
9

14. September 2000

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24
9.25
9.26
9.27
9.28
9.29
9.30
9.31
9.32
9.33
9.34
9.35
9.36
9.37
9.38
9.39
9.40
9.41
9.42
9.43
9.44

An informal description of OIL-Lite and Standard OIL:

a layered proposal for DAML-O

Sean Bechhofer (1),
Jeen Broekstra (3),
Stefan Decker (4),

Michael Erdmann (5),
Dieter Fensel (2),
Carole Goble (1),

Frank van Harmelen (2,3),
Ian Horrocks (1),
Michel Klein (2),

Deborah McGuinness (4),
Enrico Motta (7),

Peter Patel-Schneider (6)
Steffen Staab (5),
Rudi Studer (5)

(1) Department of Computer Science, University of Manchester, UK,
{horrocks,carole}@cs.man.ac.uk

(2) Vrije Universiteit Amsterdam, Netherlands,
{dieter, frankh, mcaklein}@cs.vu.nl

(3) AIdministrator Nederland B.V., Amersfoort, Netherlands
jeen.broekstra@aidministrator.nl,

frank.van.harmelen@aidministrator.nl

(4) Stanford University, USA
stefan@db.stanford.edu, dlm@ksl.stanford.edu

(5) AIFB, University of Karlsruhe, Germany,
{mer, sst, rst}@aifb.uni-karlsruhe.de

(6) Bell Laboratories, Murray Hill, USA
pfps@research.bell-labs.com

(7) Knowledge Media Institute, The Open University, UK,
e.motta@open.ac.uk

This document provides an informal description of the modeling primitives of the OIL dialects “OIL-
Lite” and “Standard OIL”. It only gives a compact and informal description of these languages, plus a

10

14. September 2000

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19
10.20
10.21
10.22
10.23
10.24
10.25
10.26
10.27
10.28
10.29
10.30
10.31
10.32
10.33
10.34
10.35
10.36
10.37
10.38
10.39
10.40
10.41
10.42
10.43
10.44

simple illustrative example. For more discussion and motivation, see the papers at http://
www.ontoknowledge.org/oil/papers.shtml.

OIL’s machine readable syntax is defined as an XML DTD (http://www.ontoknowledge.org/oil/dtd/),
an XML Schema definition (http://www.ontoknowledge.org/oil/xml-schema/) and an RDF Schema
definition (http://www.ontoknowledge.org/oil/rdf-schema/). To improve human readability OIL, also
has a more compact pseudo syntax where keywords are indicated by bold faced text, and grouping of
sub-content is indicated by indentation. The formal definition of this human-readable syntax can be
found at http://www.ontoknowledge.org/oil/syntax. In this document, we give an informal description
of this human-readable syntax, since it is the easiest way to get acquainted with the modelling
primitives of the language. We refer to the above URL’s for the formal definitions.

An informal description of OIL-Lite

An OIL ontology is a structure made up of several components, some of which may themselves be
structures, some of which are optional, and some of which may be repeated. We will write
component? to indicate an optional component, component+ to indicate a component that may be
repeated one or more times (i.e., that must occur at least once) and component* to indicate a
component that may be repeated zero or more times (i.e., that may be completely omitted). In general,
we assume that identifiers (for classes, roles, etc) do not coincide with keywords of the language (such
as slot-constraint, or, etc). However, this section is intended to be descriptive rather than precise: for
a precise formal definition please refer to the URL’s mentioned above.

An OIL ontology is delineated by the keywords begin-ontology and end-ontology, and consists of the
actual ontology definition, defining a particular ontological vocabulary, preceded by an ontology
container, which is concerned with describing features of such an ontology, like author, name,
subject, etc. For representing metadata of ontologies, we make use of the Dublin Core Metadata
Element Set (Version 1.1) [Dublin Core] standard. We will discuss both elements of an ontology
specification in OIL. We start with the ontology container and will then discuss the backbone of OIL,
the ontology definition.

Ontology Container

We adopt the components as defined by the Dublin Core Metadata Element Set, Version 1.1 for the
ontology container part of OIL. Although every element in the Dublin Core set is optional and
repeatable, in OIL some elements are required or have a predefined value. Required elements are
written as element+. Some of the elements can be specialized with a qualifier which refines the
meaning of that element. In our shorthand notation we will write element.qualifier. The precise
syntax based on RDF is given in [Miller et al., 1999], and in the appendix. Here we provide our
pseudo-XML syntax explained above.

title+ The name of the ontology, e.g., “African animals”.

creator+ The name of an agent (i.e., a person, a group of persons, or a software agent) that created
the ontology.

subject* Keywords or classification code describing the subject the ontology deals with.

11

14. September 2000

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17
11.18
11.19
11.20
11.21
11.22
11.23
11.24
11.25
11.26
11.27
11.28
11.29
11.30
11.31
11.32
11.33
11.34
11.35
11.36
11.37
11.38
11.39
11.40
11.41
11.42
11.43
11.44

description Natural language text describing the content of the ontology, e.g., “A didactic example
ontology describing African animals”. Besides this description, there is one special description
element required, which has the release qualifier:

description.release The version of the ontology (a number), e.g, 1.01.

publisher* Defining the entity that is responsible for making the resource available.

contributor* The name of an agent (i.e., a person, a group of persons, or a software agent) that
helped to create the ontology.

date* The date the ontology has been created, modified, or made available (see ISO 8601 for
format instructions).

type+ The nature of the resource. A predefined and required value is ontology, although this value
is not yet in the Working Draft of the resource types [Guenther, 1999].

format* The digital manifestation of the resource, recommended as a value is the MIME type of
the resource, i.e. “text/xml”.

identifier+ The URI of the ontology.

source* Optional references (URI) to sources from which the ontology is derived. E.g., a reference
to a plain text description of the domain on which the ontology is based.

language+ The language of the ontology. Obviously, one predefined and required value is “OIL”.
Other elements can contain the language of the content of the ontology, according to RFC 1766.

relation* A list of references to other OIL ontologies. It is recommended to list all ontologies that
are imported in the definition section with a hasPart qualifier. Other possible and meaningful
qualifiers are replaces, isReplacedBy, requires and isRequiredBy. For example, to list an
imported ontology, we write: relation.hasPart “http://www.ontosRus.com/animals/
jungle.onto”.

rights* Information about rights held in and over the ontology.

Ontology definition

Apart from various header fields encapsulated in its container, an OIL ontology consists of a set of
definitions, optionally preceded by an important statement:

import? A list of one or more references to other OIL modules that are to be included in this
ontology. Each reference consists of a URI specifying where the module is to be imported from,
e.g., “http://www.ontosRus.com/animals/jungle.onto”. XML schemas and OIL
provide the same (limited) means for composing specifications. Specifications can be included
and the underlying assumption is that names of different specifications are different (via
different prefixes).1

12

14. September 2000

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17
12.18
12.19
12.20
12.21
12.22
12.23
12.24
12.25
12.26
12.27
12.28
12.29
12.30
12.31
12.32
12.33
12.34
12.35
12.36
12.37
12.38
12.39
12.40
12.41
12.42
12.43
12.44

definition* Zero or more class definitions (class-def), axioms (disjoint, covered, disjoint-
covered, equivalent), and slot definitions (slot-def), the structure of which will be described
below.

A class definition (class-def) associates a class name with a class description. A class-def consists of
the following components:

type? The type of definition. This can be either primitive or defined; if omitted, the type defaults
to primitive. When a class is primitive, its definition (i.e., the combination of the following
subclass-of and slot-constraint components) is taken to be a necessary but not sufficient
condition for membership in the class. For example, if the primitive class elephant is defined to
be a sub-class of animal with a slot constraint stating that skin-color must be grey, then all
instances of elephant must necessarily be animals with grey skin, but there may be grey-
skinned animals that are not instances of elephant. When a class is defined, its definition is
taken to be a necessary and sufficient condition for membership of the class. For example, if the
defined class carnivore is defined to be a sub-class of animal with a slot constraint stating that
it eats meat, then all instances of carnivore are necessarily meat eating animals, and every
meat eating animal is also an instance of carnivore.

name The name of the class (a string).

documentation? Some documentation describing the class (a string).

subclass-of? A list of one or more class-expressions, the structure of which will be described
below. The class being defined in this class-def must be a sub-class of each of the class-
expressions in the list.

slot-constraint* Zero or more slot-constraints, a special kind of class-expression, the structure of
which will be described below (note that a slot-constraint defines a class). The class being
defined in this class-def must be a subclass of each slot-constraint.

A class-expression can be either a class name (some of which are built-in), an enumerated-class, a
slot-constraint, or a boolean combination of class expressions using the operators and, or and not.
The structure of these boolean combinations is as follows (note that they must be parenthesized):

and: A list of two or more class expressions that is to be treated as a conjunction. For example:
(meat and fish)

defines the class whose instances are all those individuals that are instances of both the class
meat and the class fish.

or: A list of two or more class expressions that is to be treated as a disjunction. For example:
(meat or fish)

defines the class whose instances are all those individuals that are instances of either the class
meat or the class fish.

not: An expression taking as a parameter a single class expression that is to be negated. For
example,

1. This definition is embryonic.

13

14. September 2000

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

13.10
13.11
13.12
13.13
13.14
13.15
13.16
13.17
13.18
13.19
13.20
13.21
13.22
13.23
13.24
13.25
13.26
13.27
13.28
13.29
13.30
13.31
13.32
13.33
13.34
13.35
13.36
13.37
13.38
13.39
13.40
13.41
13.42
13.43
13.44

(not meat)
defines the class whose instances are all those individuals that are not instances of the class
meat.

Note that class expressions are recursively defined, so that arbitrarily complex expressions can be
formed. For example

(not (meat or fish))
defines the class whose instances are all those individuals that are not an instances of either the class
meat or the class fish.

The built-in class names consist of top, thing and bottom. The meaning of these classes is pre-
defined. top and thing are alternative names for the most general class. Every class is a sub-class of
top, and every individual is an instance of top. bottom is the name of the least general (sometimes
called empty or inconsistent) class. bottom is a sub-class of every class, and no individual is an
instance of bottom.

An enumerated-class is a class that is defined by enumerating its instances. An enumerated-class
consists of the key-word one-of followed by one or more individual names, with the whole expression
being enclosed in parenthesis. For example,

(one-of Leo Willie)
defines the class whose instances are Leo and Willie.

In some situations it is possible to use a concrete-type-expression instead of a class-expression (e.g., in
slot restrictions). A concrete-type-expression defines a range over some data type. Two data types are
currently supported: integer and string. The expression integer defines the range of all integers (i.e.,
-infinity to +infinity) and the expression string defines the range of all strings. Sub-ranges can be
defined using the expressions (min x), (max x), (greater-than x), (less-than x), (equal x) and (range
x y), where both x and y are either integers or strings. Finally, expressions (of the same type) can be
combined using the operators and, or or not as in class expressions. For example,

(min 21)
defines the data type consisting of all the integers greater than or equal to 21,

(less-than 100)
defines the data type consisting of all the integers less than 100 (i.e., less than or equal to 99),

(greater-than “abc”)
defines the data type consisting of all the strings that (lexically) succeed “abc” (e.g., “abd”),

(or (equal “red”) (equal “green”) (equal “blue”))
defines the data type consisting of the strings “red”, “green” and “blue”,

(range 1 10)
defines the data type consisting of all the integers greater than or equal to 1 and less than or equal to 10
and is equivalent to,

((min 1) and (max 10))
and,

(equal “xyz”)
defines the data type consisting of the string “xyz” and is equivalent to,

((min “xyz”) and (max “xyz”)).

A slot-constraint is a list of one or more constraints (restrictions) applied to a slot (sometimes called
a role or an attribute). A slot is a binary relation (i.e., its instances are pairs of individuals), but a slot-
constraint is actually a class definition — its instances are those individuals that satisfy the
constraint(s). For example, if the pair (Leo, Willie) is an instance of the slot eats, Leo is an instance

14

14. September 2000

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

14.10
14.11
14.12
14.13
14.14
14.15
14.16
14.17
14.18
14.19
14.20
14.21
14.22
14.23
14.24
14.25
14.26
14.27
14.28
14.29
14.30
14.31
14.32
14.33
14.34
14.35
14.36
14.37
14.38
14.39
14.40
14.41
14.42
14.43
14.44

of the class lion and Willie is an instance of the class wildebeest, then Leo is also an instance of the
has-value constraint wildebeest applied to the slot eats. A slot-constraint consists of the following
components:

name A slot name (a string). The slot is a binary relation that may or may not be defined in the
ontology. If it is not defined, then it is assumed to be a binary relation with no globally
applicable constraints, i.e., any pair of individuals could be an instance of the slot.

has-value? A list of one or more expressions (either class-expressions or concrete-type-
expressions). Every instance of the class defined by the slot-constraint must be related via the
slot relation to an instance of each expression in the list. For example, the has-value constraint:

slot-constraint eats
has-value zebra wildebeest

defines the class each instance of which eats some instance of the class zebra and some
instance of the class wildebeest. Note that this does not mean that instances of the slot-
constraint eat only zebra and wildebeest: they may also be partial to a little gazelle when they
can get it. The has-value constraint:

slot-constraint colour
has-value “red”

defines the class each instance of which has the colour “red” (a string). Note that in the absence
of some other constraint (e.g., a cardinality constraint), more than one colour may be specified.
has-value expresses the existential quantifier of Predicate logic: for each instance of the class,
there exists at least one value for this slot that fulfils the range restriction.

value-type? A list of one or more expressions (either class-expressions or concrete-type-
expressions). If an instance of the class defined by the slot-constraint is related via the slot
relation to some individual x, then x must be an instance or data value of each expression in the
list. For example, the value-type constraint:

slot-constraint eats
value-type meat

defines the class each instance of which eats nothing that is not meat. Note that this does not
not mean that instances of the slot-constraint eat anything at all. The value-type constraint:

slot-constraint age
value-type (min 21)

defines the class each instance of which does not have an age less than 21. Note that this does
not not mean that instances of the slot-constraint have any age at all. value-type expresses the
universal (for-all) quantifier of Predicate logic: for each instance of the class, every value for
this slot must fulfill the range restriction.

has-filler? A list of one or more individual names or data values (integers or strings). Every
instance of the class defined by the slot-constraint must be related via the slot relation to each
individual and data value in the list. For example, the has-filler constraint:

slot-constraint friend
has-filler Zoe Willie

defines the class each instance of which is a friend of both Zoe and Willie. Note that this is
equivalent to the has-value constraint:

slot-constraint friend
has-value (one-of Zoe) (one-of Willie)

15

14. September 2000

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

15.10
15.11
15.12
15.13
15.14
15.15
15.16
15.17
15.18
15.19
15.20
15.21
15.22
15.23
15.24
15.25
15.26
15.27
15.28
15.29
15.30
15.31
15.32
15.33
15.34
15.35
15.36
15.37
15.38
15.39
15.40
15.41
15.42
15.43
15.44

The has-filler constraint:
slot-constraint age

has-filler 21
defines the class each instance of which has an age of 21. Note that this is equivalent to the has-
value constraint:

slot-constraint age
has-value (equal 21)

It is also worth reemphasizing that in the absence of other constraints (e.g., age being a
functional slot), there is nothing to prevent instances of this class having more than one age.

max-cardinality? A non-negative integer n followed by an expression (either a class-expression or
a concrete-type-expression). An instance of the class defined by the slot-constraint can be
related to at most n distinct instances or data values of the expression via the slot relation. The
expression can be omitted, in which case an instance of the class defined by the slot-constraint
can be related to at most n distinct individuals or data values (regardless of their class or type)
via the slot relation. For example, the max-cardinality constraint:

slot-constraint friend
max-cardinality 2 antelope

defines the class, each instance of which has at most 2 friends that are antelopes.

min-cardinality? A non-negative integer n followed by an expression (either a class-expression or
a concrete-type-expression). An instance of the class defined by the slot-constraint must be
related to at least n distinct instances or data values of the expression via the slot relation. The
expression can be omitted, in which case an instance of the class defined by the slot-constraint
must be related to at least n distinct individuals or data values (regardless of their class or type)
via the slot relation. For example, the min-cardinality constraint:

slot-constraint friend
min-cardinality 3 wildebeest

defines the class, each instance of which has at least 3 friends that are wildebeests. Note that
conflicting cardinality constraints is one way in which logical inconsistencies can arise in an
ontology. For example, a class to which both the above min-cardinality and max-cardinality
constraints applied would be logically inconsistent (could have no instances) if the ontology
correctly represented the fact that a wildebeest is a kind of antelope.

cardinality? A non-negative integer n followed (optionally) by an expression (either a class-
expression or a concrete-type-expression). This is simply shorthand for a pair of min-
cardinality and min-cardinality constraints, both with the same n and expression. For
example,

slot-constraint friend
cardinality 1 zebra

is equivalent to
slot-constraint friend

max-cardinality 1 zebra
min-cardinality 1 zebra

and defines the class, each instance of which has exactly 1 friend that is a zebra.

An axiom asserts some additional fact(s) about the classes in the ontology, for example that the classes
carnivore and herbivore are disjoint (can have no instances in common). Valid axioms are:

16

14. September 2000

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

16.10
16.11
16.12
16.13
16.14
16.15
16.16
16.17
16.18
16.19
16.20
16.21
16.22
16.23
16.24
16.25
16.26
16.27
16.28
16.29
16.30
16.31
16.32
16.33
16.34
16.35
16.36
16.37
16.38
16.39
16.40
16.41
16.42
16.43
16.44

disjoint A list of two or more class expressions. All of the class expressions in the list are pairwise
disjoint, i.e., there can be no individual that is an instance of more than one of the class
expressions in the list. For example,

disjoint carnivore herbivore
states that no individual can be an instance of both carnivore and herbivore.

covered A class expression followed by a list of one or more class expressions that cover it. Every
instance of the first class expression is also an instance of at least one of the class expressions in
the list. For example,

covered animal by carnivore herbivore omnivore mammal
states that every instance of Animal is also an instance of at least one of carnivore herbivore
omnivore or mammal.

disjoint-covered A class expression followed by a list of one or more class expressions that cover
it and that are also pairwise disjoint. Every instance of the first class expression is also an
instance of exactly one of the class expressions in the list. For example,

disjoint-covered animal by carnivore herbivore omnivore
states that every instance of animal is also an instance of exactly one of carnivore herbivore or
omnivore.

equivalent A list of two or more class expressions. All of the class expressions in the list are
equivalent (i.e., have the same instances). For example,

equivalent wildebeest gnu
states that an individual is wildebeest if and only if it is a gnu (i.e., wildebeest and gnu are
synonyms).

A slot definition (slot-def) associates a slot name with a slot description. A slot description specifies
global constraints that apply to the slot relation, for example that it is a transitive relation. A slot-def
consists of the following components:

name The name of the slot (a string).

documentation? Some documentation describing the slot (a string).

subslot-of? A list of one or more slots. The slot being defined in this slot-def must be a sub-slot of
each of the slots in the list. For example,

slot-def daughter-of
subslot-of child-of

defines a slot daughter-of that is a subslot of child-of, i.e., every pair (x,y) that is an instance of
daughter-of must also be an instance of child-of.

domain? A list of one or more class-expressions. If the pair (x,y) is an instance of the slot relation,
then x must be an instance of each class-expression in the list. For example,

slot-def eats
domain animal

defines a slot eats such that any individual that eats another individual must be an instance of
animal.

17

14. September 2000

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9

17.10
17.11
17.12
17.13
17.14
17.15
17.16
17.17
17.18
17.19
17.20
17.21
17.22
17.23
17.24
17.25
17.26
17.27
17.28
17.29
17.30
17.31
17.32
17.33
17.34
17.35
17.36
17.37
17.38
17.39
17.40
17.41
17.42
17.43
17.44

range? A list of one or more expressions (either class-expressions or concrete-type-expressions). If
the pair (x,y) is an instance of the slot relation, then y must be an instance or data value of each
class-expression or concrete-type-expression in the list. For example,

slot-def friend
range animal

defines a slot friend such that any individual that is a friend of another individual must be an
instance of animal, and

slot-def age
range (min 0)

defines a slot age such that if the pair (x,y) is an instance of age, then y must be a non-negative
integer. Note that it is good practice to specify the range data type of a slot that is to be used for
data values.

inverse? The name of a slot S that is the inverse of the slot being defined. If the pair (x,y) is an
instance of the slot S, then (y,x) must be an instance of the slot being defined. For example,

slot-def eats
inverse eaten-by

defines the inverse of the slot eats to be the slot eaten-by, i.e., if x eats y then y is eaten-by x.

properties? A list of one or more properties of the slot. Valid properties are:

transitive The slot is transitive, i.e., if both (x,y) and (y,z) are instances of the slot, then (x,z)
must also be an instance of the slot. For example,

slot-def bigger-than
properties transitive

defines the slot bigger-than to be transitive, so if Jumbo the elephant is bigger-than
Robbie the rhino, and Robbie the rhino is bigger-than Walter the warthog, then Jumbo
must be bigger-than Walter. Note that no slot can be both transitive and functional.

symmetric The slot is symmetric, i.e., if (x,y) is an instance of the slot, then (y,x) must also be
an instance of the slot. For example,

slot-def lives-with
properties symmetric

defines the slot lives-with to be symmetric, so if Zoe the zebra lives-with Willie the
wildebeest, then Willie also lives-with Zoe.

functional The slot is functional, i.e., if (x,y) is an instance of the slot, then there is no z such
that (x,z) is an instance of the slot and y is not equal to z. For example,

slot-def has-mother
properties functional

defines the slot has-mother to be functional. Note that no slot can be both functional and
transitive.

An informal description of Standard OIL

Standard OIL is a strict superset of OIL-Lite. Standard OIL adds to OIL-Lite the possibility to define
instances of classes and roles, using the following two constructions:

18

14. September 2000

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9

18.10
18.11
18.12
18.13
18.14
18.15
18.16
18.17
18.18
18.19
18.20
18.21
18.22
18.23
18.24
18.25
18.26
18.27
18.28
18.29
18.30
18.31
18.32
18.33
18.34
18.35
18.36
18.37
18.38
18.39
18.40
18.41
18.42
18.43
18.44

An instance-of statement asserts that an individual is an instance of a class or classes. It consists of an
individual name (a string) followed by one or more class-expressions. The individual must be an
instance of each of the class-expressions in the list. For example,

instance-of Zoe zebra
states that Zoe is a zebra.

An related statement asserts that an individual is related to another individual or data value via a slot
relation. It consists of the slot name and an individual name followed by either a second individual
name or a data value. The first individual must be related to the second individual or data value via the
slot relation. For example,

related has-mother Zachariah Zoe
states that Zoe is the mother of Zachariah, and

related age Zoe 35
states that Zoe is age 35.

An example OIL ontology

The following example of an OIL ontology illustrates some of the key features of the language. The
ontology is intended purely for didactic purposes and is not to be taken as an example of good
modeling practice.

ontology-container
title “African animals”
creator “Ian Horrocks”
subject “animal, food, vegetarians”
description “A didactic example ontology describing African and Asian animals”
description.release “1.01”
publisher “I. Horrocks”
type “ontology”
format “pseudo-xml”
format “pdf”
identifier “http://www.cs.vu.nl/~dieter/oil/TR/oil.pdf”
source “http://www.africa.com/nature/animals.html”
language “OIL”
language “en-uk”
relation.hasPart “http://www.ontosRus.com/animals/jungle.onto”

ontology-definitions
slot-def eats

inverse is-eaten-by
slot-def has-part

inverse is-part-of
properties transitive

slot-def comes-from
slot-def age

range (min 0)
properties functional

19

14. September 2000

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9

19.10
19.11
19.12
19.13
19.14
19.15
19.16
19.17
19.18
19.19
19.20
19.21
19.22
19.23
19.24
19.25
19.26
19.27
19.28
19.29
19.30
19.31
19.32
19.33
19.34
19.35
19.36
19.37
19.38
19.39
19.40
19.41
19.42
19.43
19.44

slot-def weight
range (min 0)
properties functional

slot-def colour
range string
properties functional

class-def animal
class-def plant
disjoint animal plant
class-def tree

subclass-of plant
class-def branch

slot-constraint is-part-of
has-value tree

class-def leaf
slot-constraint is-part-of

has-value branch
class-def defined carnivore

subclass-of animal
slot-constraint eats

value-type animal
class-def defined herbivore

subclass-of animal
slot-constraint eats

value-type (plant or (slot-constraint is-part-of has-value plant))
disjoint carnivore herbivore
class-def giraffe

subclass-of animal
slot-constraint eats

value-type leaf
class-def lion

subclass-of animal
slot-constraint eats

value-type herbivore
class-def tasty-plant

subclass-of plant
slot-constraint eaten-by

has-value herbivore carnivore
class-def elephant

subclass-of animal
slot-constraint eats

value-type plant
slot-constraint colour

has-filler “grey”
class-def defined adult-elephant

subclass-of elephant
slot-constraint age

has-value (min 20)

20

14. September 2000

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9

20.10
20.11
20.12
20.13
20.14
20.15
20.16
20.17
20.18
20.19
20.20
20.21
20.22
20.23
20.24
20.25
20.26
20.27
20.28
20.29
20.30
20.31
20.32
20.33
20.34
20.35
20.36
20.37
20.38
20.39
20.40
20.41
20.42
20.43
20.44

covered adult-elephant by (slot-constraint weight has-value (range 5000 8000))
class-def defined african-elephant

subclass-of elephant
slot-constraint comes-from

has-filler Africa
class-def defined indian-elephant

subclass-of elephant
slot-constraint comes-from

has-filler India
disjoint-covered elephant by african-elephant indian-elephant
class-def kenyan-elephant

subclass-of elephant
disjoint kenyan-elephant indian-elephant
class-def defined african-animal

subclass-of animal
slot-constraint comes-from

has-value ((one-of Africa) or (slot-constraint is-part-of has-filler Africa))
class-def defined asian-animal

subclass-of animal
slot-constraint comes-from

has-value ((one-of Asia) or (slot-constraint is-part-of has-filler Asia))
class-def defined large-animal

subclass-of animal
slot-constraint weight

has-value (min 1000)
class-def continent
class-def country
instance-of Africa continent
instance-of Asia continent
instance-of India country
related is-part-of India Asia

Some points to note in the above ontology are:

• The class carnivore is a defined class, and lion can be recognized as a sub-class of carnivore
because of its definition.

• The class herbivore is a defined class, and giraffe can be recognized as a sub-class of herbivore
because of its definition. However, in this case the inference is a little more complex and is only
valid because has-part is transitive and is-part-of is the inverse of has-part.

• The class tasty-plant is inconsistent. This is because tasty-plant is a kind of plant that is eaten by
both herbivores and carnivores, but we have already stated that carnivore eat only animals,
and that animal and plant are disjoint.

• The class adult-elephant is defined to be all elephants aged 15 (an integer) and over. An adult-
elephant is also asserted to have a weight between 1500 and 3000 (an integer range). As a result,
adult-elephant can be recognized as a sub-class of large-animal.

• The class kenyan-elephant is disjoint from indian-elephant. Moreover, indian-elephant and

21

14. September 2000

21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
21.9

21.10
21.11
21.12
21.13
21.14
21.15
21.16
21.17
21.18
21.19
21.20
21.21
21.22
21.23
21.24
21.25
21.26
21.27
21.28
21.29
21.30
21.31
21.32
21.33
21.34
21.35
21.36
21.37
21.38
21.39
21.40
21.41
21.42
21.43
21.44

african-elephant form a disjoint covering of elephant. As a result, kenyan-elephant can be
recognized as a sub-class of african-elephant.

• Africa, Asia and India are individuals, and India is part-of Asia. As a result, indian-elephant
can be recognized as a sub-class of asian-animal.

Current Limitations of OIL

Our starting point was to define a core language with the intention that additional (and possibly
important) features be defined as a set of extensions (still with clearly defined semantics). Modelers
will be free to use these language extensions, but it must be clear that this may compromise reasoning
support. This seems to us a better solution than trying to define a single “all things to all men”
language like Ontolingua. In this section we briefly discuss a number of features which are available
in other ontology modeling languages and which are not, or not yet, included in OIL. For each of these
features we briefly explain why we chose them, and mention future prospects where relevant.

Default reasoning: Although OIL does provide a mechanism for inheriting values from super-
classes, such values cannot be overwritten. As a result, such values cannot be used for the
purpose of modeling default values. If an attempt is made at “overwriting” an inherited attribute
value, this will simply result in inconsistent class definitions which have an empty extension.
For example, if we define the class “CS professor” with attribute “gender” and value “male”,
and we subsequently define a subclass for which we define the gender attribute as “female”, this
subclass will be inconsistent and have an empty extension (assuming that “male” and “female”
are disjoint).

Rules/Axioms: As discussed above, only a fixed number of algebraic properties of slots can be
expressed in OIL, plus a number of axioms relating classes (disjoint covers etc.). These axioms
are sufficient for describing arbitrary sububsumption relations (rules) or properties that must
hold for all the items in the ontology. For example,

covered Class-expression1 by Class-expression2
states that every instance of Class-expression1 is also an instance of Class-expression2,
while

covered thing by Class-expression
states that the properties defined in Class-expression must hold for every instance of every
class in the ontology. Such a powerful feature is undoubtedly useful, e.g., to enforce the correct
interpretation of concepts across multiple integrated ontologies. However, there may also be a
requirement for other kinds of rules/axioms with different semantic interpretations.

Further relation properties: The properties that can be specified for relations in OIL are currently
restricted to inverse, functional, transitivity and symmetry. Other reasonable candidates are
reflexivity, irreflexivity, antisymmetry, asymmetry, linearity (aRb bRa for any pair a,b),
connectivity (aRb or a=b or bRa for any pair a,b), partial order and total order. (Note that
some of these can be defined in terms of each other). It would also be useful to be able to define
composite relations.

Modules: OIL contains a very simple construction to modularize ontologies. In fact, this
mechanism is identical to the namespace mechanism in XML and XML schema. It amounts to a
textual inclusion of the imported module, where name-clashes are avoided by prefixing every

22

14. September 2000

22.1
22.2
22.3
22.4
22.5
22.6
22.7
22.8
22.9

22.10
22.11
22.12
22.13
22.14
22.15
22.16
22.17
22.18
22.19
22.20
22.21
22.22
22.23
22.24
22.25
22.26
22.27
22.28
22.29
22.30
22.31
22.32
22.33
22.34
22.35
22.36
22.37
22.38
22.39
22.40
22.41
22.42
22.43
22.44

imported symbol with a unique prefix indicating its original location. However, much more
elaborate mechanisms would be required for the structured representation of large ontologies.
Means of renaming, restructuring, and redefining imported ontologies must be available. Future
extensions will cover parameterized modules, signature mappings between modules, and
restricted export interfaces for modules.

Limited Second-order expressivity: Many existing languages for ontologies (KIF, CycL,
Ontolingua) include some form of reification mechanism, which allows the treatment of
statements of the language as objects in their own right, thereby making it possible to express
statements over these statements. A full second order extension would be clearly undesirable
(even unification is undecidable in full 2nd order logic). However, much weaker second order
constructions already provide much if not all of the required expressivity without causing any
computational problems (in effect, they are simply 2nd order syntactic sugar for what are
essentially first order constructions). A precise characterization of such expressivity is required
in a future extension of OIL. OIL is currently very restricted. Only classes are provided, not
meta-classes or individuals.

