
DocBook V5.0
The Transition Guide
01 March 2006

This version:
http://docbook.org/docs/howto/2006-03-01/

Latest version:
http://docbook.org/docs/howto/

Previous versions:
http://docbook.org/docs/howto/2005-12-28/
http://docbook.org/docs/howto/2005-10-27/

Authors:
Jirka Kosek, <jirka@kosek.cz>
Norman Walsh, <ndw@nwalsh.com>
Dick Hamilton, <rlhamilton@frii.com>

Table of Contents
Introduction .. 2

Finally in a namespace .. 2
Relaxing with DocBook .. 2
Why switch to DocBook V5.0? .. 3
Schema jungle .. 4

Toolchain ... 4
Editing DocBook V5.0 .. 4
Validating DocBook V5.0 .. 9
Processing DocBook V5.0 ... 10

Markup changes .. 11
Improved cross-referencing and linking .. 11
Renamed elements ... 12
Removed elements ... 13

Converting DocBook V4.x documents to DocBook V5.0 ... 14
What About Entities? .. 14

Customizing DocBook V5.0 ... 15
DocBook RELAX NG schema organization .. 15
General customization considerations .. 16
Elements .. 17
Attributes ... 22
Naming and versioning DocBook customizations ... 24

FAQ .. 25
Bibliography ... 30

This document is targeted at DocBook users who are considering switching from DocBook V4.x to DocBook V5.0.
It describes differences between DocBook V4.x and V5.0 and provides some suggestions about how to edit and process
DocBook V5.0 documents. There is also section devoted to conversion of legacy documents from DocBook 4.x to
DocBook V5.0.

1

At the time of this writing the current version of DocBook V5.0 was 5.0b3. However almost all information in this
document is general and it is applicable to any newer version in DocBook V5.0 series.

Introduction
The differences between DocBook V4.x and V5.0 are quite radical in some aspects, but the basic idea behind DocBook
is still the same and almost all element names are unchanged. Because of this it is very easy to become familiar with
DocBook V5.0 if you know any previous version of DocBook. You can find a complete list of changes in [DB5SPEC],
here we will discuss only the most fundamental changes.

Finally in a namespace
All DocBook V5.0 elements are in the namespace http://docbook.org/ns/docbook. XML namespaces are used to
distinguish between different element sets. In the last few years, almost all new XML grammars have used their own
namespace. It is easy to create compound documents that contain elements from different XML vocabularies. DocBook
V5.0 is following this design rule. Using namespaces in your documents is very easy. Consider this simple article
marked up in DocBook V4.5:

<article>
 <title>Sample article</title>
 <para>This is a really short article.</para>
</article>

The corresponding DocBook V5.0 article will look very similar:

<article xmlns="http://docbook.org/ns/docbook" …>
 <title>Sample article</title>
 <para>This is a really short article.</para>
</article>

The only change is the addition of a default namespace declaration (xmlns="http://docbook.org/ns/docbook")
on the root element. This declaration applies the namespace to the root element and all nested elements. Each element
is now uniquely identified by its local name and namespace.

Note

The namespace name http://docbook.org/ns/docbook serves only as an identifier. This resource is not
fetched during processing of DocBook documents and you are not required to have an Internet connection
during processing. If you access the namespace URI with a browser, you will find a short explanatory document
about the namespace. In the future this document will probably conform to (some version of) RDDL and
provide pointers to related resources.

Relaxing with DocBook
For more than a decade, the DocBook schema was defined using a DTD. However DTDs have serious limitations and
DocBook V5.0 is thus defined using a very powerful schema language called RELAX NG. Thanks to RELAX NG, it
is now much easier to create customized versions of DocBook, and some content models are now cleaner and more
precise.

Using RELAX NG has an impact on the document prolog. The following example shows the typical prolog of a DocBook
V4.x document. The version of the DocBook DTD (in this case 4.5) is indicated in the document type declaration
(!DOCTYPE) which points to a particular version of the DTD.

2

DocBook V5.0

Example 1. DocBook V4.5 document

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE article PUBLIC '-//OASIS//DTD DocBook XML V4.5//EN'
 'http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd'>
<article lang="en">
 <title>Sample article</title>
 <para>This is really very short article.</para>
</article>

In contrast, DocBook V5.0 does not depend on DTDs anymore. This mean that there is no document type declaration
and the version of DocBook used is indicated with the version attribute instead.

Example 2. DocBook V5.0 document

<?xml version="1.0" encoding="utf-8"?>
<article xmlns="http://docbook.org/ns/docbook" version="5.0" xml:lang="en">
 <title>Sample article</title>
 <para>This is really very short article.</para>
</article>

As you can see, DocBook V5.0 is built on top of existing XML standards as much as possible, for example the lang
attribute is superseded by the standard xml:lang attribute.

Another fundamental change is that there is no direct indication of the schema used. Later in this document, you will
learn how you can specify a schema to be used for document validation.

Note

Although we recommend the RELAX NG schema for DocBook V5.0, there are also DTD and W3C XML
Schema versions available (see the section called “Where to get the schemas”) for tools that do not yet support
RELAX NG.

Why switch to DocBook V5.0?
The simple answer is “because DocBook V5.0 is the future”. Apart from this marketing blurb, there are also more
technical reasons:

• DocBook V4.x is feature frozen. At the time of this writing DocBook V4.5 is the last version of DocBook in the
V4.x series. Any new DocBook development, like the addition of new elements, will be done in DocBook V5.0. It
is only matter of time before useful, new elements will be added into DocBook V5.0, but they are not likely to be
back ported into DocBook V4.x. DocBook V4.x will be in maintenance mode and errata will be published if necessary.

• DocBook V5.0 offers new functionality. Even the current version of DocBook V5.0 provides significant improvements
over DocBook V4.x. For example there is general markup for annotations, a new and flexible system for linking,
and unified markup for information sections using the info element.

• DocBook V5.0 is more extensible. Having DocBook V5.0 in a separate namespace allows you to easily mix DocBook
markup with other XML based languages like SVG, MathML, XHTML or even FooBarML.

• DocBook V5.0 is easier to customize. RELAX NG offers many powerful constructs that make customization much
easier than it would be using a DTD.

3

DocBook V5.0

Schema jungle
Schemas for DocBook V5.0 are available in several formats at http://www.oasis-open.org/docbook/xml/5.0b3/ (or the
mirror at http://docbook.org/xml/5.0b3/). Only the RELAX NG schema is normative and it is preferred over the other
schema languages. However, for your convenience there are also DTD and W3C XML Schema versions provided for
DocBook V5.0. But please note that neither DTDs nor XML schemas are able to capture all the constraints of DocBook
V5.0. This mean that a document that validates against the DTD or XML schema is not necessarily valid against the
RELAX NG schema and thus may not be a valid DocBook V5.0 document.

DTD and W3C XML Schema versions of the DocBook V5.0 grammar are provided as a convenience for users who
want to use DocBook V5.0 with legacy tools that don't support RELAX NG. Authors are encouraged to switch to
RELAX NG based tools as soon as possible, or at least to validate documents against the RELAX NG schema before
further processing.

Where to get the schemas

The latest versions of schemas can be obtained from the following locations:

RELAX NG schema http://docbook.org/xml/5.0b3/rng/docbook.rng

RELAX NG schema in compact
syntax

http://docbook.org/xml/5.0b3/rng/docbook.rnc

DTD http://docbook.org/xml/5.0b3/dtd/docbook.dtd

W3C XML Schema http://docbook.org/xml/5.0b3/xsd/docbook.xsd

These schemas are also available from the mirror at http://www.oasis-open.org/docbook/xml/5.0b3/.

DocBook documentation

Detailed documentation about each DocBook V5.0 element is presented in the reference part of DocBook: The Defin-
itive Guide1.

Note

Other parts of the book have not yet been updated to reflect the changes made in DocBook V5.0. Please do
not be confused by this.

Toolchain
This section briefly describes tools and procedures to edit and process content stored in DocBook V5.0.

Editing DocBook V5.0
Because DocBook is an XML based format and XML is a text based format, you can use any text editor to create and
edit DocBook V5.0 documents. However using “dumb” editors like Notepad is not very productive. You will do better
if you use an editor that supports XML. Although there are DTD and W3C XML Schemas available for DocBook
V5.0, which means you can use any editor that works with DTDs or W3C XML Schemas, we recommend that you
use the RELAX NG grammar with DocBook V5.0. The rest of this section contains an overview of XML editors (listed

1 http://docbook.org/tdg5/en/html/pt02.html

4

DocBook V5.0

http://www.oasis-open.org/docbook/xml/5.0b3/
http://docbook.org/xml/5.0b3/
http://docbook.org/xml/5.0b3/rng/docbook.rng
http://docbook.org/xml/5.0b3/rng/docbook.rnc
http://docbook.org/xml/5.0b3/dtd/docbook.dtd
http://docbook.org/xml/5.0b3/xsd/docbook.xsd
http://www.oasis-open.org/docbook/xml/5.0b3/
http://docbook.org/tdg5/en/html/pt02.html
http://docbook.org/tdg5/en/html/pt02.html

in alphabetical order) that are known to work with RELAX NG schemas and that offer guided editing based on the
RELAX NG schema.

Emacs and nXML

nXML mode2 is an add-on for the GNU Emacs text editor. By installing nXML you can turn Emacs into a very
powerful XML editor that offers guided editing and validation of XML documents.

Figure 1. Emacs with nXML mode provides guided editing and validation

nXML uses a special configuration file named schemas.xml to associate schemas with XML documents. Often you
will find this file in the directory site-lisp/nxml/schema inside the Emacs installation directory. Adding the following
line into the configuration file, will associate DocBook V5.0 elements with the appropriate schema:

<namespace ns="http://docbook.org/ns/docbook" uri="/path/to/docbook.rnc"/>

2 http://www.thaiopensource.com/nxml-mode/

5

DocBook V5.0

http://www.thaiopensource.com/nxml-mode/

Note

Please note that nXML ships with a file named docbook.rnc. This file contains the RELAX NG grammar
for DocBook V4.x. Be sure that you associate the DocBook V5.0 namespace with the corresponding DocBook
V5.0 grammar.

If you can't edit the global schemas.xml file, you can create this file in a directory with your document. nXML will
find associations placed there also. In this case you must create a complete configuration file like:

<locatingRules xmlns="http://thaiopensource.com/ns/locating-rules/1.0">
 <namespace ns="http://docbook.org/ns/docbook" uri="/path/to/docbook.rnc"/>
</locatingRules>

oXygen

oXygen is a feature rich XML editor. It has built-in support for many schema languages including RELAX NG. If you
want to smoothly edit and validate DocBook 5.0 documents you should associate the DocBook namespace with the
corresponding schema. Go to Options → Preferences… → Editor → Default Schema Associations. Then click the
New button to add a new association. Type in the DocBook namespace and the RELAX NG schema location, choose
the RNG Schema + Schematron type of schema as, and confirm your choice by clicking the OK button.

Figure 2. Adding a new schema association in oXygen

Because oXygen comes with preconfigured associations for DocBook V4.x, you must move your newly added config-
uration to the top of the list (using the Up button). That way you will be able to use oXygen with both DocBook V4.x
and DocBook V5.0.

6

DocBook V5.0

Figure 3. DocBook V5.0 association must precede associations for DocBook V4.x

Now you can close the preference box by clicking on the OK button. From this time oXygen will assist you with
writing DocBook V5.0 content and you will be able to validate your documents against both RELAX NG and
Schematron schemas.

7

DocBook V5.0

Figure 4. DocBook V5.0 document opened in oXygen

XML Mind XML editor

XML Mind XML editor (XXE) is a visual validating XML editor that provides a wordprocessor-like interface to users.
It is available in two versions, Standard and Professional. The Standard version is free and provides everything you
need to edit DocBook V5.0 documents.

8

DocBook V5.0

Figure 5. XML Mind XML Editor – feels almost like MS Word but real DocBook V5.0 markup
is created

Since version 2.11, XXE comes bundled with a DocBook V5.0 configuration. Unfortunately this configuration is not
enabled by default. You must copy the contents of the directory XXE_install_dir/doc/rnsupport/config/docbook5/
into XXE_install_dir/addon/config/docbook5/ and restart XXE to activate it. After restarting XXE you will be able
to create (a template for articles is provided) and edit DocBook V5.0 documents.

The RELAX NG schema provided with XXE may be outdated. If you want to use XXE with the latest schema just
grab a fresh copy of docbook.rng and copy it into XXE_install_dir/addon/config/docbook5/docbook.rng.

Validating DocBook V5.0
If you are not using a RELAX NG based validating editor when you create documents, we strongly recommend that
you validate your documents before processing them. Only after successful validation you can be sure that your document
is really DocBook V5.0 and that processing tools will be able to process it correctly.

You can find a list of RELAX NG validators at http://relaxng.org/#validators. It is best to use validators with support
for embedded Schematron rules inside RELAX NG schemas. Schematron is a rule-based validation language which
is used to impose additional constraints on DocBook documents. Schematron rules assert conditions which cannot be
expressed in a pure RELAX NG schema.

Sun Multi-Schema XML Validator (MSV) is able to validate an XML document against a RELAX NG schema and
Schematron rules at the same time. To install and use MSV follow these steps:

9

DocBook V5.0

http://relaxng.org/#validators

1. Download relames.zip from https://msv.dev.java.net/servlets/ProjectDocumentList?folderID=101.

2. Unpack the downloaded file into an arbitrary directory.

3. Validate your document using the following command:

java -Xss512K -jar /path/to/relames.jar /path/to/docbook.rng document.xml

Note

The switch -Xss512K increases the stack size of the Java virtual machine. This is necessary because the
DocBook schema is quite large. If you get stack overflow errors from MSV, increase this value. You
may get spurious error messages if the value is too small, so if you get a stack overflow error, ignore
other error messages and try a larger value for the stack size. If you are not using Sun's Java implement-
ation, please consult the documentation for your virtual machine to learn how to increase the stack size.

There is also an on-line DocBook V5.0 validator3 that validates DocBook V5.0 documents against the normative RELAX
NG schema with embedded Schematron rules.

Processing DocBook V5.0
Part of DocBook's great success can be attributed to the availability of free tools that can be used to transform DocBook
content into various target formats including HTML and PDF. The DocBook XSL Stylesheets are very popular tools.

DocBook XSL Stylesheets

The DocBook stylesheets are designed to process content written in different versions of DocBook (for example 3.1
and 4.2). Recent versions of the stylesheets are also able to process DocBook V5.0 with some limitations.

You can process DocBook V5.0 documents with the DocBook XSL stylesheets exactly the same way as you process
DocBook V4.x documents. You do not need special software, you can stick to your preferred XSLT processor, be it
Saxon, xsltproc, Xalan or whatever else.

During document processing, the stylesheets strip namespaces from DocBook V5.0 to get a document which will be
very similar to DocBook V4.x. This is necessary because from the XSLT point of view elements from different
namespaces are distinct and can not be easily processed by the same set of templates. This process is completely
transparent to the user. If you are processing DocBook V5.0 documents, the only difference is that you will see the
following additional message:

Stripping NS from DocBook 5/NG document.
Processing stripped document.

Although you can successfully use the existing stylesheets to process DocBook V5.0, there are some limitations. To
support some of the new features of DocBook V5.0, the existing stylesheets would require a significant rewrite. A rewrite
is unlikely because a new version of stylesheets is currently under development.

The unsupported features include:

• general annotations;

• general XLink links on all elements;

3 http://badame.vse.cz/docbookvalidator/

10

DocBook V5.0

https://msv.dev.java.net/servlets/ProjectDocumentList?folderID=101
http://badame.vse.cz/docbookvalidator/

During namespace stripping, the base URI of the document is lost. This means that in rare situations, relatively referenced
resources like images or programlistings can be processed incorrectly. The stylesheets attempt to compensate for this
problem, but it is possible that there are corner cases where they will fail.

XSLT 2.0 based re-implementation

XSLT 1.0 is missing some important features. To work around these missing features, the current DocBook XSL
stylesheets use some implementation-specific extensions. XSLT 2.0 adds many new and previously missing features
into the language. A new set of DocBook stylesheets is being implemented based on XSLT 2.0 to take advantage of
these features and to fully support DocBook V5.0.

The XSLT 2.0 based stylesheets have many new features, including:

• seamless integration of profiling (conditional documents) with external bibliographies and glossaries;

• no need for (most) external extensions;

• internationalized indexes;

• easy to customize titlepage templates;

The XSLT 2.0 based stylesheets are still under development. At this writing, they only support HTML and chunked
HTML output. As time permits, the stylesheet developers will be adding other formats. Since the stylesheets are de-
veloped in the limited free time the developers have, there's no specific schedule.

There are not very many XSLT 2.0 implementations available. But, if you want to try the new stylesheets, grab a
snapshot of the development version from http://docbook.sourceforge.net/snapshots/docbook-xsl2-snapshot.zip and
unpack it somewhere. Then download and install Saxon 8 from http://saxon.sf.net.

To transform a DocBook V5.0 document to a single HTML page use the command:

java -jar /path/to/saxon8.jar -o output.html document.xml /path/to/docbook-xsl2-snapshot/html/docbook.xsl

To transform a DocBook V5.0 document to a set of chunked HTML pages use the command:

java -jar /path/to/saxon8.jar document.xml /path/to/docbook-xsl2-snapshot/html/chunk.xsl

Markup changes
This section describes the most common markup changes between DocBook V4.x and V5.0. You can find a complete
list of changes in [DB5SPEC].

Improved cross-referencing and linking
In DocBook V4.x the attribute id is used to assign a unique identifier to an element. In DocBook V5.0 this attribute
is renamed xml:id in order to comply with [XMLID].

Now you can use almost any inline element as the source of a link, not just xref or link. For example, the following
DocBook 4.x content:

<section id="dir">
 <title>DIR command</title>
 <para>...</para>
</section>

11

DocBook V5.0

http://docbook.sourceforge.net/snapshots/docbook-xsl2-snapshot.zip
http://saxon.sf.net

<section id="ls">
 <title>LS command</title>
 <para>This command is a synonym for <link linkend="dir"><command>DIR</command></link> command.</para>
</section>

is written in DocBook V5.0 as:

<section xml:id="dir">
 <title>DIR command</title>
 <para>...</para>
</section>

<section xml:id="ls">
 <title>LS command</title>
 <para>This command is a synonym for <command linkend="dir">DIR</command> command.</para>
</section>

The linkend attribute was added to all inline elements together with the href attribute from the XLink namespace.
This means that you can use any inline element as the source of a hypertext link. To use XLinks you have to declare
the XLink namespace (most often on the root element of your document):

<article xmlns="http://docbook.org/ns/docbook"
 xmlns:xl="http://www.w3.org/1999/xlink" version="5.0">
 <title>Test article</title>

 <para><application xl:href="http://www.gnu.org/software/emacs/emacs.html">Emacs</application>
 is my favourite text editor.</para>
 …

The ulink element was removed from DocBook V5.0 in favor of XLink linking. Instead of the DocBook V4.x ulink
element:

<ulink url="http://docbook.org">DocBook site</ulink>

you can now use link

<link xl:href="http://docbook.org">DocBook site</link>

XLink links may contain a fragment identifier, which you can use instead of linkend to form cross-references inside
a document; for example:

<command xl:href="#dir">DIR</command>

However XLink links are not checked during validation, while xml:id/linkend links are checked for ID/IDREF
consistency. One place where the XLink-based, fragment identifier scheme is useful is when XInclude is being used,
since XML ID/IDREF links cannot span XInclude boundaries. You can use whichever approach better suits your needs.

Renamed elements
Some elements were renamed to better express their meaning or to reduce the total number of elements available in
DocBook.

12

DocBook V5.0

Table 1. Renamed elements

New nameOld name

tagsgmltag

infobookinfo, articleinfo, chapterinfo, *info

personblurbauthorblurb

orgnamecollabname, corpauthor, corpcredit, corpname

biblioidisbn, issn, pubsnumber

tocdivlot, lotentry, tocback, tocchap, tocfront, toclevel1,
toclevel2, toclevel3, toclevel4, toclevel5, tocpart

mediaobject and inlinemediaobjectgraphic, graphicco, inlinegraphic, mediaobjectco

linkulink

Removed elements
The following elements were removed from DocBook V5.0 without direct replacements: action, beginpage, high-
lights, interface, invpartnumber, medialabel, modespec, structfield, structname. If you use one or more of
these elements, here are some suggestions as to how to re-code them in DocBook V5.0.

Table 2. Recommended mapping for removed elements

Recommended mappingOld name

Use <phrase remap="action">.action

Remove: beginpage is advisory only and has tended to
cause confusion. A processing instruction or comment
should be a workable replacement if one is needed.

beginpage

Use abstract. Note that because highlights has a
broader content model, you may need to wrap contents in
a para inside abstract.

highlights

Use one of the “gui*” elements (guibutton, guiicon,
guilabel, guimenu, guimenuitem, or guisubmenu).

interface

Use <biblioid class="other" otherclass="mediala-
bel">. The productnumber element is another alternative.

invpartnumber

Use <citetitle pubwork="mediatype">, where mediatype
is the type of media being labeled (e.g.,cdrom or dvd).

medialabel

No longer needed. The current processing model for olink
renders modespec unnecessary.

modespec

Use varname. If you need to distinguish between the two,
use <varname remap="structname or structfield">. In
some contexts, it may also be appropriate to use property
for structfield.

structfield, structname

13

DocBook V5.0

Converting DocBook V4.x documents to Doc-
Book V5.0
The DocBook V5.0 schema ships with an XSLT 1.0 stylesheet that is designed to transform valid DocBook V4.x
documents to valid DocBook V5.0 documents.

To convert your document, doc.xml in the examples below, follow these steps:

1. Check the validity of your DocBook XML V4.x document. The conversion tool assumes that the input document
is valid. If the input document contains markup errors, the results will be unpredictable at best.

2. Transform doc.xml to newdoc.xml with the db4-upgrade.xsl stylesheet included in the DocBook V5.0 distri-
bution that you are using.

3. Check the validity of your DocBook XML V5.0 document against the DocBook V5.0 RELAX NG grammar.

In the vast majority of cases, the resulting document should be valid and your conversion process is finished.

If the document is not valid, please report the problem. (Over time, we'll have more experience with the sorts of things
that can go wrong and we'll update this document to reflect that experience.)

What About Entities?
Using XSLT to transform existing documents to DocBook V5.0 has one potential disadvantage: it removes all entity
references from your document.

If preserving entities is an important aspect of your production work flow, you will have to engage in a semi-manual
process to preserve them.

1. Open your existing document using your favorite editing tool. You must use a tool that is not XML-aware, or one
that allows you to edit markup “in the raw”.

2. Replace all occurrences of the entity references that you want to preserve with some unique string. For example,
if you want to preserve “∏” references, you could replace them all with “[[[Product]]]” (assuming
that the string “[[[Product]]]” doesn't occur anywhere else in your document).

3. Copy the document type declaration off of your document and save it some place. The document type declaration
is everything from “<!DOCTYPE” to the closing “]>”.

4. Perform the conversion described in the section called “Converting DocBook V4.x documents to DocBook V5.0”.

5. Open the new document using your favorite editing tool. Replace all occurrences of the unique string you used
to save the entity references with the corresponding entity references.

6. Paste the document type declaration that you saved onto the top of your new document.

7. Remove the external identifier (the PUBLIC and/or SYSTEM keywords) from the document type declaration. A
document that begins:

<!DOCTYPE book [
<!ENTITY someEntity "some replacement text">
]>

14

DocBook V5.0

is perfectly well-formed. If you don't remove the references to the DTD, then your parser will likely try to validate
against DocBook V4.0 and that's not going to work. Alternatively, you could refer to the DocBook V5.0 DTD.

Tip

Steps 2 and 5 from previous procedure can be automated using the cloak script4 written by Michael Smith.

External Parsed Entities

External parsed entities, entities which load part of a document from another file, are a special case. These can often
be replaced with XInclude elements.

The Perl script db4-entities.pl, also included in the DocBook V5.0 distribution attempts to perform this replacement
for you. To use the script, perform the following steps:

1. Process your document with db4-entities.pl. The script expects a single filename and prints the XInclude
version on standard output.

2. Process the XInclude version as described in the section called “Converting DocBook V4.x documents to DocBook
V5.0”.

Customizing DocBook V5.0
It's much easier to customize DocBook V5.0 than it was to customize earlier releases. This is partly because RELAX
NG provides better support for modifications than DTDs and partly because the DocBook schema is designed to take
full advantage of the capabilities RELAX NG provides. This section describes the organization of the RELAX NG
schema for DocBook, methods and examples for adding, removing, and modifying elements and attributes, and con-
ventions for naming and versioning DocBook customizations. It assumes some familiarity with RELAX NG. If you
are unfamiliar with RELAX NG, you can find a tutorial introduction in [RNCTUT].

DocBook RELAX NG schema organization
The DocBook RELAX NG schema is highly modular, using named patterns extensively. Every element, attribute, at-
tribute list, and enumeration has its own named pattern. In addition, there are named patterns for logical combinations
of elements and attributes. These named patterns provide “hooks” into the schema that allow you to do a wide range
of customization by simply redefining one or more of the named patterns.

An important design characteristic of the schema is that duplication is minimized. This is done through the use of
named patterns for common groupings that can be re-used. For example, the imagedata and videodata elements each
have an align attribute that takes the same set of enumerated values. Rather than repeating those values, a single pattern,
db.halign.enumeration is referenced by the db.videodata.align.enumeration and db.imagedata.align.enu-
meration patterns, which are in turn referenced by the db.videodata.align.attribute and db.imagedata.align.at-
tribute patterns. While this may seem like overkill, it allows a customizer to modify the allowed enumerations for
these two attributes separately or together, or to completely re-define the allowed content of either or both, by redefining
one or more of these named patterns.

Pattern Names

Because named patterns are used extensively, the RELAX NG schema uses several naming conventions. These are:

• Names have two or more parts, separated dots “.”

4 http://docbook.sourceforge.net/outgoing/cloak

15

DocBook V5.0

http://docbook.sourceforge.net/outgoing/cloak

• The first part of each name is the prefix “db”
• Each element has a named pattern in the form db.elementname. Elements that have different content models in different

contexts will also have patterns in the form db.context.elementname. For example, db.figure.info defines the
content model for the info element when it appears as a child of the figure element. Context may have several
parts. For example, db.cals.entrytbl.thead.

• Most attributes have a named pattern in the form db.attributename.attribute. Attributes that have different content
models in different contexts will also have patterns in the form db.context.attributename.attribute. For example,
db.olink.localinfo.attribute defines the content model of the localinfo attribute when it appears in olink.
There are a few attributes that do not have individual named patterns. For example, the effectivity attributes are
grouped into db.effectivity.attributes and not identified separately.

• Each element has a named pattern for its attribute list in the form db.elementname.attlist that defines the list of
attributes for that element. Elements that have different attribute lists in different contexts will also have patterns in
the form db.context.elementname.attlist For example, db.html.table.attlist defines the attribute list for the
html table element and db.cals.table.attlist defines the attribute list for a cals table element.

• Each attribute that has enumerated values has a named pattern in the form db.[context.]attributename.enumeration.
If the enumeration for a particular attribute depends on context, optional context is provided. For example,
db.verbatim.continuation.enumeration defines the enumeration values for the continuation attribute that is
used in verbatim contexts like screen. Unlike elements and attributes, there is not necessarily a named pattern for
enumerated attributes outside their context. For example, there is no db.class.enumeration because the class
attribute has a broad and non-intersecting range of uses.

• There are several different groupings of elements and attributes. Here are the major ones:

inlines Combinations of inline elements, for example, db.error.inlines, which contains db.error-
code, db.errortext, etc.

blocks Combinations of block elements, for example, db.verbatim.blocks, which contains db.pro-
gramlisting, db.screen, etc.

attributes Combinations of attributes, for example, db.effectivity.attributes, which contains the
attributes arch, condition, conformance, etc.

components High level components of the schema, for example, db.navigation.components, which contains
db.glossary, db.bibliography, db.index, and db.toc, and is used inside the content model
for chapter, appendix, and preface.

contentmodel Shared content models, for example, db.admonition.contentmodel, which contains the content
model for tip, warning, note, etc.

There are a couple of other groupings designed to minimize duplication, but these are the most important.

General customization considerations
Creating a customized schema is similar to creating a customization layer for XSL. The schema customization layer
is a new RELAX NG schema that defines your changes and includes the standard docbook schema. You then validate
using the schema customization as your schema.

Example 3 is an empty RELAX NG customization that does nothing except define the name spaces and include the
standard DocBook schema. The href attribute of the include element points to the location of the standard DocBook
V5.0 schema. All of the examples are given in both RNG and RNC form.

16

DocBook V5.0

Example 3. Empty customization file

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns:db="http://docbook.org/ns/docbook"
 ns="http://docbook.org/ns/docbook"
 xmlns="http://relaxng.org/ns/structure/1.0">
 <include href="docbook.rng"/>

 <!-- redefinitions of named patterns -->

</grammar>

namespace db = "http://docbook.org/ns/docbook"

include "docbook.rnc" inherit = db
redefinitions of named patterns

Elements

Adding elements

Adding an element typically takes two definitions. The first defines the new element and its content model, and the
second adds the new element into the schema. We'll show two examples.

Example 4 adds a new element, person, with the same content model as author. The new element will be allowed to
appear wherever author can appear.

The db.author pattern is copied and renamed dbx.person, defining a new element called person. Then, the db.author
pattern is redefined to be a choice of the current value or dbx.person. The combine attribute tells RELAX NG to
combine this pattern with the existing named pattern. In this case, the value of the combine attribute is “choice”, which
tells the parser that either the original pattern or this new pattern is a valid match.

17

DocBook V5.0

Example 4. Adding a new element by duplicating an existing one

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns:db="http://docbook.org/ns/docbook"
 ns="http://docbook.org/ns/docbook"
 xmlns="http://relaxng.org/ns/structure/1.0">
 <include href="docbook.rng"/>
 <!-- define the new element -->
 <define name="dbx.person">
 <element name="person">
 <ref name="db.author.attlist"/>
 <ref name="db.credit.contentmodel"/>
 </element>
 </define>
 <!-- redefine the db.author pattern to allow db.person in
 the same places as db.author -->
 <define name="db.author" combine="choice">
 <ref name="dbx.person"/>
 </define>
</grammar>

default namespace db = "http://docbook.org/ns/docbook"

include "docbook.rnc"
define the new element
dbx.person =
 element person { db.author.attlist, db.credit.contentmodel }
redefine the db.author pattern to allow db.person in
the same places as db.author
db.author |= dbx.person

The preceding method works well when you'd like a new element to be a clone or near-clone of an existing element.
It gives you complete control over the content model, but only limited control over where the element is allowed. It
works well when you want to allow the element in the same places as an existing element, and for this example that
works nicely, since author is allowed in four different named patterns, each of which would have had to be redefined
to allow person. But, if you can't find an existing element that is allowed in exactly the places you need, this method
doesn't work as well.

Example 5 adds two new elements by combining them into a higher level pattern. In this example, we'll add two new
inline elements for writing about assembly language, register and instruction. We will allow them whereever
programming inlines or operating system inlines are allowed. Example 5 defines the two elements, creates a new named
pattern (dbx.asm.inlines) that contains them, and adds that pattern to db.programming.inlines and db.os.inlines.
Since these two patterns don't have any elements in common, the strategy used in Example 4 would require selecting
two different elements to “clone”, which would be messy.

18

DocBook V5.0

Example 5. Adding new inline elements

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns:db="http://docbook.org/ns/docbook"
 ns="http://docbook.org/ns/docbook"
 xmlns="http://relaxng.org/ns/structure/1.0">
 <include href="docbook.rng"/>
 <!-- define the new elements -->
 <define name="dbx.register">
 <element name="register">
 <text/>
 </element>
 </define>
 <define name="dbx.instruction">
 <element name="instruction">
 <text/>
 </element>
 </define>
 <!-- create a new pattern that contains the new inlines -->
 <define name="dbx.asm.inlines">
 <choice>
 <ref name="dbx.register"/>
 <ref name="dbx.instruction"/>
 </choice>
 </define>
 <!-- add the new inlines to programming and os inlines -->
 <define name="db.programming.inlines" combine="choice">
 <ref name="dbx.asm.inlines"/>
 </define>
 <define name="db.os.inlines" combine="choice">
 <ref name="dbx.asm.inlines"/>
 </define>
</grammar>

default namespace db = "http://docbook.org/ns/docbook"

include "docbook.rnc"
define the new elements
dbx.register = element register { text }
dbx.instruction = element instruction { text }
create a new pattern that contains the new inlines
dbx.asm.inlines = dbx.register | dbx.instruction
add the new inlines to programming and os inlines
db.programming.inlines |= dbx.asm.inlines
db.os.inlines |= dbx.asm.inlines

Deleting elements

Deleting elements is straightforward, but takes some care and planning. Example 6 deletes the important admonition
element by redefining it with a content model of notAllowed. Note that in this example, the redefinition is inside the
include element. This is required for redefinitions that completely replace an existing pattern.

19

DocBook V5.0

Be careful; If you delete an element that is a required part of another element's content model, you can make it impossible
to create a valid document. For example, if you delete the title element, you won't be able to validate a book because
a book requires a title.

Example 6. Deleting an element

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns:db="http://docbook.org/ns/docbook"
 ns="http://docbook.org/ns/docbook"
 xmlns="http://relaxng.org/ns/structure/1.0">
 <include href="docbook.rng">
 <!-- redefine important element as notAllowed -->
 <define name="db.important">
 <notAllowed/>
 </define>
 </include>
</grammar>

namespace db = "http://docbook.org/ns/docbook"

include "docbook.rnc" inherit = db {
 # redefine important element as notAllowed
 db.important = notAllowed
}

Customizing the content model of existing elements

Example 7 expands the definition of author to include two new elements, born and died. The author element allows
two content models, db.person.author.contentmodel, which defines an author who is a person, and db.org.au-
thor.contentmodel, which defines an author that is an organization. We will modify db.person.author.content-
model so that only authors who are persons can have the new elements.

20

DocBook V5.0

Example 7. Modifying the content model of an element

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns:db="http://docbook.org/ns/docbook"
 ns="http://docbook.org/ns/docbook"
 xmlns="http://relaxng.org/ns/structure/1.0">
 <include href="docbook.rng"/>

 <define name="db.person.author.contentmodel" combine="interleave">
 <interleave>
 <optional>
 <element name="born">
 <ref name="db.date.contentmodel"/>
 </element>
 </optional>
 <optional>
 <element name="died">
 <ref name="db.date.contentmodel"/>
 </element>
 </optional>
 </interleave>
 </define>
</grammar>

default namespace = "http://docbook.org/ns/docbook"
namespace db = "http://docbook.org/ns/docbook"

include "docbook.rnc"

db.person.author.contentmodel &=
 element born { db.date.contentmodel }?
 & element died { db.date.contentmodel }?

This modification will allow instances like this:

<author>
 <personname>Babe Ruth</personname>
 <born>02/06/1895</born>
 <died>08/16/1948</died>
</author>

but because we only modified the content model for authors who are human, it won't allow an instance like this, which
uses db.org.author.contentmodel:

<!-- INVALID -->
<author>
 <orgname>Boston Red Sox</orgname>
 <died>1919</died>
 <born>2004</born>
</author>

21

DocBook V5.0

Attributes

Adding attributes

The simplest way to add an attribute to a single element is to add it to the attlist pattern for that element. Example 8
adds the optional attributes born and died to the attribute list for author. The db.author.attlist named pattern is
redefined with the combine attribute set to “interleave”, which interleaves the two new optional attributes with the
existing attributes on the list.

Example 8. Adding attributes

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns:db="http://docbook.org/ns/docbook"
 ns="http://docbook.org/ns/docbook"
 xmlns="http://relaxng.org/ns/structure/1.0">
 <include href="docbook.rng"/>

 <define name="db.author.attlist" combine="interleave">
 <interleave>
 <optional>
 <attribute name="born">
 <ref name="db.date.contentmodel"/>
 </attribute>
 </optional>
 <optional>
 <attribute name="died">
 <ref name="db.date.contentmodel"/>
 </attribute>
 </optional>
 </interleave>
 </define>
</grammar>

namespace db = "http://docbook.org/ns/docbook"

include "docbook.rnc" inherit = db

db.author.attlist &=
 attribute born { db.date.contentmodel }?
 & attribute died { db.date.contentmodel }?

Unlike Example 7, Example 8 allows the new attributes to appear on any author element, not just those using the
person content model.

Example 9 shows how you could limit the use of these attributes to authors who are persons. In this example, the new
attributes are interleaved with the db.person.author.contentmodel. The only difference between this example and
Example 7 is that the added patterns are identified as attributes rather than elements. This shows some of the flexibility
of RELAX NG, which treats attributes and elements very consistently.

22

DocBook V5.0

Example 9. Adding attributes; alternate method

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns:db="http://docbook.org/ns/docbook"
 ns="http://docbook.org/ns/docbook"
 xmlns="http://relaxng.org/ns/structure/1.0">
 <include href="docbook.rng"/>
 <!-- redefinitions of named patterns -->
 <define name="db.person.author.contentmodel" combine="interleave">
 <interleave>
 <optional>
 <attribute name="born">
 <ref name="db.date.contentmodel"/>
 </attribute>
 </optional>
 <optional>
 <attribute name="died">
 <ref name="db.date.contentmodel"/>
 </attribute>
 </optional>
 </interleave>
 </define>
</grammar>

namespace db = "http://docbook.org/ns/docbook"

include "docbook.rnc" inherit = db
redefinitions of named patterns
db.person.author.contentmodel &=
 attribute born { db.date.contentmodel }?
 & attribute died { db.date.contentmodel }?

There is one difference in the treatment of attributes and elements that is worth noting. By the XML 1.0 definition, the
relative order of attributes is not significant. Therefore, the interleave block is not required for attributes, though it
does no harm.

Deleting attributes

Deleting an attribute is similar to deleting an element, except that you use the RELAX NG empty pattern rather than
notAllowed. Example 10 deletes the linking attributes, which are collected in the db.common.linking.attributes
pattern, by defining that pattern as empty.

23

DocBook V5.0

Example 10. Deleting an attribute

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns:db="http://docbook.org/ns/docbook"
 ns="http://docbook.org/ns/docbook"
 xmlns="http://relaxng.org/ns/structure/1.0">
 <include href="docbook.rng">
 <define name="db.common.linking.attributes">
 <empty/>
 </define>
 </include>
</grammar>

namespace db = "http://docbook.org/ns/docbook"

include "docbook.rnc" inherit = db {
 db.common.linking.attributes = empty
}

Generally, empty is used when deleting attributes and notAllowed is used when deleting elements.

Changing permitted content of attributes

Example 11 modifies db.spacing.enumeration to add the additional value “large”. Note that to remove a value from
an enumeration, you need to redefine the entire enumeration, minus the values you don't need.

Example 11. Deleting an attribute

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns:db="http://docbook.org/ns/docbook"
 ns="http://docbook.org/ns/docbook"
 xmlns="http://relaxng.org/ns/structure/1.0">
 <include href="docbook.rng"/>
 <!-- add value to an enumeration -->
 <define name="db.spacing.enumeration" combine="choice">
 <value>large</value>
 </define>
</grammar>

namespace db = "http://docbook.org/ns/docbook"

include "docbook.rnc" inherit = db
add value to an enumeration
db.spacing.enumeration |= "large"

Naming and versioning DocBook customizations
DocBook V5.0 is not tightly coupled with some particular validation technology like DTDs. This also means that
DocBook V5.0 documents doesn't have to (and usually really doesn't) start with document type declaration (<!DOC-
TYPE…>) which can specify schema (DTD) to use. Instead, DocBook V5.0 instance can be easily distinguished from
other XML vocabularies by using elements in http://docbook.org/ns/docbook namespace. This namespace is
enough to distinguish DocBook from other XML based formats. But DocBook schema evolves over the time and there

24

DocBook V5.0

are several versions of DocBook (e.g. 3.1, 4.2, 4.5 and 5.0). Since DocBook version 5.0 the actual version used is in-
dicated in the version attribute on a root element.

<book xmlns="http://docbook.org/ns/docbook"
 version="5.0">
 …
</book>

Future versions of DocBook documents will start with the same markup, only version number will be raised like 5.1
or 6.0. The namespace will remain same until semantic of elements will change in a backward incompatible way which
is very unlikely to happen.

If you create DocBook schema customization you must change version attribute to distinguish your customization
from the “official” DocBook. Namespace change is not recommended because it would break all processing tools.
Remember that changing namespace is the same as renaming all elements in the namespace.

Your own version identifiers should use the following syntax in order to record their DocBook derivation:

base_version [Subset|Extension|Variant]? [name [version]]+

For example:

5.0 Subset Simplified 1.0
5.0 Variant ASMBook
5.0 ASMBook 2006
5.0 Extension MathML 2.0 SVG 1.1

The first part of version identifier is a version number of the DocBook schema from which you derived your custom-
ization.

If your schema is a proper subset, you can advertise this status by using the Subset keyword in the description. If your
schema contains any markup model extensions, you can advertise this status by using the Extension keyword. If you'd
rather not characterize your variant specifically as a subset or an extension, you can leave out this field entirely, or, if
you prefer, use the Variant keyword.

After these keywords you can place whitespace separated list of customization identifiers. Each name can be optionally
followed by its version number.

FAQ
1. Authoring

1.1. How do I attach a schema to a DocBook V5.0 document when I do not want to use DTDs and !DOCTYPE?

There is no standard way of associating a RELAX NG schema with a document. Most tools provide some
mechanism for performing this association, consult the documentation for your application. In some tools you
must specify schema manually each time you want to edit/process your document.

1.2. How do I use entities like – in DocBook V5.0?

Modern schema languages (including RELAX NG and W3X XML Schema) do not provide any means to define
entities that can be used for easier typing of special characters. Some editors provide functions or special toolbars
that allow you to easily pick necessary character and insert it into document as a raw Unicode character or a
numeric character reference.

25

DocBook V5.0

Another possibility is to include entity definitions in the prolog of your document. Entity definition files5 are
now maintained by W3C. You can reference definition files with entity definitions you are interested in and then
reference imported entities. For example:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE article [
<!ENTITY % isopub SYSTEM "http://www.w3.org/2003/entities/iso8879/isopub.ent">
%isopub;
]>
<article xmlns="http://docbook.org/ns/docbook" version="5.0">
<title>DocBook V5.0 – the superb documentation format</title>
…

1.3. How to modularize documents?

You can use XInclude6 for this task. There is an alternative schema for DocBook V5.0 that contains XInclude
elements. This is necessary to make some XML editors happy. This schema can be found in files that end with
letters “xi”, e.g. docbookxi.rnc instead of docbook.rnc.

2. Stylesheets

2.1. Will the current DocBook XSL stylesheets (XSLT 1.0 based implementation) be maintained and improved in
the future since work on a new XSLT 2.0 based implementation has started?

Yes, the current stylesheets (like 1.69.1) will be supported and improved further because they are very widely
deployed and work with many existing XSLT processors.

Surely there will be a point in a future when all new development will be switched to the XSLT 2.0 based imple-
mentation. But this will not happen until all features of the current stylesheets are implemented in the new
stylesheets and until there is more than one usable XSLT 2.0 processor available.

3. Schema customizations

3.1. How can I extend the DocBook schema with MathML elements?

The basic DocBook schema allows elements from the MathML namespace to appear inside the equation element.
This means that you can validate a DocBook+MathML document, but MathML content will be ignored during
the validation. You will also not be able to use guided editing for the MathML content.

If you need strict validation of MathML content or guided editing for MathML, you can easily extend the base
DocBook schema with the MathML schema.

Procedure 1. Extending the DocBook schema with the MathML schema

1. Download the MathML RELAX NG schema from http://yupotan.sppd.ne.jp/relax-ng/mml2.html and unpack
it somewhere (e.g. into a mathml subdirectory).

2. Create a schema customization in compact syntax—dbmathml.rnc:

namespace html = "http://www.w3.org/1999/xhtml"
namespace mml = "http://www.w3.org/1998/Math/MathML"

5 http://www.w3.org/2003/entities/
6 http://www.w3.org/TR/xinclude/

26

DocBook V5.0

http://www.w3.org/2003/entities/
http://www.w3.org/TR/xinclude/
http://yupotan.sppd.ne.jp/relax-ng/mml2.html

namespace db = "http://docbook.org/ns/docbook"

include "/path/to/docbook.rnc" {
 db._any.mml = external "mathml/mathml2.rnc"
 db._any =
 element * - (db:* | html:* | mml:*) {
 (attribute * { text }
 | text
 | db._any)*
 }
}

Or, alternatively, you can use the XML syntax of RELAX NG—dbmathml.rng:

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<include href="/path/to/docbook.rng">
 <define name="db._any.mml">
 <externalRef href="mathml/mathml2.rng"/>
 </define>

 <define name="db._any">
 <element>
 <anyName>
 <except>
 <nsName ns="http://docbook.org/ns/docbook"/>
 <nsName ns="http://www.w3.org/1999/xhtml"/>
 <nsName ns="http://www.w3.org/1998/Math/MathML"/>
 </except>
 </anyName>
 <zeroOrMore>
 <choice>
 <attribute>
 <anyName/>
 </attribute>
 <text/>
 <ref name="db._any"/>
 </choice>
 </zeroOrMore>
 </element>
 </define>
</include>

</grammar>

3. Now use the customized schema (dbmathml.rnc or dbmathml.rng) instead of the original DocBook schema.

3.2. How can I extend the DocBook schema with SVG elements?

The situation is the same as with MathML support. You can use elements from the SVG namespace inside the
imageobject element.

27

DocBook V5.0

Procedure 2. Extending the DocBook schema with the SVG schema

1. Download the SVG RELAX NG schema from http://www.w3.org/Graphics/SVG/1.1/rng/rng.zip and unpack
it somewhere (e.g. into an svg subdirectory).

2. Create a schema customization in compact syntax—dbsvg.rnc:

namespace html = "http://www.w3.org/1999/xhtml"
namespace db = "http://docbook.org/ns/docbook"
namespace svg = "http://www.w3.org/2000/svg"

include "/path/to/docbook.rnc" {
 db._any.svg = external "svg/svg11.rnc"
 db._any =
 element * - (db:* | html:* | svg:*) {
 (attribute * { text }
 | text
 | db._any)*
 }
}

Or, alternatively, you can use the XML syntax of RELAX NG—dbsvg.rng:

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<include href="/path/to/docbook.rng">
 <define name="db._any.svg">
 <externalRef href="svg/svg11.rng"/>
 </define>

 <define name="db._any">
 <element>
 <anyName>
 <except>
 <nsName ns="http://docbook.org/ns/docbook"/>
 <nsName ns="http://www.w3.org/1999/xhtml"/>
 <nsName ns="http://www.w3.org/2000/svg"/>
 </except>
 </anyName>
 <zeroOrMore>
 <choice>
 <attribute>
 <anyName/>
 </attribute>
 <text/>
 <ref name="db._any"/>
 </choice>
 </zeroOrMore>
 </element>
 </define>
</include>

</grammar>

28

DocBook V5.0

http://www.w3.org/Graphics/SVG/1.1/rng/rng.zip

3. Now use the customized schema (dbsvg.rnc or dbsvg.rng) instead of the original DocBook schema.

3.3. Is it possible to use the previous two customizations for MathML and SVG together?

Yes, you can create a special schema customization that combines both MathML and SVG with the DocBook
schema. In compact syntax, the merged schema is:

namespace html = "http://www.w3.org/1999/xhtml"
namespace mml = "http://www.w3.org/1998/Math/MathML"
namespace db = "http://docbook.org/ns/docbook"
namespace svg = "http://www.w3.org/2000/svg"

include "/path/to/docbook.rnc" {
 db._any.mml = external "mahtml/mathml2.rnc"
 db._any.svg = external "svg/svg11.rnc"
 db._any =
 element * - (db:* | html:* | mml:* | svg:*) {
 (attribute * { text }
 | text
 | db._any)*
 }
}

Or alternatively in the full RELAX NG syntax:

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<include href="/path/to/docbook.rng">
 <define name="db._any.mml">
 <externalRef href="mathml/mathml2.rng"/>
 </define>

 <define name="db._any.svg">
 <externalRef href="svg/svg11.rng"/>
 </define>

 <define name="db._any">
 <element>
 <anyName>
 <except>
 <nsName ns="http://docbook.org/ns/docbook"/>
 <nsName ns="http://www.w3.org/1999/xhtml"/>
 <nsName ns="http://www.w3.org/1998/Math/MathML"/>
 <nsName ns="http://www.w3.org/2000/svg"/>
 </except>
 </anyName>
 <zeroOrMore>
 <choice>
 <attribute>
 <anyName/>
 </attribute>
 <text/>

29

DocBook V5.0

 <ref name="db._any"/>
 </choice>
 </zeroOrMore>
 </element>
 </define>
</include>

</grammar>

4.Tool specific problems

4.1. I'm using Altova XMLSpy to validate DocBook V5.0 instances against the W3C XML Schema (docbook.xsd).
XMLSpy complains about undefined xml:id attributes?

XMLSpy always uses its own bundled version of xml.xsd which unfortunately doesn't define the xml:id attribute.
The bundled version of xml.xsd is hardwired into the program and cannot be replaced by a newer version. To
solve this problem you must upgrade to version 2006 SP1.

Bibliography
[RNCTUT] Clark, James – Cowan, John – MURATA, Makoto: RELAX NG Compact Syntax Tutorial. Working Draft,

26 March 2003. OASIS. http://relaxng.org/compact-tutorial-20030326.html

[XMLID] Marsh, Jonathan – Veillard, Daniel – Walsh, Norman: xml:id Version 1.0. W3C Recommendation, 9
September 2005. http://www.w3.org/TR/xml-id/

[DB5SPEC] Norman, Walsh: The DocBook Schema. Working Draft 5.0a1, OASIS, 29 June 2005. http://www.doc-
book.org/specs/wd-docbook-docbook-5.0a1.html

30

DocBook V5.0

http://relaxng.org/compact-tutorial-20030326.html
http://www.w3.org/TR/xml-id/
http://www.docbook.org/specs/wd-docbook-docbook-5.0a1.html
http://www.docbook.org/specs/wd-docbook-docbook-5.0a1.html

	DocBook V5.0
	Table of Contents
	Introduction
	Finally in a namespace
	Relaxing with DocBook
	Why switch to DocBook V5.0?
	Schema jungle
	Where to get the schemas
	DocBook documentation

	Toolchain
	Editing DocBook V5.0
	Emacs and nXML
	oXygen
	XML Mind XML editor

	Validating DocBook V5.0
	Processing DocBook V5.0
	DocBook XSL Stylesheets
	XSLT 2.0 based re-implementation

	Markup changes
	Improved cross-referencing and linking
	Renamed elements
	Removed elements

	Converting DocBook V4.x documents to DocBook V5.0
	What About Entities?
	External Parsed Entities

	Customizing DocBook V5.0
	DocBook RELAX NG schema organization
	Pattern Names

	General customization considerations
	Elements
	Adding elements
	Deleting elements
	Customizing the content model of existing elements

	Attributes
	Adding attributes
	Deleting attributes
	Changing permitted content of attributes

	Naming and versioning DocBook customizations

	FAQ
	Bibliography

