
alternative approach would be to store this information in the Consumer’s end user
session. 40

• markupContext: the Producer can choose to return markup with this operation. The
Consumer can use this markupContext instead of invoking getMarkup afterwards, or it
can choose to ignore this markup and invoke getMarkup again instead.

19 This is not a MUST, but it MUST be!

WRSP Primer 29

7.5.2 Invoking performInteraction

Invoking the performBlockingInteraction is similar to the base scenario, except that the
Consumer must send the portletEntityHandle of the Portlet on the page which performed
the interaction, and pass the correct sessionContext of the Portlet on the page.

This operation can also be invoked in parallel to the getMarkup of the other Portlet on the 5
page (the Portlet that did not interact with the end user), although not in parallel with the
getMarkup of the interacting Portlet.

7.5.3 Continuing with the markup
The Consumer invokes getMarkup for the first and second Portlet, passing the correct
portletEntityHandle, sessionContext, navigationalState, windowState, and 10
mode. These can be invoked in parallel with each other.

Handling the getMarkup of the interacting Portlet is optional if the Producer returned markup
in performInteraction or performBlockingInteraction.

7.6 Producer-Termination Flow
This is exactly like the process in the base scenario. 15

8 Producer Portlet with POST and Session
This scenario is based on the Minimal Producer scenario, except that the end user can POST
information in the first page, which the Producer processes to show a second page.

8.1 Implementation Summary
Just like in Producer Portlet with More Than One Page – Producer URL Writing, the Producer 20
needs to differentiate between getMarkup for the first page, and getMarkup for the second
page. And just like in that scenario, the tool for that is the navigationalState field in
getMarkup and the interaction parameter wsrp-navigationalState.

Unlike that scenario, the second page’s getMarkup needs information – information that was
posted from the first page. This information can be stored in two places – 25

• The Producer session. This makes the amount of information theoretically limitless, but
makes the Producer stateful and session-based.

• the navigationalState. This enables the Producer to remain stateless, but limits the
amount of information that can be stored.

This scenario will use the first method. A similar scenario, Producer Portlet with POST & 30
Redirect, will use the second method.

In the example, the first page queries for name and age of the user, which it posts to the second
page, which displays them.

The Producer implements the following operations [the Producer MUST implement them]:

• getServiceDescription 35

• getMarkup

WRSP Primer 30

• performInteraction : because getting the POST information can only be done using
performInteraction and performBlockingInteraction (via the uploadData
field), the Producer chooses to use performInteraction because it doesn’t restrict the
Consumer as much as performBlockingInteraction, and the Producer does not
need the additional capabilities of performBlockingInteraction. 5

• performBlockingInteraction: the implementation can be an empty implementation
which fails.

• initCookie: the implementation can be an empty implementation which returns “void”.

Note that using performInteraction should be done with care. Using it means that it may
be invoked in parallel with other getMarkups, and specifically with getMarkup from other 10
Portlets in the same Producer. If this can happen, care must be taken the parallel invoking of
performInteraction and getMarkup will be OK.

8.2 getServiceDescription Logic

Exactly like the base scenario, except that the Portlet’s doesUrlTemplateProcessing
needs to be true, as the Producer implements Producer URL Writing. 15

For example, the Producer returns the following XML:

<getServiceDescriptionResponse
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <offeredEntities>
 <portletEntityHandle>theOnlyPortlet</Portlet EntityHandle> 20
 <markupTypes>
 <markupType>text/html</markupType>
 <locales>en</locales>
 <modes>view</modes>
 <windowStates>normal</windowStates> 25
 </markupTypes>
 <doesUrlTemplateProcessing>true</doesUrlTemplateProcessing>
 </offeredEntities>
</getServiceDescriptionResponse>

8.3 getMarkup Logic 30

The Producer ignores the same parameters as in the base scenario, except for
navigationalState and sessionHandle . Based on the navigationalState it will know
which page to display. The sessionHandle will point to the Producer session which holds the
name and age inputted in the first page (see performInteraction to understand how the
information got into the session). 35

For example, the Producer decides that the navigationalState for the first page is simply the
string “1” and for the second “result” page it is the string “1result”. This example also assumes
the Consumer URL templates are the ones in templates defined in the Minimal Consumer
scenario.

If the navigationalState sent by the Consumer is “1”, the following XML will be returned: 40
<getMarkupResponse
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <markupContext>
 <markup>
 <![CDATA[45
 <p>Hello, world! This is the first page!</p>

WRSP Primer 31

 <form method=”POST” action="
http://consumer.com/containerpage?ut=Action&ns=2&m=view&ws=normal&res=”
>
 <div class=”portlet-form???20”>Enter your name:</div>
 <input class=”form-input-field” 5
 type=”input” id=”FJH1_Name”></input>
 <div class=”portlet-form???”>Enter your age:</div>
 <input class=”form-input-field”
 type=”input” id=”FJH1_Age”></input>
 </form> 10
]]>
 </markup>
 <locale>en</locale>
 <markupType>text/html</markupType>
 </markupContext> 15
</getMarkupResponse>

If the navigationalState sent by the Consumer is “1result”, the following XML will be
returned (assuming the information in the Producer was that the name is Gil Tayar and the
age is 1821:
<getMarkupResponse 20
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <markupContext>
 <markup>
 <![CDATA[
 <div class="portlet-font"> 25
 <p>Hello, Gil Tayar! What an age 18 is!</p>
 </div>
]]>
 </markup>
 <locale>en</locale> 30
 <markupType>text/html</markupType>
 </markupContext>
</getMarkupResponse>

Note the fact that even if this Portlet had used Consumer URL writing, the
requiresUrlRewriting in the second XML would still have been false, because there are 35
no links in that page.

8.4 performInteraction Logic
Because the first page includes a <form method=post>, and that POST data reaches the
Consumer (through the mechanism of URL writing), the Producer can receive it only by
implementing performInteraction or performBlockingInteraction. This Producer 40
chooses to use performInteraction because it doesn’t restrict the Consumer as much as
performBlockingInteraction, and the Producer does not need the additional capabilities
of performBlockingInteraction (e.g. changing navigationalState because of the
interaction).

The Producer ignores the same parameters as in the base scenario’s getMarkup. Note that it 45
also ignores sessionHandle because it does not need to read information from the session in
performInteraction , only to write information to it. Reading the information from the
session is done in getMarkup.

20 I’m not sure what the class for an input field label is.
21 One can dream…

WRSP Primer 32

The Producer ignores most of the fields in interactionParams too, except for the
uploadContext which contains the POST-ed data.

For an example of such an uploadContext, see Invoking performBlockingInteraction in
Minimal Consumer. Assuming such an uploadContext, the Producer returns the following XML
(assuming it doesn’t return markup): 5

<performInteractionResponse
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <sessionContext>
 <sessionHandle>
 a handle to the Producer session which includes the name and 10
age sent in the uploadData. This is producer-implementation-dependent.
 </sessionHandle>
 <expires>3600</expires>
 </sessionContext>
</performInteractionResponse> 15

9 Producer Portlet with POST & Redirect
This scenario is based on Producer Portlet with POST, except for the fact that it stores the
information in the navigationalState and not in the session (see getMarkup in Producer
Portlet with POST for a description of the differences between the two methods).

9.1 Implementation Summary 20

This necessitates performInteraction to change the navigationalState , but because
the this operation cannot change the navigationalState, the Producer uses
performBlockingInteraction. This is very similar to existing Web applications redirecting
as a result of a POST. In fact, if the Producer returns new navigationalState from a
performBlockingInteraction operation, some Consumers will redirect the user agent to 25
reflect the change in the navigationalState (see Processing the
performBlockingInteraction response in Next Page Composition Flow of the Minimal Consumer
scenario).

The Producer implements the following operations [the Producer MUST implement them]:

• getServiceDescription 30

• getMarkup

• performInteraction : the implementation can be an empty implementation which fails.

• performBlockingInteraction: because getting the POST information and returning a
new navigationalState as a result can only be done using
performBlockingInteraction the Producer chooses to implement this operation. 35

• initCookie: the implementation can be an empty implementation which returns “void”.

9.2 getServiceDescription Logic
Exactly like the base scenario, except that the Portlet’s doesUrlTemplateProcessing
needs to be true.

For example, the Producer returns the following XML: 40
<getServiceDescriptionResponse

WRSP Primer 33

 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <offeredEntities>
 <portletEntityHandle>theOnlyPortlet</portletEntityHandle>
 <markupTypes>
 <markupType>text/html</markupType> 5
 <locales>en</locales>
 <modes>view</modes>
 <windowStates>normal</windowStates>
 </markupTypes>
 <doesUrlTemplateProcessing>true</doesUrlTemplateProcessing> 10
 </offeredEntities>
</getServiceDescriptionResponse>

9.3 getMarkup Logic
Just like in Producer Portlet with More Than One Page – Producer URL Writing, the Producer
needs to differentiate between getMarkup for the first page, and getMarkup for the second 15
page. And just like in that scenario, the tool for that is the navigationalState field in
getMarkup and the interaction parameter wsrp-navigationalState.

Unlike that scenario, the second page’s getMarkup needs information – information that was
posted from the first page. As discussed above, This information will be stored by
performBlockInteraction in the navigationalState. 20

The Producer ignores the same parameters as in the base scenario, except for
navigationalState. Based on the navigationalState it will know which page to display
and what information to display in it.

For example, the Producer decides that the navigationalState for the first page is simply the
string “1” and for the second “result” page it is the string “1result?name=name&age=age”. This 25
example also assumes the Consumer URL templates are the ones in templates.

If the navigationalState sent by the Consumer is “1”, the following XML will be returned:

<getMarkupResponse
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <markupContext> 30
 <markup>
 <![CDATA[
 <p>Hello, world! This is the first page!</p>
 <form method=”POST” action="
http://consumer.com/containerpage?ut=BlockingAction&ns=2&m=view&ws=norm35
al&res=”>
 <div class=”portlet-form???22”>Enter your name:</div>
 <input class=”form-input-field”
 type=”input” id=”FJH1_Name”></input>
 <div class=”portlet-form???”>Enter your age:</div> 40
 <input class=”form-input-field”
 type=”input” id=”FJH1_Age”></input>
 </form>
]]>
 </markup> 45
 <locale>en</locale>
 <markupType>text/html</markupType>
 </markupContext>
</getMarkupResponse>

22 I’m not sure what the class for an input field label is.

WRSP Primer 34

If the navigationalState sent by the Consumer is
“1result?name=Gil+Tayar&age=1823”, the following XML will be returned:

<getMarkupResponse
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <markupContext> 5
 <markup>
 <![CDATA[
 <div class="portlet-font">
 <p>Hello, Gil Tayar! What an age 18 is!</p>
 10
 </div>
]]>
 </markup>
 <locale>en</locale>
 <markupType>text/html</markupType> 15
 </markupContext>
</getMarkupResponse>

Note the fact that even if this Portlet had used Consumer URL writing, the
requiresUrlRewriting in the second XML would still have been false, because there are
no links in that page. 20

9.4 performBlockingInteraction Logic
Because the first page includes a <form method=post>, and that POST data reaches the
Consumer (through the mechanism of URL writing), the Producer can receive it only by
implementing performInteraction or performBlockingInteraction. because getting
the POST information and returning a new navigationalState as a result can only be done 25
using performBlockingInteraction the Producer chooses to implement this operation.

The Producer ignores the same parameters as in the base scenario’s getMarkup. Note that it
also ignores sessionHandle because it does not need to read information from the session in
performInteraction , only to write information to it. Reading the information from the
session is done in getMarkup. 30

The Producer ignores most of the information in interactionParams, except for the
uploadContext which contains the POST-ed data.

For an example of such an uploadContext, see Invoking performBlockingInteraction in
Minimal Consumer. Assuming such an uploadContext, the Producer returns the followi ng XML
(assuming it doesn’t return markup): 35
<performBlockingInteractionResponse
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <updateResponse>
 <navigationalState>
 1result?name=Gil+Tayar&age=18 40
 </navigationalState>
 </updateResponse>
</performBlockingInteractionResponse>

23 One can dream…

WRSP Primer 35

10 Producer that Includes Resources to be
Proxied

This scenario is based on Minimal Producer, but the single HTML page returned includes an
image, which the Consumer has to proxy (as described in Processing “Resource” requests in
the Minimal Consumer scenario). The Producer uses Producer URL writing. 5

10.1 Implementation Summary
The Producer implements the same operations as in the basic scenario. The only difference is
that in the markup returned, it uses Resource writing – the Consumer should have put the
{ws-url} interaction parameter in the interaction URL. The Producer just needs to change it
to point to the resource in question. 10

10.2 getServiceDescription Logic

The getServiceDescription implementation is similar to the basic scenario’s, except that
doesUrlTemplateProcessing is true.

For example, the Producer returns the following XML:

<getServiceDescriptionResponse 15
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <offeredEntities> [while not required, is essential for the Consumer
to send meta-data to consumer]
 <portletEntityHandle>theOnlyPortlet</portletEntityHandle>
[required] 20
 <markupTypes> [required]
 <markupType>text/html</markupType> [required]
 <locales>en</locales> [required]
 <modes>view</modes> [required]
 <windowStates>normal</windowStates> [required] 25
 </markupTypes>
 <doesUrlTemplateProcessing>true</doesUrlTemplateProcessing>
 </offeredEntities>
</getServiceDescriptionResponse>

10.3 getMarkup Logic 30

The Producer ignores the same parameters and fields as in the basic scenario. The only
difference is in the markup returned.

For example, the Producer returns the following XML (assuming the Consumer sends the
templates defined in templates in the Minimal Consumer scenario):

<getMarkupResponse 35
 xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">
 <markupContext>
 <markup>
 <![CDATA[
 <div class="portlet-font"><p>Hello, world!</p></div> 40
 <img src=”
http://consumer.com/containerpage?ut=Resource&ns=&m=&ws=&res=http://pro
ducer.com/images/sayhello.jpg”>
]]>
 </markup> 45
 <locale>en</locale>

WRSP Primer 36

 <markupType>text/html</markupType>
 <requiresUrlRewriting>true</requiresUrlRewriting>
 </markupContext>
</getMarkupResponse>

11 Producer that Uses More Modes 5

12 Consumer that Supports More Modes

13 Producer that Uses More Window States

14 Consumer that Supports More Window States

15 Producer that Uses Registration

16 Producer that Supports Consumer Configured 10

Entities

17 Consumer that Uses Consumer Configured
Entities

