

eXtensible rights Markup Language (XrML) 2.0 Specification
Part I: Primer

20 November 2001

Available formats: HTML and PDF. In case of a discrepancy, the HTML is considered definitive.

NOTE: To enable interactive browsing of the XrML schemas and examples, the XrML Specification and its
companion Example Use Cases document use an HTML version that leverages the XML access
functionality provided by the W3C Xpath recommendation. For this reason, you need to view these HTML
documents with a browser that supports that recommendation (for example, Internet Explorer Version 6.0). If
your browser does not support this functionality, please view the PDF versions of those documents.

Copyright ? 2001 ContentGuard Holdings, Inc. All rights reserved. "ContentGuard" is a registered trademark and “XrML”, “eXtensible rights Markup Language ”, the XrML

logo, and the ContentGuard logo are trademarks of ContentGuard Holdings, Inc. All other trademarks are properties of their respective owners.

XrML 2.0 Specification Agreement

READ THE TERMS OF THIS AGREEMENT (“AGREEMENT”) CAREFULLY BEFORE DOWNLOADING, COPYING
OR USING THE XrML 2.0 SPECIFICATION (“SPECIFICATION”). ATTEMPTING TO DOWNLOAD, COPY OR USE
ANY PART OF THE SPECIFICATION WILL INDICATE THAT YOU HAVE READ, UNDERSTOOD, AND ACCEPTED
THESE TERMS AND CONDITIONS. DO NOT PROCEED IN ANY SUCH MANNER UNLESS YOU ARE ABLE AND
WILLING TO ENTER INTO AND COMPLY WITH THIS AGREEMENT. CONTENTGUARD STRONGLY
RECOMMENDS THAT YOU COPY, PRINT OUT OR DOWNLOAD A COPY OF THIS AGREEMENT AND KEEP IT IN
A SAFE PLACE FOR FUTURE REFERENCE. IF YOU DO NOT AGREE TO THE TERMS OF THIS AGREEMENT,
THEN DO NOT USE OR COPY THE SPECIFICATION AND IMMEDIATELY DESTROY ANY COPY OF THE
SPECIFICATION YOU MAY HAVE OBTAINED,

 1. Copyright. The XrML 2.0 Specification is Copyright ? 2001 ContentGuard Holdings, Inc. All Rights Reserved.

 2. Modification . The Specification may not be modified in any way including by removing from it any copyright notice or
this Agreement.

 3. Right to Use. Provided that the copyright notice of paragraph 1 above and this Agreement is included on all such copies
you may

 a. Copy and furnish the Specification to others, and

 b. Make fair use of the Specification to comment on it or otherwise explain it.

 The use by anyone of this Specification who obtains it in any manner is subject to this Agreement.

 4. WARRANTY DISCLAIMER. THE XrML SPECIFICATION IS PROVIDED ON AN "AS IS" BASIS, WITHOUT
WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED REGARDING OR RELATING TO THE
SPECIFICATION INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

 5. LIMITATION OF LIABILITY. CONTENTGUARD SHALL NOT BE LIABLE FOR ANY DAMAGES, DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE, CONSEQUENTIAL OR OTHER DAMAGES
(INCLUDING, WITHOUT LIMITATION, LOST PROFITS BUSINESS INTERRUPTION, LOSS OF PROGRAMS OR
OTHER INFORMATION OR OTHER LOSS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THIS AGREEMENT, THE USE OR DISTRIBUTION OF THE SPECIFICATIONS OR THE EXERCISE OF
ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
CONTENTGUARD SHALL NOT BE LIABLE FOR ANY CLAIM PERTAINING TO ERRORS, OMISSIONS, OR OTHER
INACCURACIES IN THE SPECIFICATIONS. IN THIS PARAGRAPH "CONTENTGUARD" INCLUDES ITS
SUBSIDIARIES, PARENTS, EMPLOYEES, OFFICERS, DIRECTORS, AGENTS, SUBCONTRACTORS, SERVICE
PROVIDERS AND SUPPLIERS.

 6. License Limited. No right or license is granted other than those which are expressly and unambiguously set forth in this
Agreement. Without limiting the foregoing, no rights or licenses are granted expressly, by implication, estoppel or otherwise, to
any patent rights, trademarks or trade secrets in any jurisdiction.

 7. Miscellaneous Provisions. In your use or distribution of the Specification you agree to comply strictly to with all applicable
import and export laws and regulations of the United States and other countries. The laws of the State of Maryland and the
intellectual property laws of the United States shall govern this Agreement.

 8. Feedback. If you wish to provide any feed back to ContentGuard concerning the Specification your feedback is subject to a
supplemental agreement. PLEASE DO NOT PROVIDE ANY FEEDBACK UNLESS AND UNTIL YOU READ AND
AGREE TO THE SUPPLEMENTAL AGREEMENT.

Supplemental Agreement On Providing Feedback to ContentGuard Concerning XrML 2.0

READ THE TERMS OF THIS SUPPLEMENTAL AGREEMENT (“AGREEMENT”) CAREFULLY BEFORE PROVIDING
CONTENTGUARD WITH ANY INPUT, SUGGESTIONS, COMMENTS, SUGGESTED MODIFICATIONS, IDEAS OR
OTHER FEEDBACK CONCERNING THE XrML 2.0 SPECIFICATION (“FEEDBACK”). PROVIDING FEEDBACK WILL
INDICATE THAT YOU HAVE READ, UNDERSTOOD, AND ACCEPTED THESE TERMS AND CONDITIONS. DO
NOT PROVIDE FEEDBACK UNLESS YOU ARE ABLE AND WILLING TO ENTER INTO AND COMPLY WITH THIS
AGREEMENT. CONTENTGUARD STRONGLY RECOMMENDS THAT YOU COPY, PRINT OUT OR DOWNLOAD A
COPY OF THIS AGREEMENT AND KEEP IT IN A SAFE PLACE FOR FUTURE REFERENCE. IF YOU DO NOT AGREE
TO THE TERMS OF THIS AGREEMENT, THEN PLEASE DO NOT PROVIDE ANY FEEDBACK.

 1. Right to Use Feedback by ContentGuard. ContentGuard would like your Feedback concerning the Specification. You can
contact ContentGuard with Feedback by e-mail at editor@xrml.org. In the event that you provide Feedback in any way, you
agree that ContentGuard shall have a non-exclusive, unlimited, sub-licensable, worldwide, perpetual, irrevocable, non-
terminable, non-cancelable right to use, copy and exploit in any manner all such Feedback, including but not limited to, use by
incorporation of Feedback into the Specification or computer programs and documentation for assignment, license, or other
transfer to third parties and the right to use, in any manner and for any purpose, any information gained as a result of your
Feedback.

 2. Right to Provide Feedback. You warrant that you have the right to provide the Feedback and, if you are providing the
Feedback on behalf of an entity, you warranty that you have the right to provide it on behalf of the entity.

Abstract

This specification defines the eXtensible rights Markup Language (XrML), a general-purpose language in
XML used to describe the rights and conditions for using digital resources.

Status of this Document

Feedback and suggestions are welcome. Public discussion on XrML and its applications takes place on the
discussion forum at http://www.xrml.org/forum.asp. Please report errors and provide comments on this
document to the current editor at editor@xrml.org.

Quick Table of Contents

Part 1: Primer

1 About XrML
2 XrML Concepts
3 Extensibility of the XrML Core
4 Conformance

Part II: XrML Core Schema

5 Technical Reference

Part III: Standard Extension Schema

6 Standard Extensions

Part IV: Content Extension Schema

7 About the Content Extension
8 Content Extension Data Model
9 Content Extension Elements

Part V: Appendices

A XrML Schemas
B Glossary
C Index of Types and Attributes
D References
E Acknowledgements

Full Table of Contents for Part I: Primer

Preface

Content of this Specification
Scope of this Document
Dependencies on Other Specifications
Diagram Conventions

1 About XrML

1.1 The Need for a Language

1.2 Requirements for a Language that Describes Rights and Conditions
1.3 Benefits of XrML
1.4 Design Goals and Principles

2 XrML Concepts

2.1 License
2.2 Grant
2.3 Principal
2.4 Right
2.5 Resource
2.6 Condition

3 Extensibility of the XrML Core

3.1 Common XML Schema Extensibility Mechanisms

3.1.1 XML Schema Element Substitution Groups

3.1.2 XML Schema Type Substitution
3.1.3 XML Schema "any" Element
3.1.4 Using the Three Extension Mechanisms

3.2 Documenting Schema Extensions

4 Conformance

4.1 Markup Conformance
4.2 Application Conformance

Preface

Content of this Specification

This specification defines the eXtensible rights Markup Language (XrML), a general-purpose language in
XML used to describe the rights and conditions for using digital resources. It also provides mechanisms to
ensure message integrity and entity authentication within XrML documents. The specification consists of the
following parts:

? Part I: Primer: Provides non-normative information about XrML including an overview of the language,
an introduction to basic XrML concepts, and an explanation of the extensibility mechanisms the
language provides.

? Part II: XrML Core Schema: Provides normative technical details regarding the core of the XrML
design and architecture.

? Part III: Standard Extension Schema: Provides normative technical details regarding the XrML
standard extension. This extension to the language defines types and elements common to many
XrML usage scenarios but which do not form part of the language's core.

? Part IV: Content Extension Schema: Provides normative technical details regarding the XrML content
extension. This extension to the language defines types and elements to describe rights, conditions,
and metadata for digital works, allowing trusted systems to exchange digital works and interoperate.

? Part V: Appendices: Provides an index, a glossary, a list of references, and a list of
acknowledgements.

Scope of this Document

This document explains the basic concepts for managing digital resources in trusted systems, describes the
language syntax and semantics, and provides examples of typical specifications of rights and conditions. It
does not provide specifications for security in trusted systems, propose specific applications, or describe the
details of the accounting systems required.

One of the goals of this document is to develop an approach and language that can be used throughout
industry to stipulate rights to use digital resources and the conditions under which those rights may be
exercised. This document does not address the agreements, coordination or institutional challenges
involved in achieving that goal.

Dependencies on Other Specifications

This specification depends on the following other specifications:

Extensible Markup Language (XML) 1.0 Specification

T. Bray, J. Paoli, C. M. Sperberg-McQueen, 10 February 1998.
 http://www.w3.org/TR/REC-xml

Namespaces in XML
T. Bray, D. Hollander, A. Layman, 14 January 1999.
http://www.w3.org/TR/REC-xml-names

XML Schema
David C. Fallside, Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn, Paul V.
Biron, Ashok Malhotra, 02 May 2001
http://www.w3.org/XML/Schema

For a list of other related specifications, see Appendix D, References.

Diagram Conventions

The diagrams in this specification use the following conventions:

Note: These diagrams were generated using Altova XML Spy Integrated Development Environment. For
more information, see the Altova web site, http://www.xmlspy.com.

1 About XrML

This chapter provides an overview of XrML. It provides a basic definition of XrML, describes the need that
XrML is meant to address, and explains design goals for the language.

1.1 The Need for a Language

The reality of the Internet and the need to control the use of digital content and digital services has fueled
the development of technologies that attempt to manage, secure, control, and automate the flow of content
and the access of services. Digital Rights Management (DRM) is the common term associated with such
technologies. Other technologies such as Digital Asset Management, Content Management, and Trust
Systems are also getting incorporated into the DRM workflow. The DRM space is becoming more important

A single mandatory element.

A single mandatory element with child elements.

A single mandatory element containing Parsed Character Data (#PC-Data). The
content may be simple content or mixed complex content.

A single optional element.

A multiple optional element (in this case, zero to infinity) with child elements.

A placeholder for any element from any namespace.

 A complex type.

A sequence. Solid lines connect this symbol to required elements within the sequence.
Dotted lines connect this symbol to optional elements in the sequence.

A choice.

and, in many cases, required to enable certain business models.

If we consider the lifecycle or workflow for digital content and services, we see that exchange of rights
information is required between the players or entities in the workflow or at each step of the lifecycle. For
example, a content user needs to know what rights or permissions are associated with a piece of content.

We also realize that expressing rights can be simple or very complex. For example:

? A user may obtain the rights for unlimited play for a music file.
? A corporate document may have usage right restricted to certain managerial levels, PCs, and/or

certain dates.

Rights expressions get more complex when we try to mimic the use and distribution of content in the
physical world, for example, when specifying the rights that would govern lending of a digital book, or the
rights that control the giving away of an article in an electronic magazine.

Therefore, a common language that can be shared among the participants in this digital workflow is
required, not only from an obvious interoperability point of view, but more so to comprehend that rights will
be manipulated and changed during the digital workflow and lifecycle. For example, the usage rights for a
piece of content will change as it moves among the creator, aggregator, retailer, and user.

1.2 Requirements for a Language that Describes Rights and Conditions

As DRM technologies are developed to support a wide variety of business model and content formats, the
language supporting the DRM must have wide appeal. Namely, the language must be:

? Comprehensive: A language shall be capable of expressing simple and complex rights expressions in
any stage in a workflow, lifecycle or business model .

? Generic: A language shall be capable of describing rights for any type of digital content or service (an
ebook, a file system, a video, or a piece of software).

? Precise: a language shall communicate precise meaning to all the players in the system.

1.3 Benefits of XrML

XrML is a language to specify rights. Using XrML, anyone owning or distributing digital resources (content,
services, software applications) can identify the parties allowed to use those resources, the rights available
to those parties, and the terms and conditions under which those rights may be exercised.

XrML has its roots in Xerox PARC’s Digital Property Rights Language (DPRL), first introduced in 1996.
DPRL became XrML when the meta-language (used to construct the language) changed from lisp to XML in
1999. Since then, ContentGuard and its partners have invested additional work to enrich the language.

XrML has thus become comprehensive by providing a framework to express rights at different stages of a
workflow or lifecycle, generic by defining a large body of format and business neutral terms (about 100) and
using these terms to specify rights to any digital content and any digital services, and precise through the
development of a grammar and processing rules that allow unique interpretation of the language. XrML is by
far the most advanced and mature rights language.

Additionally, XrML exploits the advantages provided by current XML technologies:

? The XrML syntax is defined by XML.
? The XrML grammar is defined by XML Schema Definitions (xsd).
? Language extensibility leverages the rules defined by XML and XSD. This allows the introduction of

new elements (rights terms) without breaking the language

This means that XrML can leverage XML technologies and know-how to machine-process the language, to
extend the language to support new business models, and to integrate the language with other technologies
and systems.

Furthermore, XrML comprehends real-life system issues such as:

? Ensuring the authenticity of the XrML rights specification through the use and application of digital
signatures.

? Specifying the level of trust that is needed by the parties involved.
? Supporting the identification and discovery of resources through the use of UDDI.
? Supporting pattern matching through XPath.

1.4 Design Goals and Principles

A principal design goal for XrML 2.0 is to accommodate and support extensibility and customizability without
changes to XrML 2.0 itself. To achieve this goal, the XrML 2.0 design follows the principles listed below:

? The syntax is described and defined using XML Schema, defined by the Worldwide Web Consortium
(W3C). The syntax extensively exploits the XML Schema typing system. More powerful and expressive
than DTD technology, use of XML Schema maximizes the richness and flexibility of the XrML 2.0
architecture.

? The design accommodates independent extension by third parties without compromising the typing
infrastructure. XrML 2.0 can be extended in a number of ways, including definition of new and
application-specific rights, resources, and conditions. Judicious use of XML Namespaces guarantees
that extensions do not to conflict even though the parties that defined them have not coordinated their
efforts or synchronized with revisions and updates to the XrML 2.0 core schema.

? The flat structure of grants is agnostic and even-handed about how grants may be bundled together.
For example, it is equally straightforward and succinct to issue several grants to a single issued-to
party as to issue several grants about a certain digital work to various different parties involving various
different actions. This agnosticism is important to the pragmatic ease and attractiveness with which
licenses can be used across the spectrum to which they are appropriate.

? XrML 2.0 provides a simple, orthogonal mechanism that avoids repetition of identical information within
a license with minimal impact on the overall XML element structure.

Other design goals for XrML include:

? To enable content owners and distributors to describe rights, fees and conditions appropriate to
commerce models they select.

? To provide standard terms for usage rights with useful, concise, easily understandable meanings.

? To offer vendors sound operational definitions of trusted systems for compliance testing and
evaluation.

? To leverage existing standards or standard activities as much as possible, including W3C XML
schema, XML Digital Signature, and XPath.

XrML 2.0 itself makes use of its extensibility mechanisms internally. It is split into several parts:

? a core schema, containing definitions of concepts that are at the heart of the semantics of XrML 2.0,
particularly those having to do with evaluation of a trust decision.

? a standard extension schema, containing definitions of concepts which are generally and broadly
applicable to XrML 2.0 usage scenarios, but which are not at the heart of XrML 2.0 semantics.

? a content specific extension schema that defines rights management concepts specifically related to
digital content or works such as books, music, and video.

Others parties may define their own extensions using existing, standard XML Schema and XML Namespace
mechanisms.

2 XrML Concepts

This chapter describes the key concepts and the data model used by XrML to define rights and conditions
for principals to use digital resources.

XrML 2.0 core concepts include license, grant, principal, right, resource and condition. The XrML Core
defines elements for the last four of these concepts in an abstract fashion. Extensions to the XrML Core
could extend these elements to address specific business applications.

A simple XrML license looks like the following, where the keyHolder is a principal, print is a right (defined
in the XrML Content Extension), digitalWork is a resource (also defined in the XrML Content Extension),
and validityInterval is a condition.

A particular key holder can print an ebook located at a given URL before Christmas of 2001.

-<license>
-<grant>
+<keyHolder>
 <cx:print/>
-<cx:digitalWork>
-<cx:locator>
 <nonSecureIndirect URI="http://www.contentguard.com/sampleBook.spd"/>

 </cx:locator>
 </cx:digitalWork>
-<validityInterval>
 <notAfter>2001-12-24T23:59:59</notAfter>

 </validityInterval>
 </grant>

 </license>

2.1 License

A key top-level construct in XrML 2.0 is a license. Conceptually, a license is the container of grants. The
basic structure of a license contains the following:

? a set of grants that convey to certain principals certain rights to certain resources under certain
conditions

? an identification of the principal or principals who issued the license and thus bestow the grants upon
their recipients

? miscellaneous additional information

Those familiar with XrML 1.x, digital certificates, and other similar structures might notice the absence of the
identification of the principal or principals to whom certain rights are conveyed (e.g., ISSUEDPRINCIPALS in
XrML 1.x). This notion has been flattened and regularized within the structure and terms of each individual
grant.

A license can be digitally signed by the principal who issues it, signifying that the issuer does indeed bestow
the grants contained therein. Syntactically, multiple issuers may sign a given license. However, no additional
semantic is associated with the joint signing; it is as if each had signed a copy of the license independently .

License Model

2.2 Grant

A grant is the element within the license that bestows an authorization upon some principal. It conveys to a
particular principal the sanction to exercise an identified right against an identified resource, possibly subject
to first fulfilling some conditions.

Structurally, a grant consists of the following:

? the principal to whom the grant is issued
? the right that the grant conveys to the specified principal
? the resource against which the specified principal can exercise or carry out this right
? the condition that must be met before the right can be exercised

Grant Model

The XrML 2.0 Core defines principals, rights, resources, and conditions as abstract concepts. It is expected
that extensions to the Principal, Right, Resource, and Condition types will define useable principals, rights,
resources, and conditions, respectively.

2.3 Principal

A principal encapsulates the identification of principals to whom rights are granted. Each principal identifies
exactly one party. In contrast, a set of principals, such as the universe of everyone, is not a principal.

A principal denotes the party that it identifies by information unique to that individual. Usefully, this is
information that has some associated authentication mechanism by which the principal can prove its identity.
The Principal type supports the following identification technologies:

? a principal that must present multiple credentials, all of which must be simultaneously valid, to be
authenticated.

? a keyHolder, meaning someone identified as possessing a secret key such as the private key of a
public / private key pair. keyHolders are represented using the KeyInfo technology from XML DSIG,

? other identification technologies that may be invented by others.

Principal Model

Extensions to the XrML Core could use the Principal element in any context in which a party must be
identified and authenticated. For example, the Principal element could be used to identify a resource (for
example, to identify and authenticate a secure service to which rights are granted).

2.4 Right

A right is the "verb" that a principal can be granted to exercise against some resource under some condition.
Typically, a right specifies an action (or activity) or a class of actions that a principal may perform on or using
the associated resource.

Right Model

The XrML 2.0 Core provides a right element to encapsulate information about rights and provides a set of
commonly-used, specific rights, notably rights relating to other rights, such as issue, revoke, delegate, and
obtain . Extensions to the XrML Core could define rights appropriate to using specific types of resources. For
instance, the XrML content extension defines rights appropriate to using digital works (for instance, play and
print rights).

2.5 Resource

A resource is the "object" to which a principal can be granted a right. A resource can be a digital work (such
as an e-book, an audio or video file, or an image), a service (such as an email service, or B2B transaction
service), or even a piece of information that can be owned by a principal (such as a name or an email
address).

Resource Model

The XrML 2.0 Core provides mechanisms to encapsulate the information necessary to identify and use a
particular resource or resources that match a certain pattern. The latter allows identification of a collection of
resources with some common characteristics. Extensions to the XrML Core could define resources
appropriate to specific business models.

2.6 Condition

A condition specifies the terms, conditions, and obligations under which rights can be exercised. A simple
condition is a time interval within which a right can be exercised. A slightly complicated condition is to
require the existence of a valid, prerequisite right that has been issued to some principal. Using this
mechanism, the eligibility to exercise one right can become dependent on the eligibility to exercise other
rights. Moreover, a list of conditions can be put in conjunction to form a condition requiring that the
conditions all be true simultaneously.

Condition Model

The XrML 2.0 Core defines a condition element to encapsulate information about conditions and some very

basic conditions. Extensions to the XrML Core could define conditions appropriate to specific distribution
models. For instance, the XrML content extension defines conditions appropriate to using digital works (for
instance, watermark, destination, and renderer).

3 Extensibility of the XrML Core

The XrML Core uses XML Schema technology to enable extensibility. For further details about these
mechanisms, please refer to the XML Schema Primer.

3.1 Common XML Schema Extensibility Mechanisms

Three XML Schema technologies are used commonly with XrML for extensibility:

3.1.1 XML Schema Element Substitution Groups

To extend XrML using this mechanism, define a new element with a type derived from an existing element's
type and set the "substitutionGroup" schema attribute of the new element to the name of the existing
element. This type of extension is the most commonly used with XrML. It is the type of extension used by
licensePart, principal, right, resource, condition, and xmlPatternAbstract.

Example: Creating a timeLimit condition

 <xsd:element name="timeLimit" type="myext:TimeLimit" substitutionGroup="r:condition"/>
-<xsd:complexType name="TimeLimit">
-<xsd:complexContent>
-<xsd:extension base="r:Condition">
-<xsd:sequence minOccurs="0">
 <xsd:element name="duration" type="xsd:duration"/>

 </xsd:sequence>
 </xsd:extension>

 </xsd:complexContent>
 </xsd:complexType>

To use this type of extension, use the new element in the existing element's place.

3.1.2 XML Schema Type Substitution

To extend XrML using this mechanism, define a new type derived from an existing type.

Since this type of extension is similar to element substitution groups, many people choose to use element
substitution groups instead. Both can be used in most situations. The primary difference is that with
element substitution groups, the name of the element changes, whereas with type substitution, an xsi:type
attribute is used instead.

Example: Adding locationOfIssue to IssuerDetails

-<xsd:complexType name="MyDetails">
-<xsd:complexContent>
-<xsd:extension base="r:IssuerDetails">
-<xsd:sequence>
-<xsd:element name="locationOfIssue" type="xsd:string">
 </xsd:element>

 </xsd:sequence>
 </xsd:extension>

 </xsd:complexContent>
 </xsd:complexType>

To use this type of extension, place the xsi:type attribute in your instance document on the element whose
type you are changing.

3.1.3 XML Schema "any" Element

The "any" element placeholder defines an extensibility point which may contain any XML element from any
other namespace. To extend XrML using this feature, define any element in any other namespace.

XrML allows this extensibility mechanism at select points where the extension space can be large enough
to account for a whole standard specification. Examples of this are extra license information, methods of
referring to a service, and mechanisms for revocation.

Example: Adding proprietary secret information to a license

 <xsd:element name="proprietarySecretInfo" type="xsd:base64Binary"/>

To use this type of extension, use the element in the position defined by the "any" element placeholder.

3.1.4 Using the Three Extension Mechanisms

The following license gives an example of using these three extensions. The example grants anyone the
right to execute a certain game (located at http://www.xrml.org/games/2001/11/myext) for up to 10 minutes.
The details show that the license was signed in the United States. The proprietary secret information might
contain the key to unlock the game on some secure game demonstration system.

Example: Using the three extension mechanisms

-<license>
-<grant>
+<forAll varName="anyone">
 <principal varRef="anyone"/>
 <cx:execute/>
-<digitalResource>
-<secureIndirect URI="http://www.xrml.org/games/2001/11/myext">
 <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <dsig:DigestValue>PB4QbKOQCo941tTExbj1/Q==</dsig:DigestValue>

 </secureIndirect>
 </digitalResource>
-<myext:timeLimit>
 <myext:duration>PT10M</myext:duration>

 </myext:timeLimit>
 </grant>
-<issuer>
+<dsig:Signature>
-<details xsi:type="myext:MyDetails">
 <timeOfIssue>2001-11-19T16:20:01</timeOfIssue>
 <myext:locationOfIssue>US</myext:locationOfIssue>

 </details>
 </issuer>
 <myext:proprietarySecretInfo>D2GLBweJdGzNNbwDgFDBtjpRn2aeW==</myext:proprietarySecretInfo>

 </license>

3.2 Documenting Schema Extensions

When making extensions, it is important to clearly document the semantics of the new elements and types.
The following table lists things to consider when documenting common classes of extensions:

4 Conformance

This chapter provides conformance requirements and guidelines for XrML. These conformance
requirements and guidelines ensure consistency of format, organization, content, interpretation, and other
aspects of an XrML expression or construct, so that certain levels of reuse and interoperability can be
achieved among XrML applications.

This chapter addresses conformance in terms of the following two aspects:

? markup conformance: refers to the conformance of any XML expressions that use valid XrML
expressions. The "use" includes using only XrML expressions as well as using XrML expressions
together with XML expressions within other namespaces. The conformance is on the syntactic and
semantic information that the XML expressions carry.

? application conformance: refers to the conformance of any XML applications that are capable of
processing XrML expressions. The conformance is on their functionality for performing syntactic
validation and semantic interpretation of XrML expressions according to the XrML specification.

4.1 Markup Conformance

An XML expression is said to be XrML markup conforming if it contains elements in the XrML core and
extension namespaces, and these elements together with their attributes meet all the mandatory syntactic
and semantic requirements as prescribed in the normative parts of this XrML specification. An XrML markup
conforming XML expression can be an XML expression starting with an XrML element or an XML
expression that uses XrML elements together with elements in other XML namespaces. Since the XrML
schemas are normative, XrML expressions must be valid against these schemas in the sense defined by
XML Schema. Moreover, they must adhere to the semantic restrictions imposed for each XrML element and
attribute used. For instance, a licensePart cannot have both the attributes licensePartId and
licensePartIdRef, even though having both of them is syntactically valid.

4.2 Application Conformance

An XrML application is any application or software/hardware module that can validate, interpret, or generate
valid XrML expressions. An XrML application that processes XrML expressions might be an editor that
creates or modifies XrML expressions, or an interpreter that verifies, against an XrML license expression,
whether or not some principal has some right on some resource.

An XrML application is said to be XrML application conforming if, when it claims to validate, interpret, and/or

Class of Extension Documentation Considerations

principal
Describe what procedure should be followed before making a claim that a certain
principal can be described by an instance of that extension.

right
Describe which sequences of events are consistent, and which are inconsistent,
with the right described by an instance of that extension.

resource
Describe which physical or logical items are described by instances of that
extension.

condition
Describe the set of contexts for which an instance of that extension is to be
considered satisfied and the set of contexts for which an instance of that
extension is to be considered breached.

xmlPatternAbstract Describe the set of XML trees that match the pattern and the set that do not.

generate XrML, it validates the syntax of, interprets the semantics of, and/or generates well-formed XrML
expressions according to the XrML specification. An XrML conforming application must meet the following
criteria:

? It implements and processes the mandatory elements and attributes as well as mandatory semantic
requirements ("must" and "must not") set forth in this specification.

? For any optional elements and attributes as well as optional semantic requirements ("should" and
"may") it chooses to implement, it implements and processes them in the way prescribed.

? At a minimum, it implements the mandatory elements and attributes in the XrML Core.

? If it implements any XrML extension, it must implement all the mandatory elements and attributes in
that extension.

? It must parse and check an XrML document for well-formedness. If the application has validation
functionality, it must also validate XrML documents against their referenced schemas and the semantic
requirements specified in this XrML specification.

? When it has interpretation functionality, it must interpret XrML in ways consistent with the semantic
definitions and processing rules specified in the XrML specification. This covers processing rules for
handling licensePartId and licensePartIdRef, pattern matching, using varName and varRef, generating
and verifying license signatures, and authorization.

Go to Part II: XrML Core Schema

