
Towards a Generic Interchange Format for Petri Nets
– Position Paper –

Matthias Jüngel, Ekkart Kindler, and Michael Weber

Humboldt-Universität zu Berlin, Institut für Informatik, D-10099 Berlin, Germany

juengel|kindler|mweber@informatik.hu-berlin.de

1 Introduction

XML is in vogue! An XML based interface is a
sales promotion for today’s software products.
Consequently, many software developers have
started to design and to implement an XML
based interface for their products. Develop-
ers of Petri net tools are not excepted from
this trend. Recent postings on the Petri Net
Mailing List (PetriNets@daimi.au.dk) show
that several Petri net tools are currently being
equipped with an XML based file format.

But, is an XML based file format of a Petri
net tool more than a sales promotion? In fact,
it is not if each Petri net tool uses a different
file format. But, it is much more than a sales
promotion if there is an XML based file format
that helps to interchange Petri nets between
different tools.

In the past, there have been some attempts
to define a standard interchange format for
Petri nets—without much success. Basically,
the problems in defining a standard inter-
change format are the following:

1. Historically, each Petri net tool was
equipped with its own file format, which
was designed for the particular purpose
of this tool. Implementing a parser for
another file format was tedious, and the
willingness to spend this extra imple-
mentation effort was low because no file
format seemed to have the potential to
serve as a standard (see below).

2. Even worse, each Petri net tool supports
a different version of Petri nets—some
with only slight variations, others with
significant differences. Thus, an agree-
ment on an interchange format meant
to give up some features of a Petri net
tool—maybe, the outstanding features.

The success of XML rules out the first
problem: Several tool developers are willing
to implement an XML based interface any-
way. This eliminates the extra effort. Due to
the sudden success of XML, all tool develop-
ers have started to develop an XML based file
format at the same time. This eliminates his-
toric bulk and allows a fresh approach towards
a standard file format. In addition, the costs
for implementing an XML based interface are
significantly reduced by existing XML tools.
Altogether, these arguments rule out the first
problem—at least for a short period of time.
And we should make the best use of this time.

But, how about the second, more serious
problem? In the rest of this paper, we argue
that an XML based format could rule out the
second problem if designed in an appropriate
way: We advocate a generic interchange for-
mat for Petri nets. In particular, we propose
a document description for Petri net files that
consists of two parts: a general part, which is
independent of a specific version of Petri nets,
and a specific part. We call the general part
the Petri Net Markup Language (PNML), and

1

we call the specific part the Petri Net Type
Definition (PNTD). Of course, a generic in-
terchange format will be irrelevant if all rele-
vant information of a particular net type is de-
fined in the PNTD—in that case, there is no
difference to a collection of different file for-
mats. Therefore, a good generic interchange
format must capture the essence of most Petri
net types in the general part: The PNML dis-
tils the essence of Petri nets, and the PNTD
defines additional features, which are not cap-
tured by the PNML.

In this paper, we argue in favour of a
generic interchange format (Sect. 2) and show
that the idea of a generic interchange format
for Petri nets is feasible (Sect. 3). Moreover,
we identify some objectives and issues, which
should be kept in mind when designing an in-
terchange format (Sect. 4).

2 Generic Interchange Format

There is a large number of different Petri
net tools. Each of them has its specific fea-
tures and strengths. Some tools focus on a
nice graphical representation. Other tools are
convincing by a variety of simulation and vi-
sualization techniques. Other tools are not
equipped with graphics at all—they provide
strong algorithms for analysis of Petri nets.

Let us assume that a user wants to use dif-
ferent Petri net tools to analyse, to simulate,
and to verify the same net. Of course, he does
not want to edit the same net in each tool from
scratch. The best way to solve this problem
is an interchange format that can be read by
each of the used tools. The tools, however,
might support different versions of Petri nets
and need to represent their special features in
the interchange format. Thus, a general inter-
change format must support all features of all
Petri net tools—existing and forthcoming. In
order to avoid a clutter of unrelated net fea-
tures in the interchange format, we propose
a generic interchange format, which consists
of two parts: One part, called PNML, defines
the typical features of all Petri nets; the other

part, called PNTD, defines the special features
of a particular Petri net type. By the way, a
generic interchange format is open for future
extensions of Petri nets: We need to define
only the special features of a new Petri net
type in a PNTD.

The typical features of a Petri net are: it
consists of places, transitions, and arcs; places
are associated with a marking; the net ele-
ments may be annotated by some additional
information. Moreover, Petri nets have a typ-
ical graphical representation. Extracting the
typical features of Petri nets into a PNML re-
sults in a uniform file structure for all kinds
of Petri nets. For particular net types, it re-
mains to fix the special features of this type in
a PNTD.

Of course, there are features of Petri net,
which occur in some but not in all Petri nets
(e. g. different versions of time). The inter-
change format should allow to exchange nets
of different but compatible Petri net types. In
order to interpret the compatible features in
the same way in both types, the interchange
format must provide naming conventions. For
example, it should be clear from the name
whether a timing constraint should be inter-
preted as a firing duration or a firing delay.
Some of these conventions can be supported by
a separate XML-document, which comprises a
definition for each standard feature of Petri
nets. We call this document the conventions
document. When designing a new Petri net
type, the standard features need not be defined
from scratch—rather the new PNTD can refer
to the features defined in the conventions doc-
ument. This way, different net types can be
exchanged between different tools—at least as
far as the features from the conventions docu-
ment are concerned.

Altogether, the interchange format con-
sists of a PNML, several PNTDs, and conven-
tions for defining new PNTDs and for inter-
preting special features.

2

3 Feasibility

A generic interchange format for Petri nets has
some appeal. But, is it feasible? In this sec-
tion, we discuss the feasibility of a generic in-
terchange format for Petri nets based on XML
by the help of an example. For lack of space,
we can discuss the XML file of a single net
only; we can neither present the XML Schema
for the PNML nor the XML Schema for the
corresponding PNTD. These documents can
be found on our web page [4].

Figure 1 shows a simple algebraic system
net, which is taken from Reisig’s book [3]. Al-
gebraic system nets are a particular version of
high-level nets—that’s all we need to know for
this paper. Listing 2 shows the XML file cor-
responding to this net. The pnml tag indicates
that the file is a PNML file, which is defined
by the XML Schema1 pnml.xsd. The net tag
indicates the begin of a net, where the refer-
ence to hlNet.xsd refers to the XML Schema
of the corresponding PNTD (algebraic high-
level nets in our example). Then, the different
components of the net, its name, its places,
its transitions, and its arcs follow. Moreover,
there is a specific netInscription, which de-
fines the underlying data type of the net (i. e.
sorts and operations).

The general structure of this file is defined
in pnml.xsd; the specific parts are defined in
hlNet.xsd. The general structure says that
there are places, transitions, and arcs. The
concrete definition of a marking as defined for
algebraic nets, however, is given in the PNTD
hlNet.xsd. Similar comments apply to anno-
tations of arcs, which are concretely defined in
hlNet.xsd.

Note that, on a high-level of abstraction,
the file from List. 2 can be understood without
knowing the detailed definitions of the PNTD

1Note that XML Schema has not yet reached its fi-
nal stage; thus, we can only present a preliminary
proposal, here. The W3C working group on XML
Schema believes that the current version [5, 6] is
‘feature-complete’: i. e. the functionality included
in XML Schema will not change.

in hlNet.xsd. Here, we cannot discuss the
details of the different XML Schemas. The
basic idea, however, is that pnml.xsd defines
the components and their relation which are
relevant in most Petri nets. A Petri Net Type
Definition, i. e. a pntd.xsd file, gives a con-
crete definition for these components, and may
add other components, attributes etc.

Note that the PNML as proposed in [4]
provides only the minimum requirements on
the general Petri net structure—the current
proposal is not meant to be complete. The
main purpose of this proposal is to demon-
strate that a generic interchange format for
Petri nets is feasible. What should be included
in the PNML, what should be not included in
the PNML, and which conventions should be
imposed on the PNTDs is subject to discus-
sions. Existing proposals like the LATEX-based
Abstract Petri Net Notation [1] can serve as a
guideline for this discussion.

4 Issues

Hitherto, we focussed our discussion on being
generic. Of course, there are other important
issues that should be kept in mind when de-
signing the interchange format. Here, we will
only mention the following issues:

Graphics. Graphical information should be in-
dependent from a particular Petri net
type—or at least as independent as pos-
sible.

Structuring. There should be a mechanism for
structuring Petri net models; if possible,
this mechanism should be independent
from a particular Petri net type.

Markings. There should be a way to save a
marking (or a list of markings) indepen-
dently from the net itself. The same
holds for other information associated
with some net elements.

Rewriting. There should be a statement about
how each tool behaves in case of rewrit-
ing a net: Let us assume, a tool A reads

3

const M : set of nat

fct max : nat × nat → nat
var x, y : nat

MA t

x y

max(x,y)

Figure 1: A net

a net generated by another tool B. The
net may contain elements that are nei-
ther used nor readable by tool A. Now, a
user might change the net in tool A and
save this net. The question is: What
happens to those elements that are not
readable by tool A? Tool A might either
ignore this information, in which case it
is lost for tool B. Or tool A might try
to write this information even if it might
become inconsistent.

When defining the interchange format, we
should be aware that it determines which for-
malism is accepted as a Petri net and which is
not. We should make sure not to exclude some
Petri net formalisms unintentionally. For ex-
ample, there are Signal/Event nets [2], which
allow special arcs between transitions. Be-
cause of its Petri net like semantics, we might
accept a Signal/Event net as a Petri net.

5 Conclusion

In this paper, we have argued that an inter-
change format for Petri nets should be generic;
i. e. it should support different Petri net types,
and it should support the definition of new
Petri net types. To this end, we proposed
to distinguish between a general Petri Net
Markup Language (PNML) and specific Petri
Net Type Definitions (PNTDs). When defin-
ing this generic interchange format for Petri
nets, we must take care not to miss the point:
The essence of most Petri net types must
be captured in the PNML, not in the spe-
cific PNTDs. Distilling the essence of Petri
nets into a PNML might be a tedious task,
which requires many discussions—but we be-
lieve that it is a worthwhile task.

Moreover, we have shown that XML Sche-

ma provides all concepts for a generic docu-
ment description. In principle, there are no
technical problems in defining an XML based
generic interchange format. It remains to distil
the essence of Petri nets into a PNML and into
some conventions for the definition of PNTDs.

Acknowledgements We would like to thank
Olaf Kummer, Stephan Roch and Karsten
Schmidt for their comments and suggestions.

References

[1] Bause, Falko; Peter Kemper; and Pieter Kritzinger:
Abstract Petri Net Notation. Petri Net Newsletter
49 :9–27. Oct. 1995.

[2] Lüder, Arndt and Hans-Michael Hanisch: A Sig-
nal Extension for Petri nets and its Use in Con-
troller Design. In: H.-D. Burkhard; L. Czaja; and
P. Starke (eds.), Proceedings of the CS&P’97 Work-
shop, no. 110 in Informatik–Berichte, (pp. 98–105),
Humboldt–Universität zu Berlin, Berlin, Germany.
Sep. 1998.

[3] Reisig, Wolfgang: Elements of Distributed Algo-
rithms — Modeling and Analysis with Petri Nets.
Springer-Verlag. 1998.

[4] The PNK Team: Petri Net Markup Language.
http://www.informatik.hu-berlin.de/top/

pnml. Mar. 2000.

[5] XML Schema Working Group: XML Schema Part
1: Structures. W3C working draft. http://www.w3.
org/TR/xmlschema-1/. Feb. 2000.

[6] XML Schema Working Group: XML Schema Part
2: Datatypes. W3C working draft. http://www.w3.
org/TR/xmlschema-2/. Feb. 2000.

4

http://www.informatik.hu-berlin.de/top/pnml
http://www.informatik.hu-berlin.de/top/pnml
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

Listing 2: The XML file for the net from Fig. 1

<?xml version="1.0"?>
<pnml:pnml xmlns:pnml="pnml.xsd">
<net id="n1" xmlns="hlNet.xsd">
<name>Distributed Maximum Finding</name>

5

<place id="p1">
<name>A</name>
<marking const="M"/>

</place>
10

<transition id="t1">
<name>t</name>

</transition>

15 <arc id="a1" source="p1" target="t1">
<annotation>
<var ref="x"/>
<var ref="y"/>

</annotation>
20 </arc>

<arc id="a2" source="t1" target="p1">
<annotation>
<fct ref="max">

25 <var ref="x"/>
<var ref="y"/>

</fct>
</annotation>

</arc>
30

<netInscription>
<sortDeclaration name="nat" type="basic"/>
<constDeclaration name="M" sort="nat"/>
<fctDeclaration name="max">

35 <argumentSort ref="nat"/>
<argumentSort ref="nat"/>
<targetSort ref="nat"/>

</fctDeclaration>
<variableDeclaration name="x" sort="nat"/>

40 <variableDeclaration name="y" sort="nat"/>
</netInscription>

</net>
</pnml:pnml>

5

	Introduction
	Generic Interchange Format
	Feasibility
	Issues
	Conclusion

