
1

Regulating Access to XML documents

Alban Gabillon - Emmanuel Bruno

Laboratoire SIS - Equipe Informatique
Université de Toulon et du Var

83957 La Garde, France
{gabillon,bruno}@univ-tln.fr

Abstract

In this paper, our objective is to define a security model for regulating access to XML documents.
Our model offers a security policy with a great expressive power. An XML document is
represented by a tree. Nodes of this tree are of different type (element, attribute, text,
comment…etc). The smallest protection granularity of our model is the node, that is,
authorisation rules granting or denying access to a single node can be defined. The authorisation
rules related to a specific XML document are first defined on a separate Authorisation sheet. This
Authorisation sheet is then translated into an XSLT sheet. If a user requests access to the XML
document then the XSLT processor uses the XSLT sheet to provide the user with a view of the
XML document which is compatible with his rights.

Keywords: Security Model, Subject, Object, Authorisation Rule, Access Controls, XML, XPath,
XSLT.

2

1. Introduction

XML is a mark-up language standardised by the World Wide Web Consortium (W3C) [1]. XML
has become a standard for describing information distributed on Internet. Since Internet is a
public network, internet applications need security mechanisms to protect sensitive data against
unauthorised access. Standardisation activities for XML digital signature and element-wise
encryption have already started [2]. However, a standardised authorisation mechanism for XML
data still remains an open issue although some proposals have already been made [3][4][5].

In this paper, our objective is to define a security model for regulating access to XML documents.
In [6], due to space limitations we only managed to present the basics of our model. In this paper
we present the complete model. An XML document is represented by a tree. Nodes of this tree are
of different type (element, attribute, text, comment…etc). The smallest protection granularity of
our model is the node, that is, authorisation rules granting or denying access to a single node can
be defined. The semantics of an authorisation rule is unique regardless of the node type. We
show that our model allows us to define complex security policies including cover story
management.

A prototype implementing our model is available online at http://sis.univ-tln.fr/XML-
secu. Our prototype is based on XSLT [7]. The authorisation rules related to a specific XML
document are first defined on a separate easy-to-read Authorisation sheet. This Authorisation
sheet is then translated into an XSLT sheet. If a user requests access to the XML document then
the XSLT processor uses the XSLT sheet to provide the user with a view of the XML document
which is compatible with his rights.

Our model uses the XPath language. Therefore, section 2 of this paper briefly summarises the
main characteristics of the XPath language. Section 3 presents our model. Section 4 sketches a
straightforward implementation of our model using an XSLT processor. Section 5 discusses
related work. Finally, section 6 concludes this paper.

2. XPath

XPath [8] is a language for addressing parts of an XML document. XPath models an XML
document as a tree of nodes. The following XML document represents a file of medical records
which contains only one record. This XML document can be represented by the tree of Figure 1.

3

Nodes preceded by "/" are element nodes. Nodes preceded by "@" are attribute nodes and nodes
preceded by "text()" are text nodes1.

The following expressions are examples of absolute XPath location paths (see [8]):

• /files/record. This path addresses each record element which is a child of the files
element.

• /files//text().This path addresses each text node which is a descendant of the files
element.

The following expressions are examples of relative XPath location paths (we assume the
context node is the diagnosis element)(see [8]):

• item/node().This path addresses all the child nodes (element or text node) of the item
element.

• ../@*. This path addresses all the attribute nodes of the context node's parent element, that is,
this path addresses all the attributes of the record element.

In addition to its use for addressing, XPath is also designed so that it has a natural subset that
can be used for matching (testing whether or not a node matches a pattern). This use of XPath is
made by XSLT [7]. A pattern specifies a set of conditions on a node. A node that satisfies the
conditions matches the pattern. A node that does not satisfy the conditions does not match the
pattern. Location paths that meet certain restrictions can be used as patterns (see [7]).

The following expressions are examples of patterns:

• item. Each item element matches this pattern.

• item/text(). Each text node of each item element matches this pattern.

• record/@*. Each attribute of each record element matches this pattern.

1 The XPath data model includes three other types of node namely namespace node, processing instruction node and comment

node. For a concise presentation, we do not include such nodes in our example.

<files>
 <record id="mrobert">
 <name>Martin Robert</name>
 <diagnosis>
 <item>Pneumonia</item>
 </diagnosis>
 </record>
</files>

@id="mrobert"

text() Martin Robert

/name

text() Pneumonia

/item

/diagnosis

/record

/files

Figure 1 : Tree representation of an XML document

4

• record[1]/node() | record[1]/@*. Each child node and attribute of the first record
element matches this pattern ("|" is the union operator).

• item[contains(text(),'Cancer')]. Each item element containing the string 'Cancer'
matches this pattern.

3. Access Control Model

The development of an access control system requires the definition of subjects and objects for
which authorisation rules must be specified and access controls must be enforced.

3.1 Subjects

A subject is a user. Each user has an identifier which can be the login name. Each user is the
member of one or several user groups. For the sake of simplicity we assume that groups are
disjoint but they can be nested.

The subject hierarchy is described in a separate XML Subject Sheet (XSS). The document below
shows a simple example of such a sheet.

<subjects>
 <users>
 <member id="dupont">
 <name>Pierre Dupont</name>
 </member>
 <member id="durand">
 <name>Jacqueline Durand</name>
 </member>
 <member id="frobert">
 <name>Francine Robert</name>
 </member>
 <member id="mrobert">
 <name>Martin Robert</name>
 </member>
 <member id="beaufort">
 <name>Colette Beaufort</name>
 </member>
 </users>
 <groups>
 <Staff>

<Secretary>
<member idref="beaufort"/>

 </Secretary>
 <Doctor>
 <member idref="dupont"/>
 </Doctor>
 <Nurse>

<member idref="durand"/>
</Nurse>

 </Staff>
 <Patient>

<member idref="mrobert"/>
 </Patient>
 <Family>

<Robert>
<member idref="frobert"/>
<member idref="mrobert"/>

5

</Robert>
 </Family>
 </groups>
</subjects>

This XSS document describes a subject hierarchy with four users. In this example, each user is
member of at least one group. There are three groups: Staff, Patient and Family. The Staff group
is subdivided into three subgroups: Doctor, Nurse, Secretary. The Family group contains only
the Robert family sub-group.

Users registered in this XSS sheet are selected with location paths relative to the subjects
element. If a location path addresses a node n then we say that all users who are referenced in the
sub-tree of which n is the root are selected. Examples of such a path are the followings:

• users. This path selects all users.

• users/member[@id='mrobert']. This path selects user Martin Robert.

• groups//Secretary. This path selects all secretaries

• groups/*[name()!='Staff']. This path selects all the users who are not staff members.

The following document corresponds to the DTD for XSS sheets:
<!ELEMENT subjects (users,groups) >
<!ELEMENT users (member*) >
<!ELEMENT member (name?) >
<!ELEMENT name #PCDATA >
<!ATTLIST member id ID

idref IDREF >
<!ELEMENT groups ((ANY|member)*) >

3.2 Objects

In section 3 we have seen that an XML document can be represented by an XPath tree. An object
can be any node of an XPath tree.

3.3 Authorisation rules

An authorisation rule is a 4-tuple of the form:

<set-of-subjects, set-of-objects, access, priority>

We have seen in sections 3.1 and 3.2 that a subject is a user and an object is a node of an XPath
tree.

set-of-objects is expressed with a pattern.

set-of-subjects is a location path relative to the element subjects of the XSS sheet (see section
3.1)

The value of access is either grant or deny.

priority is optional. It is used to fix the priority of the authorisation rule (see section 3.4 for more
details). The default priority is 0.

6

In our model the semantics of an authorisation rule is unique regardless of the node type
(element, attribute, text …):

If access to node n is granted to user u then u is permitted to see the sub-tree of which n is the
root.

If access to node n is denied to user u then u is forbidden to see the sub-tree of which n is the
root.

The Security Administrator writes the authorisation rules on an XML Authorisation Sheet (XAS).
The following XML document is an example of XAS sheet. This sheet contains the rules which
apply to the document described in section 2 and refers to the XSS sheet defined in section 3.1.

<!-- D E F A U L T H O S P I T A L P O L I C Y -->

<!-- Rule 1 -->
<xas DefaultPolicy="open" DefaultSubjectsFile="subjects.xss">

<!-- Rule 2 -->
<rule access="deny" object="record" subject="groups/*[name()!='Staff']"/>

<!-- Rule 3 -->
<rule access="deny" object="diagnosis" subject="groups//Secretary"/>

<!-- Rule 4 -->
<rule access="grant" object="record[@id=$user]"

subject="users/member[@id=$user]"/>
</xas>

The first element of an XAS sheet determines whether the default policy is open or closed[9]. If
no authorisation rule is specified regarding a user u and a node n then u is permitted to access to
n in case of the open policy and is forbidden to access to n in case of the closed policy.

• Rule 1 says that the default policy is open.

• Rule 2 says that non staff members are forbidden to see the records.

• Rule 3 says that secretaries are forbidden to see the diagnosis of a patient.

• Rule 4 says that a patient is permitted to see his personal medical record.

$user is a variable which is instantiated with the id of the user accessing to the XML source
document. Rule 4 overrides rules 2 when a user is accessing to his personal data.

None of the authorisation rules of our example includes the priority attribute. Therefore, the
priority of each rule is set by default to 0.

The following document corresponds to the DTD for XAS sheets

<!ELEMENT xas (rule*) >
<!ATTLIST xas

DefaultPolicy (open|closed) #FIXED "open"
DefaultSubjectsFile CDATA #FIXED "subjects.xss">

<!ELEMENT rule EMPTY >
<!ATTLIST rule

object CDATA #REQUIRED

7

subject CDATA #REQUIRED
access (grant|deny) #REQUIRED
priority CDATA "0" >

3.4 ComputeView Algorithm and Conflict Resolution Policy

If a user requests to see the XML source document then he has to be provided with the view of the
document which is compatible with his rights. The aim of this section is to present the algorithm
for computing such a view.

Before presenting the algorithm itself we have to perform the following preliminary task in order
to obtain a short and easy-to-read algorithm2.

We replace each grant rule of the form,

<rule access="grant" object=n subject=u priority=p>,

by the following three consecutive grant rules:

• <rule access="grant" object=n subject=u priority=p>
• <rule access="grant" object=n//node() subject=u priority=p>
• <rule access="grant" object=n//@* subject=u priority=p>

The first rule is the same as the original rule. All the descendant nodes of3 the node n match the
object pattern of the second rule. All the attributes of n and the attributes of the descendant nodes
of n match the object pattern of the third rule.

Note that this replacement does not change the security policy. Recall that granting access to
node n to user u means that u is permitted to see the sub-tree of which n is the root (see previous
section 3.3).

Finally,

if the default policy is closed then we insert the following rule:

• <rule access="deny" object="/" subject= "users" priority="-1">

and if the default policy is open then we insert the following rules:

• <rule access="grant" object="/" subject="users" priority="-1">
• <rule access="grant" object="//node()" subject="users" priority="-1">
• <rule access="grant" object="//@*" subject="users" priority="-1">

The rules implementing the default policy all have a negative priority. Path, users, selects all the
users registered in the XSS sheet.

Consequently, our previous example of XAS sheet can be interpreted as the following list of
rules:

2 We could define the conflict resolution policy and write the algorithm without performing this preliminary task. However the

definition of both the conflict resolution policy and the algorithm would be less straightforward (although the complexity
would be unchanged).

3 or, of each node of the set n, if n is a set of nodes (cf section 3.3)

8

<!-- D E F A U L T H O S P I T A L P O L I C Y -->

<!-- Rules 1a, 1b and 1c -->
<rule access="grant" object="/" subject="users" priority="-1">
<rule access="grant" object="//node()" subject="users" priority="-1">
<rule access="grant" object="//@*" subject="users" priority="-1">

<!-- Rule 2 -->
<rule access = "deny" object = "record"

subject = "groups/*[name()!='Staff']" priority = "0"/>

<!-- Rule 3 -->
<rule access = "deny" object = "diagnosis"

subject = "groups//Secretary" priority = "0"/>

<!-- Rules 4a, 4b and 4c -->
<rule access = "grant" object = "record[@id=$user]"

subject = "users/member[@id=$user]" priority = "0"/>
<rule access = "grant" object="record[@id=$user]//node()"

subject = "users/member[@id=$user]" priority = "0"/>
<rule access = "grant" object="record[@id=$user]//@*"

subject = "users/member[@id=$user]" priority = "0"/>

• Rule 1 has been replaced by three grant rules with a negative priority. The default policy has
the lowest priority.

• Rule 4 has been replaced by three grant rules.

• Rules which were without a priority attribute in the original XAS sheet have now their
priority set to 0.

There is a conflict between a deny rule and a grant rule for a node n and a user u if n matches the
two set-of-object patterns and u is addressed by the two set-of-subjects.

In our example, rule 2 conflicts with rule 1b for each record element and each user who is not a
staff member. Rule 3 conflicts with rule 1b for each diagnosis element and each secretary. Rule
4a conflicts with rule 2 for the current user's record element (this is in case the user is a patient).

The conflict resolution policy of our model is very simple:

1. If, for a node n and a user u, there is a conflict between a set of rules then the rules with the
highest priority are selected.

2. If the selected rules are more than one then the last rule in the XAS sheet is elected.

Step 2 explains why rule 4a of our example overrides rules 2 in the conflicting cases.

Considering this policy, we can now present our algorithm for computing the views:

9

ComputeView Algorithm

Let U be the user for which the view has to be computed
Let L be an empty list of nodes
Insert the root element into L
Let R be an empty list of nodes
While L is not empty Do

N the first node of L
Select all the rules such as N matches the object pattern and U is
selected by the subject path
Apply the conflict resolution policy defined above
If the elected rule is a deny rule then

Remove N from L
Else

Append N to R
Replace N into L by the attributes and child nodes of N

After the algorithm finishes R contains the pre-order list of the nodes which belong to the view.
Using this algorithm we can easily compute the view for each user

View for P. Dupont (Doctor) and J. Durand (Nurse) and M. Robert (Patient)
<files>
 <record id="mrobert">
 <name>Martin Robert</name>
 <diagnosis>
 <item>Pneumonia</item>
 </diagnosis>
 </record>
</files>

Pierre Dupont and Jacqueline Durand are permitted to see everything. Martin Robert is
permitted to see everything because the file contains only one record: his own record.

View for C. Beaufort (Secretary)
<files>
 <record id="mrobert">
 <name>Martin Robert</name>
 </record>
</files>

Colette Beaufort is forbidden to see the diagnosis element.

View for F. Robert (Robert Family)
<files/>

The default hospital policy says that non staff members are forbidden to see the medical records.
This rule applies to family members. Therefore, Francine Robert is forbidden to see the medical
records, including Robert's record.

As we have seen above, the conflict resolution policy of our model is based on priorities
(whether they are implicit or explicit). Conflict resolution policies based on priorities are usually
considered as difficult to manage and understand. We agree that in some cases it might be
difficult for a human to figure out the output of conflicting rules. However, we have decided to
use priorities for the following two reasons:

10

1. We do not see what are the advantages of using conflict resolution policies based on
principles like "the most specific object takes precedence" or "the most specific subject takes
precedence" (see [3] for instance). These policies which were first used in Object-Oriented
environments are not well adapted to XML. Indeed, in many cases it is impossible for a human
to predict which XPath expression is going to be the most specific. As a matter of facts let
us consider the following two rules:

<rule access="deny" object="diagnosis[item='Cancer' or item='Pneumonia']
subject="groups//Nurse"/>

<rule access="grant" object="diagnosis[item='Pneumonia' or item='Ulcer']
subject="groups//Nurse"/>

The first rule says that nurses are forbidden to see the trees the root of which is a diagnosis
element which includes an item equal to Cancer or Pneumonia.

The second rule says that nurses are permitted to see the trees the root of which is a diagnosis
element which includes an item equal to Ulcer or Pneumonia.

Clearly none of the XPath expressions for the object attribute is more specific than the
other making difficult to predict what is going to happen if a nurse asks for an access to a
diagnosis element which includes an item equal to Pneumonia.

We could show many examples like this where a human cannot possibly predict which rule is
going to preempt the others.

2. Our prototype of security processor is based on XSLT (see section 4). The conflict resolution
policy of XSLT processors mainly uses priorities and has been proved to be efficient.

In any case, whatever the conflict resolution policy is, we think that the Security Administrator
has to be provided with some policy debugging tools.

3.5 Highly Expressive Security Policy

The example that we used in the previous section is very simple and does not completely show
the power of our model. The aim of this section is to show that our model allows us to express
complex security policies easily. In particular we can define security policies supporting the
concept of exception, the definition of content-based authorisation rules and the insertion of
cover stories in the source document.

Consider our previous source document into which a new record has been inserted:
<files>
<record id="pfranck">
 <name>Patricia Frank</name>
 <diagnosis>
 <item>Cancer</item>
 <item coverstory="yes">Ulcer</item>
 <comments>life expectancy is limited to two years</comments>
 </diagnosis>
</record>
<record id="mrobert">

...

11

</record>
</files>

This XML document can be represented by the following XPath tree:

Patricia Franck is a new patient. She has a cancer. Her life expectancy is limited to two years.
The item saying that she has an ulcer is a cover story. A cover story is a lie inserted in the source
document in order to hide the existence of a sensitive information. Attribute coverstory="yes"
informs users who are permitted to see everything that ulcer is a lie (see [10] for more
information about cover stories and cover story management).

The XSS subject sheet is extended as follows:
<subjects>
 <users>
 ...
 <member id="pfranck"><name>Patricia Franck</name></member>
 <member id="gfranck"><name>Georges Franck</name></member>
 ...
 </users>
 <groups>
 ...
 <Patient>

<member idref="pfranck"/>
<member idref="mrobert"/>

 </Patient>
 <Family>
 ...
 <Franck>

<member idref="gfranck"/>
<member idref="pfranck"/>

</Franck>
 </Family>
 </groups>
</subjects>

Patricia Franck and Georges Franck are new users. The Franck family is a new group.

@id="pfranck"

text() Patricia Franck

/name

text()Cancer

/item

text() Ulcer @coverstory="yes"

/item

text() Life...

/comments

/diagnostis

/record

@id="mrobert"

text() Robert Martin

/name

text() Pneumonia

/item

/diagnostis

/record

/files

Figure 2 Tree representation of the source document

12

The XAS sheet is extended as follows:

<!-- D E F A U L T H O S P I T A L P O L I C Y -->
...
<!-- P O L I C Y S P E C I F I C T O P A T R I C I A F R A N C K -->

<!-- Rule 5 -->
<rule access = "grant" object = "record[@id='pfranck']"

subject = "groups/Family/Franck" />

<!-- Rule 6 -->
<rule access = "deny" object = "record[@id='pfranck']//comments"

subject = "groups/Family/Franck" />

<!-- Rule 7 -->
<rule access = "deny" object = "record[@id='pfranck']//comments/text()"

subject = "groups//*[name()='Nurse']" />

<!-- Rule 8 -->
<rule access = "deny" object = "item[contains(text(),'Cancer')]"

subject = "users/member[@id='pfranck']" />

<!-- Rule 9 -->
<rule access = "grant" object = "item[@coverstory='yes']"

subject = "users/member[@id='pfranck']" />

<!-- Rule 10 -->
<rule access = "deny" object = "item/@coverstory"

subject = "users/member[@id='pfranck']" />
</xas>

• Rule 5 says that the Franck family is permitted to see the data of Patricia Franck.

• Rule 6 says that the Franck family (including Patricia) is forbidden to see the comments
element of Patricia Franck's medical record.

• Rule 7 says that nurses are forbidden to see the text of the comments element of Patricia
Franck's medical record. Note that rule 6 addresses the comments element itself. This means
that the sub-tree of which the comments element is the root is protected. Rule 7 only protects
the text of the comments elements.

• Rule 8 says that P. Franck is forbidden to see the item which says that she has a cancer. Rule
8 is a perfect example of a content-based authorisation rule

• Rule 9 says that P. Franck is permitted to see the item which is a cover story ...

• … but rule 10 says that P. Franck is forbidden to know that the item is a cover story

Rules 5 to 10 show that P. Franck is not considered as a standard patient. The default hospital
policy does not apply to her. Doctors consider that for some psychological reasons, Patricia
Franck must not know that she has a cancer. Therefore, doctors have decided to lie to Patricia
Franck and to tell her that she has an ulcer. The family are told about this lie and are granted the
permission to see the personal data of P. Franck. However the element saying that the life
expectancy of P Franck is limited to two years must remain strictly confidential. Even nurses are
forbidden to know this fact.

13

The views for some of the users are listed below:

View for P. Dupont (Doctor)
<files>
<record id="pfranck">
 <name>Patricia Frank</name>
 <diagnosis>
 <item>Cancer</item>
 <item coverstory="yes">Ulcer</item>
 <comments>life expectancy is limited to two years</comments>
 </diagnosis>
</record>
<record id="mrobert">
 <name>Martin Robert</name>
 <diagnosis>
 <item>Pneumonia</item>
 </diagnosis>
</record>
</files>

Pierre Dupont is a doctor. He can see everything.

View for J. Durand (Nurse)
<files>
<record id="pfranck">
 <name>Patricia Frank</name>
 <diagnosis>
 <item>Cancer</item>
 <item coverstory="yes">Ulcer</item>
 <comments/>
 </diagnosis>
</record>
<record id="mrobert">
 <name>Martin Robert</name>
 <diagnosis>
 <item>Pneumonia</item>
 </diagnosis>
</record>
</files>

Jacqueline Durand is a nurse. She can see everything except the content of the comments
element.

View for G. Franck (Franck Family)
<files>
<record id="pfranck">
 <name>Patricia Frank</name>
 <diagnosis>
 <item>Cancer</item>
 <item coverstory="yes">Ulcer</item>
 </diagnosis>
</record>
</files>

Georges Franck has access to the medical file of Patricia Franck. He knows that doctors have
decided to tell Patricia Franck a lie regarding her illness. He is not aware of the existence of the
comments element.

14

View for P. Franck (Patient)
<files>
<record id="pfranck">
 <name>Patricia Frank</name>
 <diagnosis>
 <item>Ulcer</item>
 </diagnosis>
</record>
</files>

Patricia Franck believes that she has an ulcer.

This example has shown us that we have the possibility of defining default security policies
which can be overridden by specific policies for some particular cases.

Finally note that, in [3], authors define the concept of instance level and DTD level authorisation
sheet. An instance level authorisation sheet only applies to a specific XML document. A DTD
level authorisation sheet applies to a set of documents which conform to a specific DTD. Our
model allows us to define such a DTD level authorisation sheet. If both a DTD level XAS sheet
and an instance level XAS sheet apply to a specific XML document then the instance level
authorisation rules are appended to the DTD level authorisation rules in a global XAS sheet. In
other words, the global XAS sheet contains the authorisation rules expressed at the DTD level
followed by the rules expressed at the instance level. The global XAS sheet is then used to
compute the different views. We can mention that choosing relevant priority levels allows us to
define both DTD rules which can be overridden (low priority) at the instance level and
mandatory DTD rules which cannot be overridden (high priority).

4. Sketch of implementation

We have developed an XSLT-based prototype of a security processor which implements our
model. Our prototype is available online at http://sis.univ-tln.fr/XML-secu. Figure 3
describes the prototype.

Our prototype is integrated into the framework of an Apache Web server4 which uses Tomcat5 as
a server for Java Servlets. Views of a source document are dynamically computed by using the
Cocoon6 publishing framework for XML data. In figure 3, the document to be protected is
Doc.XML. Doc.XAS is the global XAS sheet. Subjects.XSS describes the subjects.

4 http://www.apache.org
5 http://jakarta.apache.org/tomcat/index.html
6 http://xml.apache.org/cocoon/index.html

15

Figure 3 Prototype

xas2xsl.XSL

Doc.XSLDoc.XAS XSLT
processor1 XML

parser

Apache Web Server

Tomcat

Cocoon

Doc.XML View.XML

Subjects.XSSUser_id Doc.XSL

2 XSLT
processor

XML
parser

Apache Web Server

Tomcat

Cocoon

16

1. Easy-to-read authorisation rules expressed in Doc.XAS are translated into XSLT rules
(templates) producing an XSL sheet (Doc.XSL). This translation is performed by the XSLT
processor by applying xas2xsl.XSL. This translation is performed once. After this
operation, the XAS sheet is no longer used unless it is updated (in this case, it is
automatically retranslated). Doc.XSL is saved into the cache.

2. If a user requests access to Doc.XML then he is provided with a view of the document which
is compatible with his rights. This view is produced by the XSLT processor by applying
Doc.XSL. Templates contained in Doc.XSL are used by the XSLT processor to compute the
view according to the algorithm defined in section 3.4. Doc.XSL requires, as parameters,
the user id (transmitted as a parameter by the Web server after the user has been
authenticated) and Subjects.XSS. The view is also saved into the cache.

5. Related Work

Compared with other models, our model offers several advantages. Our model allows us to write
security policies with a high expressive power since any node from an XML document can be
independently protected (element, attribute, text …). The semantics of an authorisation rule is
unique and precisely defined. Our conflict resolution policy is simple, efficient and adapted to an
XSLT processor. Our model offers the possibility of defining content-based authorisation rules.
Our proposal fully respects the W3C recommendation since we use the XPath language to
address XML fragments and the XSLT language to compute the views. In [3], the semantics of an
authorisation varies. An authorisation can be local (in this case it applies to an element and its
attributes) or it can be recursive (in this case, it applies also to the sub-elements). The expressive
power is limited since nodes like text nodes cannot be independently protected. Moreover, the
conflict resolution policy is quite complex. In [4] the semantics of an authorisation is defined as
polymorphic, that is, it varies according to the protected object. The model does not include the
possibility of protecting all kinds of nodes. In [5], the model does not offer the possibility of
protecting attribute or text nodes independently. None of these three models fully exploits the
XPath language.

Our prototype also offers many advantages compared with other prototypes. We use a standard
XSLT processor to compute the views. Therefore, we can choose among existing XSLT
processors (Apache7, Oracle8, IBM) the one with the best performances. If there is a new W3C
recommendation for the XML, XPath, and XSLT languages, then the only thing we have to do is
to replace the XML parser and the XSLT processor with an XML parser and an XSLT processor
which conform to the new recommendation. Integration of our prototype into the framework of
an existing Web Server is also straightforward. In prototypes [11][12][13] which implement the
models defined in [3][4][5], the views are produced by proprietary processors written in Java.
These processors do not have the power and the performances of an XSLT processor. Moreover
these processors need to be reprogrammed each time there is a new W3C recommendation.

7 http://xml.apache.org/xalan
8 http://technet.oracle.com/tech/xml/

17

6. Conclusion

In this paper, we have defined a model for regulating access to XML documents. We plan to
extend this model in several directions:

• We are exploring the possibility of defining provisional authorisations. In [5] a provisional
authorisation rule is defined as a rule which tells the user that his request will be authorised
provided he or the system takes certain security actions.

• In the model described in this paper we implicitly assumed that users do not have access to
the DTDs. Further versions of our model will include the possibility of protecting portions of
DTDs or XML schemas.

• In this paper, we restricted ourselves to the read privilege. Indeed, the read privilege is the
most important privilege to consider regarding documents which are published on the WEB.
However, we plan to extend our model (and our prototype) with the write privilege.

References
[1] T. Bray et al. "Extensible Markup Language (XML) 1.0". World Wide Web Consortium

(W3C). http://www.w3c.org/TR/REC-xml (October 2000).

[2] M. Bartel et al. "XML-Signature Syntax and Processing". W3C Candidate Recommendation.
http://www.w3c.org/TR/xmldsig-core (October-2000).

[3] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, "Securing XML
Documents,'' in Proc. of the 2000 International Conference on Extending Database
Technology (EDBT2000), Konstanz, Germany, March 27-31, 2000.

[4] E. Bertino, S. Castano, E. Ferrari and M. Mesiti. "Specifying and Enforcing Access Control
Policies for XML Document Sources". World Wide Web Journal, vol. 3, n. 3, Baltzer
Science Publishers.

[5] M. Kudo and S. Hada. "XML Document Security based on Provisional Authorisation".
Proceedings of the 7th ACM conference on Computer and communications security.
November, 2000, Athens Greece.

[6] A. Gabillon, E. Bruno. A Filtering Model for XML documents. WWW10 Conference
Workshop on Information Filtering. Hong Kong, May 2001.

[7] J. Clark. "XSL Transformations (XSLT) Version 1.0". World Wide Web Consortium
(W3C). http://www.w3c.org/TR/xslt (November 1999).

[8] J. Clark et al.. "XML Path Language (XPath) Version 1.0". World Wide Web Consortium
(W3C). http://www.w3c.org/TR/xpath (November 1999).

[9] S. Jajodia, P. Samarati, V. Subrahmanian and E. Bertino. A Unified Framework for
Enforcing Multiple Access Control Policies. Proc. of the 1997 ACM International SIGMOD
Conference on Management of Data, Tucson, May 1997.

18

[10]F. Cuppens, A. Gabillon. Cover Story Management. Data and Knowledge Engineering Vol
37/2, 2001, pp 177-201.

 [11]E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati "XML Access Control
Systems: A Component-Based Approach'' in Proc. IFIP WG11.3 Working Conference on
Database Security, Schoorl, The Netherlands, August 21-23, 2000.

[12] E. Bertino, M. Braun, S. Castano, E. Ferrari, M. Mesiti. "AuthorX: A Java-Based System for
XML Data Protection". In Proc. of the 14th Annual IFIP WG 11.3 Working Conference on
Database Security, Schoorl, The Netherlands, August 2000.

[13] AlphaWorks. XML Security Suite (xss4j).
http://www.alphaWorks.ibm.com/tech/xmlsecuritysuite.

