Preface
This report describes activities of CGM Open WebCGM TC meeting held from November 8-10, 2004 in Houston, Texas at the offices of System Development, Inc.

Table of Contents
1 Meeting Details .. 3
 1.1 Location and Dates .. 3
 1.2 Meeting .. 3
 1.3 CGM Open Attendees.. 3
2 Agenda .. 3
 2.1 Meeting agenda ... 3
3 Output and Action Items .. 4
4 Agenda discussions ... 6
 4.1 Election of CGM Open MS positions .. 6
 4.2 New OASIS TC process and membership agreement .. 6
 4.3 New CGM Open web pages .. 6
 4.4 Mantis interoperability project ... 6
 4.5 Liaison reports... 6
 4.5.1 ISO SC24 ... 6
 4.5.2 W3C SVG... 6
 4.5.3 ATA GWG .. 6
 4.5.4 ASD EPWG .. 6
 4.5.5 USSIG .. 7
 4.5.6 TechDoc ... 7
 4.6 Discussion of potential CGM V5 work .. 7
 4.7 ATA companion file metadata.. 7
 4.8 Status of progressing WebCGM 2.0 through OASIS/W3C .. 7
 4.9 Discussion of potential changes for WebCGM 2.0 .. 8
 4.9.1 Number of pictures (T13.2) ... 8
 4.9.2 Non-Graphical Text Strings (T14.5) .. 8
 4.9.3 Begin Figure (T15.4) ... 8
 4.9.4 Begin Protection Region (T15.5) ... 8
 4.9.5 Begin Compound Text Path (T15.7) ... 8
 4.9.6 Begin Tile Array (T15.8) .. 9
 4.9.7 Metafile Description (T16.2) .. 9
 4.9.8 Integer Precision (T13.1) .. 9
 4.9.9 Character Set List (T16.14) .. 9
 4.9.10 Symbol Library List (T16.23) .. 9
 4.9.11 Auxiliary Colour (T18.3) ... 9
 4.9.12 Transparency (T18.4) ... 9
 4.9.13 Protection Region Indicator (T18.13) .. 10
4.9.14 Generalized Text Path Mode (T18.14) ... 10
4.9.15 Cell Array (T19.9) .. 10
4.9.16 Hyperbolic Arc (T19.22) ... 10
4.9.17 Parabolic Arc (T19.23) ... 10
4.9.18 Non-Uniform B-Spline (T19.24) .. 10
4.9.19 Non-Uniform Rational B-Spline (T19.25) .. 10
4.9.20 Bitonal Tile (T19.28) .. 10
4.9.21 Tile (T19.29) ... 11
4.9.22 Colour Model (T16.19) ... 11
4.9.23 Escape (T21.1) .. 11
4.9.24 Polysymbol (T19.27) ... 11
4.9.25 Symbol Library Index (T20.48) .. 11
4.9.26 Symbol Colour (T20.49) ... 11
4.9.27 Symbol Size (T20.50) .. 12
4.9.28 Symbol Orientation (T20.51) ... 12
4.9.29 Application Structure Attribute (T24.1) .. 12
4.9.30 Inheritance: .. 13
4.9.31 Behavior section ... 13
4.10 Open WebCGM DOM issues .. 13
4.11 WebCGM XML companion file review ... 13
4.11.1 Tree order ... 13
4.11.2 Intensity style .. 13
4.11.3 Style attributes ... 13
4.11.4 Fill colour style ... 13
4.11.5 Font size style ... 14
4.11.6 Interactivity .. 14
4.11.7 getAttributeNS ... 14
4.11.8 Insertions ... 14
4.12 Vendor implementation status ... 15
4.13 Next meetings ... 15
5 Note of appreciation .. 15
1 Meeting Details

1.1 Location and Dates
SDI offices, Houston, November 8-10, 2004

1.2 Meeting
• CGM Open 8 November 2004.

1.3 CGM Open Attendees
• Dave Cruikshank – Boeing
• Dieter Weidenbruck – ITEDO
• Lofton Henderson – Henderson Consulting
• Ulrich Laesche – Ematek
• Benoit Bezaire – ITEDO
• Stuart Galt - Boeing
• Andrew Moorhouse – UK MOD
• Forrest Carpenter – System Development, Inc
• Don Larson – Larson Software Technology
• Franck DuLuc – EADS/Airbus (via telecon)
An additional guest from Larson Software Technology was present occasionally during the meetings.

2 Agenda

2.1 Meeting agenda
The items on the agenda of the Committee included:
• Election of CGM Open MS positions
• New OASIS TC process and membership agreement
• New CGM Open web pages
• Mantis interoperability project
• Liaison reports
 • SC24
 • W3C SVG
 • ATA GWG
 • ASD EPWG
 • USSIG
 • TechDoc
• Discussion of potential CGM V5 work
• ATA companion file metadata
• Status of progressing WebCGM 2.0 through OASIS/W3C
• Discussion of potential changes for WebCGM 2.0
- Open WebCGM DOM issues
- WebCGM XML companion file review
- Vendor implementation status
- Next meetings

3 Output and Action Items

<table>
<thead>
<tr>
<th>Item</th>
<th>Who</th>
<th>When</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeting Minutes</td>
<td>Cruikshank</td>
<td>11/14</td>
<td>Draft – 11/14</td>
</tr>
</tbody>
</table>

Committee Business

- Member section elections - put out a nomination notice to MS mail list
 - Henderson

- Submit comments on new OASIS TC process
 - All
 - 11/10

- Submit comments on new OASIS membership agreement
 - All
 - 11/15

Liaisons

- SC24 – follow upon png registration
 - Lofton

- SC24 - distribute report from meeting in Breckinridge
 - Lofton

- ASD EPWG – meet with Peter Zimmermann concerning S1000D companion file
 - Dieter

- USSIG – Determine status of MIL-STD-28003 and its relationship to the AIA adopted S1000D
 - Dave
 - Email sent to Denny Raitz and Harry Whittaker

- TechDoc - follow up with Diane Kennedy on the status of the community
 - Don

- TechDoc – determine interest in submitting papers to Xtech 2005
 - Don

CGM V5

- Open discussion of items for a potential CGM V5 project
 - Dave

ATA companion file metadata

- Create PDF version of ATA companion file presentation for CGM Open web site
 - Franck
| Follow up with Franck on whether more semantics can be added to description of CDATA associated with various attributes | Dave | Email sent |
| Follow up with Franck on whether the ATA companion file DTD should be flattened | Dave | Email sent |
| Follow up with Franck on whether common metadata in ATA companion file could be included in WebCGM companion file | Benoit | Email sent |

WebCGM 2.0 progress

| Fill in skeleton specification as a delta WebCGM 2.0 specification from WebCGM 1.0 | Lofton |

Changes for WebCGM 2.0

Dave to circulate questions related to potential alignment with webCGM (Non-graphical Text Strings, Symbol Library, Begin Figure, Begin Protection Region, Begin Tile Array, Integer Precision, Protection Region Indicator, Generalized Text Path Mode, Cell Array, Hyperbolic Arc, Parabolic Arc, Bitonal Tile, Tile, and Colour Model)	Dave
Verify tail specification for UTF-8 and UTF-16	Lofton
Develop maximum cells in each direction based on a max of 1 gigacells total	Lofton
Develop proposal for behavior of interactive and static attributes in WebCGM 2.0	Benoit
Develop table of interaction between WebCGM 2.0 attribute types and mouse events	Dieter
Draft new behavior section of WebCGM 1.0 for WebCGM 2.0	Dieter
Develop WebCGM DOM architecture section for WebCGM 2.0	??

Vendor implementation status

| Build empty spreadsheet of WebCGM DOM vs vendor support | Dave |

Next meetings

| Determine feasibility of holding the next f2f meeting in Munich in February | Dieter |
| Determine feasibility of hosting a meeting in Glasgow in May | Andrew |
4 Agenda discussions

4.1 Election of CGM Open MS positions
The CGM Open Member Section is due to hold an election for the governance positions. Currently Dieter is the chair, Lofton is the Program Director, and Dave is the other member. Lofton position as PD is automatic. Lofton nominated Dieter and Dave for the other positions. Nominations will be open until Dec 8th, 2004. At that time a ballot will be open for 30 days. Lofton will send out a notice to the CGM Open MS mailing list.

4.2 New OASIS TC process and membership agreement
The committee reviewed the new OASIS TC process document. Potential areas of concern included the requirement for maintaining voting rights for a TC member and the requirement that all TC activity be hosted on OASIS supplied servers. Everyone was encourage to submit comments to the OASIS review list by Nov 10. It was suggested that members get legal council on the membership agreement and submit comments by Nov 15.

4.3 New CGM Open web pages
Lofton reported that the work on the new web pages is complete. OASIS web team estimates about 10 hours of work to get them implemented.

4.4 Mantis interoperability project
There is a later version of php and mysql currently installed on the OASIS server and it is not compatible with our Mantic application. OASIS will be reverting to the older version in the future. In the meantime we can set a pointer to ITEDO web site (pending comment on OASIS TC process on hosting).

4.5 Liaison reports
4.5.1 ISO SC24
Lofton reported that he had attended an SC24 meeting in Breckinridge and had discussions on the future of CGM. He will distribute the notes from that meeting. The status of the PNG registration should be complete by now, but Lofton will check on it.

4.5.2 W3C SVG
Benoit reported that the Tiny specification going to approved recommendation and SVG 1.2 is out for final review. There is a new working group working on compound document format to define the interaction between SVG and HTLM. There are three organization currently in the process of subsetting the SVG specification.

4.5.3 ATA GWG
Dave reported that for the 2005 edition of the ATA iSpec 2200 GREXCHANGE will be defined as a cascading profile of WebCGM 1.0.

4.5.4 ASD EPWG
During the last EPWG meeting in Vaxjo, Sweden there was agreement in principle from EPWG on concept of cascading profile from WebCGM. The opinion of Peter Zimmermann is that the S1000D hotspot file will continue to exist, with conversion to a WebCGM compatible companion file occurring during IETM deployment. EPWG’s parent committee, TPMSG, expressed concern that the ATA and S1000D profiles need to be kept in sync. Dave sent a draft of the GREXCHANGE cascading profile to Peter Zimmermann for review. Dieter will be meeting with Peter later in November to discuss WebCGM DOM issues. The next release of S1000D is 2.2 and has an authoring freeze in February of 2005 and it will cascade from WebCGM 1.0. The next opportunity for S1000D to adopt WebCGM 2.0 and the DOM will be during 2006.
4.5.5 **USSIG**

The USSIG is awaiting for action by ASD EPWG. Dave will run down the status of CALS 28000 with respect to AIA adoption of S1000D.

4.5.6 **TechDoc**

Don reported that the TechDoc Community has not had any further activity since the cancelled workshop in June. There is a plan to restart the activity in the Spring of 2005, but there are no announcements yet. Don will follow up with Diane Kennedy. The XML Europe conference as been renamed Xtech 2005 and will be held during the week of May 24th in Amsterdam. Don will determine of there is any interest among CGM Open members for participation.

4.6 **Discussion of potential CGM V5 work**

Dave will open a discussion on the TC mail list to collect a list of potential items which might in included in CGM V5 project.

4.7 **ATA companion file metadata**

Franck presented the user position on the use of the ATA companion file and the associated metadata. The ATA companion file is described as an interchange format to carry various business/industry related metadata in addition to the CGM intelligence. He proposed that the ATA will continue maintaining the ATA companion file until WebCGM 2.0 and the WebCGM DOM is available. Conversion from an ATA companion file to a WebCGM compatible companion file is possible. He will make that presentation available in PDF format for posting on the CGM Open web site. There was discussion around whether the ATA companion file was really just a capture of the intelligence in the ATA CGM file, plus some additional industry metadata.

The following issues were identified:

- Duplication of CGM attributes in the ATA companion file and the WebCGM companion file – the use of namespaces should eliminate this issue – Benoit will follow up with Franck to see if it would be acceptable to add duplicated elements to the WebCGM companion file
- Potential abuse by identified additional hotspots in the ATA companion file – if region is not added to the WebCGM companion file, this should not be an issue
- ATA implementation of SGML instead of XML – ATA would convert the companion file to a WebCGM compatible XML companion file at presentation
- The WebCGM root element of `<webcgm>` vs the ATA root element of `<v4sheet>` - ATA would use the `<webcgm>` root element in the WebCGM compatible companion file
- Binding of the intelligence in the ATA companion file with WebCGM structures – the mechanisms used in the WebCGM companion file will be adopted
- The ATA companion file contains the option for structure while the WebCGM companion file is flat – current implementations are flat and structure could be removed – Dave will follow up with Franck to see when structure can be removed
- ATA control of DTD – open
- Vendor tools that create CGM files would have to support the creation of the ATA companion file and some of the attributes are underspecified and need further explanation – Dave will follow up with Franck to see when further definition of attribute values can be made

4.8 **Status of progressing WebCGM 2.0 through OASIS/W3C**

The process has been initiated to get W3C and OASIS to process WebCGM 2.0 in parallel. The CGM Open MS Steering Committee participated in a telecon with the OASIS governance. During that telecon a process was outlined. Lofton Chris Lilley created a proposal for the W3M (W3 governance). That proposal is being reviewed by the W3M along with comments submitted by Boeing and ITEDO during review of the W3C Graphics Activity proposal. The next are to get in a committee draft going
and proceed through the process. The initial work on the committee draft will be to create delta
document in Lofton’s skeleton WebCGM 2.0 draft. Ben will be responsible for the DOM chapter.

4.9 Discussion of potential changes for WebCGM 2.0

4.9.1 Number of pictures (T13.2)

Proposal:
The number of pictures should be limited to 1 with no exceptions for symbol libraries. WebCGM 1.0 2nd
edition deprecated the usage of multi-picture files. Using one picture per file only will reduce complexity
in software development, especially when considering DOM implementations, and it will reflect in the
standard the de facto situation as it is today. This also suggests that symbol libraries should no longer
be supported.

Resolution:
Prohibit multi-picture cgm files and eliminate symbol libraries. Related to this, it was decided to leave
syntax with respect to referencing pictures in the fragment address, in case cascading profiles allow
multiple pictures. ATA should consider deprecating symbol libraries.

4.9.2 Non-Graphical Text Strings (T14.5)

Proposal:
We need to check the tail sequence for character set list elements UTF-8 and UTF-16. If WebCGM is
incorrect, correct it in 2.0, but will allow legacy from WebCGM 1.0. In GREXCHANGE, all non-
graphical strings are considered to be case insensitive. In WebCGM there is no such rule.

Resolution:
Lofton will verify the definition of the tail sequence for UTF-8 and UTF-16. Since ATA already agrees
with WebCGM on the three cases where case insensitive makes sense (Font List, Metafile Description,
and Font Properties). ATA should remove general statement from non-graphical text strings to
harmonize. Examine usage of non-graphical strings and set common rule for case-sensitivity.

4.9.3 Begin Figure (T15.4)

Proposal:
Change maximum number of elements to 1024.

Resolution:
Approve and suggest that ATA align with this.

4.9.4 Begin Protection Region (T15.5)

Proposal:
Change to permitted, with the restriction that the number of simultaneously defined regions is restricted
to 1. The region index is restricted to the value 1. This is used to mask artwork inside a given region.

Resolution:
Approve and suggest that ATA align with this.

4.9.5 Begin Compound Text Path (T15.7)

Proposal:
Change to permitted with the same restricted as ATA. This is required to do circular text, often used for
labels on panels.

Resolution:
Approve.
4.9.6 Begin Tile Array (T15.8)
Proposal:
Change maximum number of cells/tile in path direction to 4096. Change maximum number of cells/tile in line direction to 4096.
Resolution:
Approve with the caveat that the total size maximum is 1 gigacells. Lofton will propose something in the profile for max cells in each direction base on reasonable size. As a secondary issue, the restriction in pel path direction (left to right) was approved.

4.9.7 Metafile Description (T16.2)
Proposal:
Check whether normative text is needed to derive a cascading profile from WebCGM. That is, does the cascading profile replace the ProfileId, or does it use some combination?
Resolution:
No change needed. Cascading profiles need to mandate a distinct name for Profileld.

4.9.8 Integer Precision (T13.1)
Proposal:
Expanding the size of the Cell Array and Tile Array will require allowing Integer Precision of 32.
Resolution:
Allow both 16 and 32 as valid parameter for Integer Precision and suggest ATA align.

4.9.9 Character Set List (T16.14)
Proposal:
Change tail sequences based of Lofton’s investigation.
Resolution:
Approved.

4.9.10 Symbol Library List (T16.23)
Proposal:
Change to prohibited.
Resolution:
Approved.

4.9.11 Auxiliary Colour (T18.3)
Proposal:
Change to permitted to align with ATA.
Resolution:
Approved.

4.9.12 Transparency (T18.4)
Proposal:
Change to permitted.
Resolution:
Approved.
4.9.13 Protection Region Indicator (T18.13)
Proposal:
Change to permitted with permissible values of “off” and “clip”.
Resolution:
Approve with restrictions and suggest ATA align.

4.9.14 Generalized Text Path Mode (T18.14)
Proposal:
Change to permitted with the only permissible value of “axis-tangential”.
Resolution:
Approve with restriction and suggest ATA align.

4.9.15 Cell Array (T19.9)
Proposal:
Change limit for nx to 32,768. Change limit for ny to 32,768. Change limit for nx*ny to 1,073,741,824.
Resolution:
Approve and suggest ATA align.

4.9.16 Hyperbolic Arc (T19.22)
Proposal:
Change to permitted.
Resolution:
Leave as prohibited and suggest ATA align.

4.9.17 Parabolic Arc (T.19.23)
Proposal:
Change to permitted.
Resolution:
Leave as prohibited and suggest ATA align.

4.9.18 Non-Uniform B-Spline (T19.24)
Proposal:
Change to permitted.
Resolution:
Approve.

4.9.19 Non-Uniform Rational B-Spline (T19.25)
Proposal:
Change to permitted.
Resolution:
Approve.

4.9.20 Bitonal Tile (T19.28)
Proposal:
Check compression types. T.6 and uncompressed should suffice. The size restrictions (cells/tile) should be moved here.

Resolution:
Deprecate 0, 1, & 6 from WebCGM and suggest that ATA add 5 to align.

4.9.21 Tile (T19.29)

Proposal:
Check compression types. 0 (uncompressed), 7 (JPEG), and 9 (PNG) would suffice. This would enforce usage of bitonal tiles for bitonal raster. The size restrictions (cells/tile) should be moved here.

Resolution:
Delete 0 & 1, deprecate 2, & 6 from WebCGM and suggest that ATA add 5 to align.

4.9.22 Colour Model (T16.19)

Proposal:
Deprecate sRBG and sRGB-alpha from WebCGM. It is unlikely that it is being implemented by anyone.

Resolution:
Approved and suggest ATA add RGB-alpha to align.

4.9.23 Escape (T21.1)

Proposal:
Review Escape parameters.

Resolution:
Escape 22 – retain.
Escape 45 – retain.
Escape 46, 47, & 48 – delete as they are related to Symbols.
Escape – 4000 (from ATA profile) – no change, ATA layers are not the same as WebCGM Layer APS types. There is no semantic meaning to and ATA layer and are used primarily for round-tripping in ATA illustrating tools.

4.9.24 Polysymbol (T19.27)

Proposal:
Change to prohibited.

Resolution:
Approved.

4.9.25 Symbol Library Index (T20.48)

Proposal:
Change to prohibited.

Resolution:
Approved.

4.9.26 Symbol Colour (T20.49)

Proposal:
Change to prohibited.
Resolution:
Approved.

4.9.27 Symbol Size (T20.50)
Proposal:
Change to prohibited.
Resolution:
Approved.

4.9.28 Symbol Orientation (T20.51)
Proposal:
Change to prohibited.
Resolution:
Approved.

4.9.29 Application Structure Attribute (T24.1)
4.9.29.1 Interactivity attribute
Proposal:
Add interactivity attribute with permissible values: 0 = not interactive, 1= interactive, 2=not interactive, external link information available, 3=interactive, external link information available. If the attribute is not present, the APS is considered to be interactive. If in this case no linkURI is present, external link information is assumed. Change the wording of the clickability concept of objects to reflect this.
Resolution:
Limit the values of interactivity to 0 and 1. Add an attribute of static to describe an APS that is only to used to define structure. Benoit will develop a proposal to reflect this approach with a default behavior is interactive if there is a linkuri (as in WebCGM 1) and static "no".

Dieter will create a table illustrating the relationship between attributes and effect on mouse interactivity (mouseover, mouseclick).
4.9.29.2 Visibility attribute
Proposal:
Add visibility attribute. Permissible values: 0=invisible, 1= visible.
Resolution:
Adopt visibility attribute as proposed. Adopt the pointer event behavior from SVG. An invisible object necessarily implies that it is non-interactive. Note: visibility has adverse effects in that a V3 interpreter will render all objects visible, since the ISO standard doesn't have the concept for invisible object – ignore and address at the V5 level). Default behavior of visibility is "yes". As a secondary issue, what kind of APS can be a target of a link? What is the behavior of a non-interactive or invisible or static APS that is the target of a link. Any object can be a target, except for an invisible object. When a link comes from an external source targeted to an invisible object just display the cgm file.

4.9.29.3 Parablock attribute
Proposal:
Consider the parablock attribute as ATA.
Resolution:
Reject and consider in CGM V5 project.
4.9.30 Inheritance:

4.9.30.1 Style attributes

Discussion:
The styling attributes inherit (or propagate downward). You can set a style attribute of a child, overriding the inherited attribute from parent, but attribute does not propagate upward.

4.9.30.2 Interactivity

Discussion:
The interactivity attribute inherits (or propagate downward). It is possible to change interactivity of a child who’s parent is invisible.

Proposed:
Click on static children bubble up to parent. Click on non-interactive children don’t bubble up to parent.

Case 1: If a parent has been set to interactive through the DOM and then a child is explicitly set to non-interactive, then the child doesn’t participate in clickability upward to the parent.

Case 2: The illustrating tool has created an interactive parent with non-interactive parents.

4.9.30.3 Visibility

Discussion:
The visibility attribute inherits (or propagate downward). It is possible to change the visibility of a child who’s parent is invisible.

4.9.31 Behavior section

Discussion:
Dieter will draft a proposal for the current behavior section in WebCGM 1.0.

4.10 Open WebCGM DOM issues

4.11 WebCGM XML companion file review

4.11.1 Tree order

Tree order is done in file order, not foremost order.

4.11.2 Intensity style

Raster intensity works the same way on grayscale AND black & white.

4.11.3 Style attributes

APS style attribute modification is not cumulative. They have a transient behavior. As an example, init fill color is black, a DOM call to set the fill color to red, followed by another DOM call to set the fill color to 50%. The resulting color is 50% black.

4.11.4 Fill colour style

Fill color impacts interior style types of solid, hatch, hollow, but not empty and pattern.
4.11.5 Font size style
The result of a straw poll on control of text size was to leave it in and remove it if there aren't two applications that support it.

4.11.6 Interactivity

Question:
What does interactivity="none" mean? Hyperlinks are disabled, ok. Should tooltip be shown? Should the cursor change if on a mouseover event? Is highlighting disabled or not if I click on a hotspot?

Answer:
The table being developed by Dieter will answer this question.

4.11.7 getAttributeNS

Question:
A user calls:

```
setAttributeNS("http://goodwines.com/bordeaux","favorite:petrus","1982");
```
followed with this call:

```
setAttributeNS("http://goodwines.com/bordeaux","hold:petrus","2014");
```
and this one:

```
getAttributeNS("http://goodwines.com/bordeaux","petrus");
```

Note: getAttributeNS takes a local name not a qualified name). What is the returned value from the getAttributeNS call, 1982 or 2014? According to our current WebCGM spec, this is underspecified; but it is well defined by the XML DOM spec. We should clarify the WebCGM spec by adding the following wording:

"If an attribute with the same local name and namespace URI is already present on the element, its prefix is changed to be the prefix part of the qualifiedName, and its value is changed to be the value parameter."

The proposal affects the setAttributeNS call and the result is that the first call to setAttributeNS gets overwritten by the second call. This is what the XML DOM does.

Answer:
Adopt what the XML DOM does.

4.11.8 Insertions

Question:
Assuming we have the following XML companion file:

```
<webcgm xmlns:cities="somelink">
  <cities:usa city="houston" state="texas" weather="warm"/>
  <cities:usa city="seattle" state="washington" weather="rain"/>
  <grobject apsid="mapHouston" cities:map="true"/>
</webcgm>
```
Where should the two 'cities:usa' elements go in the tree? We have to make sure that all implementations provide access to those nodes using the same calls. For example, calling .firstChild; on the root element gives us the first 'cities:usa'; calling .firstChild.nextSibling; gives us the second one.

BTW, the same question applies to any APS, assume we have the following CGM file:

```
BEGAPS 'G1' 'grobject' STLIST;
  BEGAPSBODY;
  BEGAPS 'G2' 'grobject' STLIST;
  BEGAPSBODY;
ENDAPS;
ENDAPS;
```

and I have to add a 'cities:usa' tag as a child of 'G1', is it added before 'G2' or after 'G2'?

Answer:

Put it the end of the DOM tree.

4.12 Vendor implementation status

Ulrich submitted a good summary of his implementation. As a result, Dave will create a spreadsheet of DOM functionality based on the draft DOM specification with columns to represents vendor implementations. This spreadsheet will be distributed to the vendors for input.

4.13 Next meetings

There was interest in another f2f meeting in February to check the status of WebCGM 2.0 and the WebCGM DOM. It is possible that this meeting could take place in Munich and coordination could take place with Peter Zimmermann in the EPWG CGM activities. Dieter will investigate this possibility.

A Glasgow f2f meeting in May was also proposed. Andrew will investigate.

5 Note of appreciation

CGM Open WebCGM TC would like to express our thanks to System Development and Larson Software Technology for arranging the meeting and hosting events.