
July 1998 103

So
ft

w
ar

e
Re

al
iti

es

W
hen HTML was young, it
was described as a scalable
document format that
could be used for informa-
tion exchange on virtually

any platform. HTML’s designers specifi-
cally mentioned that HTML documents
could be presented not only in GUIs but
for text-only systems, text-to-speech
devices, and even for Braille renderings.

Such enthusiastic descriptions of
HTML used to appear regularly on
the World Wide Web Consortium’s
(W3C) Web site (http://www.w3.org/pub/
MarkUp/). But lately the tone has
changed. The W3C no longer believes
HTML can achieve its original goals.

HTML’s underlying idea was very sim-
ple: Define a simple language that
described the structure of a document
and expect companies to develop soft-
ware that can present such documents in
different environments and according to
various user options. Using HTML,
authors could create something that
could easily be presented in any visible
or audible format—on the fly—without
doing anything extra.

As it turns out, however, this idea,
though disarmingly simple, deviated
from well-established publishing prac-
tices. In traditional publishing, graphic

designers and layout artists consider the
specific features of the presentation
medium, including the paper size and
quality, the color palette, and so on. It
has been very difficult to switch from this
approach to a simpler one, in which the
author provides the content and specifies
the logical structure, leaving the presen-
tation to user agents.

It is not surprising, then, that when
browser vendors started adding methods
for specifying presentation details—such
as font size and colors—authors started
using them. But they weren’t satisfied
with this early technology. They kept
asking for publishing-quality typo-
graphic control on the Web. Designers
and authors got some of what they
wanted, and we got this mess.

SEPARATING STRUCTURE
AND PRESENTATION

Style sheets in general—and cascading
style sheets (CSS) in particular—separate
structure and content from presentation.
Applied to the Web and HTML, this
means that HTML doesn’t contain pre-
sentational features. Instead, separate
tools specify presentation.

For example, instead of using HTML
markup like

<H1 ALIGN=center><FONT COLOR=
red>My Heading</H1>

for all first-level headings, you would
write them as

<H1>My Heading</H1>

and attach a separate style sheet. The
style sheet would contain content like

H1{text-align: center; color:
red}

which specifies presentation to be applied
to all first-level heading (H1) elements.

The CSS approach makes documents
simpler to write and maintain. You
could write a single style sheet and use it
for hundreds of documents. Even the
first CSS version, CSS1, addresses pre-
sentation issues—such as physical font
sizes and dimensions—that cannot be
handled in HTML at all.

While CSS1 is simple and intuitive, it
is still yet another language to learn.
(There is a very good CSS1 tutorial by
the Web Design Group at http://www.
stack.nl/htmlhelp/reference/css/.) When
writing CSS1, it is easy to make typos
that make browsers behave strangely, but
it is also very easy to check documents
using a style sheet checker.

In theory, a browser can apply several
style sheets to a document as a cascade,
building sophisticated document presen-
tation. This means, for example, that a
company could have its own company-
wide style rules while individual authors
within the company could add features
to these style rules through their own per-
sonal presentation rules.

Moreover, any reader could have a per-
sonal style sheet, for example, for setting
font sizes large enough for easy reading.
A browser that supports CSS takes all

Lurching Toward
Babel: HTML,

CSS, and XML
Jukka Korpela, Helsinki University of Technology

In
te

rn
et

 W
at

ch

Editor: Ron Vetter, University of North
Carolina at Wilmington, Mathematical Sci-
ences Dept., 601 South College Rd., Wilm-
ington, NC 28403; voice (910) 962-3671, fax
(910) 962-7107; vetter@cms. uncwil.edu

Hold tight with HTML.
The XML/CSS model is

heading into a land
of confusion.

.

104 Computer

these styles into account, not by calculat-
ing averages, but by strict preference rules.

DOES IT REALLY WORK?
Style sheets sometimes work, but more

often they don’t. Authors who try to use
style sheets encounter serious problems in
current implementations.

To begin with, the style sheet support
in Internet Explorer 3.0, a browser that is
still widely used, is worse than nonexis-
tent: It is hopelessly incomplete and
buggy. IE 4.0 and Navigator 4.0 have bet-
ter CSS1 code.

Some authors have been able to make
their style sheets work on both browser
families. But it takes serious effort and a
lot of help to circumvent browser bugs.
(See “Tips and Workarounds” in a list of
CSS resources at http://home.att.net/
%7Esjacct/.)

The question is not whether it is possi-
ble to implement CSS well, but whether
there are inherent problems in CSS
caused by the very ideas that gave birth
to it. In practice, if you want to maximize
the probability of having your headings
displayed red, you’ll use FONT
COLOR=red in HTML. Any browser
that is capable of supporting style sheets
also supports the FONT alternative. So
why bother with CSS?

Many authors don’t. They continue to
do their markup in HTML. They might
consider adding CSS later to do things
that can’t be done in HTML, but many
see CSS just as a new way of achieving the
same results.

COULD CSS WORK?
The most obvious problem with CSS

is the cascade itself, which allows you to
connect multiple style sheets to a docu-
ment. The cascade is difficult to imple-
ment, but its difficulty isn’t the major
problem. If a browser implements the
cascade correctly, it is still practically
impossible to guarantee good or even
tolerable presentation. Effective presen-
tation consists of several ingredients,
such as color, positioning, dimension,
and font property, which must be com-
patible with each other.

Figure 1 shows the official CSS page
produced by the W3C (http:// www.w3.
org/Style/). With CSS support turned
on—using just the style sheet provided
with the page—the site is indeed legible.
(It is important to note that it looks just
fine without CSS support. Another way
of putting this is that the page degrades
gracefully, which is one of the supposed
benefits of CSS.)

But even an extremely simple cascade
can turn it into a total mess. Use, say, IE
4.0 and set the browser options to ignore
the font styles and sizes specified on a
page. Doing so is comparable to using a
user style sheet. Then reload the page
and see what happens. The resulting
mess, shown in Figure 2, is indicative of
CSS’s major problem.

With CSS, you can present hypertext
links in boxes, with colored underlines,
or with unique text colors, among other
stylistic characteristics. You can even
combine these methods. But what hap-

pens if you want to present links using
blue only? In a worst-case scenario,
another style sheet might specify the same
color for the background, for normal text,
or for emphasized text. This means, in
effect, that in order to avoid massive con-
fusion a style sheet must specify colors for
everything that can have color. It must set
colors for background, normal text, vis-
ited links, headings, and so forth.

Similarly, if a style sheet sets any col-
ors at all, it should set all link colors. But
if you use this technique, some users who
see the document using your style sheet
will not see links in regular, default col-
ors. And they may not recognize them as
links at all.

If you specify colors for everything,
your style sheet could safely participate in
a cascade: The browser would either use
all those color specifications or none of
them. However, a user’s style sheet might
still override your color specification for
some particular element and perhaps ruin
your entire layout. This wouldn’t happen
if the user style sheet were designed as
carefully as yours—that is, if the user’s
style sheet accounted for all heading lev-
els, link colors, and so forth. But isn’t it a
bit too much to rely on two human beings
doing things perfectly?

Graceful degradation is, at best, some-
thing you can achieve using style sheets.
But it isn’t automatic. If presentation
really matters, CSS is not a reliable tool;
if presentation is not that important, why
bother writing specifications for it?

Even if your cascade works well tech-
nically—and doesn’t make the document
illegible—can cascading style sheets pro-
duce style? Ultimately, no. Basing a pre-
sentation on a combination of features
from varying independent sources is like
letting one person select a suit for you, let-
ting someone else choose the shirt, default-
ing your shoes to whatever you happen to
be wearing, and then carefully picking the
socks yourself, unaware of what else you’ll
be wearing later in the day.

STYLE SHEETS WITHOUT CASCADE?
Should we deduce, then, that only one

style sheet should be applied to a docu-
ment? Doing so would simplify things
technically and would probably speed

Figure 1.W3C’s CSS
page on Internet
Explorer 4.0 with
default settings
intact.

Figure 2. W3C’s CSS page on IE 4.0 set to “ignore font styles and sizes.”

Continued on page 106Continued on page 106

Internet Watch

.

106 Computer

Internet Watch
Continued from page 104

browsers that support XML and CSS to
some technically satisfactory degree. The
XML/CSS approach to Web publication
might well be adequate in special cases.
But switching from HTML to XML/CSS
as a general solution would be a huge
“devolutionary” leap.

As a publishing method, XML/CSS is
comparable to using text processing
software with styles or macros: XML/
CSS structures documents, but the struc-
ture has no independent, public seman-
tics. The XML/CSS approach means that
instead of developing HTML so that it
can adequately express the structure of a
wider range of documents, we must cre-
ate new markup languages.

What this means in practice is illus-
trated by MathML (http://www.w3.
org/TR/REC-MathML/), the mathemat-
ical markup language. MathML is, to
put it mildly, complex and difficult com-
pared to the old proposals for adding
basic mathematical markup into HTML
(like the long-expired proposal in the
HTML 3.0 draft at http://www.w3.
org/MarkUp/html3/).

T he Web needs a Renaissance. It must
return to its classical roots. One of
its classical roots is HTML as a sim-

ple, scalable, document format that can
be used for information exchange on vir-
tually any platform. Coming back to this
model means a return to the original
principles of HTML and very carefully
extending the language in the spirit of
those principles.

It will take time before we all realize
that the original HTML proposals are
still much stronger than the latest
XML/CSS developments.

If you have been wondering whether
you should hurry to catch the train and
start learning XML and CSS, stop won-
dering. There is no need to run to the sta-
tion. The XML/CSS train is leaving, but
it’s headed into a land of confusion. Hold
tight. There is still a lot of good work to
be done with that simple, scalable docu-
ment format we call HTML. ❖

Jukka Korpela is a systems analyst in the
Computing Centre at Helsinki Univer-
sity of Technology, Finland. Contact him
at Jukka.Korpela@hut.fi or http://www.
hut.fi/u/jkorpela/.

them up, too. With one style sheet, a doc-
ument could be presented using either a
user’s or an author’s style sheet, or per-
haps just the browser’s default settings.

But what do we gain by doing so versus
making a document available both in
HTML and in PostScript? With the latter
methods, the user could view the docu-
ment on a browser, according to his or her
browser settings, or in a PostScript reader,
exactly as the author intended it to be seen.

According to W3C, the CSS is sup-
posed to engender a balance between the
author and the reader. The question is
whether the author or the reader is in
command of document presentation.

There are a huge number of Web-savvy
publishing methods for controlling pre-
sentation. Nothing prevents us from dis-
tributing documents in, say, MS Word,
PDF, PostScript, or Autocad. HTML was
designed to be a fundamentally different
publishing alternative. If you, as an au-
thor, find this acceptable, perhaps even
desirable, you’ll use HTML; if not, there
are a large number of alternatives.

XML: TOWARD BABEL
Currently, many designers advocate

the use of CSS together with the
Extensible Markup Language (XML) as
a replacement for HTML. Generally,
W3C promotes XML as if it were an
extension to HTML. In fact, XML is a
simplified form of Standard Generalized
Markup Language. SGML, in turn, is
used to define the syntax of markup lan-
guages like HTML.

In other words, XML is basically a
dialect of SGML. But by advocating the
use of XML on the Web, W3C is essen-
tially suggesting that everyone design a
personal language for personal hypertext
documents and different languages for
different documents.

The XML metalanguage can define the
formal syntax of a language, such as nest-
ing rules for elements. The semantics could
of course be described in plain English. But
this doesn’t seem to be of interest to XML
evangelists. They are more interested in
just specifying presentation with CSS.
Naturally, this means that they do not use
CSS as a presentation suggestion only,
since (with the XML/CSS model) there is
no default or user-defined presentation.

Quite probably there will soon be

Open Channel

be, it could run multiple virtual consoles
just as easily as it used to run single con-
soles. If we went to a hardware-based
multiple-console model, the OS would
be much simpler, and its programs
would merely request a console from the
hardware when needed.

On my desktop PC, the two windows
I use most are a DOS window and a
Unix window. It’s just like having two
machine consoles on my desk, but the
windows make it much more conve-
nient. The OS simulates two consoles,
but I can place the virtual screens where
I want and size them to taste. I can also
easily shift between them (with Alt-Tab).

Windowing is, at least from the user’s
point of view, a straightforward facility.
Each window is basically the visual part
of a program’s console, and when con-
trol is shifted to a particular window, the
keyboard is temporarily the console’s
input device. The active program only
gets to use its own console—or at least
the keyboard or mouse—when the user
shifts control to it.

With virtual consoles implemented in
hardware, users would find it much eas-
ier to shift from OS vendor to OS ven-
dor, and new OSs would be easier to
develop without the burden of provid-
ing windowing support. Implementing
consoles in hardware would let applica-
tion developers compete with Microsoft
where Microsoft is strongest: the OS.
Furthermore, improvements in win-
dowing could be developed in the hard-
ware itself, probably with little need to
change the programming interface.

Virtual terminals under control of
hardware would also make it easier to
support video applications and promote
PC/TV convergence. And special-pur-
pose OSs—to operate networked domes-
tic appliances, for example—would be
easier to develop and easier for people
to learn to operate if we had a common
hardware support system.

With Windows CE poised to expand
into a number of markets, Microsoft
could easily be the proverbial 800-
pound gorilla and threaten independent
application innovation. But virtual con-
soles could short-circuit Microsoft’s
dominance and could even provide

Continued on page 109

Open Channel

.

