

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 1 of 56

 1

Web Services Security 2

Core Specification 3

Working Draft 08, 12 December 2002 4

Document identifier: 5
WSS-Core-08 6

Location: 7
TBD 8

Editors: 9
Phillip Hallam-Baker, VeriSign 10
Chris Kaler, Microsoft 11
Ronald Monzillo, Sun 12
Anthony Nadalin, IBM 13

Contributors: 14

TBD – Revise this list to include WSS TC contributors 15

Bob Atkinson, Microsoft
Giovanni Della-Libera, Microsoft
Satoshi Hada, IBM
Phillip Hallam-Baker, VeriSign
Maryann Hondo, IBM
Chris Kaler, Microsoft
Johannes Klein, Microsoft
Brian LaMacchia, Microsoft
Paul Leach, Microsoft

John Manferdelli, Microsoft
Hiroshi Maruyama, IBM
Anthony Nadalin, IBM
Nataraj Nagaratnam, IBM
Hemma Prafullchandra, VeriSign
John Shewchuk, Microsoft
Dan Simon, Microsoft
Kent Tamura, IBM
Hervey Wilson, Microsoft

Abstract: 16
This specification describes enhancements to the SOAP messaging to provide quality of 17
protection through message integrity, and single message authentication. These 18
mechanisms can be used to accommodate a wide variety of security models and 19
encryption technologies. 20

This specification also provides a general-purpose mechanism for associating security 21
tokens with messages. No specific type of security token is required; it is designed to be 22
extensible (e.g. support multiple security token formats). For example, a client might 23
provide one format for proof of identity and provide another format for proof that they 24
have a particular business certification. 25

Additionally, this specification describes how to encode binary security tokens, a 26
framework for XML-based tokens, and describes how to include opaque encrypted keys. 27
It also includes extensibility mechanisms that can be used to further describe the 28
characteristics of the tokens that are included with a message. 29

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 2 of 56

 30

Status: 31
This is an interim draft. Please send comments to the editors. 32

 33

Committee members should send comments on this specification to the wss@lists.oasis-34
open.org list. Others should subscribe to and send comments to the wss-35
comment@lists.oasis-open.org list. To subscribe, visit http://lists.oasis-36
open.org/ob/adm.pl. 37

For information on whether any patents have been disclosed that may be essential to 38
implementing this specification, and any offers of patent licensing terms, please refer to 39
the Intellectual Property Rights section of the Security Services TC web page 40
(http://www.oasis-open.org/who/intellectualproperty.shtml). 41

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 3 of 56

Table of Contents 42

1 Introduction ..5 43

1.1 Goals and Requirements ...5 44
1.1.1 Requirements...5 45
1.1.2 Non-Goals ...5 46

2 Notations and Terminology ..7 47
2.1 Notational Conventions..7 48
2.2 Namespaces ...7 49

2.3 Terminology ..8 50
3 Message Protection Mechanisms...10 51

3.1 Message Security Model..10 52

3.2 Message Protection...10 53
3.3 Invalid or Missing Claims ...11 54
3.4 Example ...11 55

4 ID References ..13 56
4.1 Id Attribute..13 57
4.2 Id Schema ..13 58

5 Security Header..15 59
6 Security Tokens ..17 60

6.1 Attaching Security Tokens ...17 61

6.1.1 Processing Rules ...17 62
6.1.2 Subject Confirmation ..17 63

6.2 User Name Tokens ...17 64

6.2.1 Usernames and Passwords...17 65
6.3 Binary Security Tokens ..19 66

6.3.1 Attaching Security Tokens...19 67

6.3.2 Encoding Binary Security Tokens ..20 68
6.4 XML Tokens ...21 69

6.4.1 Identifying and Referencing Security Tokens ..21 70

7 Token References ..22 71
7.1 SecurityTokenReference Element ..22 72
7.2 Direct References ...23 73

7.3 Key Identifiers ...24 74
7.4 ds:KeyInfo ..24 75
7.5 Key Names ...25 76

7.6 Token Reference Lookup Processing Order..25 77
8 Signatures ..26 78

8.1 Algorithms ..26 79

8.2 Signing Messages ...27 80
8.3 Signature Validation ..27 81
8.4 Example ...28 82

9 Encryption ..29 83

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 4 of 56

9.1 xenc:ReferenceList..29 84
9.2 xenc:EncryptedKey ...30 85

9.3 xenc:EncryptedData ..31 86
9.4 Processing Rules ..31 87

9.4.1 Encryption..32 88

9.4.2 Decryption ...32 89
9.5 Decryption Transformation ...32 90

10 Message Timestamps ...34 91

10.1 Model ...34 92
10.2 Timestamp Elements...34 93

10.2.1 Creation ...34 94

10.2.2 Expiration...35 95
10.3 Timestamp Header ..35 96
10.4 TimestampTrace Header ...37 97

11 Extended Example..39 98
12 Error Handling ..42 99
13 Security Considerations ..43 100

14 Privacy Considerations..45 101
15 Acknowledgements...46 102
16 References...47 103

Appendix A: Utility Elements and Attributes ..49 104
A.1. Identification Attribute...49 105
A.2. Timestamp Elements ...49 106

A.3. General Schema Types ..50 107
Appendix B: SecurityTokenReference Model ..51 108
Appendix C: Revision History ..55 109

Appendix D: Notices ...56 110

 111

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 5 of 56

1 Introduction 112

This specification proposes a standard set of SOAP extensions that can be used when building 113
secure Web services to implement message level integrity and confidentiality. This specification 114
refers to this set of extensions as the “Web Services Security Core Language” or “WSS-Core”. 115

This specification is flexible and is designed to be used as the basis for securing Web services 116
within a wide variety of security models including PKI, Kerberos, and SSL. Specifically, this 117
specification provides support for multiple security token formats, multiple trust domains, multiple 118
signature formats, and multiple encryption technologies. The token formats and semantics for 119
using these are defined in the associated binding documents. 120

This specification provides three main mechanisms: ability to send security token as part of a 121
message, message integrity, and message confidentiality. These mechanisms by themselves do 122
not provide a complete security solution for Web services. Instead, this specification is a building 123
block that can be used in conjunction with other Web service extensions and higher-level 124
application-specific protocols to accommodate a wide variety of security models and security 125
technologies. 126

These mechanisms can be used independently (e.g., to pass a security token) or in a tightly 127
coupled manner (e.g., signing and encrypting a message and providing a security token path 128
associated with the keys used for signing and encryption). 129

1.1 Goals and Requirements 130

The goal of this specification is to enable applications to conduct secure SOAP message 131
exchanges. 132

This specification is intended to provide a flexible set of mechanisms that can be used to 133
construct a range of security protocols; in other words this specification intentionally does not 134
describe explicit fixed security protocols. 135

As with every security protocol, significant efforts must be applied to ensure that security 136
protocols constructed using this specification are not vulnerable to any one of a wide range of 137
attacks. 138

The focus of this specification is to describe a single-message security language that provides for 139
message security that may assume an established session, security context and/or policy 140
agreement. 141

The requirements to support secure message exchange are listed below. 142

1.1.1 Requirements 143

The Web services security language must support a wide variety of security models. The 144
following list identifies the key driving requirements for this specification: 145

• Multiple security token formats 146

• Multiple trust domains 147

• Multiple signature formats 148

• Multiple encryption technologies 149

• End-to-end message-level security and not just transport-level security 150

1.1.2 Non-Goals 151

The following topics are outside the scope of this document: 152

• Establishing a security context or authentication mechanisms. 153

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 6 of 56

• Key derivation. 154

• Advertisement and exchange of security policy. 155

• How trust is established or determined. 156

 157

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 7 of 56

2 Notations and Terminology 158

This section specifies the notations, namespaces, and terminology used in this specification. 159

2.1 Notational Conventions 160

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 161
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be 162
interpreted as described in RFC2119. 163

Namespace URIs (of the general form "some-URI") represents some application-dependent or 164
context-dependent URI as defined in RFC2396. 165

In this document the style chosen when describing elements use is to XPath-like Notation. The 166
XPath-like notation is declarative rather than procedural. Each pattern describes the types of 167
nodes to match using a notation that indicates the hierarchical relationship between the nodes. 168
For example, the pattern "/author" means find "author" elements contained in "root" element. The 169
following operators and special charaters are used in this document: 170

 / - Child operator; selects immediate children of the left-side collection. When this path operator 171
appears at the start of the pattern, it indicates that children should be selected from the root node. 172

@- Attribute; prefix for an attribute name 173

{any} - Wildcard 174

 175

This specification is designed to work with the general SOAP message structure and message 176
processing model, and should be applicable to any version of SOAP. The current SOAP 1.2 177
namespace URI is used herein to provide detailed examples, but there is no intention to limit the 178
applicability of this specification to a single version of SOAP. 179

Readers are presumed to be familiar with the terms in the Internet Security Glossary. 180

2.2 Namespaces 181

The XML namespace URIs that MUST be used by implementations of this specification are as 182
follows (note that elements used in this specification are from various namespaces): 183

 http://schemas.xmlsoap.org/ws/2002/xx/secext 184
 http://schemas.xmlsoap.org/ws/2002/xx/utility 185

The following namespaces are used in this document: 186

 187

Prefix Namespace

S http://www.w3.org/2001/12/soap-envelope

ds http://www.w3.org/2000/09/xmldsig#

xenc http://www.w3.org/2001/04/xmlenc#

wsse http://schemas.xmlsoap.org/ws/2002/xx/secext

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 8 of 56

wsu http://schemas.xmlsoap.org/ws/2002/xx/utility

2.3 Terminology 188

Defined below are the basic definitions for the security terminology used in this specification. 189

Attachment – An attachment is a generic term referring to additional data that travels with a 190
SOAP message, but is not part of the SOAP Envelope. 191

Claim – A claim is a declaration made by an entity (e.g. name, identity, key, group, privilege, 192
capability, etc). 193

Confidentiality – Confidentiality is the property that data is not made available to 194
unauthorized individuals, entities, or processes. 195

Digest – A digest is a cryptographic checksum of an octet stream. 196

End-To_End Message Level Security - End-to-end message level security is 197
established when a message that traverses multiple applications within and between business 198
entities, e.g. companies, divisions and business units, is secure over its full route through and 199
between those business entities. This includes not only messages that are initiated within the 200
entity but also those messages that originate outside the entity, whether they are Web Services 201
or the more traditional messages. 202

Integrity – Integrity is the property that data has not been modified. 203

Message Confidentiality - Message Confidentiality is a property of the message and 204
encryption is the service or mechanism by which this property of the message is provided. 205

Message Integrity - Message Integrity is a property of the message and digital signature is 206
the service or mechanism by which this property of the message is provided. 207

Proof-of-Possession – Proof-of-possession is authentication data that is provided with a 208
message to prove that the message was sent and or created by a claimed identity. 209

Signature - A signature is a cryptographic binding between a proof-of-possession and a digest. 210
This covers both symmetric key-based and public key-based signatures. Consequently, non-211
repudiation is not always achieved. 212

Security Token – A security token represents a collection (one or more) of claims. 213

 214
Signature - A signature is a cryptographic binding between a proof-of-possession and a digest. 215
This covers both symmetric key-based and public key-based signatures. Consequently, non-216
repudiation is not always achieved. 217

Signed Security Token – A signed security token is a security token that is asserted and 218
cryptographically signed by a specific authority (e.g. an X.509 certificate or a Kerberos ticket). 219

Trust - Trust is the characteristic that one entity is willing to rely upon a second entity to execute 220
a set of actions and/or to make set of assertions about a set of subjects and/or scopes. 221

Trust Domain - A Trust Domain is a security space in which the target of a request can 222
determine whether particular sets of credentials from a source satisfy the relevant security 223

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 9 of 56

policies of the target. The target may defer trust to a third party thus including the trusted third 224
party in the Trust Domain. 225

 226

 227

 228

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 10 of 56

3 Message Protection Mechanisms 229

When securing SOAP messages, various types of threats should be considered. This includes, 230
but is not limited to: 1) the message could be modified or read by antagonists or 2) an antagonist 231
could send messages to a service that, while well-formed, lack appropriate security claims to 232
warrant processing. 233

To understand these threats this specification defines a message security model. 234

3.1 Message Security Model 235

This document specifies an abstract message security model in terms of security tokens 236
combined with digital signatures to protect and authenticate SOAP messages. 237

Security tokens assert claims and can be used to assert the binding between authentication 238
secrets or keys and security identities. An authority can vouch for or endorse the claims in a 239
security token by using its key to sign or encrypt (it is recommended to use a keyed encryption) 240
the security token thereby enabling the authentication of the claims in the token. An X.509 241
certificate, claiming the binding between one’s identity and public key, is an example of a signed 242
security token endorsed by the certificate authority. In the absence of endorsement by a third 243
party, the recipient of a security token may choose to accept the claims made in the token based 244
on its trust of the sender of the containing message. 245

Signatures are also used by message senders to demonstrate knowledge of the key claimed in a 246
security token and thus to authenticate or bind their identity (and any other claims occurring in the 247
security token) to the messages they create. A signature created by a message sender to 248
demonstrate knowledge of an authentication key is referred to as a Proof-of-Possession and may 249
serve as a message authenticator if the signature is performed over the message. 250

It should be noted that this security model, by itself, is subject to multiple security attacks. Refer 251
to the Security Considerations section for additional details. 252

Where the specification requires that the elements be "processed" this means that the element 253
type be recognized well enough to return appropriate error if not supported. 254

3.2 Message Protection 255

Protecting the message content from being disclosed (confidentiality) or modified without 256
detection (integrity) are primary security concerns. This specification provides a means to protect 257
a message by encrypting and/or digitally signing a body, a header, an attachment, or any 258
combination of them (or parts of them). 259

Message integrity is provided by leveraging XML Signature in conjunction with security tokens to 260
ensure that messages are received without modifications. The integrity mechanisms are 261
designed to support multiple signatures, potentially by multiple SOAP roles, and to be extensible 262
to support additional signature formats. 263

Message confidentiality leverages XML Encryption in conjunction with security tokens to keep 264
portions of a SOAP message confidential. The encryption mechanisms are designed to support 265
additional encryption processes and operations by multiple SOAP roles. 266

This document defines syntax and semantics of signatures within <wsse:Security> element. 267
This document also does not specify any signature appearing outside of <wsse:Security> 268
element, if any. 269

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 11 of 56

3.3 Invalid or Missing Claims 270

The message recipient SHOULD reject a message with a signature determined to be invalid, 271
missing or unacceptable claims as it is an unauthorized (or malformed) message. This 272
specification provides a flexible way for the message sender to make a claim about the security 273
properties by associating zero or more security tokens with the message. An example of a 274
security claim is the identity of the sender; the sender can claim that he is Bob, known as an 275
employee of some company, and therefore he has the right to send the message. 276

3.4 Example 277

The following example illustrates the use of a username security token containing a claimed 278
security identity to establish a password derived signing key. The password is not provided in the 279
security token. The message sender combines the password with the nonce and timestamp 280
appearing in the security token to define an HMAC signing key that it then uses to sign the 281
message. The message receiver uses its knowledge of the shared secret to repeat the HMAC 282
key calculation which it uses to validate the signature and in the process confirm that the 283
message was authored by the claimed user identity. The nonce and timestamp are used in the 284
key calculation to introduce variability in the keys derived from a given password value. 285

(001) <?xml version="1.0" encoding="utf-8"?> 286
(002) <S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope" 287
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 288
(003) <S:Header> 289
(004) <wsse:Security 290
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext"> 291
(005) <wsse:UsernameToken wsu:Id="MyID"> 292
(006) <wsse:Username>Zoe</wsse:Username> 293
(007) <wsse:Nonce>FKJh...</wsse:Nonce> 294
(008) <wsu:Created>2001-10-13T09:00:00Z</wsu:Created> 295
(009) </wsse:UsernameToken> 296
(010) <ds:Signature> 297
(011) <ds:SignedInfo> 298
(012) <ds:CanonicalizationMethod 299
 Algorithm= 300
 "http://www.w3.org/2001/10/xml-exc-c14n#"/> 301
(013) <ds:SignatureMethod 302
 Algorithm= 303
 "http://www.w3.org/2000/09/xmldsig#hmac-sha1"/> 304
(014) <ds:Reference URI="#MsgBody"> 305
(015) <ds:DigestMethod 306
 Algorithm= 307
 "http://www.w3.org/2000/09/xmldsig#sha1"/> 308
(016) <ds:DigestValue>LyLsF0Pi4wPU...</ds:DigestValue> 309
(017) </ds:Reference> 310
(018) </ds:SignedInfo> 311
(019) <ds:SignatureValue>DJbchm5gK...</ds:SignatureValue> 312
(020) <ds:KeyInfo> 313
(021) <wsse:SecurityTokenReference> 314
(022) <wsse:Reference URI="#MyID"/> 315
(023) </wsse:SecurityTokenReference> 316
(024) </ds:KeyInfo> 317
(025) </ds:Signature> 318
(026) </wsse:Security> 319
(027) </S:Header> 320
(028) <S:Body wsu:Id="MsgBody"> 321
(029) <tru:StockSymbol xmlns:tru="http://fabrikam123.com/payloads"> 322
 QQQ 323
 </tru:StockSymbol> 324
(030) </S:Body> 325
(031) </S:Envelope> 326

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 12 of 56

The first two lines start the SOAP envelope. Line (003) begins the headers that are associated 327
with this SOAP message. 328

Line (004) starts the <Security> header defined in this specification. This header contains 329
security information for an intended recipient. This element continues until line (026) 330

Lines (005) to (009) specify a security token that is associated with the message. In this case, it 331
defines username of the client using the <UsernameToken>. Note that here the assumption is 332
that the service knows the password – in other words, it is a shared secret and the <Nonce> and 333
<Created> are used to generate the key 334

Lines (010) to (025) specify a digital signature. This signature ensures the integrity of the signed 335
elements. The signature uses the XML Signature specification identified by the ds namespace 336
declaration in Line (002). In this example, the signature is based on a key generated from the 337
user's password; typically stronger signing mechanisms would be used (see the Extended 338
Example later in this document). 339

Lines (011) to (018) describe what is being signed and the type of canonicalization being used. 340
Line (012) specifies how to canonicalize (normalize) the data that is being signed. Lines (014) to 341
(017) select the elements that are signed and how to digest them. Specifically, line (014) 342
indicates that the <S:Body> element is signed. In this example only the message body is 343
signed; typically all critical elements of the message are included in the signature (see the 344
Extended Example below). 345

Line (019) specifies the signature value of the canonicalized form of the data that is being signed 346
as defined in the XML Signature specification. 347

Lines (020) to (024) provide a hint as to where to find the security token associated with this 348
signature. Specifically, lines (021) to (023) indicate that the security token can be found at (pulled 349
from) the specified URL. 350

Lines (028) to (030) contain the body (payload) of the SOAP message. 351

 352

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 13 of 56

4 ID References 353

There are many motivations for referencing other message elements such as signature 354
references or correlating signatures to security tokens. However, because arbitrary ID attributes 355
require the schemas to be available and processed, ID attributes which can be referenced in a 356
signature are restricted to the following list: 357

ID attributes from XML Signature 358

ID attributes from XML Encryption 359

wsu:Id global attribute described below 360

In addition, when signing a part of an envelope such as the body, it is RECOMMENDED that an 361
ID reference is used instead of a more general transformation, especially XPath. This is to 362
simplify processing. 363

4.1 Id Attribute 364

There are many situations where elements within SOAP messages need to be referenced. For 365
example, when signing a SOAP message, selected elements are included in the scope of the 366
signature. XML Schema Part 2 provides several built-in data types that may be used for 367
identifying and referencing elements, but their use requires that consumers of the SOAP 368
message either to have or be able to obtain the schemas where the identity or reference 369
mechanisms are defined. In some circumstances, for example, intermediaries, this can be 370
problematic and not desirable. 371

Consequently a mechanism is required for identifying and referencing elements, based on the 372
SOAP foundation, which does not rely upon complete schema knowledge of the context in which 373
an element is used. This functionality can be integrated into SOAP processors so that elements 374
can be identified and referred to without dynamic schema discovery and processing. 375

This section specifies a namespace-qualified global attribute for identifying an element which can 376
be applied to any element that either allows arbitrary attributes or specifically allows a particular 377
attribute. 378

4.2 Id Schema 379

To simplify the processing for intermediaries and recipients, a common attribute is defined for 380
identifying an element. This attribute utilizes the XML Schema ID type and specifies a common 381
attribute for indicating this information for elements. 382

The syntax for this attribute is as follows: 383
<anyElement wsu:Id="...">...</anyElement> 384

The following describes the attribute illustrated above: 385

.../@wsu:Id 386

This attribute, defined as type xsd:ID, provides a well-known attribute for specifying the 387
local ID of an element. 388

Two wsu:Id attributes within an XML document MUST NOT have the same value. 389
Implementations MAY rely on XML Schema validation to provide rudimentary enforcement for 390
intra-document uniqueness. However, applications SHOULD NOT rely on schema validation 391
alone to enforce uniqueness. 392

This specification does not specify how this attribute will be used and it is expected that other 393
specifications MAY add additional semantics (or restrictions) for their usage of this attribute. 394

The following example illustrates use of this attribute to identify an element: 395

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 14 of 56

<x:myElement wsu:Id="ID1" xmlns:x="..." 396
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/xx/utility"/> 397

Conformant processors that do support XML Schema MUST treat this attribute as if it was 398
defined using a global attribute declaration. 399

Conformant processors that do not support dynamic XML Schema or DTDs discovery and 400
processing are strongly encouraged to integrate this attribute definition into their parsers. That is, 401
to treat this attribute information item as if its PSVI has a [type definition] which {target 402
namespace} is "http://www.w3.org/2001/XMLSchema" and which {name} is "Id." Doing so 403
allows the processor to inherently know how to process the attribute without having to locate and 404
process the associated schema. Specifically, implementations MAY support the value of the 405
wsu:Id as the valid identifier for use as an XPointer shorthand pointer for interoperability with 406
XML Signature references. 407

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 15 of 56

5 Security Header 408

The <wsse:Security> header block provides a mechanism for attaching security-related 409
information targeted at a specific recipient in a form of a SOAP role. This MAY be either the 410
ultimate recipient of the message or an intermediary. Consequently, elements of this type MAY 411
be present multiple times in a SOAP message. An intermediary on the message path MAY add 412
one or more new sub-elements to an existing <wsse:Security> header block if they are 413
targeted for its SOAP node or it MAY add one or more new headers for additional targets. 414

As stated, a message MAY have multiple <wsse:Security> header blocks if they are targeted 415
for separate recipients. However, only one <wsse:Security> header block MAY omit the 416
S:role attribute and no two <wsse:Security> header blocks MAy have the same value for 417
S:role. Message security information targeted for different recipients MUST appear in different 418
<wsse:Security> header blocks. The <wsse:Security> header block without a specified 419
S:role MAY be consumed by anyone, but MUST NOT be removed prior to the final destination 420
or endpoint. 421

As elements are added to the <wsse:Security> header block, they SHOULD be prepended to 422
the existing elements. As such, the <wsse:Security> header block represents the signing and 423
encryption steps the message sender took to create the message. This prepending rule ensures 424
that the receiving application MAY process sub-elements in the order they appear in the 425
<wsse:Security> header block, because there will be no forward dependency among the sub-426
elements. Note that this specification does not impose any specific order of processing the sub-427
elements. The receiving application can use whatever order is required. 428

When a sub-element refers to a key carried in another sub-element (for example, a signature 429
sub-element that refers to a binary security token sub-element that contains the X.509 certificate 430
used for the signature), the key-bearing security token SHOULD be prepended to the key-using 431
sub-element being added, so that the key material appears before the key-using sub-element. 432

The following illustrates the syntax of this header: 433
<S:Envelope> 434
 <S:Header> 435
 ... 436
 <wsse:Security S:role="..." S:mustUnderstand="..."> 437
 ... 438
 </wsse:Security> 439
 ... 440
 </S:Header> 441
 ... 442
</S:Envelope> 443

The following describes the attributes and elements listed in the example above: 444

/wsse:Security 445

This is the header block for passing security-related message information to a recipient. 446

/wsse:Security/@S:role 447

This attribute allows a specific SOAP role to be identified. This attribute is optional; 448
however, no two instances of the header block may omit a role or specify the same role. 449

/wsse:Security/{any} 450

This is an extensibility mechanism to allow different (extensible) types of security 451
information, based on a schema, to be passed. 452

/wsse:Security/@{any} 453

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 16 of 56

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 454
added to the header. 455

All compliant implementations MUST be able to process a <wsse:Security> element. 456

All compliant implementations MUST declare which profiles they support and MUST be able to 457
process a <wsse:Security> element including any sub-elements which may be defined by that 458
profile. 459

The next few sections outline elements that are expected to be used within the 460
<wsse:Security> header. 461

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 17 of 56

6 Security Tokens 462

This chapter specifies some different types of security tokens and how they SHALL be attached 463
to messages. 464

6.1 Attaching Security Tokens 465

This specification defines the <wsse:Security> header as a mechanism for conveying security 466
information with and about a SOAP message. This header is, by design, extensible to support 467
many types of security information. 468

For security tokens based on XML, the extensibility of the <wsse:Security> header allows for 469
these security tokens to be directly inserted into the header. 470

6.1.1 Processing Rules 471

This specification describes the processing rules for using and processing XML Signature and 472
XML Encryption. These rules MUST be followed when using any type of security token. Note 473
that this does NOT mean that security tokens MUST be signed or encrypted – only that if 474
signature or encryption is used in conjunction with security tokens, they MUST be used in a way 475
that conforms to the processing rules defined by this specification. 476

6.1.2 Subject Confirmation 477

This specification does not dictate if and how subject confirmation must be done, however, it does 478
define how signatures can be used and associated with security tokens (by referencing them in 479
the signature) as a form of Proof-of-Possession 480

6.2 User Name Tokens 481

6.2.1 Usernames and Passwords 482

The <wsse:UsernameToken> element is introduced as a way of providing a username and 483
optional password information. This element is optionally included in the <wsse:Security> 484
header. 485

Within this element, a <wsse:Password> element MAY be specified. The password has an 486
associated type – either wsse:PasswordText or wsse:PasswordDigest. The 487
wsse:PasswordText is not limited to the actual password. Any password equivalent such as a 488
derived password or S/KEY (one time password) can be used. 489

The wsse:PasswordDigest is defined as a base64-encoded SHA1 hash value of the UTF8-490
encoded password. However, unless this digested password is sent on a secured channel, the 491
digest offers no real additional security than wsse:PasswordText. 492

To address this issue, two optional elements are introduced in the <wsse:UsernameToken> 493
element: <wsse:Nonce> and <wsu:Created>. If either of these is present, they MUST be 494
included in the digest value as follows: 495

PasswordDigest = SHA1 (nonce + created + password) 496

That is, concatenate the nonce, creation timestamp, and the password (or shared secret or 497
password equivalent) and include the digest of the combination. This helps obscure the 498
password and offers a basis for preventing replay attacks. It is RECOMMENDED that timestamps 499
and nonces be cached for a given period of time, as a guideline a value of five minutes can be 500

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 18 of 56

used as a minimum to detect replays, and that timestamps older than that given period of time set 501
be rejected. 502

Note that the nonce is hashed using the octet sequence of its decoded value while the timestamp 503
is hashed using the octet sequence of its UTF8 encoding as specified in the contents of the 504
element. 505

Note that password digests SHOULD NOT be used unless the plain text password, secret, or 506
password-equivalent is available to both the requestor and the recipient. 507

The following illustrates the syntax of this element: 508
<wsse:UsernameToken wsu:Id="..."> 509
 <wsse:Username>...</wsse:Username> 510
 <wsse:Password Type="...">...</wsse:Password> 511
 <wsse:Nonce EncodingType="...">...</wsse:Nonce> 512
 <wsu:Created>...</wsu:Created> 513
</wsse:UsernameToken> 514

The following describes the attributes and elements listed in the example above: 515

/wsse:UsernameToken 516

This element is used for sending basic authentication information. 517

/wsse:UsernameToken/@wsu:Id 518

A string label for this security token. 519

/wsse:UsernameToken/Username 520

This required element specifies the username of the authenticated or the party to be 521
authenticated. 522

/wsse:UsernameToken/Username/@{any} 523

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 524
added to the header. 525

/wsse:UsernameToken/Password 526

This optional element provides password information. It is RECOMMENDED that this 527
element only be passed when a secure transport is being used. 528

/wsse:UsernameToken/Password/@Type 529

This optional attribute specifies the type of password being provided. The following table 530
identifies the pre-defined types: 531

Value Description

wsse:PasswordText (default) The actual password for the username or
derived password or S/KEY.

wsse:PasswordDigest The digest of the password for the username
using the algorithm described above.

/wsse:UsernameToken/Password/@{any} 532

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 533
added to the header. 534

/wsse:UsernameToken//wsse:Nonce 535

This optional element specifies a cryptographically random nonce. 536

/wsse:UsernameToken//wsse:Nonce/@EncodingType 537

This optional attribute specifies the encoding type of the nonce (see definition of 538
<wsse:BinarySecurityToken> for valid values). If this attribute isn't specified then 539
the default of Base64 encoding is used. 540

/wsse:UsernameToken//wsu:Created 541

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 19 of 56

This optional element specifies the time (according to the originator) at which the 542
password digest was created. 543

/wsse:UsernameToken/{any} 544

This is an extensibility mechanism to allow different (extensible) types of security 545
information, based on a schema, to be passed. 546

/wsse:UsernameToken/@{any} 547

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 548
added to the header. 549

All compliant implementations MUST be able to process a <wsse:UsernameToken> element. 550

The following illustrates the use of this element (note that in this example the password is sent in 551
clear text and the message should therefore be sent over a confidential channel: 552

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope" 553
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext"> 554
 <S:Header> 555
 ... 556
 <wsse:Security> 557
 <wsse:UsernameToken> 558
 <wsse:Username>Zoe</wsse:Username> 559
 <wsse:Password>ILoveDogs</wsse:Password> 560
 </wsse:UsernameToken> 561
 </wsse:Security> 562
 ... 563
 </S:Header> 564
 ... 565
</S:Envelope> 566

The following example illustrates a hashed password using both a nonce and a timestamp with 567
the password hashed: 568

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope" 569
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext"> 570
 <S:Header> 571
 ... 572
 <wsse:Security> 573
 <wsse:UsernameToken 574
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext" 575
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/xx/utility"> 576
 <wsse:Username>NNK</wsse:Username> 577
 <wsse:Password Type="wsse:PasswordDigest"> 578
 FEdR...</wsse:Password> 579
 <wsse:Nonce>FKJh...</wsse:Nonce> 580
 <wsu:Created>2001-10-13T09:00:00Z </wsu:Created> 581
 </wsse:UsernameToken> 582
 </wsse:Security> 583
 ... 584
 </S:Header> 585
 ... 586
</S:Envelope> 587

6.3 Binary Security Tokens 588

6.3.1 Attaching Security Tokens 589

For binary-formatted security tokens, this specification provides a 590
<wsse:BinarySecurityToken> element that can be included in the <wsse:Security> 591
header block. 592

 593

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 20 of 56

6.3.2 Encoding Binary Security Tokens 594

Binary security tokens (e.g., X.509 certificates and Kerberos tickets) or other non-XML formats 595
require a special encoding format for inclusion. This section describes a basic framework for 596
using binary security tokens. Subsequent specifications MUST describe the rules for creating 597
and processing specific binary security token formats. 598

The <wsse:BinarySecurityToken> element defines two attributes that are used to interpret 599
it. The ValueType attribute indicates what the security token is, for example, a Kerberos ticket. 600
The EncodingType tells how the security token is encoded, for example Base64Binary. 601

The following is an overview of the syntax: 602
<wsse:BinarySecurityToken wsu:Id=... 603
 EncodingType=... 604
 ValueType=.../> 605

The following describes the attributes and elements listed in the example above: 606

/wsse:BinarySecurityToken 607

This element is used to include a binary-encoded security token. 608

/wsse:BinarySecurityToken/@wsu:Id 609

An optional string label for this security token. 610

/wsse:BinarySecurityToken/@ValueType 611

The ValueType attribute is used to indicate the "value space" of the encoded binary 612
data (e.g. an X.509 certificate). The ValueType attribute allows a qualified name that 613
defines the value type and space of the encoded binary data. This attribute is extensible 614
using XML namespaces. Subsequent specifications MUST define the ValueType value 615
for the tokens that they define. 616

/wsse:BinarySecurityToken/@EncodingType 617

The EncodingType attribute is used to indicate, using a QName, the encoding format of 618
the binary data (e.g., wsse:Base64Binary). A new attribute is introduced, as there 619
issues with the current schema validation tools that make derivations of mixed simple 620
and complex types difficult within XML Schema. The EncodingType attribute is 621
interpreted to indicate the encoding format of the element. The following encoding 622
formats are pre-defined: 623

QName Description

wsse:Base64Binary XML Schema base 64 encoding

/wsse:BinarySecurityToken/@{any} 624

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 625
added. 626

All compliant implementations MUST be able to support a <wsse:BinarySecurityToken> 627
element. 628

When a <wsse:BinarySecurityToken> is included in a signature—that is, it is referenced 629
from a <ds:Signature> element—care should be taken so that the canonicalization algorithm 630
(e.g., Exclusive XML Canonicalization) does not allow unauthorized replacement of namespace 631
prefixes of the QNames used in the attribute or element values. In particular, it is 632
RECOMMENDED that these namespace prefixes be declared within the 633
<wsse:BinarySecurityToken> element if this token does not carry the validating key (and 634
consequently it is not cryptographically bound to the signature). For example, if we wanted to 635
sign the previous example, we need to include the consumed namespace definitions. 636

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 21 of 56

In the following example, a custom ValueType is used. Consequently, the namespace definition 637
for this ValueType is included in the <wsse:BinarySecurityToken> element. Note that the 638
definition of wsse is also included as it is used for the encoding type and the element. 639

<wsse:BinarySecurityToken 640
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext" 641
 wsu:Id="myToken" 642
 ValueType="x:MyType" xmlns:x="http://www.fabrikam123.com/x" 643
 EncodingType="wsse:Base64Binary"> 644
 MIIEZzCCA9CgAwIBAgIQEmtJZc0... 645
</wsse:BinarySecurityToken> 646

6.4 XML Tokens 647

This section presents the basic principles and framework for using XML-based security tokens. 648
Subsequent specifications describe rules and processes for specific XML-based security token 649
formats. 650

 651

6.4.1 Identifying and Referencing Security Tokens 652

This specification also defines multiple mechanisms for identifying and referencing security 653
tokens using the wsu:Id attribute and the <wsse:SecurityTokenReference> element (as well 654
as some additional mechanisms). Please refer to the specific binding documents for the 655
appropriate reference mechanism. However, specific extensions MAY be made to the 656
wsse:SecurityTokenReference> element. 657

 658

 659

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 22 of 56

7 Token References 660

This chapter discusses and defines mechanisms for referencing security tokens. 661

7.1 SecurityTokenReference Element 662

A security token conveys a set of claims. Sometimes these claims reside somewhere else and 663
need to be "pulled" by the receiving application. The <wsse:SecurityTokenReference> 664
element provides an extensible mechanism for referencing security tokens. 665

This element provides an open content model for referencing security tokens because not all 666
tokens support a common reference pattern. Similarly, some token formats have closed 667
schemas and define their own reference mechanisms. The open content model allows 668
appropriate reference mechanisms to be used when referencing corresponding token types. 669

The usage of SecurityTokenRefeference used outside of the <Security> header block is 670
unspecified. 671

The following illustrates the syntax of this element: 672
<wsse:SecurityTokenReference wsu:Id="..."> 673
 ... 674
</wsse:SecurityTokenReference> 675

The following describes the elements defined above: 676

/wsse:SecurityTokenReference 677

This element provides a reference to a security token. 678

/wsse:SecurityTokenReference/@wsu:Id 679

A string label for this security token reference. 680

/wsse:SecurityTokenReference/@wsse:Usage 681

This optional attribute is used to type the usage of the <SecurityToken>. Usages are 682
specified using QNames and multiple usages MAY be specified using XML list 683
semantics. 684

QName Description

TBD TBD

 685

/wsse:SecurityTokenReference/{any} 686

This is an extensibility mechanism to allow different (extensible) types of security 687
references, based on a schema, to be passed. 688

/wsse:SecurityTokenReference/@{any} 689

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 690
added to the header. 691

All compliant implementations MUST be able to process a 692
<wsse:SecurityTokenReference> element. 693

This element can also be used as a direct child element of <ds:KeyInfo> to indicate a hint to 694
retrieve the key information from a security token placed somewhere else. In particular, it is 695
RECOMMENDED, when using XML Signature and XML Encryption, that a 696

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 23 of 56

<wsse:SecurityTokenReference> element be placed inside a <ds:KeyInfo> to reference 697
the security token used for the signature or encryption. 698

There are several challenges that implementations face when trying to interoperate. In order to 699
process the IDs and references requires the recipient to understand the schema. This may be an 700
expensive task and in the general case impossible as there is no way to know the "schema 701
location" for a specific namespace URI. As well, the primary goal of a reference is to uniquely 702
identify the desired token. ID references are, by definition, unique by XML. However, other 703
mechanisms such as "principal name" are not required to be unique and therefore such 704
references may be unique. 705

The following list provides a list of the specific reference mechanisms defined in WS-Security in 706
preferred order (i.e., most specific to least specific): 707

Direct References – This allows references to included tokens using URI fragments and external 708
tokens using full URIs. 709
Key Identifiers – This allows tokens to be referenced using an opaque value that represents the 710
token (defined by token type/profile). 711
Key Names – This allows tokens to bereferenced using a string that matches an identity 712
assertion within the security token. This is a subset match and may result in multiple security 713
tokens that match the specified name. 714

7.2 Direct References 715

The <wsse:Reference> element provides an extensible mechanism for directly referencing 716
security tokens using URIs. 717

The following illustrates the syntax of this element: 718
<wsse:SecurityTokenReference wsu:Id="..."> 719
 <wsse:Reference URI="..." ValueType="..."/> 720
</wsse:SecurityTokenReference> 721

The following describes the elements defined above: 722

/wsse:SecurityTokenReference/Reference 723

This element is used to identify an abstract URI location for locating a security token. 724

/wsse:SecurityTokenReference/Reference/@URI 725

This optional attribute specifies an abstract URI for where to find a security token. 726

/wsse:SecurityTokenReference/Reference/@ValueType 727

This optional attribute specifies a QName that is used to identify the type of token being 728
referenced (see <wsse:BinarySecurityToken>). This specification does not define 729
any processing rules around the usage of this attribute, however, specifications for 730
individual token types MAY define specific processing rules and semantics around the 731
value of the URI and how it SHALL be interpreted. If this attribute is not present, the URI 732
SHALL be processed as a normal URI. 733

/wsse:SecurityTokenReference/Reference/{any} 734

This is an extensibility mechanism to allow different (extensible) types of security 735
references, based on a schema, to be passed. 736

/wsse:SecurityTokenReference/Reference/@{any} 737

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 738
added to the header. 739

The following illustrates the use of this element: 740
<wsse:SecurityTokenReference 741
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext"> 742
 <wsse:Reference 743
 URI="http://www.fabrikam123.com/tokens/Zoe#X509token"/> 744

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 24 of 56

</wsse:SecurityTokenReference> 745

7.3 Key Identifiers 746

Alternatively, if a direct reference is not used, then it is RECOMMENDED to use a key identifier to 747
specify/reference a security token instead of a ds:KeyName. The <wsse:KeyIdentifier> 748
element SHALL be placed in the <wsse:SecurityTokenReference> element to reference a 749
token using an identifier. This element SHOULD be used for all key identifiers. 750

The processing model assumes that the key identifier for a security token is constant. 751
Consequently, processing a key identifier is simply looking for a security token whose key 752
identifier matches a given specified constant. 753

The following is an overview of the syntax: 754
<wsse:SecurityTokenReference> 755
 <wsse:KeyIdentifier wsu:Id="..." 756
 ValueType="..." 757
 EncodingType="..."> 758
 ... 759
 </wsse:KeyIdentifier> 760
</wsse:SecurityTokenReference> 761

The following describes the attributes and elements listed in the example above: 762

/wsse:SecurityTokenReference /KeyIdentifier 763

This element is used to include a binary-encoded key identifier. 764

/wsse:SecurityTokenReference/KeyIdentifier/@wsu:Id 765

An optional string label for this identifier. 766

/wsse:SecurityTokenReference/KeyIdentifier/@ValueType 767

The ValueType attribute is used to optionally indicate the type of token with the 768
specified identifier. If specified, this is a hint to the recipient. Any value specified for 769
binary security tokens, or any XML token element QName can be specified here. If this 770
attribute isn't specified, then the identifier applies to any type of token. 771

/wsse:SecurityTokenReference/KeyIdentifier/@EncodingType 772

The optional EncodingType attribute is used to indicate, using a QName, the encoding 773
format of the binary data (e.g., wsse:Base64Binary). The base values defined in this 774
specification are used: 775

QName Description

wsse:Base64Binary XML Schema base 64 encoding (default)

/wsse:SecurityTokenReference/KeyIdentifier/@{any} 776

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 777
added. 778

7.4 ds:KeyInfo 779

The <ds:KeyInfo> element (from XML Signature) can be used for carrying the key information 780
and is allowed for different key types and for future extensibility. However, in this specification, 781
the use of <wsse:BinarySecurityToken> is the RECOMMENDED way to carry key material 782
if the key type contains binary data. Please refer to the specific binding documents for the 783
appropriate way to carry key material. 784

The following example illustrates use of this element to fetch a named key: 785

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 25 of 56

<ds:KeyInfo Id="..." xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 786
 <ds:KeyName>CN=Hiroshi Maruyama, C=JP</ds:KeyName> 787
</ds:KeyInfo> 788

7.5 Key Names 789

It is strongly RECOMMENED to use key identifiers. However, if key names are used, then it is 790
strongly RECOMMENDED that <ds:KeyName> elements conform to the attribute names in 791
section 2.3 of RFC 2253 (this is recommended by XML Signature for <X509SubjectName>) for 792
interoperability. 793

Additionally, defined for e-mail addresses, SHOULD conform to RFC 822: 794
 EmailAddress=ckaler@microsoft.com 795

7.6 Token Reference Lookup Processing Order 796

There are a number of mechanisms described in XML Signature and this specification 797
for referencing security tokens. To resolve possible ambiguities when more than one 798
of these reference constructs is included in a single KeyInfo element, the following 799
processing order SHOULD be used: 800

1. Resolve any <wsse:Reference> elements (specified within 801
<wsse:SecurityTokenReference>). 802

2. Resolve any <wsse:KeyIdentifier> elements (specified within 803
<wsse:SecurityTokenReference>). 804

3. Resolve any <ds:KeyName> elements. 805

4. Resolve any other <ds:KeyInfo> elements. 806

The processing stops as soon as one key has been located. 807

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 26 of 56

8 Signatures 808

Message senders may want to enable message recipients to determine whether a message was 809
altered in transit and to verify that a message was sent by the possessor of a particular security 810
token. 811

An XML Digital Signature can bind claims with a SOAP message body and/or headers by 812
associating those claims with a signing key. Accepting the binding and using the claims is at the 813
discretion of the relying party. Placing claims in one or more <SecurityTokenReference> 814
elements that also convey the signing keys is the mechanism to create the binding of the claims. 815
Each of these security token elements must be referenced with a 816
<SecurityTokenReference> in the <ds:KeyInfo> element in the signature. The 817
<SecurityTokenReference> elements can be signed, or not, depending on the relying party 818
trust model and other requirements. 819

Because of the mutability of some SOAP headers, senders SHOULD NOT use the Enveloped 820
Signature Transform defined in XML Signature. Instead, messages SHOULD explicitly include 821
the elements to be signed. Similarly, senders SHOULD NOT use the Enveloping Signature 822
defined in XML Signature. 823

This specification allows for multiple signatures and signature formats to be attached to a 824
message, each referencing different, even overlapping, parts of the message. This is important 825
for many distributed applications where messages flow through multiple processing stages. For 826
example, a sender may submit an order that contains an orderID header. The sender signs the 827
orderID header and the body of the request (the contents of the order). When this is received by 828
the order processing sub-system, it may insert a shippingID into the header. The order sub-829
system would then sign, at a minimum, the orderID and the shippingID, and possibly the body as 830
well. Then when this order is processed and shipped by the shipping department, a shippedInfo 831
header might be appended. The shipping department would sign, at a minimum, the shippedInfo 832
and the shippingID and possibly the body and forward the message to the billing department for 833
processing. The billing department can verify the signatures and determine a valid chain of trust 834
for the order, as well as who authorized each step in the process. 835

All compliant implementations MUST be able to support the XML Signature standard. 836

8.1 Algorithms 837

This specification builds on XML Signature and therefore has the same algorithm requirements as 838
those specified in the XML Signature specification. 839

The following table outlines additional algorithms that are strongly RECOMMENDED by this 840
specification: 841

Algorithm Type Algorithm Algorithm URI

Canonicalization Exclusive XML
Canonicalization

http://www.w3.org/2001/10/xml-exc-c14n#

Transformations XML Decryption
Transformation

http://www.w3.org/2001/04/decrypt#

The Exclusive XML Canonicalization algorithm addresses the pitfalls of general canonicalization 842
that can occur from leaky namespaces with pre-existing signatures. 843

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 27 of 56

Finally, if a sender wishes to sign a message before encryption, they should use the Decryption 844
Transformation for XML Signature. 845

8.2 Signing Messages 846

The <wsse:Security> header block MAY be used to carry a signature compliant with the XML 847
Signature specification within a SOAP Envelope for the purpose of signing one or more elements 848
in the SOAP Envelope. Multiple signature entries MAY be added into a single SOAP Envelope 849
within the <wsse:Security> header block. Senders SHOULD take care to sign all important 850
elements of the message, but care MUST be taken in creating a signing policy that will not to sign 851
parts of the message that might legitimately be altered in transit. 852

SOAP applications MUST satisfy the following conditions: 853

The application MUST be capable of processing the required elements defined in the XML 854
Signature specification. 855

To add a signature to a <wsse:Security> header block, a <ds:Signature> element 856
conforming to the XML Signature specification SHOULD be prepended to the existing content of 857
the <wsse:Security> header block. All the <ds:Reference> elements contained in the 858
signature SHOULD refer to a resource within the enclosing SOAP envelope, or in an attachment. 859

XPath filtering can be used to specify objects to be signed, as described in the XML Signature 860
specification. However, since the SOAP message exchange model allows intermediate 861
applications to modify the Envelope (add or delete a header block; for example), XPath filtering 862
does not always result in the same objects after message delivery. Care should be taken in using 863
XPath filtering so that there is no subsequent validation failure due to such modifications. 864

The problem of modification by intermediaries is applicable to more than just XPath processing. 865
Digital signatures, because of canonicalization and digests, present particularly fragile examples 866
of such relationships. If overall message processing is to remain robust, intermediaries must 867
exercise care that their transformations do not occur within the scope of a digitally signed 868
component. 869

Due to security concerns with namespaces, this specification strongly RECOMMENDS the use of 870
the "Exclusive XML Canonicalization" algorithm or another canonicalization algorithm that 871
provides equivalent or greater protection. 872

For processing efficiency it is RECOMMENDED to have the signature added and then the 873
security token pre-pended so that a processor can read and cache the token before it is used. 874

 875

8.3 Signature Validation 876

The validation of a <ds:Signature> element inside an <wsse:Security> header block 877
SHALL fail if 878

the syntax of the content of the element does not conform to this specification, or 879

the validation of the signature contained in the element fails according to the core validation of the 880
XML Signature specification, or 881

the application applying its own validation policy rejects the message for some reason (e.g., the 882
signature is created by an untrusted key – verifying the previous two steps only performs 883
cryptographic validation of the signature). 884

If the validation of the signature element fails, applications MAY report the failure to the sender 885
using the fault codes defined in Section 12 Error Handling. 886

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 28 of 56

8.4 Example 887

The following sample message illustrates the use of integrity and security tokens. For this 888
example, only the message body is signed. 889

<?xml version="1.0" encoding="utf-8"?> 890
<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope" 891
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 892
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext" 893
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"> 894
 <S:Header> 895
 <wsse:Security> 896
 <wsse:BinarySecurityToken 897
 ValueType="wsse:X509v3" 898
 EncodingType="wsse:Base64Binary" 899
 wsu:Id="X509Token"> 900
 MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i... 901
 </wsse:BinarySecurityToken> 902
 <ds:Signature> 903
 <ds:SignedInfo> 904
 <ds:CanonicalizationMethod Algorithm= 905
 "http://www.w3.org/2001/10/xml-exc-c14n#"/> 906
 <ds:SignatureMethod Algorithm= 907
 "http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 908
 <ds:Reference URI="#myBody"> 909
 <ds:Transforms> 910
 <ds:Transform Algorithm= 911
 "http://www.w3.org/2001/10/xml-exc-c14n#"/> 912
 </ds:Transforms> 913
 <ds:DigestMethod Algorithm= 914
 "http://www.w3.org/2000/09/xmldsig#sha1"/> 915
 <ds:DigestValue>EULddytSo1...</ds:DigestValue> 916
 </ds:Reference> 917
 </ds:SignedInfo> 918
 <ds:SignatureValue> 919
 BL8jdfToEb1l/vXcMZNNjPOV... 920
 </ds:SignatureValue> 921
 <ds:KeyInfo> 922
 <wsse:SecurityTokenReference> 923
 <wsse:Reference URI="#X509Token"/> 924
 </wsse:SecurityTokenReference> 925
 </ds:KeyInfo> 926
 </ds:Signature> 927
 </wsse:Security> 928
 </S:Header> 929
 <S:Body wsu:Id="myBody"> 930
 <tru:StockSymbol xmlns:tru="http://www.fabrikam123.com/payloads"> 931
 QQQ 932
 </tru:StockSymbol> 933
 </S:Body> 934
</S:Envelope> 935

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 29 of 56

9 Encryption 936

This specification allows encryption of any combination of body blocks, header blocks, any of 937
these sub-structures, and attachments by either a common symmetric key shared by the sender 938
and the recipient or a symmetric key carried in the message in an encrypted form. 939

In order to allow this flexibility, this specification leverages the XML Encryption standard. 940
Specifically what this specification describes is how three elements (listed below and defined in 941
XML Encryption) can be used within the <wsse:Security> header block. When a sender or 942
an intermediary encrypts portion(s) of a SOAP message using XML Encryption they MUST 943
prepend a sub-element to the <wsse:Security> header block. Furthermore, the encrypting 944
party MUST prepend the sub-element into the <wsse:Security> header block for the targeted 945
recipient that is expected to decrypt these encrypted portions. The combined process of 946
encrypting portion(s) of a message and adding one of these a sub-elements referring to the 947
encrypted portion(s) is called an encryption step hereafter. The sub-element should contain 948
enough information for the recipient to identify which portions of the message are to be decrypted 949
by the recipient. 950

All compliant implementations MUST be able to support the XML Encryption standard. 951

9.1 xenc:ReferenceList 952

When encrypting elements or element contents within a SOAP envelope, the 953
<xenc:ReferenceList> element from XML Encryption MAY be used to create a manifest of 954
encrypted portion(s), which are expressed as <xenc:EncryptedData> elements within the 955
envelope. An element or element content to be encrypted by this encryption step MUST be 956
replaced by a corresponding <xenc:EncryptedData> according to XML Encryption. All the 957
<xenc:EncryptedData> elements created by this encryption step SHOULD be listed in 958
<xenc:DataReference> elements inside an <xenc:ReferenceList> element. 959

Although in XML Encryption, <xenc:ReferenceList> is originally designed to be used within 960
an <xenc:EncryptedKey> element (which implies that all the referenced 961
<xenc:EncryptedData> elements are encrypted by the same key), this specification allows 962
that <xenc:EncryptedData> elements referenced by the same <xenc:ReferenceList> 963
MAY be encrypted by different keys. Each encryption key can be specified in <ds:KeyInfo> 964
within individual <xenc:EncryptedData>. 965

A typical situation where the <xenc:ReferenceList> sub-element is useful is that the sender 966
and the recipient use a shared secret key. The following illustrates the use of this sub-element: 967

<S:Envelope 968
 xmlns:S="http://www.w3.org/2001/12/soap-envelope" 969
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 970
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext" 971
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"> 972
 <S:Header> 973
 <wsse:Security> 974
 <xenc:ReferenceList> 975
 <xenc:DataReference URI="#bodyID"/> 976
 </xenc:ReferenceList> 977
 </wsse:Security> 978
 </S:Header> 979
 <S:Body> 980
 <xenc:EncryptedData Id="bodyID"> 981
 <ds:KeyInfo> 982
 <ds:KeyName>CN=Hiroshi Maruyama, C=JP</ds:KeyName> 983
 </ds:KeyInfo> 984

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 30 of 56

 <xenc:CipherData> 985
 <xenc:CipherValue>...</xenc:CipherValue> 986
 </xenc:CipherData> 987
 </xenc:EncryptedData> 988
 </S:Body> 989
</S:Envelope> 990

9.2 xenc:EncryptedKey 991

When the encryption step involves encrypting elements or element contents within a SOAP 992
envelope with a symmetric key, which is in turn to be encrypted by the recipient’s key and 993
embedded in the message, <xenc:EncryptedKey> MAY be used for carrying such an 994
encrypted key. This sub-element SHOULD have a manifest, that is, an 995
<xenc:ReferenceList> element, in order for the recipient to know the portions to be 996
decrypted with this key. An element or element content to be encrypted by this encryption step 997
MUST be replaced by a corresponding <xenc:EncryptedData> according to XML Encryption. 998
All the <xenc:EncryptedData> elements created by this encryption step SHOULD be listed in 999
the <xenc:ReferenceList> element inside this sub-element. 1000

This construct is useful when encryption is done by a randomly generated symmetric key that is 1001
in turn encrypted by the recipient’s public key. The following illustrates the use of this element: 1002

<S:Envelope 1003
 xmlns:S="http://www.w3.org/2001/12/soap-envelope" 1004
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 1005
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext" 1006
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"> 1007
 <S:Header> 1008
 <wsse:Security> 1009
 <xenc:EncryptedKey> 1010
 <xenc:EncryptionMethod Algorithm="..."/> 1011
 <ds:KeyInfo> 1012
 <wsse:SecurityTokenReference> 1013
 <wsse:KeyIdentifier EncodingType="wsse:Base64Binary" 1014
 ValueType="wsse:X509v3">MIGfMa0GCSq... 1015
 </wsse:KeyIdentifier> 1016
 </wsse:SecurityTokenReference> 1017
 </ds:KeyInfo> 1018
 <xenc:CipherData> 1019
 <xenc:CipherValue>...</xenc:CipherValue> 1020
 </xenc:CipherData> 1021
 <xenc:ReferenceList> 1022
 <xenc:DataReference URI="#bodyID"/> 1023
 </xenc:ReferenceList> 1024
 </xenc:EncryptedKey> 1025
 </wsse:Security> 1026
 </S:Header> 1027
 <S:Body> 1028
 <xenc:EncryptedData Id="bodyID"> 1029
 <xenc:CipherData> 1030
 <xenc:CipherValue>...</xenc:CipherValue> 1031
 </xenc:CipherData> 1032
 </xenc:EncryptedData> 1033
 </S:Body> 1034
</S:Envelope> 1035

While XML Encryption specifies that <xenc:EncryptedKey> elements MAY be specified in 1036
<xenc:EncryptedData> elements, this specification strongly RECOMMENDS that 1037
<xenc:EncryptedKey> elements be placed in the <wsse:Security> header. 1038

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 31 of 56

9.3 xenc:EncryptedData 1039

In some cases security-related information is provided in a purely encrypted form or non-XML 1040
attachments MAY be encrypted. The <xenc:EncryptedData> element from XML Encryption 1041
SHALL be used for these scenarios. For each part of the encrypted attachment, one encryption 1042
step is needed; that is, for each attachment to be encrypted, one <xenc:EncryptedData> sub-1043
element MUST be added with the following rules (note that steps 2-4 applies only if MIME types 1044
are being used for attachments). 1045

The contents of the attachment MUST be replaced by the encrypted octet string. 1046

The replaced MIME part MUST have the media type application/octet-stream. 1047

The original media type of the attachment MUST be declared in the MimeType attribute of the 1048
<xenc:EncryptedData> element. 1049

The encrypted MIME part MUST be referenced by an <xenc:CipherReference> element with 1050
a URI that points to the MIME part with cid: as the scheme component of the URI. 1051

The following illustrates the use of this element to indicate an encrypted attachment: 1052
<S:Envelope 1053
 xmlns:S="http://www.w3.org/2001/12/soap-envelope" 1054
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 1055
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext" 1056
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"> 1057
 <S:Header> 1058
 <wsse:Security> 1059
 <xenc:EncryptedData MimeType="image/png"> 1060
 <ds:KeyInfo> 1061
 <wsse:SecurityTokenReference> 1062
 <xenc:EncryptionMethod Algorithm="..."/> 1063
 <wsse:KeyIdentifier EncodingType="wsse:Base64Binary" 1064
 ValueType="wsse:X509v3">MIGfMa0GCSq... 1065
 </wsse:KeyIdentifier> 1066
 </wsse:SecurityTokenReference> 1067
 </ds:KeyInfo> 1068
 <xenc:CipherData> 1069
 <xenc:CipherReference URI="cid:image"/> 1070
 </xenc:CipherData> 1071
 </xenc:EncryptedData> 1072
 </wsse:Security> 1073
 </S:Header> 1074
 <S:Body> </S:Body> 1075
</S:Envelope> 1076

9.4 Processing Rules 1077

Encrypted parts or attachments to the SOAP message using one of the sub-elements defined 1078
above MUST be in compliance with the XML Encryption specification. An encrypted SOAP 1079
envelope MUST still be a valid SOAP envelope. The message creator MUST NOT encrypt the 1080
<S:Envelope>, <S:Header>, or <S:Body> elements but MAY encrypt child elements of 1081
either the <S:Header> and <S:Body> elements. Multiple steps of encryption MAY be added 1082
into a single <Security> header block if they are targeted for the same recipient. 1083

When an element or element content inside a SOAP envelope (e.g. of the contents of <S:Body>) 1084
is to be encrypted, it MUST be replaced by an <xenc:EncryptedData>, according to XML 1085
Encryption and it SHOULD be referenced from the <xenc:ReferenceList> element created 1086
by this encryption step. This specification allows placing the encrypted octet stream in an 1087
attachment. For example, if an <xenc:EncryptedData> element in an <S:Body> element has 1088
<xenc:CipherReference> that refers to an attachment, then the decrypted octet stream 1089
SHALL replace the <xenc:EncryptedData>. However, if the <enc:EncryptedData> 1090

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 32 of 56

element is located in the <Security> header block and it refers to an attachment, then the 1091
decrypted octet stream MUST replace the encrypted octet stream in the attachment. 1092

9.4.1 Encryption 1093

The general steps (non-normative) for creating an encrypted SOAP message in compliance with 1094
this specification are listed below (note that use of <xenc:ReferenceList> is 1095
RECOMMENDED). 1096

Create a new SOAP envelope. 1097

Create a <Security> header 1098

Create an <xenc:ReferenceList> sub-element, an <xenc:EncryptedKey> sub-element, or 1099
an <xenc:EncryptedData> sub-element in the <Security> header block (note that if the 1100
SOAP "role" and "mustUnderstand" attributes are different, then a new header block may be 1101
necessary), depending on the type of encryption. 1102

Locate data items to be encrypted, i.e., XML elements, element contents within the target SOAP 1103
envelope, and attachments. 1104

Encrypt the data items as follows: For each XML element or element content within the target 1105
SOAP envelope, encrypt it according to the processing rules of the XML Encryption specification. 1106
Each selected original element or element content MUST be removed and replaced by the 1107
resulting <xenc:EncryptedData> element. For an attachment, the contents MUST be replaced 1108
by encrypted cipher data as described in section 9.3 Signature Validation. 1109

The optional <ds:KeyInfo> element in the <xenc:EncryptedData> element MAY reference 1110
another <ds:KeyInfo> element. Note that if the encryption is based on an attached security 1111
token, then a <SecurityTokenReference> element SHOULD be added to the 1112
<ds:KeyInfo> element to facilitate locating it. 1113

Create an <xenc:DataReference> element referencing the generated 1114
<xenc:EncryptedData> elements. Add the created <xenc:DataReference> element to the 1115
<xenc:ReferenceList>. 1116

9.4.2 Decryption 1117

On receiving a SOAP envelope containing encryption header elements, for each encryption 1118
header element the following general steps should be processed (non-normative): 1119

Locate the <xenc:EncryptedData> items to be decrypted (possibly using the 1120
<xenc:ReferenceList>). 1121

Decrypt them as follows: For each element in the target SOAP envelope, decrypt it according to 1122
the processing rules of the XML Encryption specification and the processing rules listed above. 1123

If the decrypted data is part of an attachment and MIME types were used, then revise the MIME 1124
type of the attachment to the original MIME type (if one exists). 1125

If the decryption fails for some reason, applications MAY report the failure to the sender using the 1126
fault code defined in Section 12 Error Handling. 1127

9.5 Decryption Transformation 1128

The ordering semantics of the <wsse:Security> header are sufficient to determine if 1129
signatures are over encrypted or unencrypted data. However, when a signature is included in 1130
one <wsse:Security> header and the encryption data is in another <wsse:Security> 1131
header, the proper processing order may not be apparent. 1132

If the sender wishes to sign a message that MAY subsequently be encrypted by an intermediary 1133
then the sender MAY use the Decryption Transform for XML Signature to explicitly specify the 1134
order of decryption. 1135

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 33 of 56

 1136

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 34 of 56

10 Message Timestamps 1137

It is often important for the recipient to be able to determine the freshness of a message. In some 1138
cases, a message may be so stale that the recipient may decide to ignore it. 1139

This specification does not provide a mechanism for synchronizing time. The assumption is 1140
either that the recipient is using a mechanism to synchronize time (e.g. NTP) or, more likely for 1141
federated applications, that they are making assessments about time based on three factors: 1142
creation time of the message, transmission checkpoints, and transmission delays and their local 1143
time. 1144

To assist a recipient in making an assessment of staleness, a requestor may wish to indicate a 1145
suggested expiration time after which the recipient should ignore the message. The specification 1146
provides XML elements by which the requestor may express the expiration time of a message, 1147
the requestor’s clock time at the moment the message was created, checkpoint timestamps 1148
(when an SOAP role received the message) along the communication path, and the delays 1149
introduced by transmission and other factors subsequent to creation. The quality of the delays is 1150
a function of how well they reflect the actual delays (e.g., how well they reflect transmission 1151
delays). 1152

It should be noted that this is not a protocol for making assertions or determining when, or how 1153
fast, a service produced or processed a message. 1154

This specification defines and illustrates time references in terms of the dateTime type defined in 1155
XML Schema. It is RECOMMENDED that all time references use this type. It is further 1156
RECOMMENDED that all references be in UTC time. If, however, other time types are used, 1157
then the ValueType attribute (described below) MUST be specified to indicate the data type of the 1158
time format. Requestors and receivers SHOULD NOT rely on other applications supporting time 1159
resolution finer than milliseconds. Implementations MUST NOT generate time instants that 1160
specify leap seconds. 1161

10.1 Model 1162

This specification provides several tools for recipients to process the expiration time presented by 1163
the requestor. The first is the creation time. Recipients can use this value to assess possible 1164
clock skew. However, to make some assessments, the time required to go from the requestor to 1165
the recipient may also be useful in making this assessment. Two mechanisms are provided for 1166
this. The first is that intermediaries may add timestamp elements indicating when they received 1167
the message. This knowledge can be useful to get a holistic view of clocks along the message 1168
path. The second is that intermediaries can specify any delays they imposed on message 1169
delivery. It should be noted that not all delays can be accounted for, such as wire time and 1170
parties that don't report. Recipients need to take this into account when evaluating clock skew. 1171

10.2 Timestamp Elements 1172

This specification defines the following message timestamp elements. These elements are 1173
defined for use with the <wsu:Timestamp> header for SOAP messages, but they can be used 1174
anywhere within the header or body that creation, expiration, and delay times are needed. 1175

 1176

10.2.1 Creation 1177

The <wsu:Created> element specifies a creation timestamp. The exact meaning and 1178
semantics are dependent on the context in which the element is used. The syntax for this 1179
element is as follows: 1180

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 35 of 56

<wsu:Created ValueType="..." wsu:Id="...">...</wsu:Created> 1181

The following describes the attributes and elements listed in the schema above: 1182

/wsu:Created 1183

This element's value is a creation timestamp. Its type is specified by the ValueType 1184
attribute. 1185

/wsu:Created/@ValueType 1186

This optional attribute specifies the type of the time data. This is specified as the XML 1187
Schema type. The default value is xsd:dateTime. 1188

/wsu:Created/@wsu:Id 1189

This optional attribute specifies an XML Schema ID that can be used to reference this 1190
element. 1191

10.2.2 Expiration 1192

The <wsu:Expires> element specifies the expiration time. The exact meaning and processing 1193
rules for expiration depend on the context in which the element is used. The syntax for this 1194
element is as follows: 1195

<wsu:Expires ValueType="..." wsu:Id="...">...</wsu:Expires> 1196

The following describes the attributes and elements listed in the schema above: 1197

/wsu:Expires 1198

This element's value represents an expiration time. Its type is specified by the ValueType 1199
attribute 1200

/wsu:Expires/@ValueType 1201

This optional attribute specifies the type of the time data. This is specified as the XML 1202
Schema type. The default value is xsd:dateTime. 1203

/wsu:Expires/@wsu:Id 1204

This optional attribute specifies an XML Schema ID that can be used to reference this 1205
element. 1206

The expiration is relative to the requestor's clock. In order to evaluate the expiration time, 1207
recipients need to recognize that the requestor's clock may not be synchronized to the recipient’s 1208
clock. The recipient, therefore, MUST make an assessment of the level of trust to be placed in 1209
the requestor's clock, since the recipient is called upon to evaluate whether the expiration time is 1210
in the past relative to the requestor's, not the recipient’s, clock. The recipient may make a 1211
judgment of the requestor’s likely current clock time by means not described in this specification, 1212
for example an out-of-band clock synchronization protocol. The recipient may also use the 1213
creation time and the delays introduced by intermediate SOAP roles to estimate the degree of 1214
clock skew. 1215

One suggested formula for estimating clock skew is 1216
skew = recipient’s arrival time - creation time - transmission time 1217

Transmission time may be estimated by summing the values of delay elements, if present. It 1218
should be noted that wire-time is only part of this if delays include it in estimates. Otherwise the 1219
transmission time will not reflect the on-wire time. If no delays are present, there are no special 1220
assumptions that need to be made about processing time 1221

10.3 Timestamp Header 1222

A <wsu:Timestamp> header provides a mechanism for expressing the creation and expiration 1223
times of a message introduced throughout the message path. Specifically, is uses the previously 1224
defined elements in the context of message creation, receipt, and processing. 1225

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 36 of 56

All times SHOULD be in UTC format as specified by the XML Schema type (dateTime). It should 1226
be noted that times support time precision as defined in the XML Schema specification. 1227

Multiple <wsu:Timestamp> headers can be specified if they are targeted at different SOAP 1228
roles. The ordering within the header is as illustrated below. 1229

The ordering of elements in this header is fixed and MUST be preserved by intermediaries. 1230

To preserve overall integrity of each <wsu:Timestamp> header, it is strongly RECOMMENDED 1231
that each SOAP role create or update the appropriate <wsu:Timestamp> header destined to 1232
itself. 1233

The schema outline for the <wsu:Timestamp> header is as follows: 1234
<wsu:Timestamp wsu:Id="..."> 1235
 <wsu:Created>...</wsu:Created> 1236
 <wsu:Expires>...</wsu:Expires> 1237
 ... 1238
</wsu:Timestamp> 1239

The following describes the attributes and elements listed in the schema above: 1240

/wsu:Timestamp 1241

This is the header for indicating message timestamps. 1242

/wsu:Timestamp/Created 1243

This represents the creation time of the message. This element is optional, but can only 1244
be specified once in a Timestamp header. Within the SOAP processing model, creation 1245
is the instant that the infoset is serialized for transmission. The creation time of the 1246
message SHOULD NOT differ substantially from its transmission time. The difference in 1247
time should be minimized. 1248

/wsu:Timestamp/Expires 1249

This represents the expiration of the message. This is optional, but can appear at most 1250
once in a Timestamp header. Upon expiration, the requestor asserts that the message 1251
is no longer valid. It is strongly RECOMMENDED that recipients (anyone who processes 1252
this message) discard (ignore) any message that has passed its expiration. A Fault code 1253
(wsu:MessageExpired) is provided if the recipient wants to inform the requestor that its 1254
message was expired. A service MAY issue a Fault indicating the message has expired. 1255

/wsu:Timestamp/{any} 1256

This is an extensibility mechanism to allow additional elements to be added to the 1257
header. 1258

/wsu:Timestamp/@wsu:Id 1259

This optional attribute specifies an XML Schema ID that can be used to reference this 1260
element. 1261

/wsu:Timestamp/@{any} 1262

This is an extensibility mechanism to allow additional attributes to be added to the 1263
header. 1264

The following example illustrates the use of the <wsu:Timestamp> element and its content. 1265

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope" 1266
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/xx/utility"> 1267
 <S:Header> 1268
 <wsu:Timestamp> 1269
 <wsu:Created>2001-09-13T08:42:00Z</wsu:Created> 1270
 <wsu:Expires>2001-10-13T09:00:00Z</wsu:Expires> 1271
 </wsu:Timestamp> 1272
 ... 1273
 </S:Header> 1274
 <S:Body> 1275

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 37 of 56

 ... 1276
 </S:Body> 1277
</S:Envelope> 1278

10.4 TimestampTrace Header 1279

A <wsu:TimestampTrace> header provides a mechanism for expressing the delays introduced 1280
throughout the message path. Specifically, is uses the previously defined elements in the context 1281
of message creation, receipt, and processing. 1282

All times SHOULD be in UTC format as specified by the XML Schema type (dateTime). It should 1283
be noted that times support time precision as defined in the XML Schema specification. 1284

Multiple <wsu:TimestampTrace> headers can be specified if they reference a different SOAP 1285
role. 1286

The <wsu:Received> element specifies a receipt timestamp with an optional processing delay. 1287
The exact meaning and semantics are dependent on the context in which the element is used. 1288

It is also strongly RECOMMENDED that each SOAP role sign its elements by referencing their 1289
ID, NOT by signing the TimestampTrace header as the header is mutable. 1290

The syntax for this element is as follows: 1291
<wsu:TimestampTrace> 1292

<wsu:Received Role="..." Delay="..." ValueType="..." 1293
 wsu:Id="...">...</wsu:Received> 1294
</wsu:TimestampTrace> 1295

The following describes the attributes and elements listed in the schema above: 1296

/wsu:Received 1297

This element’s value is a receipt timestamp. The time specified SHOULD be a UTC 1298
format as specified by the ValueType attribute (default is XML Schema type dateTime). 1299

/wsu:Received/@Role 1300

A required attribute, Role, indicates which SOAP role is indicating receipt. Roles MUST 1301
include this attribute, with a value matching the role value as specified as a SOAP 1302
intermediary. 1303

/wsu:Received/@Delay 1304

The value of this optional attribute is the delay associated with the SOAP role expressed 1305
in milliseconds. The delay represents processing time by the Role after it received the 1306
message, but before it forwarded to the next recipient. 1307

/wsu:Received/@ValueType 1308

This optional attribute specifies the type of the time data (the element value). This is 1309
specified as the XML Schema type. If this attribute isn't specified, the default value is 1310
xsd:dateTime. 1311

/wsu:Received/@wsu:Id 1312

This optional attribute specifies an XML Schema ID that can be used to reference this 1313
element. 1314

The delay attribute indicates the time delay attributable to an SOAP role (intermediate 1315
processor). In some cases this isn't known; for others it can be computed as role’s send time – 1316
role's receipt time. 1317

Each delay amount is indicated in units of milliseconds, without fractions. If a delay amount 1318
would exceed the maximum value expressible in the datatype, the value should be set to the 1319
maximum value of the datatype. 1320

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 38 of 56

The following example illustrates the use of the <wsu:Timestamp> header and a 1321
<wsu:TimestampTrace> header indicating a processing delay of one minute subsequent to the 1322
receipt which was two minutes after creation. 1323

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope" 1324
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/xx/utility"> 1325
 <S:Header> 1326
 <wsu:Timestamp> 1327
 <wsu:Created>2001-09-13T08:42:00Z</wsu:Created> 1328
 <wsu:Expires>2001-10-13T09:00:00Z</wsu:Expires> 1329
 </wsu:Timestamp> 1330
 <wsu:TimespampTrace> 1331
 <wsu:Received Role="http://x.com/" Delay="60000"> 1332
 2001-09-13T08:44:00Z</wsu:Received> 1333
 </wsu:TimestampTrace> 1334
 ... 1335
 </S:Header> 1336
 <S:Body> 1337
 ... 1338
 </S:Body> 1339
</S:Envelope> 1340
 1341

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 39 of 56

11 Extended Example 1342

The following sample message illustrates the use of security tokens, signatures, and encryption. 1343
For this example, the timestamp and the message body are signed prior to encryption. The 1344
decryption transformation is not needed as the signing/encryption order is specified within the 1345
<wsse:Security> header. 1346

(001) <?xml version="1.0" encoding="utf-8"?> 1347
(002) <S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope" 1348
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 1349
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext" 1350
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/xx/utility" 1351
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"> 1352
(003) <S:Header> 1353
(004) <wsu:Timestamp> 1354
(005) <wsu:Created wsu:Id="T0"> 1355
(006) 2001-09-13T08:42:00Z 1356
(007) </wsu:Created> 1357
(008) </wsu:Timestamp> 1358
(009) <wsse:Security> 1359
(010) <wsse:BinarySecurityToken 1360
 ValueType="wsse:X509v3" 1361
 wsu:Id="X509Token" 1362
 EncodingType="wsse:Base64Binary"> 1363
(011) MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i... 1364
(012) </wsse:BinarySecurityToken> 1365
(013) <xenc:EncryptedKey> 1366
(014) <xenc:EncryptionMethod Algorithm= 1367
 "http://www.w3.org/2001/04/xmlenc#rsa-1_5"/> 1368
(015) <wsse:KeyIdentifier EncodingType="wsse:Base64Binary" 1369
(016) ValueType="wsse:X509v3">MIGfMa0GCSq... 1370
(017) </wsse:KeyIdentifier> 1371
(018) <xenc:CipherData> 1372
(019) <xenc:CipherValue>d2FpbmdvbGRfE0lm4byV0... 1373
(020) </xenc:CipherValue> 1374
(021) </xenc:CipherData> 1375
(022) <xenc:ReferenceList> 1376
(023) <xenc:DataReference URI="#enc1"/> 1377
(024) </xenc:ReferenceList> 1378
(025) </xenc:EncryptedKey> 1379
(026) <ds:Signature> 1380
(027) <ds:SignedInfo> 1381
(028) <ds:CanonicalizationMethod 1382
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1383
(029) <ds:SignatureMethod 1384
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 1385
(039) <ds:Reference URI="#T0"> 1386
(031) <ds:Transforms> 1387
(032) <ds:Transform 1388
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1389
(033) </ds:Transforms> 1390
(034) <ds:DigestMethod 1391
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 1392
(035) <ds:DigestValue>LyLsF094hPi4wPU... 1393
(036) </ds:DigestValue> 1394
(037) </ds:Reference> 1395
(038) <ds:Reference URI="#body"> 1396
(039) <ds:Transforms> 1397
(040) <ds:Transform 1398

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 40 of 56

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1399
(041) </ds:Transforms> 1400
(042) <ds:DigestMethod 1401
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 1402
(043) <ds:DigestValue>LyLsF094hPi4wPU... 1403
(044) </ds:DigestValue> 1404
(045) </ds:Reference> 1405
(046) </ds:SignedInfo> 1406
(047) <ds:SignatureValue> 1407
(048) Hp1ZkmFZ/2kQLXDJbchm5gK... 1408
(049) </ds:SignatureValue> 1409
(050) <ds:KeyInfo> 1410
(051) <wsse:SecurityTokenReference> 1411
(052) <wsse:Reference URI="#X509Token"/> 1412
(053) </wsse:SecurityTokenReference> 1413
(054) </ds:KeyInfo> 1414
(055) </ds:Signature> 1415
(056) </wsse:Security> 1416
(057) </S:Header> 1417
(058) <S:Body wsu:Id="body"> 1418
(059) <xenc:EncryptedData 1419
 Type="http://www.w3.org/2001/04/xmlenc#Element" 1420
 wsu:Id="enc1"> 1421
(060) <xenc:EncryptionMethod 1422
 Algorithm="http://www.w3.org/2001/04/xmlenc#3des-cbc"/> 1423
(061) <xenc:CipherData> 1424
(062) <xenc:CipherValue>d2FpbmdvbGRfE0lm4byV0... 1425
(063) </xenc:CipherValue> 1426
(064) </xenc:CipherData> 1427
(065) </xenc:EncryptedData> 1428
(066) </S:Body> 1429
(067) </S:Envelope> 1430

Let's review some of the key sections of this example: 1431

Lines (003)-(057) contain the SOAP message headers. 1432

Lines (004)-(008) specify the timestamp information. In this case it indicates the creation time of 1433
the message. 1434

Lines (009)-(056) represent the <wsse:Security> header block. This contains the security-1435
related information for the message. 1436

Lines (010)-(012) specify a security token that is associated with the message. In this case, it 1437
specifies an X.509 certificate that is encoded as Base64. Line (011) specifies the actual Base64 1438
encoding of the certificate. 1439

Lines (013)-(025) specify the key that is used to encrypt the body of the message. Since this is a 1440
symmetric key, it is passed in an encrypted form. Line (014) defines the algorithm used to 1441
encrypt the key. Lines (015)-(017) specify the name of the key that was used to encrypt the 1442
symmetric key. Lines (018)-(021) specify the actual encrypted form of the symmetric key. Lines 1443
(022)-(024) identify the encryption block in the message that uses this symmetric key. In this 1444
case it is only used to encrypt the body (Id="enc1"). 1445

Lines (026)-(055) specify the digital signature. In this example, the signature is based on the 1446
X.509 certificate. Lines (027)-(046) indicate what is being signed. Specifically, Line (039) 1447
references the creation timestamp and line (038) references the message body. 1448

Lines (047)-(049) indicate the actual signature value – specified in Line (042). 1449

Lines (051)-(053) indicate the key that was used for the signature. In this case, it is the X.509 1450
certificate included in the message. Line (052) provi des a URI link to the Lines (010)-(012). 1451

The body of the message is represented by Lines (056)-(066). 1452

Lines (059)-(065) represent the encrypt ed metadata and form of the body using XML Encryption. 1453
Line (059) indicates that the "element value" is being replaced and identifies this encryption. Line 1454

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 41 of 56

(060) specifies the encryption algorithm – Triple-DES in this case. Lines (062)-(063) contain the 1455
actual cipher text (i.e., the result of the encryption). Note that we don't include a reference to the 1456
key as the key references this encryption – Line (023). 1457

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 42 of 56

12 Error Handling 1458

There are many circumstances where an error can occur while processing security information. 1459
For example: 1460

Invalid or unsupported type of security token, signing, or encryption 1461

Invalid or unauthenticated or unauthenticatable security token 1462

Invalid signature 1463

Decryption failure 1464

Referenced security token is unavailable 1465

Unsupported namespace 1466

These can be grouped into two classes of errors: unsupported and failure. For the case of 1467
unsupported errors, the recipient MAY provide a response that informs the sender of supported 1468
formats, etc. For failure errors, the recipient MAY choose not to respond, as this may be a form 1469
of Denial of Service (DOS) or cryptographic attack. We combine signature and encryption 1470
failures to mitigate certain types of attacks. 1471

If a failure is returned to a sender then the failure MUST be reported using SOAP's Fault 1472
mechanism. The following tables outline the predefined security fault codes. The "unsupported" 1473
class of errors are: 1474

Error that occurred faultcode

An unsupported token was provided wsse:UnsupportedSecurityToken

An unsupported signature or encryption algorithm
was used

wsse:UnsupportedAlgorithm

The "failure" class of errors are: 1475

Error that occurred faultcode

An error was discovered processing the
<wsse:Security> header.

wsse:InvalidSecurity

An invalid security token was provided wsse:InvalidSecurityToken

The security token could not be authenticated or
authorized

wsse:FailedAuthentication

The signature or decryption was invalid wsse:FailedCheck

Referenced security token could not be retrieved wsse:SecurityTokenUnavailable

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 43 of 56

13 Security Considerations 1476

It is strongly RECOMMENDED that messages include digitally signed elements to allow message 1477
recipients to detect replays of the message when the messages are exchanged via an open 1478
network. These can be part of the message or of the headers defined from other SOAP 1479
extensions. Four typical approaches are: 1480

Timestamp 1481

Sequence Number 1482

Expirations 1483

Message Correlation 1484

This specification defines the use of XML Signature and XML Encryption in SOAP headers. As 1485
one of the building blocks for securing SOAP messages, it is intended to be used in conjunction 1486
with other security techniques. Digital signatures need to be understood in the context of other 1487
security mechanisms and possible threats to an entity. 1488

Digital signatures alone do not provide message authentication. One can record a signed 1489
message and resend it (a replay attack). To prevent this type of attack, digital signatures must be 1490
combined with an appropriate means to ensure the uniqueness of the message, such as 1491
timestamps or sequence numbers (see earlier section for additional details). The proper usage of 1492
nonce guards aginst replay attacts. 1493

When digital signatures are used for verifying the identity of the sending party, the sender must 1494
prove the possession of the private key. One way to achieve this is to use a challenge-response 1495
type of protocol. Such a protocol is outside the scope of this document. 1496

To this end, the developers can attach timestamps, expirations, and sequences to messages. 1497

Implementers should also be aware of all the security implications resulting from the use of digital 1498
signatures in general and XML Signature in particular. When building trust into an application 1499
based on a digital signature there are other technologies, such as certificate evaluation, that must 1500
be incorporated, but these are outside the scope of this document. 1501

Requestors should use digital signatures to sign security tokens that do not include signatures (or 1502
other protection mechanisms) to ensure that they have not been altered in transit. It is strongly 1503
RECOMMENDED that all relevant and immutable message content be signed by the sender. 1504
Receivers SHOULD only consider those portions of the document that are covered by the 1505
sender’s signature as being subject to the security tokens in the message. Security tokens 1506
appearing in <wsse:Security> header elements SHOULD be signed by their issuing authority 1507
so that message receivers can have confidence that the security tokens have not been forged or 1508
altered since their issuance. It is strongly RECOMMENDED that a message sender sign any 1509
<SecurityToken> elements that it is confirming and that are not signed by their issuing 1510
authority. 1511

Also, as described in XML Encryption, we note that the combination of signing and encryption 1512
over a common data item may introduce some cryptographic vulnerability. For example, 1513
encrypting digitally signed data, while leaving the digital signature in the clear, may allow plain 1514
text guessing attacks. The proper usage of nonce guards aginst replay attacts. 1515

In order to trust Ids and timestamps, they SHOULD be signed using the mechanisms outlined in 1516
this specification. This allows readers of the IDs and timestamps information to be certain that 1517
the IDs and timestamps haven’t been forged or altered in any way. It is strongly 1518
RECOMMENDED that IDs and timestamp elements be signed. 1519

Timestamps can also be used to mitigate replay attacks. Signed timestamps MAY be used to 1520
keep track of messages (possibly by caching the most recent timestamp from a specific service) 1521
and detect replays of previous messages. It is RECOMMENDED that timestamps and nonces be 1522

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 44 of 56

cached for a given period of time, as a guideline a value of five minutes can be used as a 1523
minimum to detect replays, and that timestamps older than that given period of time set be 1524
rejected. in interactive scenarios. 1525

When a password in a <UsernameToken> is used for authentication, the password needs to be 1526
properly protected. If the underlying transport does not provide enough protection against 1527
eavesdropping, the password SHOULD be digested as described in Section 6.1.1. Even so, the 1528
password must be strong enough so that simple password guessing attacks will not reveal the 1529
secret from a captured message. 1530

In one-way message authentication, it is RECOMMENDED that the sender and the recipient re-1531
use the elements and structure defined in this specification for proving and validating freshness of 1532
a message. It is RECOMMEND that the nonce value be unique per message (never been used 1533
as a nonce before by the sender and recipient) and use the <wsse:Nonce> element within the 1534
<wsse:Security> header. Further, the <wsu:Timestamp> header SHOULD be used with a 1535
<wsu:Created> element. It is strongly RECOMMENDED that the <wsu:Created>, 1536
<wsse:Nonce> elements be included in the signature. 1537

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 45 of 56

14 Privacy Considerations 1538

TBD 1539

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 46 of 56

15 Acknowledgements 1540

This specification was developed as a result of joint work of many individuals from the WSS TC 1541
including: TBD 1542

The input specifications for this document were developed as a result of joint work with many 1543
individuals and teams, including: Keith Ballinger, Microsoft, Bob Blakley, IBM, Allen Brown, 1544
Microsoft, Joel Farrell, IBM, Mark Hayes, VeriSign, Kelvin Lawrence, IBM, Scott Konersmann, 1545
Microsoft, David Melgar, IBM, Dan Simon, Microsoft, Wayne Vicknair, IBM. 1546

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 47 of 56

16 References 1547

[DIGSIG] Informational RFC 2828, "Internet Security Glossary," May 2000. 1548

[Kerberos] J. Kohl and C. Neuman, "The Kerberos Network Authentication Service 1549
(V5)," RFC 1510, September 1993, http://www.ietf.org/rfc/rfc1510.txt . 1550

[KEYWORDS] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," 1551
RFC 2119, Harvard University, March 1997 1552

[SHA-1] FIPS PUB 180-1. Secure Hash Standard. U.S. Department of 1553
Commerce / National Institute of Standards and Technology. 1554
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt 1555

[SOAP11] W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000. 1556

[SOAP12] W3C Working Draft, “SOAP Version 1.2 Part 1: Messaging 1557
Framework”, 26 June 2002 1558

[SOAP-SEC] W3C Note, "SOAP Security Extensions: Digital Signature," 06 February 1559
2001. 1560

[URI] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers 1561
(URI): Generic Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox 1562
Corporation, August 1998. 1563

[WS-Security] "Web Services Security Language", IBM, Microsoft, VeriSign, April 2002. 1564
"WS-Security Addendum", IBM, Microsoft, VeriSign, August 2002. 1565
"WS-Security XML Tokens", IBM, Microsoft, VeriSign, August 2002. 1566

[XML-C14N] W3C Recommendation, "Canonical XML Version 1.0," 15 March 2001 1567

[XML-Encrypt] W3C Working Draft, "XML Encryption Syntax and Processing," 04 March 1568
2002. 1569

[XML-ns] W3C Recommendation, "Namespaces in XML," 14 January 1999. 1570

[XML-Schema] W3C Recommendation, "XML Schema Part 1: Structures,"2 May 2001. 1571
W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May 2001. 1572

[XML Signature] W3C Recommendation, "XML Signature Syntax and Processing," 12 1573
February 2002. 1574

[X509] S. Santesson, et al,"Internet X.509 Public Key Infrastructure Qualified 1575
Certificates Profile," 1576
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=1577
T-REC-X.509-200003-I 1578

[XPath] W3C Recommendation, "XML Path Language", 16 November 1999 1579

[WSS-SAML] OASIS Working Draft 02, "Web Services Security SAML Token Binding, 1580
23 September 2002 1581

[WSS-XrML] OASIS Working Draft 01, "Web Services Security XrML Token Binding, 1582
20 September 2002 1583

[WSS-X509] OASIS Working Draft 01, "Web Services Security X509 Binding, 18 1584
September 2002 1585

[WSS-Kerberos] OASIS Working Draft 01, "Web Services Security Kerberos Binding, 18 1586
September 2002 1587

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 48 of 56

[XPointer] "XML Pointer Language (XPointer) Version 1.0, Candidate Recommendation", 1588
DeRose, Maler, Daniel, 11 September 2001. 1589

 1590

 1591

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 49 of 56

Appendix A: Utility Elements and Attributes 1592

This specification defines several elements, attributes, and attribute groups which can be re-used 1593
by other specifications. This appendix provides an overview of these utility components. It 1594
should be noted that the detailed descriptions are provided in the specification and this appendix 1595
will reference these sections as well as calling out other aspects not documented in the 1596
specification. 1597

A.1. Identification Attribute 1598

There are many situations where elements within SOAP messages need to be referenced. For 1599
example, when signing a SOAP message, selected elements are included in the signature. XML 1600
Schema Part 2 provides several built-in data types that may be used for identifying and 1601
referencing elements, but their use requires that consumers of the SOAP message either to have 1602
or be able to obtain the schemas where the identity or reference mechanisms are defined. In 1603
some circumstances, for example, intermediaries, this can be problematic and not desirable. 1604

Consequently a mechanism is required for identifying and referencing elements, based on the 1605
SOAP foundation, which does not rely upon complete schema knowledge of the context in which 1606
an element is used. This functionality can be integrated into SOAP processors so that elements 1607
can be identified and referred to without dynamic schema discovery and processing. 1608

This specification specifies a namespace-qualified global attribute for identifying an element 1609
which can be applied to any element that either allows arbitrary attributes or specifically allows 1610
this attribute. This is a general purpose mechanism which can be re-used as needed. 1611

A detailed description can be found in Section 4.0 ID References. 1612

A.2. Timestamp Elements 1613

The specification defines XML elements which may be used to express timestamp information 1614
such as creation, expiration, and receipt. While defined in the context of messages, these 1615
elements can be re-used wherever these sorts of time statements need to be made. 1616

The elements in this specification are defined and illustrated using time references in terms of the 1617
dateTime type defined in XML Schema. It is RECOMMENDED that all time references use this 1618
type for interoperability. It is further RECOMMENDED that all references be in UTC time for 1619
increased interoperability. If, however, other time types are used, then the ValueType attribute 1620
MUST be specified to indicate the data type of the time format. 1621

The following table provides an overview of these elements: 1622

Element Description

<wsu:Created> This element is used to indicate the creation time associated with
the enclosing context.

<wsu:Expires> This element is used to indicate the expiration time associated
with the enclosing context.

<wsu:Received> This element is used to indicate the receipt time reference
associated with the enclosing context.

A detailed description can be found in Section 10 Message Timestamp. 1623

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 50 of 56

A.3. General Schema Types 1624

The schema for the utility aspects of this specification also defines some general purpose 1625
schema elements. While these elements are defined in this schema for use with this 1626
specification, they are general purpose definitions that may be used by other specifications as 1627
well. 1628

Specifically, the following schema elements are defined and can be re-used: 1629

Schema Element Description

wsu:commonAtts attribute group This attribute group defines the common
attributes recommended for elements. This
includes the wsu:Id attribute as well as
extensibility for other namespace qualified
attributes.

wsu:AttributedDateTime type This type extends the XML Schema dateTime
type to include the common attributes.

wsu:AttributedURI type This type extends the XML Schema dateTime
type to include the common attributes.

 1630

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 51 of 56

Appendix B: SecurityTokenReference Model 1631

This appendix provides a non-normative overview of the usage and processing models for the 1632
<wsse:SecurityTokenReference> element. 1633

There are several motivations for introducing the <wsse:SecurityTokenReference> 1634
element: 1635

The XML Signature reference mechanisms are focused on "key" references rather than general 1636
token references. 1637
The XML Signature reference mechanisms utilize a fairly closed schema which limits the 1638
extensibility that can be applied. 1639
There are additional types of general reference mechanisms that are needed, but are not covered 1640
by XML Signature. 1641
There are scenarios where a reference may occur outside of an XML Signature and the XML 1642
Signature schema is not appropriate or desired. 1643
The XML Signature references may include aspects (e.g. transforms) that may not apply to all 1644
references. 1645

 1646

The following use cases drive the above motivations: 1647

Local Reference – A security token, that is included in the message in the <wsse:Security> 1648
header, is associated with an XML Signature. The figure below illustrates this: 1649
 1650
Remote Reference – A security token, that is not included in the message but may be available 1651
at a specific URI, is associated with an XML Signature. The figure below illustrates this: 1652
 1653

Security
Token

Signature

Reference

Security
Token

Signature

Reference

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 52 of 56

Key Identifier – A security token, which is associated with an XML Signature and identified using 1654
a known value that is the result of a well-known function of the security token (defined by the 1655
token format or profile). The figure below illustrates this where the token is located externally: 1656
 1657

Key Name – A security token is associated with an XML Signature and identified using a known 1658
value that represents a "name" assertion within the security token (defined by the token format or 1659
profile). The figure below illustrates this where the token is located externally: 1660

Security
Token

Name: XXX

Signature

Key
Name

 1661
Format-Specific References – A security token is associated with an XML Signature and 1662
identified using a mechanism specific to the token (rather than the general mechanisms 1663
described above). The figure below illustrates this: 1664
 1665
 1666

Non-Signature References – A message may contain XML that does not represent an XML 1667
signature, but may reference a security token (which may or may not be included in the 1668
message). The figure below illustrates this: 1669
 1670

Security
Token

K-I(ST)

Signature

Key
Identifier

MyToken
Security
Token

Signature

MyRef

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 53 of 56

 1671

All conformant implementations MUST be able to process the 1672
<wsse:SecurityTokenReference> element. However, they are not required to support all of 1673
the different types of references. 1674

The reference MAY include a ValueType attribute which provides a "hint" for the type of desired 1675
token. 1676

If multiple sub-elements are specified, together they describe the reference for the token. 1677

There are several challenges that implementations face when trying to interoperate: 1678
ID References – The underlying XML referencing mechanism using the XML base type of ID 1679
provides a simple straightforward XML element reference. However, because this is an XML 1680
type, it can be bound to any attribute. Consequently in order to process the IDs and references 1681
requires the recipient to understand the schema. This may be an expensive task and in the 1682
general case impossible as there is no way to know the "schema location" for a specific 1683
namespace URI. 1684
Ambiguity – The primary goal of a reference is to uniquely identify the desired token. ID 1685
references are, by definition, unique by XML. However, other mechanisms such as "principal 1686
name" are not required to be unique and therefore such references may be unique. 1687

The XML Signature specification defines a <ds:KeyInfo> element which is used to provide 1688
information about the "key" used in the signature. For token references within signatures, it is 1689
RECOMMENDED that the <wsse:SecurityTokenReference> be placed within the 1690
<ds:KeyInfo>. The XML Signature specification also defines mechanisms for referencing keys 1691
by identifier or passing specific keys. As a rule, the specific mechanisms defined in WS-Security 1692
or its profiles are preferred over the mechanisms in XML Signature. 1693

The following provides additional details on the specific reference mechanisms defined in WS-1694
Security: 1695

Direct References – The <wsse:Reference> element is used to provide a URI reference to 1696
the security token. If only the fragment is specified, then it references the security token within 1697
the document whose wsu:Id matches the fragment. For non-fragment URIs, the reference is to 1698
a [potentially external] security token identified using a URI. There are no implied semantics 1699
around the processing of the URI. 1700
Key Identifiers – The <wsse:KeyIdentifier> element is used to reference a security token 1701
by specifying a known value (identifier) for the token, which is determined by applying a special 1702
function to the security token (e.g. a hash of key fields). This approach is typically unique for the 1703
specific security token but requires a profile or token-specific function to be specified. The 1704
ValueType attribute provide a hint as to the desired token type. The EncodingType attribute 1705
specifies how the unique value (identifier) is encoded. For example, a hash value may be 1706
encoded using base 64 encoding (the default). 1707
Key Names – The <ds:KeyName> element is used to reference a security token be specifying a 1708
specific value that is used to match identity assertion within the security token. This is a subset 1709
match and may result in multiple security tokens that match the specified name. While XML 1710

Security
Token

MyStuff

Reference

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 54 of 56

Signature doesn't imply formatting semantics, WS-Security RECOMMENDS that X.509 names be 1711
specified. 1712

It is expected that, where appropriate, profiles define if and how the reference mechanisms map 1713
to the specific token profile. Specifically, the profile should answer the following questions: 1714

What types of references can be used? 1715
How "Key Name" references map (if at all)? 1716
How "Key Identifier" references map (if at all)? 1717
Any additional profile or format-specific references? 1718

 1719

 1720

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 55 of 56

Appendix C: Revision History 1721

Rev Date What

01 20-Sep-02 Initial draft based on input documents and editorial
review

02 24-Oct-02 Update with initial comments (technical and
grammatical)

03 03-Nov-02 Feedback updates

04 17-Nov-02 Feedback updates

05 02-Dec-02 Feedback updates

06 08-Dec-02 Feedback updates

07 11-Dec-02 Updates from F2F

08 12-Dec-02 Updates from F2F

 1722

WSS-Core-08 12 December 2002

Copyright © OASIS Open 2002. All Rights Reserved. Page 56 of 56

Appendix D: Notices 1723

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 1724
that might be claimed to pertain to the implementation or use of the technology described in this 1725
document or the extent to which any license under such rights might or might not be available; 1726
neither does it represent that it has made any effort to identify any such rights. Information on 1727
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 1728
website. Copies of claims of rights made available for publication and any assurances of licenses 1729
to be made available, or the result of an attempt made to obtain a general license or permission 1730
for the use of such proprietary rights by implementors or users of this specification, can be 1731
obtained from the OASIS Executive Director. 1732

OASIS invites any interested party to bring to its attention any copyrights, patents or patent 1733
applications, or other proprietary rights which may cover technology that may be required to 1734
implement this specification. Please address the information to the OASIS Executive Director. 1735

Copyright © OASIS Open 2002. All Rights Reserved. 1736

This document and translations of it may be copied and furnished to others, and derivative works 1737
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 1738
published and distributed, in whole or in part, without restriction of any kind, provided that the 1739
above copyright notice and this paragraph are included on all such copies and derivative works. 1740
However, this document itself does not be modified in any way, such as by removing the 1741
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS 1742
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 1743
Property Rights document must be followed, or as required to translate it into languages other 1744
than English. 1745

The limited permissions granted above are perpetual and will not be revoked by OASIS or its 1746
successors or assigns. 1747

This document and the information contained herein is provided on an “AS IS” basis and OASIS 1748
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 1749
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE 1750
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 1751
PARTICULAR PURPOSE. 1752

 1753

