
 Page 1 of 18

Web Services for Remote Portals
(WSRP) Whitepaper
22 September 2002

Author: Thomas Schaeck <schaeck@de.ibm.com>

Executive Summary

Integration of content and application into portals has been a task requiring significant custom
programming effort. Typically, portal vendors or organizations running portals had to write special
adapters to allow portals to communicate with applications and content providers to
accommodate the variety of different interfaces and protocols those providers used. The OASIS
Web Services for Remote Portals (WSRP) standard simplifies integration of remote applications
and content into portals to the degree were portal administrators can pick from a rich choice of
remote content and applications and integrate it in their portal simply with a few mouse clicks,
without programming effort. As a result, WSRP becomes the means for content and application
providers to provide their services to organizations running portals in a very easily consumable
form.

To achieve this, the WSRP standard defines pluggable, user-facing, interactive web services with
a common, well-defined interface and protocol for processing user interactions and providing
presentation fragments suited for mediation and aggregation by portals as well as conventions for
publishing, finding and binding such services. By virtue of the common, well-defined WSRP
interfaces, all web services that implement WSRP plug into all WSRP compliant portals without
requiring any service specific adapters – a single, generic adapter on the portal side is sufficient
to integrate any WSRP service.

WSRP standardizes web services at the presentation layer on top of the existing web services
stack, builds on the existing web services standards and will leverage additional web services
standards efforts, such as security efforts now underway, as they become available. The WSRP
interfaces are defined in the Web Services Description Language (WSDL). In addition, WSRP
defines metadata for self-description for publishing and finding WSRP services in registries. All
WSRP services are required to implement a SOAP binding and optionally may support additional
bindings.

The OASIS WSRP standard will enable thousands of portals to aggregate content from tens of
thousands of content and application providers offering hundreds of thousands of user-facing,
pluggable web services for millions of end users/devices.

 Page 2 of 18

Table of Contents

Introduction ..3
Vision...4
Portlets ..5
Web Services...7

Data-oriented Web Services used by Portlets ...8
Web Services for Remote Portals ..9

WSRP Usage Scenarios ...10
Content Providers publishing WSRP Services ..10
Portals publishing local Portlets for remote use...11

The Web Services for Remote Portals Standard ...11
Related Standards ..12
WSRP Services – From simple to complex...12

Simple WSRP Service – View only ..12
Interactive WSRP Service with persistent Entity State...13
Interactive WSRP Service with Entity State and Session State ..14
WSRP Service with Registration / Deregistration ..15

WSRP Life Cycles ..16
Invocation Context Information ..16
Markup Fragment Definitions...17
Publishing, Finding, and Binding WSRP Services ...17

Conclusion ...18
References...18

 Page 3 of 18

Introduction
Portals provide personalized access to information, applications, processes and people.
Typically, portals get information from local or remote data sources, e.g. from databases,
transaction systems, syndicated content providers, or remote web sites. They render and
aggregate this information into composite pages to provide information to users in a compact and
easily consumable form. In addition to pure information, many portals also include applications
like e-mail, calendar, organizers, banking, bill presentment, host integration, etc.

Different rendering and selection mechanisms are required for different kinds of information or
applications, but all of them rely on the portal’s infrastructure and operate on data or resources
owned by the portal, like user profile information, persistent storage or access to managed
content. Consequently, most of today’s portal implementations provide a component model that
allows plugging components referred to as Portlets into the portal infrastructure. Portlets are
user-facing, interactive web application components rendering markup fragments to be
aggregated and displayed by the portal.

Often, content is provided by external services and displayed by specific local portlets running on
the portal. While this approach is feasible for establishing the base functionality of a portal, it is
not well suited to enable dynamic integration of business applications and information sources
into portals. As an example, let us consider the following scenario: An employee portal manager
wants to include a human resources service calculating variable pay for employees and an
external weather service providing weather forecasts. One solution for this scenario is depicted in
Figure 1 – a human resources portlet and a weather portlet run locally on the portal server and
access remote web services to obtain the required information, i.e. the web services provide data
and the presentation layer is implemented in specific portlets.

Weather
Web Service

Employee
Portal

Weather
Portlet

HR
Portlet

HR
Web Service

Figure 1: Local portlets using a remote web services

The HR portlet uses a HR web service to calculate the variable pay. By default, it displays a form
to query the required input data, e.g. the employee’s id. When the employee provides the data to
the HR portlet, it invokes the HR web service to calculate the variable pay based on that data. It
receives the result from the web service and displays it as a page fragment. The weather portlet
by default displays weather forecasts for configurable locations and allows the user to select
locations in an edit mode. When the weather portlet is invoked during page aggregation, it
requests the most recent forecasts for the selected locations from the weather web service and
renders a page fragment that displays those forecasts.

This approach only works if all portlets are physically installed at the employee portal; the process
of making new portlets available is tedious and expensive; the presentation layer has to be re-
developed for each portal. To integrate HR information in the portal using local portlets as
described above, either the HR department would implement the HR portlet and give it to one of
the administrators of the employee portal to install it, or an employee portal developer would
implement the HR portlet according to the interface description of the HR web service, similar

 Page 4 of 18

effort would be required for the weather portlet. In each case, there is significant cost and loss of
time.

Obviously, it would be much more convenient if the HR and weather web services would include
application and presentation logic and themselves produce markup fragments that are easy to
aggregate at the consuming portal, as shown in
Figure 2.

Weather
Web Service

Employee
Portal

Portlet
Proxy

Portlet
Proxy

HR
Web Service

Weather
Portlet

HR
Portlet

Figure 2: A Portal using Remote Portlet Web Services

Instead of just providing raw data or single business functions that still require special rendering
on the portal side, Web Services for Remote Portals are user-facing, interactive web services
including presentation. They are easy to aggregate and can be invoked through a common
interface using generic portlet proxy code that is built into the portal. No special portlet code
needs to be installed on the portal at all, re-implementation of the presentation layer on each
portal is avoided. The use of generic portlet proxies consuming all remote portlet web services
conforming to the common interface eliminates the need to develop service-specific portlets to
run on the portal.

The task of the administrator is made much easier because portlets can be added dynamically to
the environment, and users benefit by having more services made available to them in a timely
manner. Administrators can integrate remote portlet web services into a portal by using their
portal’s administration user interface to find and bind them with just a few mouse clicks. As a
result, the portal creates new, generic portlet proxies bound to the remote portlet web services so
that they are available to users in the same manner as local portlets. The remainder of this white
paper explains WSRP vision, the notion of portlets and remote portlets, web services and the
basic WSRP use-cases and concepts.

Vision
After the introduction of web services as the means for integration of business logic via the
Internet, the web services-based WSRP standard will become the means for integration of web
services based presentation components. WSRP will provide a standard that enables all content
and application providers to provide their services so that they can easily be discovered and plug
into all compliant portals without any programming effort on the portal’s side.

Portal administrators can find and integrate the WSRP services they need with just a few mouse
clicks, typically by using their portal’s admin UI to browse a registry for WSRP services and
selecting some for automatic integration into the portal. Portals act as intermediaries between end
users and WSRP services and aggregate services from many different content providers. They
often offload significant traffic from content providers by caching content, thereby enabling
content providers to serve a huge number of users with little IT infrastructure.

 Page 5 of 18

Web
Clients
Web

Clients
Web

Clients
Web

Clients
Web

Clients
Web

Clients
Web

Clients
Web

Clients
Web

ClientsUsersWeb
Clients
Web

Clients
Web

Clients
Web

Clients
Web

Clients
Web

Clients
Web

Clients
Web

Clients
Web

ClientsUsers

PortalsWSRP
ServicesPortalsPortals

PortalsPortalsClientsClients

PortalsPortals

Registry

PortalsPortalsPortals

PublishFind

WSRP
ServicesPortalsPortalsBind WSRP

Services

Figure 3: A Portal using Remote Portlet Web Services

By providing WSRP services, content and application providers can leverage portals as
multiplying intermediaries to reach a number of end users that they never could have reached
otherwise.

Portlets
Portlets are user-facing, interactive web application components designed to be aggregated by
portals and communicate with users through the hosting portal server. Typically, portal servers
maintain a catalog of available portlets from which end users can select portlets for placement on
portal pages.

All Portlets support a View Mode in which they provide their actual functionality that may range
between rendering some static markup to a highly interactive application with a sophisticated
screen flow. In addition, portlets may support an Edit Mode that provides a portlet specific UI to
edit their instance data, a Help Mode that explains how the portlet should be used, a Design
Mode that provides a portlet specific UI for changing the appearance of the portlet, and a
Preview Mode that renders a preview of the portlet’s appearance. The view, edit, help, and
preview mode are typically exposed to end users of portals while the config and design modes
are typically available to administrators only. In addition to the different modes, portlets can
typically be displayed in different sizes, namely Minimized, Normal, and Maximized.

A typical example for a portlet with multiple views that can be rendered in varying sizes is the
market report portlet depicted in Figure 4. In the view mode in normal size, it displays stock
quotes for a list of stock symbols; if the user wants to view details, she clicks on the “Market
Details” link which directs the portlet to display an expanded set of information, but remain in the
view mode. In the edit mode accessed by clicking on the Edit button, it allows users to customize
the list of stock quotes displayed. In the help mode accessed by clicking on the question mark,
the portlet informs the user how it works. By clicking on the minimize or maximize buttons, the
user can switch the portlet to minimized or maximized mode, respectively.

Figure 4: Example of a Portlet

 Page 6 of 18

Portlets can maintain state at different levels: Transient Session State typically reflects
conversational state with a particular end user, persistent Configuration State that affects all
instances of a portlet, and persistent Instance State that affects a single portlet instance. In the
example above, the portlet uses transient session state to remember whether it is in the stock
quote list screen or the details screen for each end user, persistent instance state to store the list
of stock symbols a user is interested in, and configuration state to store the stock quotes feed to
use.

Portlets may be local or remote to a portal server. We envision that typically, portals will use a mix
of local and remote portlets as depicted in Figure 5 – depending on individual tradeoffs between
proximity to the portal server and ease if integration.

Portal
Local

Portlet

WSRP
Service

Local
Portlet

Local
Portlet

Portlet
Local

WSRP
Service

WSRP
Service

WSRP
Service

WSRP
Service

Figure 5: Local and remote Portlets

Local portlets are usually tightly integrated with portal servers and typically run on the same
physical server or cluster of servers. Remote portlet web services run on remote servers at other
places in the intranet or the Internet and are loosely coupled to the portal server.

Figure 6 shows an example of a high-level portal architecture that may be employed to allow for
combined use of local and remote portlets as well as making local portlets available for other
portals.

Most portal clients access the portal via the HTTP protocol, either directly or through appropriate
gateways like WAP gateways or voice gateways. The mark-up languages used by these devices
may be very different. WAP phones typically use WML, iMode phones use cHTML, voice
browsers mostly use VoiceXML while the well-known PC web browsers use HTML.

 Page 7 of 18

Internet/
Intranet

Internet/
Intranet

Portal

H
T

T
P

H
T

M
L

 W
M

L
 V

o
ic

eX
M

L
 ..

.

Lo
ca

l
P

or
tle

t
A

P
I

W
S

R
PGeneric

Portlet
Proxies

Local
Portlets

WSRP
Services

Publish/Find Web Services

Registry
W

S
R

P

Portal

Client
Device

Local
Portlets
Local

Portlets

Generic
Portlet
Proxies

Generic
Portlet
Proxies

PortalPortal

Client
Device
Client
Device

Figure 6: Example of a Portal Architecture exploiting WSRP

When aggregating pages for end users, the portal invokes all portlets that belong to a user’s page
through a local Portlet API. This may be a portal vendor specific API or in the near future a
standard API, like the Portlet API defined in JSR 168 (see [4]) for the Java programming
language. While local portlets can be expected to provide a large part of the base functionality for
portals, the remote portlet concept allows dynamic binding of a variety of remote portlet web
services without any installation effort or code running locally on the portal server.

Also, portals may wrap local portlets and publish them as remote portlet web services for
integration by other portals. Conversely, remote portlet web services can be integrated into
portals by wrapping them in a proxy written to the local portlet API.

Web Services
The concept of web services has been developed to allow business applications to communicate
and cooperate over the Internet. Registry standards enhance this by defining how the web
services may be published, found and bound with minimal human interaction (see

Figure 7).

Service
Requestor

Service
Provider

Service
Registry

Find

Bind

Publish

Figure 7: Publish, Find, Bind

Web services allow objects to be distributed across web sites where clients can access them via
the Internet. Global or corporate service registries are used to promote and discover distributed
services. A consumer that needs a particular kind of service can make a query to the global

 Page 8 of 18

service registry to find services that match their requirements. The consumer can select one of
the services, bind to that service, and use it for a certain period of time.

The most important standards in this area are the Simple Object Access Protocol (SOAP, see [1])
for communication between web services, and the associated Web Services Description
Language (WSDL, see [2]) for formal description of web service interfaces and bindings.
Additional standards are currently emerging in the areas of security, identity, reliability, and
transactions.

From a portal perspective, we can differentiate between two different kinds of web services – the
“traditional” data oriented web services and presentation oriented, user-facing, interactive web
services (see Figure 8).

Data-oriented Web Service

100
101
96
100

100
101
96
100

100
101
96
100

Presentation
Layer

Presentation-oriented Web Service

100
101
96

100

100
101
96
100

100
101
96
100

Presentation
Layer

Figure 8: Data-oriented Web Services compared to Presentation-oriented Web Services

Data-oriented web services are web services that receive requests and return data objects
encoded in XML documents in the response. The signatures of their operations as well as the
structure and semantics of the returned data are typically service type-specific. It is the
responsibility of the service consumer to process the received data in a service-specific manner
and generate any required presentation. While this is a good approach for applications that
require specific data and know how to consume and process this data, it is not appropriate for
portals that need to be able to quickly integrate content and applications form various sources.

User-facing web services include presentation and optionally interaction as a part of the service
itself. They don’t just provide raw data to be processed and turned into a presentation by the
consumer, but instead produce markup fragments that can easily be aggregated by their
consumers, e.g. portals.

Data-oriented Web Services used by Portlets
Portals usually allow portlets to access data-oriented web services to obtain data from remote
systems or drive transactions. When using data-oriented web services with a given interface, the
portlets need to contain service interface-specific code that matches the web services’ operations
and their particular signatures.

When a portlet receives a request that requires invocation of a remote service, the portlet makes
calls on a service-specific proxy. The proxy takes the parameters, marshals them into a

 Page 9 of 18

programming language-independent request, and sends this request to the remote web service.
The web service receives the request, unmarshals the parameters and invokes the web service
implementation with these parameters. When the service implementation returns the result, the
web service marshals the result into a programming-language independent response and sends it
back to the proxy on the consumer’s side. The proxy unmarshals the result data and finally
returns it to the portet as the appropriate object (see Figure 9).

Aggregation

U
se

r‘
s

C
lie

n
t

Portlet 1
(Presentation)

Portlet 2
(Presentation)

Portlet API

Portlet API
Service
Specific
Proxy 1

Service
Specific
Proxy 2

Web Service 1
(Data only,

no Presentation)

WS specific
Interface

Web Service 2
(Data only,

no presentation)

WS specific
Interface

Figure 9: Portal consuming Data-oriented Web Services using service-specific Portlet Code

Web services can be formally described using WSDL interface descriptions that can be used by
appropriate tools to generate service interface-specific proxies for different programming
languages. This way, a part of the service specific portlet code can be generated automatically.
To simplify writing portlets using data-oriented web services, tools can automatically produce the
appropriate proxy code for particular programming languages from a web services WSDL
interface description.

Portlets that consume data-oriented web services via a proxy use the service and language
specific proxy and thus indirectly depend on the particular operations of the data-oriented web
service that determine the proxy’s methods. They need to have knowledge of how to make calls
to the proxy and how to process and render the results. This means that in addition to the
service-specific proxies, the individual portlets contain significant amounts of code tailored to the
particular web service’s interface.

Web Services for Remote Portals
In order to allow for dynamic integration in portals, remote portlets can be provided as user-
facing, interactive web services conforming to a well-defined, common interface description
defined in WSDL. Such remote portlets may be implemented in any programming languages as
long as they adhere to the common interface description.

When invoking a remote portlet, portals typically use a generic portlet proxy to invoke the user-
facing, interactive web service. The portal invokes the generic portlet proxy exactly like it would
invoke a local portlet. The generic portlet proxy marshals all parameters into a request and sends
it to the remote portlet. Since all remote portlet web services adhere to the same service interface
definition, the same proxy can be used for all of them. The remote portlet web service unmarshals
all information in the request and calls on the remote portlet’s implementation.

 Page 10 of 18

Aggregation

U
se

r‘
s

C
lie

nt

Portlet API

Portlet API

Portlet
Proxy

Portlet
Proxy

WSRP Service 1
(includes data and

presentation)

WSRP Service 2
(includes data and

presentation)

SOAP

SOAP

WSRP
API

WSRP
API

Figure 10: Portal consuming WSRP Services using Generic Portlet Proxies

The result is then marshaled into a response and sent back as the reply to the proxy that in turn
unmarshals the response for the portlet proxy that finally returns a result object to the portal
engine that initiated the request, just like a local portlet would.

The big difference between WSRP services and data-oriented web services is that they are user-
facing, interactive services that include presentation and all have one common interface. This
means that they simple plug into portal servers and do not require any service specific code to
run on the consuming portal.

WSRP Usage Scenarios
In this section we present two major usage scenarios that show how the capabilities of WSRP
can be exploited by portals and content providers.

Content Providers publishing WSRP Services
Today, many content providers publish their content live on the Internet using HTTP or FTP
servers or they provide client software that replicates and caches content via proprietary
protocols. In each case, integrating content into a portal is a difficult task. While portals may
provide some portlets supporting particular content providers out of the box, it is typically
necessary to develop and install additional portlets for the remaining content providers, i.e. the
party that runs the portal spends a lot of money and effort in order to integrate a rich set of
content from different providers. This is not only a bad situation for portal owners but also for
content providers as the fact that it is relatively hard to include their content limits business
growth. It also limits their capability to excert some control over the way their content is rendered
by the subscriber's portal.

Aggregated
HTML, WML, VoiceXML,

... over HTTP

Mark-Up Fragments
Transferred via WSRP

Portal

WSRP Service

WSRP Service

WSRP Service

Figure 11: Content/Application Providers providing WSRP services

 Page 11 of 18

In order to allow for easy integration of their content in portals, content providers can use WSRP
to surface their content as remote portlets and publish them as WSRP services in the public,
global directory.

In order to provide this value add to subscribers, the content provider serves remote portlets via
the desired bindings in addition to the classical content server. Once the content provider has
published a WSRP service in registry, administrators of portals who wish to use content from the
content provider can simply look up the content provider’s business entry in the registry and bind
to the WSRP service that provides the desired content. The portlets on the content provider’s
server become available immediately without any programming or installation effort and can be
used by the portal users.

Portals publishing local Portlets for remote use
While portals traditionally have operated in isolation from each other, large corporations are now
demanding cooperation between their portal installations. Very soon, corporate portals will also
need to cooperate with supplier or customer portals, so ultimately portals will need to cooperate
over the Internet as well as within intranets. In the introduction we have already described a
scenario where an employee portal consumes a service provided by the human resources
function within a corporation.

Server
PortalPortals

Huge number
of users

Portals as Intermediaries,
Caching offloads requests

from WSRP provider

Publishing Portal

WSRP
WrapperPortalsPortalsPortal

Portlet

Portlet

Portlet

Figure 12: Portal sharing portlets as WSRP services

Now let us assume the human resources department runs a portal that provides various HR
related portlets. Some are only intended for use by HR staff like a Payroll Portlet or a Staff
Record Portlet. However, there are some portlets that are of interest to all employees, e.g. a
Variable Pay Portlet that provides info on how big the variable pay will be based on current
revenue and an HR Info Portlet providing HR related news.

Assuming that the corporation for example has a corporate registry only accessible from the
intranet, an HR portal administrator would use a portal server’s publish function to create remote
portlet web service entries for the Variable Pay Portlet and the HR Info Portlet in the corporate
registry. Thus these portlets become available for integration in other portals in the corporation –
e.g. the administrator of the corporation’s employee portal can find the remote portlets web
services published by the HR portal using his portal’s built-in registry browser and integrate them
into his portal with a single click.

The Web Services for Remote Portals Standard
In this section we provide an overview of the WSRP standard. We first position WSRP in relation
to other standards and then explain the WSRP concepts based on examples starting with a very
basic WSRP services and going towards more complex WSRP services.

 Page 12 of 18

Related Standards
WSRP fits into the greater context of the web services standards stack. It on WSDL to formally
describe the WSRP service interfaces, SOAP can be used for invocations of WSRP services.
Furthermore, WSRP has overlap with WSIA (Web Services for Interactive Applications) with
which it shares a common base of interface and protocol definitions.

WSRP

SOAP
(Invocation)

WSDL
(Description)

WSIA
WSRP/WSIA

Common Base

(X)HTML WML Voice
XML

XHTML
Basic

...

Figure 13: WSRP and related Standards

WSRP defines the notion of valid fragments of markup based on the existing markup languages
such as HTML, XHTML, VoiceXML, cHTML, etc. For markup languages that support style
definitions, WSRP also defines a set of standard style names to allow portlets to generate markup
using styles that are provided by WSRP compliant portals so that their markup fits nicely into the
look and feel of the consuming portal.

WSRP Services – From simple to complex
A goal of the WSRP standard is to make it very easy to implement very simple services that just
provide markup fragments but also allow for more complex services that require consumer
registration, support complex user interaction and operate based on transient and persistent
state. In this section we give an overview of the different levels of functionality that WSRP
enables and explain the relevant parts of the WSRP interfaces and protocol.

Simple WSRP Service – View only
The simplest possible WSRP service provides a single view, without any user interaction. An
example is a schedule of flights leaving from an airport. For such a simple WSRP service,
implementing a getMarkup operation that returns a WSRP Markup Fragment for the current
flight schedule is sufficient.

 Page 13 of 18

Portal

Portlet

Portlet
Access
Point

WSRP Producer

Entity

Figure 14: Simplest WSRP Service

Interactive WSRP Service with transient conversational State

A slightly more complex case is a WSRP service that supports user interaction and maintains
conversational state reflecting user interaction. An example is a news service that provides an
overview of headlines of the different news articles and allows users to click on the headlines to
navigate to the individual articles and on a back-link. Such a service may want to track
conversational state within a WSRP Session to always display the correct view for a particular
user and return an ID for an internally managed session in each response of the getMarkup
operation. The markup returned in responses may contain action links that will trigger subsequent
invocations of the performInteraction operation.

Entity

Portal

Portlet

Portlet

Session
WSRP
Handle

Access
Point

Session

WSRP ProducerClient

HTTP
Session
Handle

Figure 15: WSRP Entities and their relation to Portlet Instances in a Portal

Interactive WSRP Service with persistent Entity State
At about the same level of complexity of the last example, let us consider a WSRP service that
maintains persistent state that can be associated with individual portlet instances available from
the WSRP producer. An example for such a service is a stock quotes service that allows
individual users to define their own personal portfolios. This use case requires the concept of
multiple persistent Entities.

 Page 14 of 18

Portal

Portlet

Portlet

StatePersistent EntityHandle

Access
Point

WSRP Producer

Persistent Entity State

Figure 16: WSRP Entities and their relation to Portlet Windows in a Portal

Consumers create new persistent entities by invoking cloneEntity(), specifying an existing
entity – either a producer offered entity or one previously created by the consumer. The new
entity will be initialized with the same (persistent) state as the existing entity. As a result, the
consumer obtains an entity handle for referring to the entity when calling the producer. When an
entity is no longer needed, it can be discarded by calling releaseHandles(), passing the entity
handle.

Interactive WSRP Service with Entity State and Session State
A more complex WSRP producer may employ both persistent entity state as well as transient
session state. Zero of more WSRP sessions may be associated with a persistent entity at a given
time. For example, many WSRP sessions to the same entity may exist for a consumer that is a
portal with shared pages referencing it and being used concurrently by multiple end users (see
Figure 17).

Portal

Portlet

Portlet

StatePersistent Entity

Handle

Access
Point

WSRP Producer

Session

SessionHandle

Persistent
Entity

Session
Portlet

Handle State

Figure 17: WSRP Producer employing persistent Entity State as well as Session State

A typical usage pattern for interactive WSRP Services with entity and session state is shown in
Figure 18; in this example the consumer is a portal using a WSRP producer as a remote portlet.

 Page 15 of 18

performInteraction

releaseHandles

cloneEntity

WSRP Consumer
(Portal)

WSRP Producer
(Service)

Adds
Portlet

Removes
Portlet

Clicks
Action

getMarkup
I S

S

User

Views
Portlet

Create new Entity

Generate Markup

Action Handling

I

I

A

I A

I

I A

I

I S

I
Destroy instance

I

AS

I A

Figure 18: Interaction Diagram for an interactive WSRP Service with Entity State

When an end user adds a portlet to a page in the portal, the portal invokes cloneEntity
operation on the WSRP service specifying the producer offered entity corresponding to the portlet
to obtain a new entity handle I that it stores associated with a newly created portlet instance on
the portal side.

When the user views the page containing the new portlet instance, the portal determines the
entity handle and uses it to make a call to the getMarkup operation of the WSRP service to
obtain the markup fragment to be displayed. The returned markup may contain action links A
and/or a session handle S if the WSRP service wants to maintain session state. The portal may
need to rewrite any action links to make them work in the final markup sent to the browser and
must store any returned session handle to provide it with each subsequent request.

When the user clicks on a link in the markup a request is sent from the browser to the portal, the
portal intercepts the request and maps it to an invocation of performInteraction operation of
the WSRP service, passing the session handle to allow the WSRP service to look up associated
session state. Upon a performInteraction call, the WSRP service typically changes state.
When the performInteraction operation returns, the portal refreshes the page which results
in a call to getMarkup to starts a new user-interaction cycle.

When an end user does not need a portlet instance anymore and discards it from a portal page,
the portal determines the handle of the entity which is no longer needed and invokes
releaseHandles on the WSRP service. The WSRP service must discard the entity and may
release any related resources.

WSRP Service with Registration / Deregistration
WSRP providers that do not just support access by anonymous consumers need to implement
appropriate operations for registration and deregistration of consumers. To register with such a

 Page 16 of 18

service, the consumer calls the registerConsumer operation. To deregister, the consumer
calls the releaseHandles operation.

WSRP Life Cycles
WSRP services may maintain state in the scope of consumer registrations, entities, and sessions
which have nested life cycles. A consumer can create a consumer registration by calling the
registerConsumer operation of the WSRP service. In the scope of a consumer registration, a
consumer can create entities by calling the cloneEntity operation. In the scope of an entity,
the WSRP service may create sessions, typically per user, that expire after a duration of
inactivity.

registerConsumer releaseHandles

cloneEntity releaseHandles

. . .
Session Creation Session Expiry

. . .

Consumer Registration Scope

Entity Scope

Session Scope

Session Scope

Figure 19: WSRP Life Cycles

When a consumer does not need an entity anymore, it calls the releaseHandles operation,
passing the entity handle, to allow the WSRP service to release all associated resources and all
sessions within the entity scope. When a consumer does not need the WSRP service anymore, it
calls the releaseHandles operation, passing the consumer registration handle.

Invocation Context Information
When a consumer invokes a WSRP producer, it passes context information with the invocation,
including information about the consumer as well as the end user on whose behalf the request is
sent. Examples include the type of device the end user has and its required markup language,
the preferred language, a user identifier and optionally user profile information. For the user
profile information, WSRP defines attribute names for the commonly required information like
name, address, affiliation, phone, FAX and e-mail.

 Page 17 of 18

Markup Fragment Definitions
In addition to a web services interface and protocol, WSRP standardizes markup fragments
returned by WSRP services for the relevant markup languages including XHTML, HTML, WML,
VoiceXML, cHTML. WSRP specifies the tags that may be used for the individual markup
languages, defines a general URL and name spacing scheme and defines common styles for the
markup languages supporting stylesheets.

Publishing, Finding, and Binding WSRP Services
Content or application providers who want to offer remote portlet web services can publish their
service entries registry, referencing the WSRP interface description. The information that is
published typically includes:

• Name and Description

• Supported markup types, locales, and modes

• Cachability information

• Key words and parameters

Once a remote portlet has been published, portal administrators can use their portal
administration tools to search the registry for web services that implement the WSRP interface
and make some of the matching portlet web services available for their users by adding them to
their portal’s portlet registry (see

Figure 20).

Portal 1

Portal 2

Portlet
Proxy

Portal
Administration

Portlet
Registry

Portal
Aggregation

Portlet Proxy Entry

Portal
Administration

Portlet
Registry

Portal
Aggregation

Portlet Entry

Remote
Portlet

Portal 2

RPWS/
SOAP

Registry

Portlet Entry

Portlet Entry

Portlet Entry

(1) Publish(2) Find &
Bind

(3) Invoke
Figure 20: Publishing, finding and binding Remote Portlets

Once the portlets are in the registry, users can select them to be displayed on their personal
pages just like local portlets. In portals, the mechanisms for publishing portlets as remote portlet
web services, finding remote portlet web services in a registry, binding to them and using remote
portlets can be seamlessly integrated in the portal’s administration user interfaces. There are four
different dialog flows that are typically relevant to use of WSRP services:

• Managing Registries: Administrators manage a list of registries they wish to use for
querying and publishing WSRP services.

• Publishing Portlets: Administrators can publish portlets to make them available for use
by other portals as WSRP services.

 Page 18 of 18

• Finding and binding Remote Portlets: Administrators find WSRP services in a registry
and bind to these services to make them available for portal users.

• Discovering Capabilities: While many of the capabilities of a WSRP service may have
been discovered through the find/bind step involving the registry, the
getDescription() operation on the service returns the full capabilities of the service.

• Using Remote Portlets: Users select and transparently use WSRP services that have
been integrated by administrators, just as easily as local portlets.

In addition to advertising WSRP services in a registry, there are alternative ways of finding and
binding WSRP services. For example, within a corporation, a portal administrator may obtain the
URL of a WSRP service directly from a department that wishes to have their WSRP service
integrated into the corporate employee portal. For such a case, the portal may allow the
administrator to enter the URL manually instead of getting it by browsing a registry.

Conclusion
By defining a standard for user-facing, interactive web services that plug into portal servers
without any programming effort, Web Services for Remote Portals (WSRP) lays the foundation for
a large variety of remote portlets to be offered by providers in the Internet as well as intranets.
WSRP will enable interoperability of portals by allowing them to consume remote portlets
provided by other portals or content / application providers as well as sharing local portlets by
providing remote access to them to other portals in a standardized manner.

References
1. SOAP Version 1.2, W3C 2002

http://www.w3.org/TR/soap12-part1/

2. Web Services Description Language (WSDL) 1.1, Erik Christensen, Francisco Curbera, Greg
Meredith, Sanjiva Weerawarana, 2000
http://www.w3.org/TR/wsdl/

3. OASIS Web Services for Remote Portals Web Site
http://oasis-open.org/committees/wsrp

4. Portlet API (JSR 168)
http://www.jcp.org/jsr/detail/168.jsp

