
WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 1 of 48

 1

Web Services Security 2

Core Specification 3

Working Draft 04, 17 November 2002 4

Document identifier: 5
WSS-Core-04 6

Location: 7
TBD 8

Editors: 9
Phillip Hallam-Baker, VeriSign 10
Chris Kaler, Microsoft 11
Ronald Monzillo, Sun 12
Anthony Nadalin, IBM 13

Contributors: 14

TBD – Revise this list to include WSS TC contributors 15

Bob Atkinson, Microsoft
Giovanni Della-Libera, Microsoft
Satoshi Hada, IBM
Phillip Hallam-Baker, VeriSign
Maryann Hondo, IBM
Chris Kaler, Microsoft
Johannes Klein, Microsoft
Brian LaMacchia, Microsoft
Paul Leach, Microsoft

John Manferdelli, Microsoft
Hiroshi Maruyama, IBM
Anthony Nadalin, IBM
Nataraj Nagaratnam, IBM
Hemma Prafullchandra, VeriSign
John Shewchuk, Microsoft
Dan Simon, Microsoft
Kent Tamura, IBM
Hervey Wilson, Microsoft

Abstract: 16
This specification describes enhancements to the SOAP messaging to provide quality of 17
protection through message integrity, message confidentiality, and single message 18
authentication. These mechanisms can be used to accommodate a wide variety of 19
security models and encryption technologies. 20

This specification also provides a general-purpose mechanism for associating security 21
tokens with messages. No specific type of security token is required; it is designed to be 22
extensible (e.g. support multiple security token formats). For example, a client might 23
provide one format for proof of identity and provide another format for proof that they 24
have a particular business certification. 25

Additionally, this specification describes how to encode binary security tokens, a 26
framework for XML-based tokens, and describes how to include opaque encrypted keys. 27
It also includes extensibility mechanisms that can be used to further describe the 28
characteristics of the tokens that are included with a message. 29

Deleted: 03

Deleted: 03

Deleted: 02

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 2 of 48

 30

Status: 31
This is an interim draft. Please send comments to the editors. 32
 33

Committee members should send comments on this specification to the wss@lists.oasis-34
open.org list. Others should subscribe to and send comments to the wss -35
comment@lists.oasis -open.org list. To subscribe, visit http://lists.oasis-36
open.org/ob/adm.pl. 37

For information on whether any patents have been disclosed that may be essential to 38
implementing this specification, and any offers of patent licensing terms, please refer to 39
the Intellectual Property Rights section of the Security Services TC web page 40
(http://www.oasis -open.org/who/intellectualproperty.shtml). 41

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 3 of 48

Table of Contents 42

1 Introduction5 43
1.1 Goals and Requirements ...5 44

1.1.1 Requirements.. ...5 45
1.1.2 Non-Goals5 46

2 Notations and Terminology7 47
2.1 Notational Conventions.. ..7 48
2.2 Namespaces7 49

2.3 Terminology.. ..7 50
3 Message Protection Mechanisms9 51

3.1 Message Security Model..9 52
3.2 Message Protection9 53
3.3 Invalid or Missing Claims ... 10 54
3.4 Example 10 55

4 ID References 12 56
4.1 Id Attribute 12 57
4.2 Id Schema 12 58

5 Security Header.. 14 59
6 Security Tokens 16 60

6.1 User Name Tokens 16 61
6.1.1 Usernames and Passwords................................ ... 16 62

6.2 Binary Security Tokens .. 18 63
6.2.1 Attaching Security Tokens.. 18 64

6.2.2 Processing Rules 18 65
6.2.3 Encoding Binary Security Tokens 18 66

6.3 XML Tokens 19 67

6.3.1 Attaching Security Tokens.. 20 68
6.3.2 Identifying and Referencing Security Tokens .. 20 69
6.3.3 Subject Confirmation 20 70
6.3.4 Processing Rules 20 71

7 Token References 21 72
7.1 SecurityTokenReference Element 21 73

7.2 Direct References 21 74
7.3 Key Identifiers.. ... 22 75
7.4 ds:KeyInfo 23 76

7.5 Key Names 23 77
7.6 Token Reference Lookup Processing Order.. 23 78

8 Signatures 25 79
8.1 Algorithms 25 80
8.2 Signing Messages.. 26 81
8.3 Signature Validation.. 26 82

8.4 Example 26 83

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 4 of 48

9 Encryption................................ .. 28 84
9.1 xenc:ReferenceList 28 85

9.2 xenc:EncryptedKey 29 86
9.3 xenc:EncryptedData 30 87
9.4 Processing Rules 30 88

9.4.1 Encryption.. 31 89
9.4.2 Decryption 31 90

9.5 Decryption Transformation.. 31 91
10 Message Timestamps 33 92

10.1 Model 33 93
10.2 Timestamp Elements.. 33 94

10.2.1 Expiration 33 95
10.2.2 Creation.. ... 34 96

10.3 Timestamp Header 35 97

10.4 TimestampTrace Header 36 98
11 Extended Example 38 99
12 Error Handling 41 100
13 Security Considerations .. 42 101
14 Privacy Considerations................................ .. 44 102
15 Acknowledgements.. 45 103

16 References.. ... 46 104
Appendix A: Revision History.. 47 105
Appendix B: Notices 48 106

 107

Deleted: 1 Introduction 5¶
1.1 Goals and Requirements 5¶
1.1.1 Requirements 5¶
1.1.2 Non-Goals 5¶
2 Notations and Terminology 7¶
2.1 Notational Conventions 7¶
2.2 Namespaces 7¶
2.3 Terminology 7¶
3 Message Protection
Mechanisms 9¶
3.1 Message Security Model 9¶
3.2 Message Protection 9¶
3.3 Invalid or Missing Claims 10¶
3.4 Example 10¶
4 ID References 12¶
4.1 Id Attribute 12¶
4.2 Id Schema 12¶
5 Security Header 14¶
6 Security Tokens 16¶
6.1 User Name Tokens 16¶
6.1.1 Usernames and Passwords 16¶
6.2 Binary Security Tokens 18¶
6.2.1 Attaching Security Tokens 18¶
6.2.2 Processing Rules 18¶
6.2.3 Encoding Binary Security
Tokens 18¶
6.3 XML Tokens 19¶
6.3.1 Attaching Security Tokens 20¶
6.3.2 Identifying and Referencing
Security Tokens 20¶
6.3.3 Subject Confirmation 20¶
6.3.4 Processing Rules 20¶
7 Token References 21¶
7.1 SecurityTokenReference
Element 21¶
7.2 Direct References 21¶
7.3 Key Identifiers 22¶
7.4 ds:KeyInfo 23¶
7.5 Key Names 23¶
7.6 Token Reference Lookup
Processing Order 23¶
8 Signatures 24¶
8.1 Algorithms 24¶
8.2 Signing Messages 25¶
8.3 Signature Validation 25¶
8.4 Example 25¶
9 Encryption 27¶
9.1 xenc:ReferenceList 27¶
9.2 xenc:EncryptedKey 28¶
9.3 xenc:EncryptedData 28¶
9.4 Processing Rules 29¶
9.4.1 Encryption 29¶
9.4.2 Decryption 30¶
9.5 Decryption Transformation 30¶
10 Message Timestamps 31¶
10.1 Model 31¶
10.2 Timestamp Elements 31¶
10.2.1 Expiration 31¶
10.2.2 Creation 32¶
10.3 Timestamp Header 33¶
10.4 TimestampTrace Header 34¶
11 Extended Example 36¶
12 Error Handling 39¶
13 Security Considerations 40¶
14 Privacy Considerations 42¶
15 Acknowledgements 43¶
16 References 44¶
Appendix A: Revision History 45¶
Appendix B: Notices 46¶

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 5 of 48

1 Introduction 108

This specification proposes a standard set of SOAP extensions that can be used when building 109
secure Web services to implement message level integrity and confidentiality. This specification 110
refers to this set of extensions as the “Web Services Security Core Language” or “WSS-Core”. 111

This specification is flexible and is designed to be used as the basis for securing Web services 112
within a wide variety of security models including PKI, Kerberos, and SSL. Specifically, this 113
specification provides support for multiple security token formats, multiple trust domains, multiple 114
signature formats, and multiple encryption technologies. The token formats and semantics for 115
using these are defined in the associated binding doc uments. 116
This specification provides three main mechanisms: ability to send security token as part of a 117
message, message integrity, and message confidentiality. These mechanisms by themselves do 118
not provide a complete security solution for Web services. Instead, this specification is a building 119
block that can be used in conjunction with other Web service extensions and higher-level 120
application-specific protocols to accommodate a wide variety of security models and security 121
technologies. 122

These mechanisms can be used independently (e.g., to pass a security token) or in a tightly 123
coupled manner (e.g., signing and encrypting a message and providing a security token hierarchy 124
associated with the keys used for signing and encryption). 125

1.1 Goals and Requirements 126

The goal of this specification is to enable applications to construct secure SOAP message 127
exchanges. 128

This specification is intended to provide a flexible set of mechanisms that can be used to 129
construct a range of security protocols; in other words this specification intentionally does not 130
describe explicit fixed security protocols. 131
As with every security protocol, significant efforts must be applied to ensure that security 132
protocols constructed us ing this specification are not vulnerable to a wide range of attacks. 133
The focus of this specification is to describe a single-message security language that provides for 134
message security that may assume an established session, security context and/or policy 135
agreement. 136

The requirements to support secure message exchange are listed below. 137

1.1.1 Requirements 138

The Web services security language must support a wide variety of security models. The 139
following list identifies the key driving requirements for this specification: 140

• Multiple security token formats 141

• Multiple trust domains 142

• Multiple signature formats 143

• Multiple encryption technologies 144

• End-to-end message-level security and not just transport-level security 145

1.1.2 Non-Goals 146

The following topics are outside the scope of this document: 147

• Establishing a security context or authentication mechanisms . 148

Formatted: Font: (Default) Arial,
Font color: Auto

Formatted: Font: (Default) Arial,
Font color: Auto

Formatted: Font: (Default) Arial,
Font color: Auto

Deleted: the construction

Deleted: of a

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 6 of 48

• Key derivation. 149

• Advertisment and exchange of security policy. 150

• How trust is established or determined. 151

 152

Formatted: Bullets and Numbering

Deleted: key

Deleted: ¶

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 7 of 48

2 Notations and Terminology 153

This section specifies the notations, namespac es, and terminology used in this specification. 154

2.1 Notational Conventions 155

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 156
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be 157
interpreted as described in RFC2119. 158

Namespace URIs (of the general form "some-URI") represent some application-dependent or 159
context-dependent URI as defined in RFC2396. 160

This specification is designed to work with the general SOAP message structure and message 161
processing model, and should be applicable to any version of SOAP. The current SOAP 1.2 162
namespace URI is used herein to provide detailed examples, but there is no intention to limit the 163
applicability of this specification to a single version of SOAP. 164

Readers are presumed to be familiar with the terms in the Internet Security Glossary. 165

2.2 Namespaces 166

The XML namespace URIs that MUST be used by implementations of this specification are as 167
follows (note that elements used in this specification are from various namespaces): 168

 http://schemas.xmlsoap.org/ws/2002/xx/secext 169
 http://schemas.xmlsoap.org/ws/2002/xx/utility 170

The following namespaces are used in this document: 171

 172

Prefix Namespace

S http://www.w3.org/2001/12/soap-envelope

ds http://www.w3.org/2000/09/xmldsig#

xenc http://www.w3.org/2001/04/xmlenc#

wsse http://schemas.xmlsoap.org/ws/2002/xx/secext

wsu http://schemas.xmlsoap.org/ws/2002/xx/utility

2.3 Terminology 173

Defined below are the basic definitions for the security terminology used in this specification. 174

Claim – A claim is a statement that a client makes (e.g. name, identity, key, group, privilege, 175
capability, etc). 176

Security Token – A security token represents a collection of claims. 177

Signed Security Token – A signed security token is a security token that is asserted and 178
cryptographically endorsed by a specific authority (e.g. an X.509 certificate or a Kerberos ticket). 179

Deleted: different

Deleted: different

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 8 of 48

 180

 181
Proof-of-Possession – Proof-of-possession information is data that is used in a proof 182
process to demonstrate that a sender is acting on behalf of a (claimed) client, where the (claimed) 183
client and the sender are the same principal, based on knowledge of information that should only 184
be known to the client. Proof-of-possession information is used to bind a client and a sender 185
acting on behalf of a client within a security token. 186

Integrity – Integrity is the process by which it is guaranteed that information is not modified. . 187

Confidentiality – Confidentiality is the process by which data is protected such that only 188
authorized roles or security token owners can view the data 189

Digest – A digest is a cryptographic checksum of an octet stream. 190

Signature - A signature is a cryptographic binding of a proof-of-possession and a digest. This 191
covers both symmetric key-based and public key -based signatures. Consequently, non-192
repudiation is not always achieved. 193

Attachment – An attachment is a generic term referring to additional data that travels with a 194
SOAP message, but is not part of the SOAP Envelope. 195

Trust - Trust is the characteristic that one entity is willing to rely upon a second entity to execute 196
a set of actions and/or to make set of assertions about a set of subjects and/or scopes. 197

Trust Domain - A Trust Domain is a security space in which the target of a request can 198
determine whether particular sets of credentials from a source satisfy the relevant security 199
policies of the target. The target may defer trust to a third party thus including the trusted third 200
party in the Trust Domain. 201

End-To_End Messgae Level Security - End- to-end message level security is 202
established when a message that traverses multiple applications within and between business 203
entities, i.e. companies, divisions, business units, is secure over its full route through and 204
between those business entities. This includes not only messages that are initiated within the 205
entity but also those messages that originate outside the entity, whether they are Web Services 206
or the more traditional messages. 207
 208

Formatted: Font: (Default) Arial,
Font color: Auto

Deleted: process to demonstrate
that a sender is acting on behalf of a
(claimed) client, based on

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 9 of 48

3 Message Protection Mechanisms 209

When securing SOAP messages, various types of threats should be considered. This includes, 210
but is not limited to: 1) the message could be modified or read by antagonists or 2) an antagonist 211
could send messages to a service that, while well-formed, lack appropriate security claims to 212
warrant processing. 213

To understand these threats this specification defines a message security model. 214

3.1 Message Security Model 215

This document specif ies an abstract message security model in terms of security tokens 216
combined with digital signatures as proof of possession of the security token (key) . 217
Security tokens assert claims and signatures provide a mechanism for proving the sender’s 218
knowledge of the key . As well, the signature can be used to "bind" or "associate" the message 219
with the claims in the security token (assuming the token is trusted). Note that such a binding is 220
limited to those elements covered by the signature. Furthermore note that this document does 221
not specify a particular method for authentication, it simply indicates that security tokens MAY be 222
bound to messages. 223

A claim can be either endorsed or unendorsed by a trusted authority. A set of endorsed claims is 224
usually represented as a signed security token that is digitally signed or encrypted by the 225
authority. An X.509 certificate, claiming the binding between one's identity and public key, is an 226
example of a signed security token. An endorsed claim can also be represented as a reference 227
to an authority so that the receiver can "pull" the claim from the referenced authority. 228

An unendorsed claim can be trusted if there is a trust relationship between the sender and the 229
receiver. For example, the unendorsed claim that the sender is Bob is sufficient for a certain 230
receiver to believe that the sender is in fact Bob, if the sender and the receiver use a trusted 231
connection and there is an out-of -band trust relationship between them. 232
One special type of unendorsed claim is Proof-of-Possession. Such a claim proves that the 233
sender has a particular piece of knowledge that is verifiable by appropriate roles. For example, a 234
username/password is a security token with this type of claim. A Proof -of-Possession claim is 235
sometimes combined with other security tokens to prove the claims of the sender. Note that a 236
digital signature used for message integrity can also be used as a Proof -of-Possession claim, 237
although this specificatio n does not consider such a digital signature as a type of security token. 238

It should be noted that this security model, by itself, is subject to multiple security attacks. Refer 239
to the Security Considerations section for additional details. 240

3.2 Message Protection 241

Protecting the message content from being intercepted (confidentiality) or illegally modified 242
(integrity) are primary security concerns. This specification provides a means to protect a 243
message by encrypting and/or digitally signing a body, a header, an attachment, or any 244
combination of them (or parts of them). 245
Message integrity is provided by leveraging XML Signature in conjunction with security tokens to 246
ensure that messages are transmitted without modifications. The integrity mechanisms are 247
designed to support multiple signatures, potentially by multiple roles, and to be extensible to 248
support additional signature formats. 249

Message confidentiality leverages XML Encryption in conjunction with security tokens to keep 250
portions of a SOAP message confidential. The encryption mechanisms are designed to support 251
additional encryption processes and operations by multiple roles. 252

Deleted: In order to secure a

Deleted: two

Deleted: :

Deleted: ¶

Deleted: signature

Deleted: ,

Deleted: in

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 10 of 48

WS-Security defines syntax and semantics of signatures within <wsse:Security> header block. 253
WS-Security does not specify any signature appearing outside of <wsse:Security>, if any. 254

3.3 Invalid or Missing Claims 255

The message receiver SHOULD reject a message with a signature determined to be invalid, 256
missing or unacceptable claims as it is an unauthorized (or malformed) message. This 257
specification provides a flexible way for the message sender to make a claim about the security 258
properties by associating zero or more security tokens with the message. An example of a 259
security claim is the identity of the sender; the sender can claim that he is Bob, known as an 260
employee of some company, and therefore he has the right to send the message. 261

3.4 Example 262

The following example illustrates a message with a username security token. In this example the 263
password is not provided in plaintext. Instead, it is used as a "shared secret" which can be used, 264
for example, as part of an HMAC signature to authenticate messages. The exact algorithm is 265
out-of-scope of this specification, however, in the example below, the information inside the 266
<UsernameToken> element is concatenated with the key so as to include random elements 267
(nonce and timestamp). In some cases, the nonce may be provided as a challenge using some 268
out-of-band mechanism. 269

(001) <?xml version="1.0" encoding="utf-8"?> 270
(002) <S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope" 271
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 272
(003) <S:Header> 273
(004) <wsse:Security 274
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext"> 275
(005) <\wsse:UsernameToken wsu:Id="MyID"> 276
(006) <wsse:Username>Zoe</wsse:Username> 277
(007) <wsse:Nonce>FKJh...</wsse:Nonce> 278
(008) <wsu:Created> 2001-10-13T09:00:00Z </wsu:Created> 279
(009) </wsse:UsernameToken> 280
(010) <ds:Signature> 281
(011) <ds:SignedInfo> 282
(012) <ds:CanonicalizationMethod 283
 Algorithm= 284
 "http://www.w3.org/2001/10/xml -exc-c14n#"/> 285
(013) <ds:SignatureMethod 286
 Algorithm= 287
 "http://www.w3.org/2000/09/xmldsig#hmac-sha1"/> 288
(014) <ds:Reference URI="#MsgBody"> 289
(015) <ds:DigestMethod 290
 Algorithm= 291
 "http://www.w3.org/2000/09/xmldsig#sha1"/> 292
(016) <ds:DigestValue>LyLsF0Pi4wPU...</ds:DigestValue> 293
(017) </ds:Reference> 294
(018) </ds:SignedInfo> 295
(019) <ds:SignatureValue>DJbchm5gK...</ds:SignatureValue> 296
(020) <ds:KeyInfo> 297
(021) <wsse:SecurityTokenReference> 298
(022) <wsse:Reference URI="#MyID"/> 299
(023) </wsse:SecurityTokenReference> 300
(024) </ds:KeyInfo> 301
(025) </ds:Signature> 302
(026) </wsse:Security> 303
(027) </S:Header> 304
(028) <S:Body wsu:Id="MsgBody"> 305
(029) <tru:StockSymbol xmlns:tru="http://fabrikam123.com/payloads"> 306
 QQQ 307
 </tru:StockSymbol> 308

Formatted: Font: (Default) Courier
New

Deleted: unauthorized

Deleted: :

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 11 of 48

(030) </S:Body> 309
(031) </S:Envelope> 310

The first two lines start the SOAP envelope. Line (003) begins the headers that are associated 311
with this SOAP message. 312

Line (004) starts the <Security> header that is defined in this specification. This header 313
contains security information for an intended receiver. This element continues until line (026) 314

Lines (005) to (009) specify a security token that is associated with the message. In this case, it 315
defines username of the client using the <UsernameToken>. Note that here the assumption is 316
that the service knows the password – in other words, it is a shared secret and the <Nonce> and 317
<Created> are used to generate the key 318

Lines (010) to (025) specify a digital signature. This signature ensures the integrity of the signed 319
elements. The signature uses the XML Signature specification identified by the ds namespace 320
declaration in Line (002). In this example, the signature is based on a key generated from the 321
users' password; typically stronger signing mechanisms would be used (see the Extended 322
Example later in this document). 323

Lines (011) to (018) describe what is being signed and the type of canonicalization being used. 324
Line (012) specifies how to canonicalize (normalize) the data that is being signed. Lines (014) to 325
(017) select the elements that are signed and how to digest them. Specifically, line (014) 326
indicates that the <S:Body> element is signed. In this example only the message body is 327
signed; typically all critical elements of the message are included in the signature (see the 328
Extended Example below). 329

Line (019) specifies the signature value of the canonicalized form of the data that is being signed 330
as defined in the XML Signature specification. 331

Lines (020) to (024) provide a hint as to where to find the security token associated with this 332
sign ature. Specifically, lines (021) to (023) indicate that the security token can be found at (pulled 333
from) the specified URL. 334

Lines (028) to (030) contain the body (payload) of the SOAP message. 335

 336

Deleted: 006

Deleted: that

Deleted: (that they aren't modified)

Deleted: the digital signature

Deleted: ¶

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 12 of 48

4 ID References 337

There are many motivations for referencing other message elements such as signature 338
references or correlating signatures to security tokens. However, because arbitrary ID attributes 339
require the schemas to be available and processed, ID attributes which can be referenced in a 340
signature are restricted to the following list: 341

• ID attributes from XML Signature 342

• ID attributes from XML Encryption 343

• wsu:Id global attribute described below 344

In addition, when signing a part of an envelope such as the body, it is RECOMMENDED that an 345
ID reference is used instead of a more general transformation, especially XPath. This is to 346
simplify processing. 347

4.1 Id Attribute 348

There are many situations where elements within SOAP messages need to be referenced. For 349
example, when signing a SOAP message, selected elements are included in the signature. XML 350
Schema Part 2 provides several built-in data types that may be used for identifying and 351
referencing elements, but their use requires that consumers of the SOAP message either to have 352
or be able to obtain the schemas where the identity or reference mechanisms are defined. In 353
some circumstances, for example, intermediaries, this can be problematic and not desirable. 354

Consequently a mechanism is required for identifying and referencing elements, based on the 355
SOAP foundation, which does not rely upon complete schema knowledge of the context in which 356
an element is used. This functionality can be integrated into SOAP processors so that elements 357
can be identified and referred to without dynamic schema discovery and processing. 358

This section specif ies a namespace-qualified global attribute for identifying an element which can 359
be applied to any element that either allows arbitrary attributes or specifically allows a particular 360
attribute. 361

4.2 Id Schema 362

To simplify the processing for intermediaries and receivers, a common attribute is defined for 363
identifying an element. This attribute ut ilizes the XML Schema ID type and specifies a common 364
attribute for indicating this information for elements. 365

The syntax for this attribute is as follows: 366
<anyElement wsu:Id="...">...</anyElement> 367

The following describes the attribute illustrated above: 368

.../@wsu:Id 369

This attribute, defined as type xsd:ID, provides a well-known attribute for specifying the 370
local ID of an element. 371

Two wsu:Id attributes within an XML document MUST NOT have the same value. 372
Implementations MAY rely on XML Schema validation to prov ide rudimentary enforcement for 373
intra-document uniqueness. However, applications SHOULD NOT rely on schema validation 374
alone to enforce uniqueness. 375
This specification does not specify how this attribute will be used and it is expected that other 376
specifications MAY add additional semantics (or restrictions) for their usage of this attribute. 377
The following example illustrates use of this attribute to identify an element: 378

Deleted:

Deleted: foundation, that

Deleted: arrtibute

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 13 of 48

<x:myElement wsu:Id="ID1" xmlns:x="..." 379
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002 /xx/utility"/> 380

Conformant processors that do support XML Schema MUST treat this attribute as if it was 381
defined using a global attribute declaration. 382

Conformant processors that do not support XML Schema or DTDs are strongly encouraged to 383
treat this attribute information item as if its PSVI has a [type definition] which {target namespace} 384
is "http://www.w3.org/2001/XMLSchema" and which {name} is "Id." Specifically, 385
implementations MAY support the value of the wsu:Id as the valid identifier for use as an 386
XPointer shorthand pointer. 387

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 14 of 48

5 Security Header 388

The <wsse:Security> header block provides a mechanism for attaching security- related 389
information targeted at a specific receiver (SOAP role). This MAY be either the ultimate receiver 390
of the message or an intermediary. Consequently, this header block MAY be present multiple 391
times in a SOAP message. An intermediary on the message path MAY add one or more new 392
sub-elements to an existing <wsse:Security> header block if they are targeted for the same 393
SOAP node or it MAY add one or more new headers for additional targets. 394

As stated, a message MAY have multiple <wsse:Security> header blocks if they are targeted 395
for separate receivers. However, only one <wsse:Security> header block can omit the 396
S:role attribute and no two <wsse:Security> header blocks can have the same value for 397
S:role . Message security information targeted for different receivers MUST appear in different 398
<wsse:Security> header blocks. The <wsse:Security> header block without a specified 399
S:role can be consumed by anyone, but MUST NOT be removed prior to the final destination or 400
endpoint . 401

As elements are added to the <wsse:Security> header block, they SHOULD be prepended to 402
the existing elements. As such, the <wsse:Security> header block represents the signing and 403
encryption steps the message sender took to create the message. This prepending rule ensures 404
that the receiving application MAY process sub-elements in the order they appear in the 405
<wsse:Security> header block, because there will be no forward dependency among the sub-406
elements. Note that this specification does not impose any specific order of processing the sub-407
elements. The receiving application can use whatever policy is needed. 408

When a sub-element refers to a key carried in another sub-element (for example, a signature 409
sub-element that refers to a binary security token sub-element that contains the X.509 certificate 410
used for the signature), the key-bearing security token SHOULD be prepended to the key-using 411
sub-element being added, so that the key material appears before the key-using sub-element. 412
The following illustrates the syntax of this header: 413

<S:Envelope> 414
 <S:Header> 415
 ... 416
 <wsse:Security S:role="..." S:mustUnderstand="..."> 417
 ... 418
 </wsse:Security> 419
 ... 420
 </S:Header> 421
 ... 422
</S:Envelope> 423

The following describes the attributes and elements listed in the example above: 424

/wsse:Security 425

This is the header block for passing security-related message information to a receiver. 426

/wsse:Security/@S:role 427

This attribute allows a specific SOAP role to be identified. This attribute is optional; 428
however, no two instances of the header block may omit a role or specify the same role. 429

/wsse:Security/{any} 430

This is an extensibility mechanism to allow different (extensible) types of security 431
information, based on a schema, to be passed. 432

/wsse:Security/@{any} 433

Deleted:

Deleted: n

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 15 of 48

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 434
added to the header. 435

All compliant implementations MUST be able to process a <wsse:Security> element. 436

All compliant implementations must declare which profiles they support and MUST be able to 437
process a <wsse:Security> element including any sub-elements which may be defined by 438
profile. 439

The next few sections outline elements that are expected to be used within the 440
<wsse:Security> header. 441

Formatted: Code Embedded,ce

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 16 of 48

6 Security Tokens 442

This chapter discusses different types of security tokens and how they are attached to messages. 443

6.1 User Name Tokens 444

6.1.1 Usernames and Passwords 445

The <wsse:UsernameToken> element is introduced as a way of proving a username and 446
optional password information. This element is optionally included in the <wsse:Security> 447
header. 448

Within this element, a <wsse:Password> element MAY be specified. The password has an 449
associated type – either wsse:PasswordText or wsse:PasswordDigest. The 450
wsse:PasswordText is not limited to only the actual password. Any password equivalent such 451
as a derived password or S/KEY (one time password) can be used. 452

The wsse:PasswordDigest is defined as a base64-encoded SHA1 hash value of the UTF8-453
encoded password. However, unless this digested password is sent on a secured channel, the 454
digest offers no real additional security than wsse:PasswordText . 455

To address this issue, two optional elements are introduced in the <wsse:UsernameToken> 456
element: <wsse:Nonce> and <wsu:Created> . If either of these is present, they MUST be 457
included in the digest value as follows: 458

Password_digest = SHA1 (nonce + created + password) 459

That is, concatenate the nonce, creation timestamp, and the password (or shared secret or 460
password equivalent) and include the digest of the combination. This helps obscure the 461
password and offers a basis for preventing replay attacks. It is RECOMMENDED that timestamps 462
and nonces be cached for a given period of time, as a guideline a value of five minutes can be 463
used as a minimum to detect replays, and that timestamps older than that given period of time set 464
be rejected. 465
Note that the nonce is hashed using the octet sequence of its decoded value while the timestamp 466
is hashed using the octet sequence of its UTF8 encoding as specified in the contents of the 467
element. 468

Note that password digests SHOULD NOT be used unless the plain text password, secret, or 469
password-equivalent is available to both the requestor and the receiver. 470

The following illustrates the syntax of this element: 471

<wsse:UsernameToken wsu:Id="..."> 472
 <wsse:Username>...</wsse:Username> 473
 <wsse:Password Type="...">...</wsse:Password> 474
 <wsse:Nonce EncodingType="...">...</wsse:Nonce> 475
 <wsu:Created>...</wsu:Created> 476
</wsse:UsernameToken> 477

The following describes the attributes and elements listed in the example above: 478

/wsse:UsernameToken 479

This element is used for sending basic authentication information. 480

/wsse:UsernameToken/@wsu:Id 481

A string label for this security token. 482

/wsse:UsernameToken/Username 483

Formatted: Default Paragraph Font

Deleted: can

Deleted: “

Deleted: ”

Deleted: additional

Deleted: are

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 17 of 48

This required element specifies the username of the authenticated or the party to be 484
authenticated. 485

/wsse:UsernameToken/Username/@{any} 486

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 487
added to the header. 488

/wsse:UsernameToken/Password 489
This optional element provides password information. It is RECOMMENDED that this 490
element only be passed when a secure transport is being used. 491

/wsse:UsernameToken/Password/@Type 492

This optional attribute specifies the type of password being provided. The following table 493
identifies the pre-defined types: 494

Value Description

wsse:PasswordText (default) The actual password for the username or
derived password or S/KEY .

wsse:PasswordDigest The digest of the password for the username
using the algorithm described above.

/wsse:UsernameToken/Password/@{any} 495

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 496
added to the header. 497

/wsse:UsernameToken//wsse:Nonce 498

This optional element specifies a cryptographically random nonce. 499

/wsse:UsernameToken//wsse:Nonce/@EncodingType 500

This optional attribute specifies the encoding type of the nonce (see definition of 501
<wsse:BinarySecurityToken> for valid values). If this attribute isn't specified then 502
the default of Base64 encoding is used. 503

/wsse:UsernameToken//wsu:Created 504

This optional element which specifies a timestamp. 505

/wsse:UsernameToken/{any} 506

This is an extensibility mechanism to allow different (extensible) types of security 507
information, based on a schema, to be passed. 508

/wsse:UsernameToken/@{any} 509

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 510
added to the header. 511

All compliant implementations MUST be able to process a <wsse:UsernameToken> element. 512

The following illustrates the use of this element (note that in this example the password is sent in 513
clear text and the message should therefore be sent over a confidential channel: 514

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap -envelope" 515
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext"> 516
 <S:Header> 517
 ... 518
 <wsse:Security> 519
 <wsse:UsernameToken > 520
 <wsse:Username>Zoe</wsse:Username> 521
 <wsse:Password>ILoveDogs</wsse:Password> 522
 </wsse:UsernameToken> 523
 </wsse:Security> 524
 ... 525

Deleted: authenticating party

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 18 of 48

 </S:Header> 526
 ... 527
</S:Envelope> 528

The following example illustrates a hashed password using both a nonce and a timestamp with 529
the password hashed: 530

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap -envelope" 531
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext"> 532
 <S:Header> 533
 ... 534
 <wsse:Security> 535
 <wsse:UsernameToken 536
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext" 537
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/xx/utility"> 538
 <wsse:Username>NNK</wsse:Username> 539
 <wsse:Password Type="wsse:PasswordDigest"> 540
 FEdR...</wsse:Password> 541
 <wsse:Nonce>FKJh...</wsse:Nonce> 542
 <wsu:Created>2001-10-13T09:00:00Z </wsu:Created> 543
 </wsse:UsernameToken> 544
 </wsse:Security> 545
 ... 546
 </S:Header> 547
 ... 548
</S:Envelope> 549

6.2 Binary Security Tokens 550

6.2.1 Attaching Security Tokens 551

For binary-formatted security tokens, this specification provides a 552
<wsse:BinarySecurityToken> element that can be included in the <wsse:Security> 553
header block.. 554

6.2.2 Processing Rules 555

This specification describes the processing rules for using and processing XML Signature and 556
XML Encryption. These rules MUST be followed when using any type of security token including 557
XML-based tokens. Note that this does NOT mean that binary security tokens MUST be signed 558
or encrypted – only that if signature or encryption is used in conjunction with binary security 559
tokens, they MUST be used in a way that conforms to the processing rules defined by this 560
specification. 561

6.2.3 Encoding Binary Security Tokens 562

Binary security tokens (e.g., X.509 certificates and Kerberos tickets) or other non-XML formats 563
require a special encoding format for inclusion. This section describes a basic framework for 564
using binary security tokens. Subsequent specifications describe rules and processes for specific 565
binary security token formats. 566

The <wsse:BinarySecurityToken> element defines two attributes that are used to interpret 567
it. The ValueType attribute indicates what the security token is, for example, a Kerberos ticket. 568
The EncodingType tells how the security token is encoded, for example Base64Binary. 569

The following is an overview of the syntax: 570

<wsse:BinarySecurityToken wsu:Id=... 571
 EncodingType=... 572
 ValueType=.../> 573

The following describes the attributes and elements listed in the example above: 574

Deleted: This specification defines
the <wsse:Security> header as a
mechanism for conveying security
information with and about a SOAP
message. This header is, by design,
extensible to support many types of
security information

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 19 of 48

/wsse:BinarySecurityToken 575

This element is used to include a binary-encoded security token. 576
/wsse:BinarySecurityToken/@wsu:Id 577

An optional string label for this security token. 578

/wsse:BinarySecurityToken/@ValueType 579

The ValueType attribute is used to indicate the "value space" of the encoded binary 580
data (e.g. an X.509 certificate). The ValueType attribute allows a qualified name that 581
defines the value type and space of the encoded binary data. This attribute is extensible 582
using XML namespaces. 583

/wsse:BinarySecurityToken/@EncodingType 584

The EncodingType attribute is used to indicate, using a QName, the encoding format of 585
the binary data (e.g., wsse:Base64Binary). A new attribute is introduced, as there are 586
currently issues that make derivations of mixed simple and complex types difficult within 587
XML Schema. The EncodingType attribute is interpreted to indicate the encoding 588
format of the element. The following encoding formats are pre-defined: 589

QName Description

wsse:Base64Binary XML Schema base 64 encoding

/wsse:BinarySecurityToken/@{any} 590

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 591
added. 592

All compliant implementations MUST be able to support a <wsse:BinarySecurityToken> 593
element. 594

When a <wsse:BinarySecurityToken> is included in a signature—that is, it is referenced 595
from a <ds:Signature> element—care should be taken so that the canonicalization algorithm 596
(e.g., Exclusive XML Canonicalization) does not allow unauthorized replacement of namespace 597
prefixes of the QNames used in the attribute or element values. In particular, it is 598
RECOMMENDED that these namespace prefixes are declared within the 599
<wsse:BinarySecurityToken> element if this token does not carry the validating key (and 600
consequently it is not cryptographically bound to the signature) . For example, if we wanted to 601
sign the previous example, we need to include the consumed namespace definitions. 602

In the following example, a custom ValueType is used. Consequently, the namespace definition 603
for this ValueType is included in the <wsse:BinarySecurityToken> element. Note that the 604
definition of wsse is also included as it is used for the encoding type and the element. 605

<wsse:BinarySecurityToken 606
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext" 607
 wsu:Id="myToken" 608
 ValueType="x:MyType" xmlns:x="http://www.fabrikam123.com/x" 609
 EncodingType="wsse:Base64Binary"> 610
 MIIEZzCCA9CgAwIBAgIQEmtJZc0... 611
</wsse:BinarySecurityToken> 612

6.3 XML Tokens 613

This section presents the basic principles and framework for using XML-based security tokens. 614
Subsequent specifications describe rules and processes for specific XML-based security token 615
formats. 616

Deleted: wsse: HexBinary

Deleted: used in validating

... [1]

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 20 of 48

6.3.1 Attaching Security Tokens 617

This specification defines the <wsse:Security> header as a mechanism for conveying security 618
information with and about a SOAP message. This header is, by design, extensible to support 619
many types of security information. 620

For security tokens based on XML, the extensibility of the <wsse:Security> header allows for 621
these security tokens to be directly inserted into the header. 622

6.3.2 Identifying and Referencing Security Tokens 623

This specification also defines multiple mechanisms for identifying and referencing security 624
tokens using the wsu:Id attribute and the <wsse:SecurityTokenReference> element (as well 625
as some additional mechanisms). Please refer to the specific binding documents for the 626
appropriate reference mechanism. However, specific extensions MAY be made to the 627
wsse:SecurityTokenReference> element. 628

6.3.3 Subject Confirmation 629

This specification does not dictate if and how subject confirmation must be done, however, it does 630
define how signatures can be used and associated with security tokens (by referencing them in 631
the signature) as a form of Proof-of-Posession.. 632

6.3.4 Processing Rules 633

This specification describes the processing rules for using and processing XML Signature and 634
XML Encryption. These rules MUST be followed when using any type of security token including 635
XML-based tokens. Note that this does NOT mean that XML-based tokens MUST be signed or 636
encrypted – only that if signature or encryption is used in conjunction with XML-based tokens, 637
they MUST be used in a way that conforms to the processing rules defined by this specification. 638

Deleted: Where possible, the wsu:Id
attribute SHOULD be used to
reference XML-based tokens

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 21 of 48

7 Token References 639

This chapter discusses and defines mechanisms for referencing security tokens. 640

7.1 SecurityTokenReference Element 641

A security token conveys a set of claims . Sometimes these claims reside somewhere else and 642
need to be "pulled" by the receiving application. The <wsse:SecurityTokenReference> 643
element provides an extensible mechanism for referencing security tokens. 644

This element provides an open content model for referencing security tokens because not all 645
tokens support a common reference pattern. Similarly, some token for mats have closed 646
schemas and define their own reference mechanisms. The open content model allows 647
appropriate reference mechanisms to be used when referencing corresponding token types. 648

The following illustrates the syntax of this element: 649

<wsse:SecurityTokenReference wsu:Id="..."> 650
 ... 651
</wsse:SecurityTokenReference> 652

The following describes the elements defined above: 653

/ wsse:SecurityTokenReference 654

This element provides a reference to a security token. 655

/ wsse:SecurityTokenReference/@wsu:Id 656

A string label for this security token reference. 657

/ wsse:SecurityTokenReference/{any} 658

This is an extensibility mechanism to allow different (extensible) types of security 659
references, based on a schema, to be passed. 660

/ wsse:SecurityTokenReference/@{any} 661
This is an extensibility mechanism to allow additional attributes, based on schemas, to be 662
added to the header. 663

The following illustrates the use of this element: 664

<wsse:SecurityTokenReference 665
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002 /xx/secext"> 666
 <wsse:Reference 667
 URI="http://www.fabrikam123.com/tokens/Zoe# X509token"/> 668
</wsse:SecurityTokenReference> 669

All compliant implementations MUST be able to process a 670
<wsse:SecurityTokenReference> element. 671

This element can also be used as a direct child element of <ds:KeyInfo> to indicate a hint to 672
retrieve the key information from a security token placed somewhere else. In particular, it is 673
RECOMMENDED, when using XML Signature and XML Encryption, that a 674
<wsse:SecurityTokenReference> element be placed inside a <ds:KeyInfo> to reference 675
the security token used for the signature or encryption. 676

7.2 Direct References 677

The <wsse:Reference> element provides an extensible mechanism for directly referencing 678
security tokens using URIs. 679

The following illustrates the syntax of this element: 680

<wsse:SecurityTokenReference wsu:Id="..."> 681

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 22 of 48

 <wsse:Reference URI="..." ValueType="..."/ > 682
</wsse:SecurityTokenReference> 683

The following describes the elements defined above: 684

/ wsse:SecurityTokenReference/Reference 685

This element is used to identify a URI location for locating a security token. 686

/ wsse:SecurityTokenReference/Reference/@URI 687

This optional attribute specifies a URI for where to find a security token. 688

/ wsse:SecurityTokenReference/Reference/@ValueType 689

This optional attribute specifies a QName that is used to identify the type of token being 690
referenced (see <wsse:BinarySecurityToken>). This specification does not define 691
any processing rules around the usage of this attribute, however, specification for 692
individual token types MAY define specific processing rules and semantics around the 693
value of the URI and how it is interpreted. If this attribute is not present, the URI is 694
processed as a normal URI. 695

/ wsse:SecurityTokenReference/Reference/{any} 696

This is an extensibility mechanism to allow different (extensible) types of security 697
references, based on a schema, to be passed. 698

/ wsse:SecurityTokenReference/Reference/@{any} 699

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 700
added to the header. 701

The following illustrates the use of this element: 702

<wsse:SecurityTokenReference 703
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext"> 704
 <wsse:Reference 705
 URI="http://www.fabrikam123.com/tokens/Zoe# X509token"/> 706
</wsse:SecurityTokenReference> 707

7.3 Key Identifiers 708

If a direct reference is not possible, then it is RECOMMENDED to use a key identifier to 709
specify/reference a security token instead of a key name. The <wsse:KeyIdentifier> 710
element is placed in the <wsse:SecurityTokenReference> element to reference a token 711
using an identifier. This element SHOULD be used for all key identifiers. 712

The processing model assumes that the key identifier for a security token is constant. 713
Consequently, processing a key identifier is simply looking for a security token whose key 714
identifier matches a given specified consant. 715

The following is an overview of the syntax: 716
<wsse:SecurityTokenReference> 717
 <wsse:KeyIdentifier wsu:Id="..." 718
 ValueType="..." 719
 EncodingType= "..."> 720
 ... 721
 </wsse:KeyIdentifier> 722
</wsse:SecurityTokenReference> 723

The following describes the attributes and elements listed in the example above: 724

/ wsse:SecurityTokenReference /KeyIdentifier 725
This element is used to include a binary-encoded key identifier. 726

/ wsse:SecurityTokenReference/KeyIdentifier/@wsu:Id 727

An optional string label for this identifier. 728

/ wsse:SecurityTokenReference/KeyIdentifier/@ValueType 729

Deleted: required

Deleted: ¶

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 23 of 48

The ValueType attribute is used to optionally indicate the type of token with the 730
specified identifier. If specified, this is a hint to the receiver. Any value specified for 731
binary security tokens, or any XML token element QName can be specified here. If this 732
attribute isn't specified, then the identifier applies to any type of token. 733

/ wsse:SecurityTokenReference/KeyIdentifier /@EncodingType 734

The optional EncodingType attribute is used to indicate, using a QName, the encoding 735
format of the binary data (e.g., wsse:Base64Binary). The base values defined in this 736
specification are used: 737

QName Description

wsse:Base64Binary XML Schema base 64 encoding (default)

/ wsse:SecurityTokenReference/KeyIdentifier/@{any} 738

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 739
added. 740

7.4 ds:KeyInfo 741

The <ds:KeyInfo> element (from XML Signature) can be used for carrying the key information 742
and is allowed for different key types and for future extensibility. However, in this specificat ion, 743
the use of <wsse:BinarySecurityToken> is the RECOMMENDED way to carry key material 744
if the key type contains binary data. Please refer to the specific binding documents for the 745
appropriate way to carry key material. 746

The following example illustrates use of this element to fetch a named key: 747
<ds:KeyInfo Id="..." xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 748
 <ds:KeyName>CN=Hiroshi Maruyama, C=JP</ds:KeyName> 749
</ds:KeyInfo> 750

7.5 Key Names 751

It is strongly RECOMMEND to use key identifiers. However, if key names are used, then it is 752
strongly RECOMMENDED that <ds:KeyName> elements conform to the attribute names in 753
section 2.3 of RFC 2253 (this is recommended by XML Signature for <X509SubjectName>) for 754
interoperability. 755

Additionally, defined are the following convention for e-mail addresses, which SHOULD conform 756
to RFC 822: 757

 EmailAddress=ckaler@microsoft.com 758

7.6 Token Reference Lookup Processing Order 759

There are a number of mechanisms described in XML Signature and this specification 760
for referencing security tokens. To resolve possible ambiguities when more than one 761
of these reference constructs is included in a single KeyInfo element, the following 762
processing order SHOULD be used: 763

1. Resolve any <wsse:Reference> elements (specifi ed within 764
<wsse:SecurityTokenReference>). 765

2. Resolve any <wsse:KeyIdentifier> elements (specified within 766
<wsse:SecurityTokenReference>). 767

3. Resolve any <ds:KeyName> elements. 768

Formatted Table

Deleted: wsse: HexBinary ... [2]

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 24 of 48

4. Resolve any other <ds:KeyInfo> elements. 769

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 25 of 48

8 Signatures 770

Message senders may want to enable message receivers to determine whether a message was 771
altered in transit and to verify that a message was sent by the possessor of a particular security 772
token. 773

The validation of an XML signature that uses a SecurityTokenReference to identify the key used 774
to create the signature, supports the application (by the relying party/receiver) of any other claims 775
made within the referenced token (most notably the identity bound to the key) to the signature 776
author (that is, if the relying party trusts the authority responsible for the claims in the referenced 777
token). 778

Because of the mutability of some SOAP headers, senders SHOULD NOT use the Enveloped 779
Signature Transform defined in XML Signature. Instead, messages SHOULD explicitly include 780
the desired elements to be signed. Similarly, senders SHOULD NOT use the Enveloping 781
Signature defined in XML Signature. 782

This specification allows for multiple signatures and signature formats to be attached to a 783
message, each referencing different, even overlapping, parts of the message. This is important 784
for many distributed applications where messages flow through multiple processing stages. For 785
example, a sender may submit an order that contains an orderID header. The sender signs the 786
orderID header and the body of the request (the contents of the order). When this is received by 787
the order processing sub-system, it may insert a shippingID into the header. The order sub-788
system would then sign, at a minimum, the orderID and the shippingID, and possibly the body as 789
well. Then when this order is processed and shipped by the shipping department, a shippedInfo 790
header might be appended. The shipping department would sign, at a minimum, the shippedInfo 791
and the shippingID and possibly the body and forward the message to the billing department for 792
processing. The billing department can verify the signatures and determine a valid chain of trust 793
for the order, as well as who did what. 794

All compliant implementations MUST be able to support the XML Signature standard. 795

8.1 Algorithms 796

This specification builds on XML Signature and therefore has the same algorithm requirements as 797
those specified in the XML Signature specification. 798
The following table outlines additional algorithms that are strongly RECOMMENDED by this 799
specification: 800

Algorithm Type Algorithm Algorithm URI

Canonicalization Exclusive XML
Canonicalization

http://www.w3.org/2001/10/xml-exc-c14n#

Transformations XML Decryption
Transformation

http://www.w3.org/2001/04/decrypt#

The Exclusive XML Canonicalization algorithm addresses the pitfalls of general canonicalization 801
that can occur from leaky namespaces with pre-existing signatures. 802

Finally, if a sender wishes to sign a message before encryption, they should use the Decryption 803
Transformation for XML Signature. 804

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 26 of 48

8.2 Signing Messages 805

The <wsse:Security> header block is used to carry a signature compliant with the XML 806
Signature specification within a SOAP Envelope for the purpose of signing one or more elements 807
in the SOAP Envelope. Multiple signature entries MAY be added into a single SOAP Envelope 808
within the <wsse:Security> header block. Senders should take care to sign all important 809
elements of the message, but care must be taken in creating a signing policy that will not to sign 810
parts of the message that might legitimately be altered in transit. 811

SOAP applications MUST satisfy the following conditions: 812

1. The application MUST be capable of processing the required elements defined in the 813
XML Signature specification. 814

2. To add a signature to a <wsse:Security> header block, a <ds:Signature> element 815
conforming to the XML Signature specification SHOULD be prepended to the existing 816
content of the <wsse:Security> header block. That is, the new information would be 817
before (prepended to) the old. All the <ds:Reference> elements contained in the 818
signature SHOULD refer to a resource within the enclosing SOAP envelope, or in an 819
attachment. 820

XPath filtering can be used to specify objects to be signed, as described in the XML Signature 821
specification. However, since the SOAP message exchange model allows intermediate 822
applications to modify the Envelope (add or delete a header block; for example), XPath filtering 823
does not always result in the same objects after message delivery. Care should be taken in using 824
XPath filtering so that there is no subsequent validation failure due to such modifications. 825

The problem of modification by intermediaries is applicable to more than just XPath processing. 826
Digital signatures, because of canonicalization and digests, present particularly fragile examples 827
of such relationships. If overall message processing is to remain robust, intermediaries must 828
exercise care that their transformations do not occur within the scope of a digitally signed 829
component. 830

Due to security concerns with namespaces, this specification strongly RECOMMENDS the use of 831
the "Exclusive XML Canonicalization" algorithm or another canonicalizat ion algorithm that 832
provides equivalent or greater protection. 833

For processing efficiency it is RECOMMENDED to have the signature added and then the 834
security token pre-pended so that a processor can read and cache the token before it is used. 835

 836

8.3 Signature Validation 837

The validation of a <ds:Signature> element inside an <wsse:Security> header block fails if 838

1. the syntax of the content of the entry does not conform to this specification, or 839
2. the validation of the signature contained in the entry fails according to the core validation 840

of the XML Signature specification, or 841
3. the application applying its own validation policy rejects the message for some reason 842

(e.g., the signature is created by an untrusted key – verifying the previous two steps only 843
performs cryptographic verification of the signature). 844

If the verification of the signature entry fails, applications MAY report the failure to the sender 845
using the fault codes defined in Section 12 Error Handling. 846

8.4 Example 847

The following sample message illustrates the use of integrity and security tokens. For this 848
example, we sign only the message body. 849

<?xml version="1.0" encoding="utf-8"?> 850

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 27 of 48

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap -envelope" 851
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 852
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext" 853
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"> 854
 <S:Header> 855
 <wsse:Security> 856
 <wsse:BinarySecurityToken 857
 ValueType="wsse:X509v3" 858
 EncodingType="wsse:Base64Binary" 859
 wsu:Id="X509Token"> 860
 MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i... 861
 </wsse:BinarySecurityToken> 862
 <ds:Signature> 863
 <ds:SignedInfo> 864
 <ds:CanonicalizationMethod Algorithm= 865
 "http://www.w3.org/2001/10/xml -exc-c14n#"/> 866
 <ds:SignatureMethod Algorithm= 867
 "http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 868
 <ds:Reference URI="#myBody"> 869
 <ds:Transforms> 870
 <ds:Transform Algorithm= 871
 "http://www.w3.org/2001/10/xml-exc-c14n#"/> 872
 </ds:Transforms> 873
 <ds:DigestMethod Algorithm= 874
 "http://www.w3.org/2000/09/xmldsig#sha1"/> 875
 <ds:DigestValue>EULddytSo1...</ds :DigestValue> 876
 </ds:Reference> 877
 </ds:SignedInfo> 878
 <ds:SignatureValue> 879
 BL8jdfToEb1l/vXcMZNNjPOV... 880
 </ds:SignatureValue> 881
 <ds:KeyInfo> 882
 <wsse:SecurityTokenReference> 883
 <wsse:Reference URI="#X509Token"/> 884
 </wsse:SecurityTokenReference> 885
 </ds:KeyInfo> 886
 </ds:Signature> 887
 </wsse:Security> 888
 </S:Header> 889
 <S:Body wsu:Id="myBody" > 890
 <tru:StockSymbol xmlns:tru="http:// www.fabrikam123.com/payloads"> 891
 QQQ 892
 </tru:StockSymbol> 893
 </S:Body> 894
</S:Envelope> 895

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 28 of 48

9 Encryption 896

This specification allows encryption of any combination of body blocks, header blocks, any of 897
these sub-structures, and attachments by either a common symmetric key shared by the sender 898
and the receiver or a key carried in the message in an encrypted form. 899

In order to allow this flexibility, this specification leverages the XML Encryption standard. 900
Specifically, described is how three elements (listed below and defined in XML Encryption) can 901
be used within the <wsse:Security> header block. When a sender or an intermediary 902
encrypts portion(s) of a SOAP message us ing XML Encryption they MUST add a sub-element to 903
the <wsse:Security> header block. Furthermore, the encrypting party MUST prepend the 904
sub-element into the <wsse:Security> header block for the targeted receiver that is expected 905
to decrypt these encrypted portions. The combined process of encrypting portion(s) of a 906
message and adding one of these sub-elements referring to the encrypted portion(s) is called an 907
encryption step hereafter. The sub-element should have enough information for the receiver to 908
identify which portions of the message are to be decrypted by the receiver. 909

All compliant implementations MUST be able to support the XML Encryption standard. 910

 911

9.1 xenc:ReferenceList 912

When encrypting elements or element contents within a SOAP envelope, the 913
<xenc:ReferenceList> element from XML Encryption MAY be used to create a manifest of 914
encrypted portion(s), which are expressed as <xenc:EncryptedData> elements within the 915
envelope. An element or element content to be encrypted by this encryption step MUST be 916
replaced by a corresponding <xenc:EncryptedData> according to XML Encryption. All the 917
<xenc:EncryptedData> elements created by this encryption step SHOULD be listed in 918
<xenc:DataReference> elements inside an <xenc:ReferenceList> element. 919

Although in XML Encryption, <xenc:ReferenceList> is originally designed to be used within 920
an <xenc:EncryptedKey> element (which implies that all the referenced 921
<xenc:EncryptedData> elements are encrypted by the same key), this specification allows 922
that <xenc:EncryptedData> elements referenced by the same <xenc:ReferenceList> 923
MAY be encrypted by different keys. Each encryption key can be specified in <ds:KeyInfo> 924
within individual <xenc:EncryptedData>. 925

A typical situation where the <xenc:ReferenceList> sub-element is useful is that the sender 926
and the receiver use a shared secret key. The following illustrates the use of this sub-element: 927

<S:Envelope 928
 xmlns:S="http://www.w3.org/2001/12/soap-envelope" 929
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 930
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext" 931
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"> 932
 <S:Header> 933
 <wsse:Security> 934
 <xenc:ReferenceList> 935
 <xenc:DataReference URI="#bodyID"/> 936
 </xenc:ReferenceList> 937
 </wsse:Security> 938
 </S:Header> 939
 <S:Body> 940
 <xenc:Encrypt edData Id="bodyID"> 941
 <ds:KeyInfo> 942
 <ds:KeyName>CN=Hiroshi Maruyama, C=JP</ds:KeyName> 943
 </ds:KeyInfo> 944

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 29 of 48

 <xenc:CipherData> 945
 <xenc:CipherValue>...</xenc:CipherValue> 946
 </xenc:CipherData> 947
 </xenc:EncryptedData> 948
 </S:Body> 949
</S:Envelope> 950

9.2 xenc:EncryptedKey 951

When the encryption step involves encrypting elements or element contents within a SOAP 952
envelope with a key, which is in turn to be encrypted by the recipient’s key and embedded in the 953
message, <xenc:EncryptedKey> MAY be used for carrying such an encrypted key. This sub-954
element SHOULD have a manifest, that is, an <xenc:ReferenceList> element, in order for 955
the recipient to know the portions to be decrypted with this key (if any exist). An element or 956
element content to be encrypted by this encryption step MUST be replaced by a corresponding 957
<xenc:EncryptedData> according to XML Encryption. All the <xenc:EncryptedData> 958
elements created by this encryption step SHOULD be listed in the <xenc:ReferenceList> 959
element inside this sub-element. 960

This construct is useful when encryption is done by a randomly generated symmetric key that is 961
in turn encrypted by the recipient’s public key. The following illustrates the use of this element: 962

<S:Envelope 963
 xmlns:S="http://www.w3.org/2001/12/soap-envelope" 964
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 965
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext" 966
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"> 967
 <S:Header> 968
 <wsse:Security> 969
 <xenc:EncryptedKey> 970
 <xenc:EncryptionMethod Algorithm="..."/> 971
 <ds:KeyInfo> 972
 <wsse:SecurityTokenReference> 973
 <wsse:KeyIdentifier EncodingType="wsse:Base64Binary" 974
 ValueType="wsse:X509v3">MIGfMa0GCSq ... 975
 </wsse:KeyIdentifier> 976
 </wsse:SecurityTokenReference> 977
 </ds:KeyInfo> 978
 <xenc:CipherData> 979
 <xenc:CipherValue>...</xenc:CipherValue> 980
 </xenc:CipherData> 981
 <xenc:ReferenceList> 982
 <xenc:DataReference URI="#bodyID"/> 983
 </xenc:ReferenceList> 984
 </xenc:EncryptedKey> 985
 </wsse:Securi ty> 986
 </S:Header> 987
 <S:Body> 988
 <xenc:EncryptedData Id="bodyID"> 989
 <xenc:CipherData> 990
 <xenc:CipherValue>...</xenc:CipherValue> 991
 </xenc:CipherData> 992
 </xenc:EncryptedData> 993
 </S:Body> 994
</S:Envelope> 995

While XML Encryption specifies that <xenc:EncryptedKey> elements MAY be specified in 996
<xenc:EncryptedData> elements, this specification strongly RECOMMENDS that 997
<xenc:EncryptedKey> elements be placed in the <wsse:Security> header. 998

Comment: A naked
wsse:KeyIdentifier would be illegal.

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 30 of 48

9.3 xenc:EncryptedData 999

In some cases security-related information is provided in a purely encrypted form or non-XML 1000
attachments MAY be encrypted. The <xenc:EncryptedData> element from XML Encryption 1001
can be used for these scenarios. For each part of the encrypted attachment, one encryption step 1002
is needed; that is, for each attachment to be encrypted, one <xenc:EncryptedData> sub-1003
element MUST be added with the following rules (note that steps 2-4 applies only if MIME types 1004
are being used for attachments). 1005

1. The contents of the attachment MUST be replaced by the encrypted octet string. 1006

2. The replaced MIME part MUST have the media type application/octet-stream . 1007

3. The original media type of the attachment MUST be declared in the MimeType attribute 1008
of the <xenc:EncryptedData> element. 1009

4. The encrypted MIME part MUST be referenced by an <xenc:CipherReference> 1010
element with a URI that points to the MIME part with cid: as the scheme component of 1011
the URI. 1012

The following illustrates the use of this element to indicate an encrypted attachment: 1013
<S:Envelope 1014
 xmlns:S="http://www.w3.org/2001/12/soap-envelope" 1015
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 1016
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext" 1017
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"> 1018
 <S:Header> 1019
 <wsse:Security> 1020
 <xenc:EncryptedData MimeType="image/png"> 1021
 <ds:KeyInfo> 1022
 <wsse:SecurityTokenReference> 1023
 <xenc:EncryptionMethod Algorithm="..."/> 1024
 <wsse:KeyIdentifier Encodi ngType="wsse:Base64Binary" 1025
 ValueType="wsse:X509v3">MIGfMa0GCSq ... 1026
 </wsse:KeyIdentifier> 1027
 </wsse:SecurityTokenReference> 1028
 </ds:KeyInfo> 1029
 <xenc:CipherData> 1030
 <xenc:CipherReference URI=" cid:image"/> 1031
 </xenc:CipherData> 1032
 </xenc:EncryptedData> 1033
 </wsse:Security> 1034
 </S:Header> 1035
 <S:Body> </S:Body> 1036
</S:Envelope> 1037

9.4 Processing Rules 1038

Encrypted parts or attachments to the SOAP message using one of the sub-elements defined 1039
above MUST be in compliance with the XML Encryption specification. An encrypted SOAP 1040
envelope MUST still be a valid SOAP envelope. The message creator MUST NOT encrypt the 1041
<S:Envelope> , <S:Header>, or <S:Body> elements but MAY encrypt child elements of 1042
either the <S:Header> and <S:Body> elements. Multiple steps of encryption MAY be added 1043
into a single <Security> header block if they are targeted for the same recipient. 1044

When an element or element content inside a SOAP envelope (e.g. of the contents of <S:Body>) 1045
is to be encrypted, it MUST be replaced by an <xenc:EncryptedData>, according to XML 1046
Encryption and it SHOULD be referenced from the <xenc:ReferenceList> element created 1047
by this encryption step. This specification allows placing the encrypted octet stream in an 1048
attachment. For example, if an <xenc:EncryptedData> appearing inside the <S:Body> 1049
element has <xenc:CipherReference> that refers to an attachment, then the decrypted octet 1050

Deleted: foo:bar

Deleted: ¶

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 31 of 48

stream SHALL replace the <xenc:EncryptedData> . However, if the <enc:EncryptedData> 1051
element is located in the <Security> header block and it refers to an attachment, then the 1052
decrypted octet stream MUST replace the encrypted octet stream in the attachment. 1053

9.4.1 Encryption 1054

The general steps (non-normative) for creating an encrypted SOAP message in compliance w ith 1055
this specification are listed below (note that use of <xenc:ReferenceList> is 1056
RECOMMENDED). 1057

1. Create a new SOAP envelope. 1058

2. Create an <xenc:ReferenceList> sub-element, an <xenc:EncryptedKey> sub-1059
element, or an <xenc:EncryptedData> sub-element in the <Security> header 1060
block (note that if the SOAP "role" and "mustUnderstand" attributes are different, then a 1061
new header block may be necessary), depending on the type of encryption. 1062

3. Locate data items to be encrypted, i.e., XML elements, element contents within the target 1063
SOAP envelope, and attachments. 1064

4. Encrypt the data items as follows: For each XML element or element content within the 1065
target SOAP envelope, encrypt it according to the processing rules of the XML 1066
Encryption specification. Each selected original element or element content MUST be 1067
removed and replaced by the resulting <xenc:EncryptedData> element. For an 1068
attachment, the contents MUST be replaced by encrypted cipher data as described in 1069
section 8.3 Signature Validation. 1070

5. The optional <ds:KeyInfo> element in the <xenc:EncryptedData> element MAY 1071
reference another <ds:KeyInfo> element. Note that if the encryption is based on an 1072
attached security token, then a <SecurityTokenReference> element SHOULD be 1073
added to the <ds:KeyInfo> element to facilitate locating it. 1074

6. Create an <xenc:DataReference> element referencing the generated 1075
<xenc:EncryptedData> elements. Add the created <xenc:DataReference> 1076
element to the <xenc:ReferenceList>. 1077

9.4.2 Decryption 1078

On receiving a SOAP envelope with encryption header entries, for each encryption header entry 1079
the following general steps should be processed (non-normative): 1080

1. Locate the <xenc:EncryptedData> items to be decrypted (possibly using the 1081
<xenc:ReferenceList>). 1082

2. Decrypt them as follows: For each element in the target SOAP envelope, decrypt it 1083
according to the processing rules of the XML Encryption specification and the processing 1084
rules listed above. 1085

3. If the decrypted data is part of an attachment and MIME types were used, then revise the 1086
MIME type of the attachment to the original MIME type (if one exists). 1087

If the decryption fails for some reason, applications MAY report the failure to the sender using the 1088
fault code defined in Section 12 Error Handling. 1089

9.5 Decryption Transformation 1090

The ordering semantics of the <wsse:Security> header are sufficient to determine if 1091
signatures are over encrypted or unencrypted data. However, when a signature is included in 1092
one <wsse:Security> header and the encryption takes place in another <wsse:Security> 1093
header, the order may not be explicitly understood. 1094

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 32 of 48

If the sender wishes to sign a message that is subsequently encrypted by an intermediary along 1095
the transmission path, the sender MAY use the Decryption Transform for XML Signature to 1096
explicitly specify the order of decryption. 1097

 1098

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 33 of 48

10 Message Timestamps 1099

When requestors and services are exchanging messages, it is often important to be able to 1100
understand the freshness of a message. In some cases, a message may be so stale that the 1101
receiver may decide to ignore it. 1102

This specification does not provide a mechanism for synchronizing time. The assumption is 1103
either that the receiver is using a mechanism to synchronize time (e.g. NTP) or, more likely for 1104
federated applications, that they are making assessments about time based on three factors: 1105
creation time of the message, transmission checkpoints, and transmission delays. 1106

To assist a receiver in making an assessment of staleness, a requestor may wish to indicate a 1107
suggested expiration time, beyond which the requestor recommends ignoring the message. The 1108
specification provides XML elements by which the requestor may express the expiration time of a 1109
message, the requestor’s clock time at the moment the message was created, checkpoint 1110
timestamps (when an role received the message) along the communication path, and the delays 1111
introduced by transmission and other factors subsequent to creation. The quality of the delays is 1112
a function of how well they reflect the actual delays (e.g., how well they reflect transmission 1113
delays). 1114

It should be noted that this is not a protocol for making assertions or determining when, or how 1115
fast, a service produced or processed a message. 1116

This specification defines and illustrates time references in terms of the dateTime type defined in 1117
XML Schema. It is RECOMMENDED that all time references use this type. It is further 1118
RECOMMENDED that all references be in UTC time. If, however, other time types are used, 1119
then the ValueType attribute (described below) MUST be specified to indicate the data type of the 1120
time format. 1121

10.1 Model 1122

This specification provides several tools for receivers to use to assess the expiration time 1123
presented by the requestor. The first is the creation time. Receivers can use this value to assess 1124
possible clock synchronization issues. However, to make some assessments, the time required 1125
to go from the requestor to the receiver may also be useful in making this assessment. Two 1126
mechanisms are provided for this. The first is that intermediaries may add timestamp elements 1127
indicating when they received the message. This knowledge can be useful to get a holistic view 1128
of clocks along the message path. The second is that intermediaries can specify any delays they 1129
imposed on message delivery. It should be noted that not all delays can be accounted for, such 1130
as wire time and parties that don't report. Receivers need to take this into account when 1131
evaluating clock trust. 1132

10.2 Timestamp Elements 1133

This specification defines the following message timestamp elements. These elements are 1134
defined for use with the <wsu:Timestamp> header for SOAP messages, but they can be used 1135
anywhere within the header or body that creation, expiration, and intermediary markers are 1136
needed. 1137

10.2.1 Expiration 1138

The <wsu:Expires> element specifies the expiration timestamp. The exact meaning and 1139
processing rules for expiration depend on the context in which the element is used. The syntax 1140
for this element is as follows: 1141

<wsu:Expires ValueType="..." wsu:Id="...">...</wsu:Expires> 1142

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 34 of 48

The following describes the attributes and elements listed in the schema above: 1143

/wsu:Expires 1144
This element's value represents an expiration time. The time specified SHOULD be a 1145
UTC format as specified by the ValueType attribute (default is XML Schema type 1146
dateTime). 1147

/ wsu:Expires/@ValueType 1148
This optional attribute specifies the type of the time data. This is specified as the XML 1149
Schema type. If this attribute isn't specified, the default value is xsd:dateTime . 1150

/ wsu:Expires/@wsu:Id 1151

This optional attribute specifies an XML Schema ID that can be used to reference this 1152
element. 1153

The expiration is relative to the requestor's clock. In order to evaluate the expiration time, 1154
receivers need to recognize that the requestor's clock may not be synchronized to the receiver’s 1155
clock. The receiver, therefore, will need to make a assessment of the level of trust to be placed in 1156
the requestor's clock, since the receiver is called upon to evaluate whether the expiration time is 1157
in the past relative to the requestor's, not the receiver’s, clock. The receiver may make a 1158
judgment of the requestor’s likely current clock time by means not described in this specification, 1159
for example an out -of-band clock synchronization protocol. The receiver may also use the 1160
creation time and the delays introduced by intermediate roles to estimate the degree of clock 1161
synchronization. 1162

One suggested formula for estimating synchronization is 1163

skew = receiver’s arrival time - creation time - transmission time 1164
Transmission time may be estimated by summing the values of delay elements, if present. It 1165
should be noted that wire-time is only part of this if delays include it in estimates. Otherwise the 1166
transmission time will not reflect the on-wire time. If no delays are present, there are no special 1167
assumptions that need to be made about processing time. 1168

10.2.2 Creation 1169

The <wsu:Created> element specifies a creation timestamp. The exact meaning and 1170
semantics are dependent on the context in which the element is used. The syntax for this 1171
element is as follows: 1172

<wsu:Created ValueType="..." wsu:Id="..." >...</wsu:Created> 1173
The following describes the attributes and elements listed in the schema above: 1174

/ wsu:Created 1175

This element's value is a creation timestamp. The time specified SHOULD be a UTC 1176
format as specified by the ValueType attribute (default is XML Schema type dateTime). A 1177
conformant implementation MUST understand the UTC format. 1178

/ wsu:Created/@ValueType 1179

This optional attribute specifies the type of the time data. This is specified as the XML 1180
Schema type. If this attribute isn't specified, the default value is xsd:dateTime . 1181

/ wsu:Created/@wsu:Id 1182

This optional attribute specifies an XML Schema ID that can be used to reference this 1183
element. 1184

 1185

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 35 of 48

10.3 Timestamp Header 1186

A <wsu:Timestamp> header provides a mechanism for expressing the creation and expiration 1187
times of a message introduced throughout the message path. Specifically, is uses the previously 1188
defined elements in the context of message creation, receipt, and processing. 1189

All times SHOULD be in UTC format as specified by the XML Schema type (dateTime). It should 1190
be noted that times support tim e precision as defined in the XML Schema specification. 1191

Multiple <wsu:Timestamp> headers can be specified if they are targeted at different roles. The 1192
ordering within the header is as illustrated below. 1193

The ordering of elements in this header is fixed and MUST be preserved by intermediaries. 1194

To preserve overall integrity of each <wsu:Timestamp> header, it is strongly RECOMMENDED 1195
that each role create or update the appropriate <wsu:Timestamp> header destined to itself. 1196

The schema outline for the <wsu:Timestamp> header is as follows: 1197

<wsu:Timestamp wsu:Id="..."> 1198
 <wsu:Created>...</wsu:Created> 1199
 <wsu:Expires>...</wsu:Expires> 1200
 ... 1201
</wsu:Timestamp> 1202

The following describes the attributes and elements listed in the schema above: 1203
/ wsu:Timestamp 1204

This is the header for indicating message timestamps. 1205

/ wsu:Timestamp/Created 1206

This represents the creation time of the message. This element is optional, but can only 1207
be specified once in a Timestamp header. Within the SOAP processing model, creation 1208
is the instant that the infoset is serialized for transmission. The creation time of the 1209
message SHOULD NOT differ substantially from its transmission time. The difference in 1210
time should be minimized. 1211

/ wsu:Timestamp/Expires 1212

This represents the expiration of the message. This is optional, but can appear at most 1213
once in a Timestamp header. Upon expiration, the requestor asserts that the message 1214
is no longer valid. It is strongly RECOMMENDED that receivers (anyone who processes 1215
this message) discard (ignore) any message that has passed its expiration. A Fault code 1216
(wsu:MessageExpired) is provided if the receiver wants to inform the requestor that its 1217
message was expired. A service MAY issue a Fault indicating the message has expired. 1218

 1219

/ wsu:Timestamp/{any} 1220
This is an extensibility mechanism to allow additional elements to be added to the 1221
header. 1222

/ wsu:Timestamp/@wsu:Id 1223

This optional attribute specifies an XML Sc hema ID that can be used to reference this 1224
element. 1225

/ wsu:Timestamp/@{any} 1226

This is an extensibility mechanism to allow additional attributes to be added to the 1227
header. 1228

The following example illustrates the use of the <wsu:Timestamp> element and its content. 1229
<S:Envelope xmlns:S=" http://www.w3.org/2001/12/soap -envelope" 1230
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/xx/utility"> 1231
 <S:Header> 1232
 <wsu:Timestamp> 1233

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 36 of 48

 <wsu:Created>2001-09-13T08:42:00Z</wsu:Created> 1234
 <wsu:Expires>2001-10-13T09:00:00Z</wsu:Expires> 1235
 </wsu:Timestamp> 1236
 ... 1237
 </S:Header> 1238
 <S:Body> 1239
 ... 1240
 </S:Body> 1241
</S:Envelope> 1242

10.4 TimestampTrace Header 1243

A <wsu:TimestampTrace> header provides a mechanism for expressing the delays introduced 1244
throughout the message path. Specifically, is uses the previously defined elements in the context 1245
of message creation, receipt, and processing. 1246

All times SHOULD be in UTC format as specified by the XML Schema type (dateTime). It should 1247
be noted that times support time precision as defined in the XML Schema specification. 1248

Multiple <wsu:TimestampTrace> headers can be specified if they reference a different role. 1249

The <wsu:Received> element specifies a receipt timestamp with an opt ional processing delay. 1250
The exact meaning and semantics are dependent on the context in which the element is used. 1251

It is also strongly RECOMMENDED that each role sign its elements by referencing their ID, NOT 1252
by signing the TimestampTrace header as the header is mutable. 1253

The syntax for this element is as follows: 1254
<wsu:TimestampTrace> 1255

<wsu:Received Role="..." Delay="..." ValueType="..." 1256
 wsu:Id="..." >...</wsu:Received> 1257
</wsu:TimestampTrace> 1258

The following describes the attributes and elements listed in the schema above: 1259

/ wsu:Received 1260
This element’s value is a receipt timestamp. The time specified SHOULD be a UTC 1261
format as specified by the ValueType attribute (default is XML Schema type dateTime). 1262

/ wsu:Received/@Role 1263

A required attribute, Role, indicates which role is indicating receipt. Roles MUST include 1264
this attribute, with a value matching the role value as specified as a SOAP intermediary. 1265

/ wsu:Received/@Delay 1266

The value of this optional attribute is the delay associated with the role expressed in 1267
milliseconds. The delay represents processing time by the Role after it received the 1268
message, but before it forwarded to the next recipient. 1269

/ wsu:Received/@ValueType 1270

This optional attribute specifies the type of the time data (the element value). This is 1271
specified as the XML Schema type. If this attribute isn't specified, the default value is 1272
xsd:dateTime . 1273

/ wsu:Received/@wsu:Id 1274

This optional attribute specifies an XML Schema ID that can be used to reference this 1275
element. 1276

The delay attribute indicates the time delay attributable to an role (intermediate processor). In 1277
some cases this isn't known; for others it can be computed as role’s send time – role's receipt 1278
time. 1279

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 37 of 48

Each delay amount is indicated in units of milliseconds, without fractions. If a delay amount 1280
would exceed the maximum value expressible in the datatype, the value should be set to the 1281
maximum value of the datatype. 1282

The following example illustrates the use of the <wsu:Timestamp> header and a 1283
<wsu:TimestampTrace> header indicating a processing delay of one minute subsequent to the 1284
receipt which was two minutes after creation. 1285

<S:Envelope xmlns:S=" http://www.w3.org/2001/12/soap -envelope" 1286
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/xx/utility"> 1287
 <S:Header> 1288
 <wsu:Timestamp> 1289
 <wsu:Created>2001-09-13T08:42:00Z</wsu:Created> 1290
 <wsu:Expires>2001-10-13T09:00:00Z</wsu:Expires> 1291
 </wsu:Timestamp> 1292
 <wsu:TimespampTrace> 1293
 <wsu:Received Role="http://x.com/" Delay="60000"> 1294
 2001-09-13T08:44:00Z</wsu:Received> 1295
 </wsu:TimestampTrace> 1296
 ... 1297
 </S:Header> 1298
 <S:Body> 1299
 ... 1300
 </S:Body> 1301
</S:Envelope> 1302
 1303

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 38 of 48

11 Extended Example 1304

The following sample message illustrates the use of security tokens, signatures, and encryption. 1305
For this example, the timestamp and the message body are signed prior to encryption. The 1306
decryption transformation is not needed as the signing/encryption order is specified within the 1307
<wsse:Security> header. 1308

(001) <?xml version="1.0" encoding=" utf-8"?> 1309
(002) <S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope" 1310
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 1311
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx /secext" 1312
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/xx/utility" 1313
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"> 1314
(003) <S:Header> 1315
(004) <wsu:Timestamp > 1316
(005) <wsu:Created wsu:Id="T0"> 1317
(006) 2001-09-13T08:42:00Z 1318
(007) </wsu:Created> 1319
(008) </wsu:Timestamp> 1320
(009) <wsse:Security> 1321
(010) <wsse:BinarySecurityToken 1322
 ValueType="wsse:X509v3" 1323
 wsu:Id="X509Token" 1324
 EncodingType="wsse:Base64Binary"> 1325
(011) MIIEZzCCA9CgAwIBA gIQEmtJZc0rqrKh5i... 1326
(012) </wsse:BinarySecurityToken> 1327
(013) <xenc:EncryptedKey> 1328
(014) <xenc:EncryptionMethod Algorithm= 1329
 "http://www.w3.org/2001/04/xmlenc#rsa -1_5"/> 1330
(015) <wsse:KeyIdentifier EncodingType="wsse:Base64Binary" 1331
(016) ValueType="wsse:X509v3">MIGfMa0GCSq ... 1332
(017) </wsse:KeyIdentifier> 1333
(018) <xenc:CipherData> 1334
(019) <xenc:CipherValue>d2FpbmdvbGRfE0lm4byV0... 1335
(020) </xenc:CipherValue> 1336
(021) </xenc:CipherData> 1337
(022) <xenc:ReferenceList> 1338
(023) <xenc:DataReference URI="#enc1"/> 1339
(024) </xenc:ReferenceList> 1340
(025) </xenc:EncryptedKey> 1341
(026) <ds:Signature> 1342
(027) <ds:SignedInfo> 1343
(028) <ds:CanonicalizationMethod 1344
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1345
(029) <ds:SignatureMethod 1346
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 1347
(039) <ds:Reference URI="#T0"> 1348
(031) <ds:Transforms> 1349
(032) <ds:Transform 1350
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1351
(033) </ds:Transforms> 1352
(034) <ds:DigestMethod 1353
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 1354
(035) <ds:DigestValue>LyLsF094hPi4wPU... 1355
(036) </ds:DigestValue> 1356
(037) </ds:Reference> 1357
(038) <ds:Reference URI="#body"> 1358
(039) <ds:Transforms> 1359
(040) <ds:Transform 1360

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 39 of 48

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1361
(041) </ds:Transforms> 1362
(042) <ds:DigestMethod 1363
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 1364
(043) <ds:DigestValue>LyLsF094hPi4wPU... 1365
(044) </ds:DigestValue> 1366
(045) </ds:Reference> 1367
(046) </ds:SignedInfo> 1368
(047) <ds:SignatureValue> 1369
(048) Hp1ZkmFZ/2kQLXDJbchm5gK... 1370
(049) </ds:SignatureValue> 1371
(050) <ds:KeyInfo> 1372
(051) <wsse:SecurityTokenReference> 1373
(052) <wsse:Reference URI=" #X509Token"/> 1374
(053) </wsse:SecurityTokenReference> 1375
(054) </ds:KeyInfo> 1376
(055) </ds:Signature> 1377
(056) </wsse:Security> 1378
(057) </S:Header> 1379
(058) <S:Body wsu:Id="body"> 1380
(059) <xenc:EncryptedData 1381
 Type="http://www.w3.org/2001/04/xmlenc#Element" 1382
 wsu:Id="enc1"> 1383
(060) <xenc:EncryptionMethod 1384
 Algorithm="http://www.w3.org/2001/04/xmlenc#3des-cbc"/> 1385
(061) <xenc:CipherData> 1386
(062) <xenc:CipherValue>d2FpbmdvbGRfE0lm4byV0... 1387
(063) </xenc:CipherValue> 1388
(064) </xenc:CipherData> 1389
(065) </xenc:EncryptedData> 1390
(066) </S:Body> 1391
(067) </S:Envelope> 1392

Let's review some of the key sections of this example: 1393

Lines (003)-(057) contain the SOAP message headers. 1394

Lines (004)-(008) specify the timestamp information. In this case it indicates the creation time of 1395
the message. 1396

Lines (009)-(056) represent the <wsse:Security> header block. This contains the security-1397
related information for the message. 1398

Lines (010)-(012) specify a security token that is associated with the message. In this case, it 1399
specifies an X.509 certificate that is encoded as Base64. Line (011) specifies the actual Base64 1400
encoding of the certificate. 1401
Lines (013)-(025) specify the key that is used to encrypt the body of the message. Since this is a 1402
symmetric key, it is passed in an encrypted form. Line (014) defines the algorithm used to 1403
encrypt the key. Lines (015)-(017) specify the name of the key that was used to encrypt the 1404
symmetric key. Lines (018)-(021) specify the actual encrypted form of the symmetric key. Lines 1405
(022)-(024) identify the encryption block in the message that uses this symmetric key. In this 1406
case it is only used to encrypt the body (Id="enc1"). 1407

Lines (026)-(055) specify the digital signature. In this example, the signature is based on the 1408
X.509 certificate. Lines (027)-(046) indicate what is being signed. Specifically, Line (039) 1409
references the creation timestamp and line (038) references the message body. 1410

Lines (047)-(049) indicate the actual signature value – specified in Line (042). 1411

Lines (051)-(053) indicate the key that was used for the signature. In this case, it is the X.509 1412
certificate inc luded in the message. Line (052) provides a URI link to the Lines (010)-(012). 1413

The body of the message is represented by Lines (056) -(066). 1414

Lines (059)-(065) represent the encrypted metadata and form of the body using XML Encryption. 1415
Line (059) indicates that the "element value" is being replaced and identifies this encryption. Line 1416

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 40 of 48

(060) specifies the encryption algorithm – Triple-DES in this case. Lines (062)-(063) contain the 1417
actual cipher text (i.e., the result of the encryption). Note that we don't include a reference to the 1418
key as the key references this encryption – Line (023). 1419

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 41 of 48

12 Error Handling 1420

There are many circumstances where an error can occur while processing security information. 1421
For example: 1422

• Invalid or unsupported type of security token, signing, or encryption 1423

• Invalid or unauthenticated or unauthenticatable security token 1424

• Invalid signature 1425

• Decryption failure 1426

• Referenced security token is unavailable 1427

These can be grouped into two classes of errors: unsupported and failure. For the case of 1428
unsupported errors, the receiver MAY provide a response that informs the sender of supported 1429
formats, etc. For failure errors, the receiver MAY choose not to res pond, as this may be a form of 1430
Denial of Service (DOS) or cryptographic attack. We combine signature and encryption failures 1431
to mitigate certain types of attacks. 1432

If a failure is returned to a sender then the failure MUST be reported using SOAP's Fault 1433
mechanism. The following tables outline the predefined security fault codes. The "unsupported" 1434
class of errors are: 1435

Error that occurred faultcode

An unsupported token was provided wsse:UnsupportedSecurityToken

An unsupported signature or encryption algorithm
was used

wsse:UnsupportedAlgorithm

The "failure" class of errors are: 1436

Error that occurred faultcode

An error was discovered processing the
<wsse:Security> header.

wsse:InvalidSecurity

An invalid security token was provided wsse:InvalidSecurityToken

The security token could not be authenticated or
authorized

wsse:FailedAuthentication

The signature or decryption was invalid wsse:FailedCheck

Referenced security token could not be retrieved wsse:SecurityTokenUnavailable

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 42 of 48

13 Security Considerations 1437

It is strongly RECOMMENDED that messages include digitally signed elements to allow message 1438
receivers to detect replays of the message when the messages are exchanged via an open 1439
network. These can be part of the message or of the headers defined from other SOAP 1440
extensions. Four typical approaches are: 1441

• Timestamp 1442

• Sequence Number 1443

• Expirations 1444

• Message Correlation 1445

This specification defines the use of XML Signature and XML Encryption in SOAP headers. As 1446
one of the building blocks for securing SOAP messages, it is intended to be used in conjunction 1447
with other security techniques. Digital signatures need to be understood in the context of other 1448
security mechanisms and possible threats to an entity. 1449

Digital signatures alone do not provide message authentication. One can record a signed 1450
message and resend it (a replay attack). To prevent this type of attack, digital signatures must be 1451
combined with an appropriate means to ensure the uniqueness of the message, such as 1452
timestamps or sequence numbers (see earlier section for additional details). 1453

When digital signatures are used for verifying the identity of the sending party, the sender must 1454
prove the possession of the private key. One way to achieve this is to use a challenge-response 1455
type of protocol. Such a protocol is outside the scope of this document. 1456

To this end, the developers can attach timestamps, expirations, and sequences to messages. 1457

Implementers should also be aware of all the security implications resulting from the use of digital 1458
signatures in general and XML Signature in particular. When building trust into an application 1459
based on a digital signature there are other technologies, such as certificate evaluation, that must 1460
be incorporated, but these are outside the scope of this document. 1461

Requestors should use digital signatures to sign security tokens that do not include signatures (or 1462
other protection mechanisms) to ensure that they have not been altered in transit. 1463

Also, as described in XML Encryption, we note that the combination of signing and encryption 1464
over a common data item may introduce some cryptographic vulnerability. For example, 1465
encrypting digitally signed data, while leaving the digital signature in the clear, may allow plain 1466
text guessing attacks. The proper useage of nonce guards aginst replay attacts. 1467

In order to trust Ids and timestamps, they SHOULD be signed using the mechanisms outlined in 1468
this specification. This allows readers of the IDs and timestamps information to be certain that 1469
the IDs and timestamps haven’t been forged or altered in any way. It is strongly 1470
RECOMMENDED that IDs and timestamp elements be signed. 1471

Timestamps can also be used to mitigate replay attacks. Signed timestamps MAY be used to 1472
keep track of messages (possibly by caching the most recent timestamp from a specific service) 1473
and detect replays of previous messages. It is RECOMMENDED that timestamps and nonces be 1474
cached for a given period of time, as a guideline a value of five minutes can be used as a 1475
minimum to detect replays, and that timestamps older than that given period of time set be 1476
rejected. in interactive scenarios. 1477

In one-way message authentication, it is RECOMMENDED that the sender and the receiver re-1478
use the elements and structure defined in this specification for proving and validating freshness of 1479
a message. It is RECOMMEND that the nonce value be unique per message (never been used 1480
as a nonce before by the sender and receiver) and use the <wsse:Nonce> element within the 1481
<wsse:Security> header. Further, the <wsu:Timestamp> header SHOULD be used with a 1482

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 43 of 48

<wsu:Created> element. It is strongly RECOMMENDED that the <wsu:Created>, 1483
<wsse:Nonce> elements be included in the signature.. 1484 Deleted: on <wsu:Timestamp>

element

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 44 of 48

14 Privacy Considerations 1485

TBD 1486

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 45 of 48

15 Acknowledgements 1487

This specification was developed as a result of joint work of many individuals from the WSS TC 1488
including: TBD 1489

The input specifications for this document were developed as a result of joint work with many 1490
individuals and teams, including: Keith Ballinger, Microsoft, Bob Blakley, IBM, Allen Brown, 1491
Microsoft, Joel Farrell, IB M, Mark Hayes, VeriSign, Kelvin Lawrence, IBM, Scott Konersmann, 1492
Microsoft, David Melgar, IBM, Dan Simon, Microsoft, Wayne Vicknair , IBM. 1493

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 46 of 48

16 References 1494

[DIGSIG] Informational RFC 2828, "Internet Security Glos sary," May 2000. 1495

[Kerberos] J. Kohl and C. Neuman, "The Kerberos Network Authentication Service 1496
(V5)," RFC 1510, September 1993, http://www.ietf.org/rfc/rfc1510.txt . 1497

[KEYWORDS] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," 1498
RFC 2119, Harvard University, March 1997 1499

[SHA -1] FIPS PUB 180-1. Secure Hash Standard. U.S. Department of 1500
Commerce / National Institute of Standards and Technology. 1501
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt 1502

[SOAP11] W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000. 1503

[SOAP12] W3C Working Draft, “SOAP Version 1.2 Part 1: Messaging 1504
Framework” , 26 June 2002 1505

[SOAP-SEC] W3C Note, "SOAP Sec urity Extensions: Digital Signature," 06 February 1506
2001. 1507

[URI] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers 1508
(URI): Generic Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox 1509
Corporation, August 1998. 1510

[WS-Security] "Web Services Security Language", IBM, Microsoft, VeriSign, April 2002. 1511
"WS-Security Addendum", IBM, Microsoft, VeriSign, August 2002. 1512
"WS-Security XML Tokens", IBM, Microsoft, VeriSign, August 2002. 1513

[XML-C14N] W3C Recommendation, "Canonical XML Version 1.0," 15 March 2001 1514

[XML-Encrypt] W3C Working Draft, "XML Encryption Syntax and Processing," 04 March 1515
2002. 1516

[XML-ns] W3C Recommendation, "Namespaces in XML," 14 January 1999. 1517

[XML-Schema] W3C Recommendation, "XML Schema Part 1: Structures,"2 May 2001. 1518
W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May 2001. 1519

[XML Signature] W3C Recommendation, "XML Signature Syntax and Processing," 12 1520
February 2002. 1521

[X509] S. Santesson, et al,"Internet X.509 Public Key Infrastructure Qualified 1522
Certificates Profile," 1523
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=1524
T-REC-X.509-200003- I 1525

[XPath] W3C Recommendation, "XML Path Language", 16 November 1999 1526

[WSS-SAML] OASIS Working Draft 02, "Web Services Security SAML Token Binding, 1527
23 September 2002 1528

[WSS-XrML] OASIS Working Draft 01, "Web Services Security XrML Token Binding, 1529
20 September 2002 1530

[WSS-X509] OASIS Working Draft 01, "Web Services Security X509 Binding, 18 1531
September 2002 1532

[WSS-Kerberos] OASIS Working Draft 01, "Web Services Security Kerberos Binding, 18 1533
September 2002 1534

 1535

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 47 of 48

Appendix A: Revision History 1536

Rev Date What

01 20-Sep-02 Initial draft based on input documents and editorial
review

02 24-Oct-02 Update with initial comments (technical and
grammatical)

03 03-Nov-02 Feedback updates

04 17-Nov-02 Feedback updates

 1537

WSS-Core-04 17 November 2002
Copyright © OASIS Open 2002. All Rights Reserved. Page 48 of 48

Appendix B: Notices 1538

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 1539
that might be claimed to pertain to the implementation or use of the technology described in this 1540
document or the extent to which any license under such rights might or might not be available; 1541
neither does it represent that it has made any effort to identify any such rights. Information on 1542
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 1543
website. Copies of claims of rights made available for publication and any assurances of licenses 1544
to be made available, or the result of an attempt made to obtain a general license or permission 1545
for the use of such proprietary rights by implementors or users of this specification, can be 1546
obtained from the OASIS Executive Director. 1547

OASIS invites any interested party to bring to its attention any copyrights, patents or patent 1548
applications, or other proprietary rights which may cover technology that may be required to 1549
implement this specification. Please address the information to the OASIS Executive Director. 1550

Copyright © OASIS Open 2002. All Rights Reserved. 1551

This document and translations of it may be copied and furnished to others, and derivative works 1552
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 1553
published and distributed, in whole or in part, without restriction of any kind, provided that the 1554
above copyright notice and this paragraph are included on all such copies and derivative works. 1555
However, this document itself does not be modified in any way, such as by removing the 1556
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS 1557
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 1558
Property Rights document must be followed, or as required to translate it into languages other 1559
than English. 1560

The limited permissions granted above are perpetual and will not be revoked by OASIS or its 1561
successors or assigns. 1562

This document and the information contained herein is provided on an “AS IS” basis and OASIS 1563
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 1564
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE 1565
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 1566
PARTICULAR PURPOSE. 1567

 1568

Page 19: [1] Deleted Anthony Nadalin 11/5/2002 9:27 AM

wsse:HexBinary XML Schema hex encoding

Page 23: [2] Deleted Anthony Nadalin 11/17/2002 9:23 PM

wsse:HexBinary XML Schema hex encoding

