

 SyncML over WSP 1 of 18 Pages

 http://www.syncml.org/docs/syncml_wsp_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001) All Rights Reserved.

SyncML over WSP, Version 1.0.1

Abstract

This specification defines how to use the SyncML in a WAP environment, i.e. it specifies how to use SyncML
over WSP (Wireless Session Protocol). It also describes how to initiate a sync session from a server using the
push protocol specified in the WAP June 2000 conformance Release.

 SyncML over WSP 2 of 18 Pages

 http://www.syncml.org/docs/syncml_wsp_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001) All Rights Reserved.

SyncML initiative
The following companies are sponsors in the SyncML initiative:
Ericsson
IBM
Lotus
Matsushita Communications Industrial Co.
Motorola
Nokia
Palm, Inc.
Psion
Starfish Software

Revision History

Revision Date Comments

V1.0 a 2000-08-14 Reformatted for v1.0 Alpha release. No technical changes.

V1.0 b 2000-11-07 Reformatted for v1.0 Beta release. No technical changes.

V1.0 2000-12-07 The draft document warning has been removed. No technical
changes.

V1.0.1 a 2001-05-24 Updated from errata.

V1.0.1b 2001-05-25 Minor changes (e.g. fixing hyperlinks).

V1.0.1 2001-05-30 Minor cleanup.

 SyncML over WSP 3 of 18 Pages

 http://www.syncml.org/docs/syncml_wsp_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001) All Rights Reserved.

Copyright Notice
Copyright (c) Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001).

All Rights Reserved.

Implementation of all or part of any Specification may require licenses under third party
intellectual property rights, including without limitation, patent rights (such a third party may
or may not be a Supporter). The Sponsors of the Specification are not responsible and shall
not be held responsible in any manner for identifying or failing to identify any or all such
third party intellectual property rights.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN ARE PROVIDED ON
AN "AS IS" BASIS WITHOUT WARRANTY OF ANY KIND AND ERICSSON, IBM, LOTUS,
MATSUSHITA COMMUNICATION INDUSTRIAL CO. LTD, MOTOROLA, NOKIA, PALM
INC., PSION, STARFISH SOFTWARE AND ALL OTHER SYNCML SPONSORS
DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL ERICSSON, IBM,
LOTUS, MATSUSHITA COMMUNICATION INDUSTRIAL CO., LTD, MOTOROLA, NOKIA,
PALM INC., PSION, STARFISH SOFTWARE OR ANY OTHER SYNCML SPONSOR BE
LIABLE TO ANY PARTY FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF
USE OF DATA, INTERRUPTION OF BUSINESS, OR FOR DIRECT, INDIRECT, SPECIAL
OR EXEMPLARY, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY
KIND IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED
HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The above notice and this paragraph must be included on all copies of this document that
are made.

 SyncML over WSP 4 of 18 Pages

 http://www.syncml.org/docs/syncml_wsp_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001) All Rights Reserved.

Table of Contents

1 Introduction... 5

2 Formatting Conventions .. 6

3 Terminology .. 7

4 WSP Introduction.. 9

5 WSP mapping to SyncML... 10
5.1 Multiple messages Per Package... 10
5.2 MIME header type requirement .. 10
5.3 Connection Oriented Session ... 10

5.3.1 Session establishment, S-Connect 10
5.3.2 Exchanging SyncML Data.. 11
5.3.3 Temporarily suspending the session, S-Suspend and S-Resume

... 13
5.3.4 Session close-down, S-Disconnect 13

5.4 Connectionless service... 13
5.5 Pushing data from the server to the client................................. 14

6 Static Conformance Requirements ... 16

7 Abbreviations .. 17

8 References... 18

 SyncML over WSP 5 of 18 Pages

 http://www.syncml.org/docs/syncml_wsp_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001) All Rights Reserved.

1 Introduction
This document describes how to use the SyncML over WSP (WAP). The document uses the
primitives and methods defined in the WAP Forum WSP specification as of WAP June 2000
Conformance Release.

The document describes the use of the WSP layer.

The document assumes a scenario consisting of a sync client (e.g. a wap enabled mobile phone)
and a server holding data (e.g. a web-server). Furthermore, it is explained how to initiate a sync-
session from the server using the WAP Push.

WAP (WSP) defines both a connection oriented and a connection less services for data exchange.
Furthermore, it defines a server originated data-push model.

Note that the WAP specification does not specify the Loader, i.e. the interfaces to the different
layers in the protocol, only the messages being used for communication in the actual layers. How
the Loader is specified is up to the client (or server) vendor. The Loader interface is illustrated in the
following by the messages going back and forth between the SyncML user agent and the Loader.

 SyncML over WSP 6 of 18 Pages

 http://www.syncml.org/docs/syncml_wsp_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001) All Rights Reserved.

2 Formatting Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY" and "OPTIONAL" in this
document are to be interpreted as described in [5].

Any reference to components of the Device Information DTD or XML snipets are specified in this
type face.

http://www.ietf.org/

 SyncML over WSP 7 of 18 Pages

 http://www.syncml.org/docs/syncml_wsp_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001) All Rights Reserved.

3 Terminology

The following terms are copied from [1].
Bearer Network
A bearer network is used to carry the messages of a transport-layer protocol - and
ultimately also of the session layer protocols - between physical devices. During the lifetime
of a session, several bearer networks may be used.

Capability
Capability refers to the session layer protocol facilities and configuration parameters that a
client or server supports.

Capability Negotiation
Capability negotiation is the mechanism for agreeing on session functionality and protocol
options. Session capabilities are negotiated during session establishment.
Capability negotiation allows a server application to determine whether a client can support
certain protocol facilities and configurations.

Client and Server
The term client and server are used in order to map WSP to well known and existing
systems. A client is a device (or application) which initiates a request for a session. The
server is a device that passively waits for session requests from client devices. The server
can either accept the request or reject it.
An implementation of the WSP protocol may include only client or server functions in order
to minimise the footprint. A client or server may only support a subset of the protocol
facilities, indicating this during protocol capability negotiation.

Connectionless Session Service
Connectionless session service is an unreliable session service. In this mode, only the
request primitive is available to service users, and only the indication primitive is available
to the service provider.

Connection-Mode Session Service
Connection-mode session service is a reliable session service. In this mode, both request
and response primitives are available to service users, and both indication and confirm
primitives are available to the service provider.

Content
The entity body sent with a request or response is referred to as content. It is encoded in a
format and encoding defined by the entity-header fields.

Content Negotiation
Content negotiation is the mechanism the server uses to select the appropriate type and
encoding of content when servicing a request. The type and encoding of content in any
response can be negotiated. Content negotiation allows a server application to decide
whether a client can support a certain form of content.

http://www1.wapforum.org/tech/documents/WAP-203-WSP-20000504-a.pdf

 SyncML over WSP 8 of 18 Pages

 http://www.syncml.org/docs/syncml_wsp_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001) All Rights Reserved.

Entity
An entity is the information transferred as the payload of a request or response. An entity
consists of meta-information
in the form of entity-header fields and content in the form of an entity-body.

Header
A header contains meta-information. Specifically, a session header contains general
information about a session that remains constant over the lifetime of a session; an entity-
header contains meta-information about a particular request, response or entity body.

Loader
Entity that implements the HTTP protocol. The loader is the interface between the WSP layer and
the user application.

 SyncML over WSP 9 of 18 Pages

 http://www.syncml.org/docs/syncml_wsp_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001) All Rights Reserved.

4 WSP Introduction
The Session layer protocol family in the WAP architecture is called the Wireless Session Protocol,
WSP. WSP provides the upper-level application layer of WAP with a consistent interface for two
session services. The first is a connection-mode service that operates above a transaction layer
protocol WTP, and the second is a connectionless service that operates above a secure or non-
secure datagram transport service. For more information on the transaction and transport services,
please refer to [6] “Wireless Application Protocol: Wireless Transaction Protocol Specification”and
[7] “Wireless Application Protocol: Wireless Datagram Protocol Specification”. WSP provides HTTP
1.1 functionality and incorporates new features such as long-lived sessions, a common facility for
data push, capability negotiation and session suspend/resume. The protocols in the WSP family are
optimised for low-bandwidth bearer networks with relatively long latency.

http://www1.wapforum.org/tech/terms.asp?doc=WAP-201-WTP-20000219-a.pdf
http://www1.wapforum.org/tech/terms.asp?doc=WAP-200-WDP-20000219-a.pdf

 SyncML over WSP 10 of 18 Pages

 http://www.syncml.org/docs/syncml_wsp_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001) All Rights Reserved.

5 WSP mapping to SyncML
The following sections define the requirements for the binding of SyncML to WSP.

5.1 Multiple messages Per Package
The WAP protocol expects to receive a response to every request sent to the WAP gateway. If there
are multiple messages in a SyncML package to be sent, the SyncML server MUST send a response
to each message although the message is not the final one.

The next message can only be sent when the WSP layer in the WAP protocol has received a
response.

Each SyncML message MUST be transferred as a SyncML MIME media type within the body of a
WSP request or response. When there are multiple SyncML messages per SyncML package, each
message is transferred in a separate WSP request or response; depending on whether it is a
SyncML request or response.

The recipient of a SyncML package can determine if there are more SyncML messages in the
package by the absence of the Final element in the body of the last received SyncML message.
When the recipient receives a SyncML message with the Final element, it is the final message
within that SyncML package.

5.2 MIME header type requirement
Client implementations conforming to this specification MUST support the header with either the
"application/vnd.syncml+xml" or "application/vnd.syncml+wbxml" media type values.
Server implementations conforming to this specification MUST support both
"application/vnd.syncml+xml" and "application/vnd.syncml+wbxml" media type
values, as requested by the SyncML Client.

5.3 Connection Oriented Session
This section describes how an SyncML user agent residing on a WAP client would initiate a SyncML
connection oriented session, exchange data with the server, suspend and resume the session, and
then finally close down the established session.

5.3.1 Session establishment, S-Connect
During a WAP session establishment, a WAP client connects to a WAP gateway. A part of this is
the so-called capability negotiation, during which the server and client negotiate the features
supported. Furthermore, attributes that are static throughout the sessions are exchanged (static
headers).

 SyncML over WSP 11 of 18 Pages

 http://www.syncml.org/docs/syncml_wsp_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001) All Rights Reserved.

Loader gateway WSP

S-Connect.req
S-Connect.ind

S-Connect.res
S-Connect.cnf

SyncML
agent

Make_Session

Session_OK

Figure 1 Session Establishment

In the example, the Loader implements an interface for the user agent to initiate a session,
Make_Session. The Loader implements the HTTP protocol.

Seen from WSP, the session establishment starts by an S-Connect request to the WSP layer. The
request looks as follows:

S-Connect.req(Server-Address , Client-Address, Client-Headers, Requested-
Capabilities)

In case of success, the connect confirmation returns from the WSP layer as follows:

S-Connect.cnf(Server-Headers , Negotiated-Capabilities)

5.3.2 Exchanging SyncML Data
Once a session is established, the client can start exchanging data with the server using the S-
MethodInvoke and S-MethodResult primitives.

WAP maps the HTTP 1.1 methods; i.e. requests will be done using standard HTTP 1.1 methods.
The header and bodies of the HTTP methods are not used by the WAP stack, and they are passed
transparently.
The following example shows a simple POST request from the client.

 SyncML over WSP 12 of 18 Pages

 http://www.syncml.org/docs/syncml_wsp_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001) All Rights Reserved.

Loader gateway

WSP

S-MethodInvoke.req

S-MethodInvoke.ind

S-MethodInvoke.res
S-MethodInvoke.cnf

S-MethodResult.req
S-MethodResult.ind

S-MethodResult.res
S-MethodResult.cnf

Web-
server

HTTP POST.request

HTTP POST.reply

SyncML
agent

Post(Document)

Reply(Document)

Figure 2 MethodInvoke using HTTP POST

In the implementation example depicted in Figure 2, the SyncML user agent requests a SyncML
document to be posted to the server using the interface made available by the Loader. In a
response, the server returns a response SyncML document back to the client.

5.3.2.1 HTTP header requirement
The HTTP header information is passed transparantly over the WAP protocol. But In order to enable
the Web server to decode the posted information the same header information requirements apply
for sending SyncML over WSP as for sending SyncML over HTTP as described in [9]

5.3.2.2 S-MethodInvoke
The syntax of the MethodInvoke is as follows:

S-MethodInvoke.req(ClientTransActionID, Method, RequestURI, RequestHeaders,
RequestBody)

The HTTP methods supported by WSP are GET, OPTIONS, HEAD, DELETE, TRACE, POST and
PUT. Of all the HTTP methods supported by WSP, the SyncML functionality only requires the POST
method. Once the gateway has processed the request (i.e. forwarded it to the web-server), a
confirmation is sent back to the client through the WSP layer. The syntax of the S-MethodInvoke-
confirmation is:

S-MethodInvoke.cnf(ClientTransactionID)

http://www.syncml.org/

 SyncML over WSP 13 of 18 Pages

 http://www.syncml.org/docs/syncml_wsp_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001) All Rights Reserved.

5.3.2.3 S-MethodResult
When the gateway receives the resource requested with the S-MethodInvoke primitive, it send a S-
MethodResult request to the WSP layer of the client, which forwards the request to the user agent
as a S-MethodResult-indication of the following format:

S-MethodResult.ind(ClientTransactionID, Status, ResponseHeaders, ResponseBody)

Once the indication is received, the client should reply to the WSP with a S-MethodResult response:

S-MethodResult.res(ClientTransactionID, Acknowledgement Headers)

5.3.3 Temporarily suspending the session, S-Suspend and S-Resume
WSP allows for the application layer to suspend a session. Suspending a session means that the
sessions can no longer be used to communicate through until the session is resumed.

S-Suspend.req()

The indication coming back from WSP is of the following format:

S-Suspend.req(Reason)

5.3.4 Session close-down, S-Disconnect
The Disconnect primitive is used for terminating the active session.

5.4 Connectionless service
The connectionless service offered by WSP offers a connectionless, and potentially unreliable, data
exchange service. Following example shows a POST request using the connectionless service.

 SyncML over WSP 14 of 18 Pages

 http://www.syncml.org/docs/syncml_wsp_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001) All Rights Reserved.

Loader gateway WSP

S-Unit_MethodInvoke.req
S-Unit_MethodInvoke.ind

S-Unit_MethodResult.req
S-Unit_MethodResult.ind

Web-server

HTTP POST.request

HTTP POST.reply

SyncML
agent

Post(document)

Reply(Document)

Figure 3 Connectionless Unit_MethodInvoke using HTTP POST

Only two primitives are supported by the connectionless service, MethodInvoke and Push. They
both work as with the Session Oriented Service, but without the confirmation. Refer to the Session
Oriented Service for details.

5.5 Pushing data from the server to the client
Pushing data from a server to a client in WAP is currently only defined using HTTP. This
functionality can be used to accomplish the Server Alerted Sync as defined in the SyncML Sync
protocol specification [8] The model is as shown below.

WAP Client Push proxy

gateway
Internet Push initiator

Push
Access
Protocol

Push
over-the-air

Protocol

Figure 4 Push Model

The initiator of the push uses HTTP POST to send a XML document to the Push Proxy Gateway
(PPG). The push message consists of two components; a control entity (containing e.g. information
about when the push message expires) and the content to be pushed to the client. All WAP content
types can be pushed.

When pushing SyncML data from the server to the client, the PUSH id 0x05 MUST be used and
either of the content types defined in chapter 5.2 MUST be used.

http://www.syncml.org/

 SyncML over WSP 15 of 18 Pages

 http://www.syncml.org/docs/syncml_wsp_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001) All Rights Reserved.

The PUSH model defined two different modes; confirmed and non-confirmed. The confirmed push
requires an active WSP session. If no such session is running, a session establishment request can
be issued from the PPG to a special application residing in the client. This application will initiate the
session, where-after the push can be accomplished.

The non-confirmed push messages does not require a session.

A special push dispatcher in the client receives the push message, and forwards it to the right
application, determined by the application identifier in the push message.

Once the right application receives the push content, it might choose to pull more content from a
server. This is done using the standard WSP protocols as described in this document.

As such, the client that receives the pushed content doesn't interface directly to WSP.

 Msg
dispatcher

Push Proxy
gateway WSP

HTTP.POST(push msg)

Push
originator

HTTP.reply(confirmation)

S-CPush.req

S-Cpush.ind
Push content

S-Cpush.res

S-Cpush.cnf

HTTP.POST(push status)

HTTP.reply(confirmation)

SyncML
agent

Figure 5 Push scenario

 SyncML over WSP 16 of 18 Pages

 http://www.syncml.org/docs/syncml_wsp_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001) All Rights Reserved.

6 Static Conformance Requirements
Static conformance requirements (SCR) specify the features that are optional, mandatory and
recommended within implementations conforming to this specification.

A simple table are used to specify this information.

In this table, optional features are specified by a "MAY", mandatory features are specified by a
"MUST" and recommended features are specified by a "SHOULD".

The following specifies the static conformance requirements for SyncML over WSP devices
conforming to this specification.

Support of Synchronization Server Support of Synchronization Client Element Type
Sending Receiving Sending Receiving

POST MUST MUST MUST MUST

PUSH MAY MAY --- MAY

 SyncML over WSP 17 of 18 Pages

 http://www.syncml.org/docs/syncml_wsp_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001) All Rights Reserved.

7 Abbreviations
[WSP] Wireless Session Protocol

[PPG] Push Proxy Gateway

[WAP] Wireless Application Protocol

[HTTP] Hypertext Transfer Protocol -- HTTP/1.1, RFC 2616, IETF.

[WBXML] WAP Binary XML Content Format Specification, WAP Forum.

[XML] Extensible Markup Language (XML) 1.0, W3C.

http://www.wapforum.org/what/technical.htm
http://www.wapforum.org/what/technical.htm
http://www.wapforum.org/what/technical.htm
http://www.ics.uci.edu/pub/ietf/http/
http://www.ietf.org/
http://www1.wapforum.org/tech/terms.asp?doc=SPEC-WBXML-19990616.pdf
http://www.wapforum.org/
http://www.w3.org/TR/REC-xml
http://www.w3c.org/

 SyncML over WSP 18 of 18 Pages

 http://www.syncml.org/docs/syncml_wsp_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (1999 - 2001) All Rights Reserved.

8 References

[1] Wireless Session Protocol specification, Approved version 15 May 2001, WAP Forum
[2] Push Architectural Overview, approved version November 8 1999, WAP Forum
[3] Push Access Protocol, approved version November 8 1999, WAP Forum
[4] HTTP 1.1 specification, rfc2068 (http://www.ietf.org/rfc/rfc2068.txt?number=2068)
[5] Key words for use in RFCs to Indicate Requirement Levels, IETF
[6] Wireless Transaction Protocol Specification, approved version 11 June 1999, WAP
Forum
[7] Wireless Datagram Protocol Specification, approved version 05 November 1999 WAP
Forum
[8] SyncML Synchronization Protocol, SyncML
[9] SyncML over HTTP, SyncML

http://www1.wapforum.org/tech/documents/WAP-203_003-WSP-20001218-a.pdf
http://www1.wapforum.org/tech/documents/WAP-165-PushArchOverview-19991108-a.pdf
http://www1.wapforum.org/tech/documents/WAP-164-PAP-19991108-a.pdf
http://www.ietf.org/
http://www1.wapforum.org/tech/documents/WAP-201-WTP-20000219-a.pdf
http://www1.wapforum.org/tech/documents/WAP-201-WTP-20000219-a.pdf
http://www1.wapforum.org/tech/documents/WAP-200-WDP-20000219-a.pdf
http://www1.wapforum.org/tech/documents/WAP-200-WDP-20000219-a.pdf
http://www.syncml.org/
http://www.syncml.org/

	SyncML initiative
	Revision History
	Copyright Notice
	Table of Contents
	Introduction
	Formatting Conventions
	Terminology
	WSP Introduction
	WSP mapping to SyncML
	Multiple messages Per Package
	MIME header type requirement
	Connection Oriented Session
	Session establishment, S-Connect
	Exchanging SyncML Data
	HTTP header requirement
	S-MethodInvoke
	S-MethodResult

	Temporarily suspending the session, S-Suspend and S-Resume
	Session close-down, S-Disconnect

	Connectionless service
	Pushing data from the server to the client

	Static Conformance Requirements
	Abbreviations
	References

