ebXML Technical Architecture Specification v1.0.4

ebXML Technical Architecture Project Team

516 February 2001

1 Status of this Document

This document is a FINAL DRAFT for the eBusiness community. Distribution of this document is unlimited. This document will go through the formal Quality Review Process as defined by the ebXML Requirements Document. The formatting for this document is based on the Internet Society’s Standard RFC format.

This version: ebXML_TA_v1.0.4.doc

Latest version: ebXML_TA_v1.0.4.doc

Previous version: ebXML_TA_v1.0.3.doc

2 ebXML Technical Architecture Participants

We would like to recognize the following for their significant participation in the development of this document.

Team Lead: Brian Eisenberg, DataChannel

Editors: Brian Eisenberg, DataChannel

Duane Nickull, XML Global Technologies

Participants: Colin Barham, TIE

Al Boseman, ATPCO

Christian Barret, GIP-MDS

Dick Brooks, Group 8760

Cory Casanave, DataAccess Technologies

Copyright © ebXML 2001. All Rights Reserved.
<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Robert Cunningham</td>
<td>Military Traffic Management Command, US Army</td>
</tr>
<tr>
<td>2</td>
<td>Christopher Ferris</td>
<td>Sun Microsystems</td>
</tr>
<tr>
<td>3</td>
<td>Anders Grangard</td>
<td>EDI France</td>
</tr>
<tr>
<td>4</td>
<td>Peter Kacandes</td>
<td>Sun Microsystems</td>
</tr>
<tr>
<td>5</td>
<td>Kris Ketels</td>
<td>SWIFT</td>
</tr>
<tr>
<td>6</td>
<td>Piming Kuo</td>
<td>Worldspan</td>
</tr>
<tr>
<td>7</td>
<td>Kyu-Chul Lee</td>
<td>Chungnam National University</td>
</tr>
<tr>
<td>8</td>
<td>Henry Lowe</td>
<td>OMG</td>
</tr>
<tr>
<td>9</td>
<td>Matt MacKenzie</td>
<td>XML Global Technologies</td>
</tr>
<tr>
<td>10</td>
<td>Melanie McCarthy</td>
<td>General Motors</td>
</tr>
<tr>
<td>11</td>
<td>Stefano Pagliani</td>
<td>Sun Microsystems</td>
</tr>
<tr>
<td>12</td>
<td>Bruce Peat</td>
<td>eProcessSolutions</td>
</tr>
<tr>
<td>13</td>
<td>John Petit</td>
<td>KPMG Consulting</td>
</tr>
<tr>
<td>14</td>
<td>Mark Heller</td>
<td>MITRE</td>
</tr>
<tr>
<td>15</td>
<td>Scott Hinkelman</td>
<td>IBM</td>
</tr>
<tr>
<td>16</td>
<td>Lynne Rosenthal</td>
<td>NIST</td>
</tr>
<tr>
<td>17</td>
<td>Nikola Stojanovic</td>
<td>Encoda Systems, Inc.</td>
</tr>
<tr>
<td>18</td>
<td>Jeff Sutor</td>
<td>Sun Microsystems</td>
</tr>
<tr>
<td>19</td>
<td>David RR Webber</td>
<td>XML Global Technologies</td>
</tr>
</tbody>
</table>
13 Introduction

33.1 Summary of Contents of Document

4The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, 5SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this 6document, are to be interpreted as described in RFC 2119 [Bra97].

8The following conventions are used throughout this document:

9 • **Capitalized Italics** words are defined in the ebXML Glossary.
10 • [NOTES: are used to further clarify the discussion or to offer additional
11 suggestions and/or resources]

12

13EBXML TECHNICAL ARCHITECTURE SPECIFICATION V1.0.4 1

14 1 STATUS OF THIS DOCUMENT... 1
15 2 ebXML TECHNICAL ARCHITECTURE PARTICIPANTS............................ 1
16 3 INTRODUCTION .. 3
17 3.1 Summary of Contents of Document .. 3
18 3.2 Audience and Scope .. 4
19 3.3 Related Documents .. 5
20 3.4 Normative References .. 5
21 4 DESIGN OBJECTIVES .. 5
22 4.1 Problem Description & Goals for ebXML ... 5
23 4.2 Caveats and Assumptions ... 6
24 4.3 Design Conventions for ebXML Specifications 6
25 5 ebXML SYSTEM OVERVIEW ... 7
26 6 ebXML RECOMMENDED MODELING METHODOLOGY 9
27 6.1 Overview .. 9
28 6.2 ebXML Business Operational View .. 11
29 6.3 ebXML Functional Service View ... 13
30 7 ebXML FUNCTIONAL PHASES .. 14
31 7.1 Implementation Phase .. 15
32 7.2 Discovery and Retrieval Phase ... 15
33 7.3 Run Time Phase .. 16
34 8 ebXML INFRASTRUCTURE .. 17
35 8.1 Trading Partner Information [CPP and CPA’s] 17
36 8.1.1 Introduction .. 17
37 8.1.2 CPP Formal Functionality ... 17
38 8.1.3 CPA Formal Functionality ... 17
39 8.1.4 CPP Interfaces ... 18
40 8.1.5 CPA Interfaces ... 19
41 8.1.6 Non-Normative Implementation Details [CPP and CPA’s] 19
42 8.2 Business Process and Information Modeling 20
3.2 Audience and Scope

This document is intended primarily for the ebXML project teams to help guide their work. Secondary audiences include, but are not limited to: software implementers, international standards bodies, and other industry organizations.
1 This document describes the underlying architecture for ebXML. It provides a high level overview of ebXML and describes the relationships, interactions, and basic functionality of ebXML. It SHOULD be used as a roadmap to learn: (1) what ebXML is, (2) what problems ebXML solves, and (3) core ebXML functionality and architecture.

3.3 Related Documents

As mentioned above, other documents provide detailed definitions of the components of ebXML and of their inter-relationship. They include ebXML specifications on the following topics:

1. Requirements
2. Business Process and Information Meta Model
3. Core Components
4. Registry and Repository
5. Trading Partner Information
6. Messaging Services

These specifications are available for download at http://www.ebxml.org.

3.4 Normative References

The following standards contain provisions that, through reference in this text, constitute provisions of this specification. At the time of publication, the editions indicated below were valid. All standards are subject to revision, and parties to agreements based on this specification are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below.

- ISO/IEC 14662: Open-edi Reference Model
- ISO 11179/3 Metadata Repository
- ISO 10646: Character Encoding
- ISO 8601:2000 Date/Time/Number Data typing
- OASIS Registry/Repository Technical Specification
- RFC 2119: Keywords for use in RFC’s to Indicate Requirement Levels
- UN/CEFACT Modeling Methodology (UMM)
- W3C XML v1.0 Second Edition Specification

4 Design Objectives

4.1 Problem Description & Goals for ebXML

For over 25 years Electronic Data Interchange (EDI) has given companies the prospect of eliminating paper documents, reducing costs, and improving efficiency by exchanging business information in electronic form. Ideally, companies of all sizes could conduct eBusiness in a completely ad hoc fashion, without prior agreement of any kind. But this vision has not been realized with EDI; only large companies are able to afford to...
implement it, and much EDI-enabled eBusiness is centered around a dominant enterprise 4
that imposes proprietary integration approaches on its Trading Partners.
5
6In the last few years, the Extensible Markup Language (XML) has rapidly become the first 7
choice for defining data interchange formats in new eBusiness applications on the 8
Internet. Many people have interpreted the XML groundswell as evidence that "EDI is 9
dead" – made completely obsolete by the XML upstart -- but this view is naïve from both 10
business and technical standpoints.
11
10EDI implementations encode substantial experience in Business Processes, and 12
companies with large investments in EDI integration will not abandon them without good 13
reason. XML enables more open, more flexible business transactions than EDI. XML 14
might enable more flexible and innovative "eMarketplace" business models than EDI.
15But the challenges of designing Messages that meet Business Process requirements and 16
standardizing their semantics are independent of the syntax in which the Messages are 17
encoded.
18
18The ebXML specifications provide a framework in which EDI's substantial investments 19
in Business Processes can be preserved in an architecture that exploits XML's new 20
technical capabilities.
21
22Please consult the ebXML Requirements Specification, available at 23
http://www.ebxml.org, for additional information on the underlying goals of ebXML.
24
254.2 Caveats and Assumptions
26This specification is designed to provide a high level overview of ebXML, and as such, 27
does not provide the level of detail required to build ebXML Applications, components, 28
and related services. Please refer to each of the respective ebXML specifications to get 29
the level of detail.
30
314.3 Design Conventions for ebXML Specifications
32In order to enforce a consistent capitalization and naming convention across all ebXML 33
specifications "Upper Camel Case" (UCC) and "Lower Camel Case" (LCC)
34Capitalization styles SHALL be used. UCC style capitalizes the first character of each word 35
and compounds the name. LCC style capitalizes the first character of each word except the first word. 36
37
381) ebXML DTD, XML Schema and XML instance documents SHALL have the effect of 39
producing ebXML XML instance documents such that:
40
41• Element names SHALL be in UCC convention (example:
42 <UpperCamelCaseElement/>).
43• Attribute names SHALL be in LCC convention (example:
44 <UpperCamelCaseElement lowerCamelCaseAttribute="Whatever"/>).
45
12) When UML and Object Constrained Language (OCL) are used to specify ebXML artifacts Capitalization naming SHALL follow the following rules:

- Class, Interface, Association, Package, State, Use Case, Actor names SHALL use UCC convention (examples: ClassificationNode, Versionable, Active, InsertOrder, Buyer).
- Attribute, Operation, Role, Stereotype, Instance, Event, Action names SHALL use LCC convention (examples: name, notifySender, resident, orderArrived).

103) General rules for all names are:
- Acronyms SHOULD be avoided, but in cases where they are used, the capitalization SHALL remain (example: XMLSignature).
- Underscore (_), periods (.) and dashes (-) MUST NOT be used (don't use: header.manifest, stock_quote_5, commercial-transaction, use HeaderManifest, stockQuote5, CommercialTransaction instead).

5 ebXML System Overview

Figure 1 below shows a high-level use case scenario for two Trading Partners, first configuring and then engaging in a simple business transaction and interchange. This model is provided as an example of the process and steps that may be required to configure and deploy ebXML Applications and related architecture components. These components can be implemented in an incremental manner. The ebXML specifications are not limited to this simple model, provided here as quick introduction to the concepts. Specific ebXML implementation examples are described in Appendix A.

The conceptual overview described below introduces the following concepts and underlying architecture:

1. A standard mechanism for describing a Business Process and its associated information model.
2. A mechanism for registering and storing Business Process and Information Meta Models so they can be shared and reused.
3. Discovery of information about each participant including:
 - The Business Processes they support.
 - The Business Service Interfaces they offer in support of the Business Process.
 - The Business Messages that are exchanged between their respective Business Service Interfaces.
 - The technical configuration of the supported transport, security and encoding protocols.
4. A mechanism for registering the aforementioned information so that it may be discovered and retrieved.
5. A mechanism for describing the execution of a mutually agreed upon business arrangement which can be derived from information provided by each participant from item 3 above. *(Collaboration Protocol Agreement – CPA)*

7. A mechanism for configuration of the respective *Messaging Services* to engage in the agreed upon *Business Process* in accordance with the constraints defined in the business arrangement.

Figure 1 - *a high level overview of the interaction of two companies conducting eBusiness using ebXML.*

In Figure 1, Company A has become aware of an ebXML *Registry* that is accessible on the Internet (Figure 1, step 1). Company A, after reviewing the contents of the ebXML *Registry*, decides to build and deploy its own ebXML compliant application (Figure 1, step 2). Custom software development is not a necessary prerequisite for ebXML participation. ebXML compliant applications and components may also be commercially available as shrink-wrapped solutions.

Company A then submits its own *Business Profile* information (including implementation details and reference links) to the ebXML *Registry* (Figure 1, step 3). The business profile submitted to the ebXML *Registry* describes the company’s ebXML capabilities and constraints, as well as its supported business scenarios. These business scenarios are *XML*...
1 versions of the Business Processes and associated information bundles (e.g. a sales tax calculation) in which the company is able to engage. After receiving verification that the 3 format and usage of a business scenario is correct, an acknowledgment is sent to 4 Company A (Figure 1, step 3). 5 6 Company B discovers the business scenarios supported by Company A in the ebXML 7 Registry (Figure 1, step 4). Company B sends a request to Company A stating that they 8 would like to engage in a business scenario using ebXML (Figure 1, step 5). Company B 9 acquires an ebXML compliant shrink-wrapped application. 10 11 Before engaging in the scenario Company B submits a proposed business arrangement 12 directly to Company A’s ebXML compliant software Interface. The proposed business 13 arrangement outlines the mutually agreed upon business scenarios and specific 14 agreements. The business arrangement also contains information pertaining to the 15 messaging requirements for transactions to take place, contingency plans, and security-related requirements (Figure 1, step 5). Company A then accepts the business agreement. 17 Company A and B are now ready to engage in eBusiness using ebXML (Figure 1, step 6). 18

6 ebXML Recommended Modeling Methodology

20 Business Process and Information Modeling is not mandatory. However, if implementers 21 and users select to model Business Processes and Information, then they SHALL use the 22 UN/CEFACT Modeling Methodology (UMM) that utilizes UML.

24 6.1 Overview

26 While business practices from one organization to another are highly variable, most 27 activities can be decomposed into Business Processes which are more generic to a 28 specific type of business. This analysis through the modeling process will identify 29 Business Process and Information Meta Models that are likely candidates for 30 standardization. The ebXML approach looks for standard reusable components from 31 which to construct interoperable and components.

33 The UN/CEFACT Modeling Methodology (UMM) uses the following two views to 34 describe the relevant aspects of eBusiness transactions. This model is based upon the 35 Open-edi Reference Model, ISO/IEC 14662.
The UN/CEFACT Modeling Methodology (UMM) is broken down into the Business Operational View (BOV) and the supporting Functional Service View (FSV) described above. The assumption for ebXML is that the FSV serves as a reference model that MAY be used by commercial software vendors to help guide them during the development process. The underlying goal of the UN/CEFACT Modeling Methodology (UMM) is to provide a clear distinction between the operational and functional views, so as to ensure the maximum level of system interoperability and backwards compatibility with legacy systems (when applicable). As such, the resultant BOV-related standards provide the UN/CEFACT Modeling Methodology (UMM) for constructing Business Process and Information Meta Models for ebXML compliant applications and components.

The BOV addresses:

a) The semantics of business data in transactions and associated data interchanges

b) The architecture for business transactions, including:
 • operational conventions;
 • agreements and arrangements;
 • mutual obligations and requirements.

These specifically apply to the business needs of ebXML Trading Partners.

The FSV addresses the supporting services meeting the mechanistic needs of ebXML. It focuses on the information technology aspects of:

• Functional capabilities;
• Business Service Interfaces;
6.2 ebXML Business Operational View

The modeling techniques described in this section are not mandatory requirements for participation in ebXML compliant business transactions.
In Figure 3 above, Business Collaboration Knowledge is captured in a Core Library. The Core Library contains data and process definitions, including relationships and cross-references, as expressed in business terminology that MAY be tied to an accepted industry classification scheme or taxonomy. The Core Library is the bridge between the specific business or industry language and the knowledge expressed by the models in a more generalized context neutral language.

The first phase defines the requirements artifacts that describe the problem using Use Case Diagrams and Descriptions. If Core Library entries are available from an ebXML compliant Registry they will be utilized, otherwise new Core Library entries will be created and registered in an ebXML compliant Registry.

The second phase (analysis) will create activity and sequence diagrams (as defined in the UN/CEFACT Modeling Methodology specification) describing the Business Processes. Class Diagrams will capture the associated information parcels (business documents). The analysis phase reflects the business knowledge contained in the Core Library. No effort is made to force the application of object-oriented principles. The class diagram is a free structured data diagram. Common Business Processes in the Business Library MAY be referenced during the process of creating analysis and design artifacts.

The design phase is the last step of standardization, which MAY be accomplished by applying object-oriented principles based on the UN/CEFACT Modeling Methodology. In addition to generating collaboration diagrams, a state diagram MAY also be created. The class view diagram from the analysis phase will undergo harmonization to align it with other models in the same industry and across others.

In ebXML, interoperability is achieved by applying Business Information Objects across all class models. Business Processes are created by applying the UN/CEFACT Modeling Methodology (UMM) which utilizes a common set of Business Information Objects and Core Components.
As illustrated in Figure 4 above, the ebXML Registry Service serves as the storage facility for the Business Process and Information Models, the XML-based representations of those models, Core Components, and Collaboration Protocol Profiles. The Business Process and Information Meta Models MAY be stored in modeling syntax, however they MAY be also stored as XML syntax in the Registry. This XML-based business information SHALL be expressed in a manner that allows discovery down to the atomic data level via a consistent methodology.
The underlying ebXML Architecture is distributed in such a manner to minimize the potential for a single point of failure within the ebXML infrastructure. This specifically refers to Registry Services (see Registry Functionality, Section 8.4 for details of this architecture).

5.7 ebXML Functional Phases
7.1 Implementation Phase

The implementation phase deals specifically with the procedures for creating an application of the ebXML infrastructure. A Trading Partner wishing to engage in an ebXML compliant transaction SHOULD first acquire copies of the ebXML Specifications. The Trading Partner studies these specifications and subsequently downloads the Core Library and the Business Library. The Trading Partner MAY also request other Trading Partners’ Business Process information (stored in their business profile) for analysis and review. Alternatively, the Trading Partner MAY implement ebXML by utilizing 3rd party applications. The Trading Partner can also submit its own Business Process information to an ebXML compliant Registry Service.

Figure 5 below, illustrates a basic interaction between an ebXML Registry Service and a Trading Partner.

Figure 5 - Functional Service View: Implementation Phase

7.2 Discovery and Retrieval Phase

The Discovery and Retrieval Phase covers all aspects of the discovery of ebXML related resources. A Trading Partner who has implemented an ebXML Business Service Interface can now begin the process of discovery and retrieval (Figure 6 below). One possible discovery method may be to request the Collaboration Protocol Profile of another Trading Partner. Requests for updates to Core Libraries, Business Libraries and updated or new Business Process and Information Meta Models SHOULD be supported by an ebXML Business Service Interface. This is the phase where Trading Partners discover the meaning of business information being requested by other Trading Partners.
7.3 Run Time Phase

The run time phase covers the execution of an ebXML scenario with the actual associated ebXML transactions. In the Run Time Phase, ebXML Messages are being exchanged between Trading Partners utilizing the ebXML Messaging Service.

For example, an ebXML CPA is a choreographed set of business Message exchanges linked together by a well-defined choreography using the ebXML Messaging Service.
8 ebXML Infrastructure

8.1 Trading Partner Information [CPP and CPA’s]

8.1.1 Introduction

To facilitate the process of conducting eBusiness, potential Trading Partners need a mechanism to publish information about the Business Processes they support along with specific technology implementation details about their capabilities for exchanging business information. This is accomplished through the use of a Collaboration Protocol Profile (CPP). The CPP is a document which allows a Trading Partner to express their supported Business Processes and Business Service Interface requirements in a manner where they can be universally understood by other ebXML compliant Trading Partners. A special business agreement called a CPA is derived from the intersection of two or more CPP’s. The CPA serves as a formal handshake between two or more Trading Partners wishing to conduct business transactions using ebXML.

8.1.2 CPP Formal Functionality

The CPP describes the specific capabilities that a Trading Partner supports as well as the Service Interface requirements that need to be met in order to exchange business documents with that Trading Partner. The CPP contains essential information about the Trading Partner including, but not limited to: contact information, industry classification, supported Business Processes, Interface requirements and Messaging Service requirements. CPP’s MAY also contain security and other implementation specific details. Each ebXML compliant Trading Partner SHOULD register their CPP(s) in an ebXML compliant Registry Service, thus providing a discovery mechanism that allows Trading Partners to (1) find one another, (2) discover the Business Process that other Trading Partners support.

8.1.3 CPA Formal Functionality

A Collaboration Protocol Agreement (CPA) is a document that represents the intersection of two CPP’s and is mutually agreed upon by both Trading Partners who wish to conduct eBusiness using ebXML. A CPA describes: (1) the Messaging Service and (2) the Business Process requirements that are agreed upon by two or more Trading Partners. Conceptually, ebXML supports a three level view of narrowing subsets to arrive at CPA’s for transacting eBusiness. The
The outer-most scope relates to all of the capabilities that a Trading Partner can support, with a subset of what a Trading Partner “will” actually support.

A CPA contains the Messaging Service Interface requirements as well as the implementation details pertaining to the mutually agreed upon Business Processes that both Trading Partners agree to use to conduct eBusiness. Trading Partners may decide to register their CPA’s in an ebXML compliant Registry Service, but this is not a mandatory part of the CPA creation process.

Figure 8 - Three level view of CPA’s

Business Collaborations are the first order of support that can be claimed by ebXML Trading Partners. This “claiming of support” for specific Business Collaborations is facilitated by a distinct profile defined specifically for publishing, or advertising in a directory service, such as an ebXML Registry or other available service. Figure 9 below outlines the scope for Collaboration Protocol Agreements within ebXML.

Figure 9 - Scope for CPA’s

The CPA-CPP specification includes a non-normative appendix that discusses CPA composition and negotiation and includes advice as to composition and negotiation procedures.

8.1.4 CPP Interfaces

29 Interface to Business Processes

A CPP SHALL be capable of referencing one or more Business Processes supported by the Trading Partner owning the CPP instance. The CPP SHALL reference the Roles...
within a Business Process that the user is capable of assuming. An example of a Role
could be the notion of a “Seller” and “Buyer” within a “Purchasing” Business Process.

The CPP SHALL be capable of being stored and retrieved from an ebXML Registry Mechanism

A CPP SHOULD also describe binding details that are used to build an ebXML Message Header.

8.1.5 CPA Interfaces

A CPA governs the Business Service Interface used by a Trading Partner to constrain the Business Service Interface to a set of parameters agreed to by all Trading Partners who will execute such an agreement.

CPA’s have Interfaces to CPP’s in that the CPA is derived through a process of mutual negotiation narrowing the Trading Partners capabilities (CPP) into what the Trading Partner “will” do (CPA).

A CPA must reference to a specific Business Process and the interaction requirements needed to execute that Business Process.

A CPA MAY be stored in a Registry mechanism, hence an implied ability to be stored and retrieved is present.

8.1.6 Non-Normative Implementation Details [CPP and CPA’s]

A CPA is negotiated after the Discovery and Retrieval Phase and is essentially a snapshot of the Messaging Services and Business Process related information that two or more Trading Partners agree to use to exchange business information. If any parameters contained within an accepted CPA change after the agreement has been executed, a new CPA SHOULD be negotiated between Trading Partners.

In some circumstances there may be a need or desire to describe casual, informal or implied CPA’s.

An eventual goal of ebXML is to facilitate fully automated CPA generation. In order to meet this goal, a formal methodology SHOULD be specified for the CPA negotiation process.
8.2 Business Process and Information Modeling

8.2.1 Introduction

The ebXML Business Process and Information Meta Model is a mechanism that allows Trading Partners to capture the details for a specific business scenario using a consistent modeling methodology. A Business Process describes in detail how Trading Partners take on roles, relationships and responsibilities to facilitate interaction with other Trading Partners in shared collaborations. The interaction between roles takes place as a choreographed set of business transactions. Each business transaction is expressed as an exchange of electronic Business Documents. Business Documents MAY be composed from re-useable Business Information Objects (see “Relationships to Core Components” under 8.2.3 “Interfaces” below). At a lower level, Business Processes can be composed of re-useable Core Processes, and Business Information Objects can be composed of re-useable Core Components.

The ebXML Business Process and Information Meta Model supports requirements, analysis and design viewpoints that provide a set of semantics (vocabulary) for each viewpoint and forms the basis of specification of the artifacts that are required to facilitate Business Process and information integration and interoperability.

An additional view of the Meta Model, the Specification Schema, is also provided to support the direct specification of the set of elements required to configure a runtime system in order to execute a set of ebXML business transactions. By drawing out modeling elements from several of the other views, the Specification Schema forms a semantic subset of the ebXML Business Process and Information Meta Model. The Specification Schema is available in two stand-alone representations, a UML profile, and a DTD.
The relationship between the ebXML Business Process and Information Meta Model and the ebXML Specification Schema can be shown as follows:

![Diagram showing the relationship between ebXML Meta Model, Specification Schema (UML), and Specification Schema (DTD)]

Figure 10 - ebXML Meta Model - Semantic Subset

The Specification Schema supports the specification of business transactions and the choreography of business transactions into Business Collaborations. Each Business Transaction can be implemented using one of many available standard patterns. These patterns determine the actual exchange of Messages and signals between Trading Partners to achieve the required electronic transaction. To help specify the patterns the Specification Schema is accompanied by a set of standard patterns, and a set of modeling elements common to those patterns. The full specification of a Business Process consists of a Business Process and Information Meta Model specified against the Specification Schema and an identification of the desired pattern(s). This information serves as the primary input for the formation of Collaboration Protocol Profiles (CPP’s) and CPA’s. This can be shown as follows:
There are no formal requirements to mandate the use of a modeling language to compose new Business Processes, however, if a modeling language is used to develop Business Processes, it SHALL be the Unified Modeling Language (UML). This mandate ensures that a single, consistent modeling methodology is used to create new Business Processes. One of the key benefits of using a single consistent modeling methodology is that it is possible to compare models to avoid duplication of existing Business Processes.

To further facilitate the creation of consistent Business Processes and information models, ebXML will define a common set of Business Processes in parallel with a Core Library. It is possible that users of the ebXML infrastructure may wish to extend this set or use their own Business Processes.

8.2.2 Formal Functionality

The representation of a Business Process document instance SHALL be in a form that will allow both humans and applications to read the information. This is necessary to facilitate a gradual transition to full automation of business interactions.
The Business Process SHALL be storable and retrievable in a Registry mechanism. Business Processes MAY be registered in an ebXML Registry in order to facilitate discovery and retrieval.

To be understood by an application, a Business Process SHALL be expressible in XML syntax. A Business Process MAY be constructed as an Business Process and Information Meta Model or an XML representation of that model. Business Processes are capable of expressing the following types of information:

- Choreography for the exchange of document instances. (e.g. the choreography of necessary Message exchanges between two Trading Partners executing a “Purchasing” ebXML transaction.)
- References to Business Process and Information Meta Model or Business Documents (possibly DTD’s or Schemas) that add structure to business data.
- Definition of the roles for each participant in a Business Process.

A Business Process:
- Provides the contextual constraints for using Core Components
- Provides the framework for establishing CPAs
- Specifies the domain owner of a Business Process, along with relevant contact information.

[NOTE: the above lists are not inclusive.]

22.2.3 Interfaces

24 Relationship to CPP and CPA

The CPP instance of a Trading Partner defines that partner’s functional and technical capability to support zero, one, or more Business Processes and one or more roles in each process.

The agreement between two Trading Partners defines the actual conditions under which the two partners will conduct business transactions together. The Interface between the Business Process, its Information Meta Model, and the CPA is the part of the Business Process document. This MAY be instantiated as an XML document representing the business transactional and collaboration layers of the Business Process and Information Model. The expression of the sequence of commercial transactions in XML is shared between the Business Process and Trading Partner Information models.

37 Relationship to Core Components

A Business Process instance SHOULd specify the constraints for exchanging business data with other Trading Partners. The business information MAY be comprised of components of the ebXML Core Library. A Business Process document SHALL reference the Core Components directly or indirectly using a XML document that references the appropriate Business and Information Models and/or Business Documents (possibly DTD’s or Schemas). The mechanism for interfacing with the Core Components and Core Library SHALL be by way of a unique identifier for each component.

46 Relationship to ebXML Messaging
A Business Process instance SHALL be capable of being transported from a Registry Service to another Registry Service via an ebXML Message. It SHALL also be capable of being transported between a Registry and a users application via the ebXML Messaging Service.

6 Relationship to a Registry System

A Business Process instance intended for use within the ebXML infrastructure SHALL be retrievable through a Registry query, and therefore, each Business Process SHALL contain a unique identifier.

8.2.4 Non-Normative Implementation Details

The exact composition of Business Information Objects or a Business Document is guided by a set of contexts derived from the Business Process. The modeling layer of the architecture is highlighted in green in Figure 12 below.

Figure 12 – ebXML Business Process and Information Modeling layer

ebXML Business Process and Information Meta Model MAY be created following the recommended UN/CEFACT Modeling Methodology (UMM), or MAY be arrived at in any other way, as long as they comply with the ebXML Business Process and Information Meta Model.

8.3 Core Components and Core Library Functionality

8.3.1 Introduction

A Core Component captures information about a real world business concept, and the relationships between that concept, other Business Information Objects, and a contextual description that describes how a Core or Aggregate Information Entity may be used in a particular ebXML eBusiness scenario.
A Core Component can be either an individual piece of business information, or a natural “go-together” family of Business Information Objects that may be assembled into Aggregate Information Entities.

The ebXML Core Components project team SHALL define an initial set of Core Components. ebXML users may adopt and/or extend components from the ebXML Core Library.

8.3.2 Formal Functionality

As a minimum set of requirements, Core Components SHALL facilitate the following functionality:

Core Components SHALL be storable and retrievable using an ebXML Registry Mechanism.

Core Components SHALL capture and hold a minimal set of information to satisfy eBusiness needs.

Core Components SHALL be capable of being expressed in XML syntax.

A Core Component SHALL be capable of containing:

- Another Core Component in combination with one or more individual pieces of Business Information Objects.

- Other Core Components in combination with zero or more individual pieces of Business Information Objects.

A Core Component SHALL be able to be uniquely identified.

8.3.3 Interfaces

A Core Component MAY be referenced indirectly or directly from a Business Document instance. The Business Process MAY specify a single or group of Core Components as required or optional information as part of a Business Document instance.

A Core Component SHALL interface with a Registry mechanism by way of being storable and retrievable in such a mechanism.

A Core Component MAY interface with an XML Element from another XML vocabulary by the fact it is bilaterally or unilaterally referenced as a semantic equivalent.

8.3.4 Non-Normative Implementation Details
1A **Core Component** MAY contain attribute(s) or be part of another **Core Component**, thus specifying the precise context or combination of contexts in which it is used.

4The process of aggregating **Core Components** for a specific business context, shall include a means to identify the placement of a **Core Component** within another **Core Component**. It MAY also be a combination of structural contexts to facilitate **Core Component** re-use at different layers within another **Core Component** or **Aggregate Information Entity**. This is referred to as **Business Context**.

10Context MAY also be defined using the **Business Process and Information Meta Model**, which defines the instances of **Business Information Objects** in which the **Core Component** occurs.

Figure 13 - Business Context defined in terms of Aggregate Context, Aggregate Information Entities, and Core Components

19The pieces of **Business Information Objects**, or **Core Components**, within a generic **Core Component** may be either mandatory, or optional. A **Core Component** in a specific context or combination of contexts (aggregate or business context) may alter the fundamental mandatory/optional cardinality.
8.4 Registry Functionality

8.4.1 Introduction

An ebXML Registry provides a set of services that enable the sharing of information between Trading Partners. A Registry is a component that maintains an interface to metadata for a registered item. Access to an ebXML Registry is provided through Interfaces (APIs) exposed by Registry Services.
58.4.2 Formal Functionality

6A Registry SHALL accommodate the storage of items expressed in syntax using multi-byte character sets.

9Each Registry Item, at each level of granularity as defined by the Submitting Organization, MUST be uniquely identifiable. This is essential to facilitate application-to-Registry queries.

13A Registry SHALL return either zero or one positive matches in response to a contextual query for a unique identifier. In such cases where two or more positive results are displayed for such queries, an error message SHOULD be reported to the Registry Authority.

18A Registry Item SHALL be structured to allow information associations that identify, name, describe it, give its administrative and access status, define its persistence and mutability, classify it according to pre-defined classification schemes, declare its file representation type, and identify the submitting and responsible organizations.
The Registry Interface serves as an application-to-registry access mechanism. Human-to-registry interactions SHALL be built as a layer over a Registry Interface (e.g. a Web browser) and not as a separate Interface.

The Registry Interface SHALL be designed to be independent of the underlying network protocol stack (e.g. HTTP/SMTP over TCP/IP). Specific instructions on how to interact with the Registry Interface MAY be contained in the payload of the ebXML Message.

The processes supported by the Registry MAY also include:

- A special CPA between the Registry and Registry Clients.
- A set of functional processes involving the Registry and Registry Clients.
- A set of Business Messages exchanged between a Registry Client and the Registry as part of a specific Business Process.
- A set of primitive Interface mechanisms to support the Business Messages and associated query and response mechanisms.
- A special CPA for orchestrating the interaction between ebXML compliant Registries.
- A set of functional processes for Registry-to-Registry interactions.
- A set of error responses and conditions with remedial actions.

To facilitate the discovery process, browse and drill down queries MAY be used for human interactions with a Registry (e.g. via a Web browser). A user SHOULD be able to browse and traverse the content based on the available Registry classification schemes.

Registry Services exist to create, modify, and delete Registry Items and their metadata.

Appropriate security protocols MAY be deployed to offer authentication and protection for the Repository when accessed by the Registry.

Unique Identifiers (UIDs) SHALL be assigned to all items within an ebXML Registry System. UID keys are REQUIRED references for all ebXML content. Universally Unique Identifiers (UUIDs) MAY be used to ensure that Registry entries are truly globally unique, and thus when systems query a Registry for a UUID, one and only one result SHALL be retrieved.

To facilitate semantic recognition of Business Process and Information Meta Models, the Registry Service SHALL provide a mechanism for incorporating human readable descriptions of Registry items. Existing Business Process and Information Meta Models (e.g. RosettaNet PIPs) and Core Components SHALL be assigned UID keys when they are registered in an ebXML compliant Registry Service. These UID keys MAY be implemented in physical XML syntax in a variety of ways. These mechanisms MAY include, but are not limited to:

- A pure explicit reference mechanism (example: URN:UID method),
- A referential method (example: URI:UID / namespace:UID),
• An object-based reference compatible with W3C Schema (example
 URN:complextype name), and
• A datatype based reference (example: ISO 8601:2000 Date/Time/Number
datatyping and then legacy datatyping).

Components in ebXML MUST facilitate multilingual support. A UID reference is
particularly important here as it provides a language neutral reference mechanism. To
enable multilingual support, the ebXML specification SHALL be compliant with Unicode
and ISO/IEC 10646 for character set and UTF-8 or UTF-16 for character encoding.

8.4.3 Interfaces

8.4.3.1 ebXML Messaging:
The query syntax used by the Registry access mechanisms is independent of the physical
implementation of the backend system.

8.4.3.2 Business Process:
The ebXML Messaging Service MAY serve as the transport mechanism for all
communication into and out of the Registry.

8.4.3.3 Core Components:
Core Components are published and retrieved via ebXML Registry Services.

8.4.4 Non-Normative Implementation Details

8.4.4.1 Any item with metadata: XML elements provide standard metadata about the item being
managed through ebXML Registry Services. Since ebXML Registries are distributed each
Registry MAY interact with and cross-reference another ebXML Registry.

8.4.4.2 Non-Normative Implementation Details

8.4.4.3 The Business Process and Information Meta Models within a Registry MAY be stored
according to various classification schemes.

8.4.4.4 The existing ISO11179/3 work on Registry implementations MAY be used to provide a
model for the ebXML Registry implementation.

8.4.4.5 Registry Items and their metadata MAY also be addressable as XML based URI
references using only HTTP for direct access.

8.4.4.6 Examples of extended Registry Services functionality may be deferred to a subsequent
phase of the ebXML initiative. This includes, but is not limited to transformation
services, workflow services, quality assurance services and extended security mechanisms.

4 A Registry Service MAY have multiple deployment models as long as the Registry Interfaces are ebXML compliant.

7 The Business Process and Information Meta Model for an ebXML Registry Service may be an extension of the existing OASIS Registry/Repository Technical Specification, specifically tailored for the storage and retrieval of business information, whereas the OASIS model is a superset designed for handling extended and generic information content.

8.5 Messaging Service Functionality

8.5.1 Introduction

16 The ebXML Message Service mechanism provides a standard way to exchange business Messages among ebXML Trading Partners. The ebXML Messaging Service provides a reliable means to exchange business Messages without relying on proprietary technologies and solutions. An ebXML Message contains structures for a Message Header (necessary for routing and delivery) and a Payload section.

22 The ebXML Messaging Service is conceptually broken down into three parts: (1) an abstract Service Interface, (2) functions provided by the Messaging Service Layer, and (3) the mapping to underlying transport service(s). The relation of the abstract Interface, Messaging Service Layer, and transport service(s) are shown in Figure 15 below.

![Figure 15 - ebXML Messaging Service](image-url)

27

31 The following diagram depicts a logical arrangement of the functional modules that exist within the ebXML Messaging Services architecture. These modules are arranged in a manner to indicate their inter-relationships and dependencies. This architecture diagram illustrates the flexibility of the ebXML Messaging Service, reflecting the broad spectrum of services and functionality that may be implemented in an ebXML system.
8.5.2 Formal Functionality

The ebXML Messaging Service provides a secure, consistent and reliable mechanism to exchange ebXML Messages between users of the ebXML infrastructure over various transport Protocols (possible examples include SMTP, HTTP/S, FTP, etc.).

The ebXML Messaging Service prescribes formats for all Messages between distributed ebXML Components including Registry mechanisms and compliant user Applications.

The ebXML Messaging Service does not place any restrictions on the content of the payload.
The ebXML Messaging Service supports simplex (one-way) and request/response (either synchronous or asynchronous) Message exchanges.

The ebXML Messaging Service supports sequencing of payloads in instances where multiple payloads or multiple Messages are exchanged between Trading Partners.

The ebXML Messaging Service Layer enforces the "rules of engagement" as defined by two Trading Partners in a Collaboration Protocol Agreement (including, but not limited to security and Business Process functions related to Message delivery). The Collaboration Protocol Agreement defines the acceptable behavior by which each Trading Partner agrees to abide. The definition of these ground rules can take many forms including formal Collaboration Protocol Agreements, interactive agreements established at the time a business transaction occurs (e.g. buying a book online), or other forms of agreement. There are Messaging Service Layer functions that enforce these ground rules. Any violation of the ground rules result in an error condition, which is reported using the appropriate means.

The ebXML Messaging Service performs all security related functions including:

- Identification
- Authentication (verification of identity)
- Authorization (access controls)
- Privacy (encryption)
- Integrity (message signing)
- Non-repudiation
- Logging

8.5.3 Interfaces

The ebXML Messaging Service provides ebXML with an abstract Interface whose functions, at an abstract level, include:

- Send – send an ebXML Message – values for the parameters are derived from the ebXML Message Headers.
- Receive – indicates willingness to receive an ebXML Message.
- Notify – provides notification of expected and unexpected events.
- Inquire – provides a method of querying the status of the particular ebXML Message interchange.

The ebXML Messaging Service SHALL interface with internal systems including:

- Routing of received Messages to internal systems
- Error notification

The ebXML Messaging Service SHALL help facilitate the Interface to an ebXML Registry.
8.5.4 Non-Normative Implementation Details

3ebXML Message Structure and Packaging

5Figure 17 below illustrates the logical structure of an ebXML Message.

Figure 17 - ebXML Message Structure

An ebXML Message consists of an optional transport Protocol specific outer Communication Protocol Envelope and a Protocol independent ebXML Message Envelope. The ebXML Message Envelope is packaged using the MIME multipart/related content type. MIME is used as a packaging solution because of the diverse nature of information exchanged between Partners in eBusiness environments. For example, a complex Business Transaction between two or more Trading Partners might require a payload that contains an array of business documents (XML or other document formats), binary images, or other related Business Information.
This clause specifies the general framework, concepts and criteria for Conformance to 2ebXML, including an overview of the conformance strategy for ebXML, guidance for 3addressing conformance in each ebXML technical specification, and the conformance 4clause specific to the Technical Architecture specification. Except for the Technical 5Architecture Specification, this clause does not define the conformance requirements for 6each of the ebXML technical specifications – the latter is the purview of the technical 7specifications.
8
9The objectives of this section are to:
10a) Ensure a common understanding of conformance and what is required to claim 11conformance to this family of specifications;
12b) Ensure that conformance is consistently addressed in each of the component 13specifications;
14c) Promote interoperability and open interchange of Business Processes and 15Messages;
16d) Encourage the use of applicable conformance test suites as well as promote 17uniformity in the development of conformance test suites.
18
19Conformance to ebXML is defined in terms of conformance to the ebXML infrastructure 20and conformance to each of the technical specifications for ebXML. The primary 21purpose of conformance to ebXML is to increase the probability of successful 22interoperability between implementations and the open interchange of XML business 23documents and Messages. Successful interoperability and open interchange is more 24likely to be achieved if implementations conform to the requirements in the ebXML 25specifications.
26
279.2 Conformance to ebXML
28
29ebXML Conformance is defined as conformance to an ebXML system that is comprised 30of all the architectural components of the ebXML infrastructure and satisfies at least the 31minimum conformance requirements for each of the ebXML technical specifications, 32including the functional and Interface requirements in this Technical Architecture 33specification.
34
35In the context of ebXML, an implementation is said to exhibit conformance if it complies 36with the requirements of each applicable ebXML technical specification. The 37conformance requirements are stated in the conformance clause of each technical 38specification of ebXML. The conformance clause specifies explicitly all the requirements 39that have to be satisfied to claim conformance to that specification. These requirements 40may be applied and grouped at varying levels within each specification.
41
429.3 Conformance to the Technical Architecture Specification
43
44This section details the conformance requirements for claiming conformance to the 45Technical Architecture specification.
In order to conform to this specification, each ebXML technical specification:

- SHALL support all the functional and Interface requirements defined in this specification that are applicable to that technical specification;
- SHALL NOT specify any requirements that would contradict or cause non-conformance to ebXML or any of its components;
- MAY contain a conformance clause that adds requirements that are more specific and limited in scope than the requirements in this specification;
- SHALL only contain requirements that are testable.

A conforming implementation SHALL satisfy the conformance requirements of the applicable parts of this specification and the appropriate technical specification(s).

9.4 General Framework of Conformance Testing

The objective of conformance testing is to determine whether an implementation being tested conforms to the requirements stated in the relative ebXML specification. Conformance testing enables vendors to implement compatible and interoperable systems built on the ebXML foundations. ebXML Implementations and Applications SHOULD be tested to available test suites to verify their conformance to ebXML Specifications as soon as test suites are available.

Publicly available test suites from vendor neutral organizations such as OASIS and NIST SHOULD be used to verify the conformance of ebXML Implementations, Applications, and Components claiming conformance to ebXML. Open source reference implementations MAY be available to allow vendors to test their products for Interface compatibility, conformance, and interoperability.

10.0 Security Considerations

10.1 Introduction

A comprehensive Security Model for ebXML will be expressed in a separate document. The Security Model will be applied to the entire ebXML Infrastructure, with the underlying goal of best meeting the needs of users of ebXML.

The Security Model will comply with security needs specified in the ebXML Requirements Document.

Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.
Copyright Statement

Copyright © ebXML 2001. All Rights Reserved.

This document and translations of it MAY be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation MAY be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself MAY not be modified in any way, such as by removing the copyright notice or references to ebXML, UN/CEFACT, or OASIS, except as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by ebXML or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Appendix A: Example ebXML Business Scenarios

Definition
3This set of scenarios defines how ebXML compliant software could be used to implement popular, well-known eBusiness models.

Scope
6These scenarios are oriented to properly position the ebXML specifications as a convenient mean for companies to properly run electronic business over the Internet using open standards. They bridge the specifications to real life uses.

Audience
10Companies planning to use ebXML compliant software will benefit from these scenarios because they will show how these companies may be able to implement popular business scenarios onto the ebXML specifications.

List
13a) Two Trading Partners set-up an agreement and run the associated electronic exchange.
b) Three or more Trading Partners set-up a Business Process implementing a supply-chain and run the associated exchanges
c) A Company sets up a Portal that defines a Business Process involving the use of external business services.
d) Three or more Trading Partners conduct business using shared Business Processes and run the associated exchanges.

Scenario 1 : Two Trading Partners set-up an agreement and run the associated exchange
23In this scenario:

• Each Trading Partner defines its own Profile (CPP).

 Each Profile references:
 o One or more existing Business Process found in the ebXML Registry
 o One of more Message Definitions. Each Message definition is built from reusable components (Core Components) found in the ebXML Registry

 Each Profile (CPP) defines:
 o The business transactions that the Trading Partner is able to engage into
 o The Technical protocol (like HTTP, SMTP etc) and the technical properties (such as special encryption, validation, authentication) that the Trading Partner supports in the engagement
 o The Trading Partners acknowledge each other profile and create a CPA.

• The Trading Partners implement the respective part of the Profile. This is done:
 o Either by creating/configuring a Business Service Interface.
 o Or properly upgrading the legacy software running at their side

In both cases, this step is about:
 o Plugging the Legacy into the ebXML technical infrastructure as specified by the Messaging Service.
 o Granting that the software is able to properly engage the stated conversations
 o Granting that the exchanges semantically conform to the agreed upon
 Message Definitions
Granting that the exchanges technically conform with the underlying ebXML Messaging Service.

The Trading Partners start exchanging Messages and performing the agreed upon commercial transactions.

6 **Scenario 2: Three or more parties set-up a Business Process implementing a supply-chain and run the associated exchanges**

The simple case of a supply-chain involving two Trading Partners can be redefined in terms of the Scenario 1.

Here we are dealing with situations where more Trading Partners are involved. We consider a supply chain of the following type:

What fundamentally differs from Scenario 1 is that “Trading Partner 2” is engaged at the same time with two different Trading Partners. The assumption is that the “state” of the local portion of the Business Process is managed by each Trading Partner, i.e. that each Trading Partner is fully responsible of the Business Transaction involving it (“Trading Partner 3” only knows about “Trading Partner 2”, “Trading Partner 2” knows about “Trading Partner 3” and “Trading Partner 1”, “Trading Partner 1” knows about “Trading Partner 2”).

In this scenario:

- Each Trading Partner defines its own Profile (CPP). Each Profile (CPP) references:
 - One or more existing Business Process found in the ebXML Registry
 - One or more Message Definitions. Each Message definition is built from reusable components (Core Components) found in the ebXML Registry

Each Profile (CPP) defines:

- The Commercial Transactions that the Trading Partner is able to engage into. “Trading Partner 2” must be able to support at least 2 Commercial Transactions.
- The Technical protocol (like HTTP, SMTP etc) and the technical properties (such as special encryption, validation, authentication) that the Trading Partner supports in the engagement. As to “Trading Partner 2”, the technical requirements for the exchanges with “Trading Partner 1” and “Trading Partner 3” may be different. In such case, “Trading Partner 2” must be able to support different protocols and/or properties.
- The Trading Partners acknowledge each other profile and create the relevant CPA. (at least 2 in this Scenario).
• “Trading Partner 2” is engaged in 2 CPA’s
 The Trading Partners implement the respective part of the Profile. This is done:
 • Either by creating/configuring a Business Service Interface.
 • Or properly upgrading the legacy software running at their side.
 In both cases, this step is about:
 • Plugging the Legacy into the ebXML technical infrastructure as specified by
 the Messaging Service
 • Granting that the software is able to properly engage the stated conversations
 • Granting that the exchanges semantically conform to the agreed upon ebXML
 Message definitions
 • Granting that the exchanges technically conform with the underlying ebXML
 Messaging Service.
 • “Trading Partner 2” may need to implement a complex Business Service
 Interface in order to be able to engage with different Trading Partners.

• The Trading Partners start exchanging Messages and performing the agreed upon
 commercial transactions.
 • “Trading Partner 3” places an order at “Trading Partner 2”
 • “Trading Partner 2” (eventually) places an order with “Trading Partner 1”
 • “Trading Partner 1” fulfill the order
 • “Trading Partner 2” fulfill the order

Scenario 3 : A Company sets up a Portal which defines a
Business Process involving the use of external business
services
This is the Scenario describing a Service Provider. A “client” asks the Service Provider
for a Service. The Service Provider fulfills the request by properly managing the
exchanges with other Trading Partners that provide information to build the final answer.
In the simplest case, this Scenario could be modeled as follows:

This is an evolution of Scenario 2. The Description of this scenario is omitted.

Scenario 4: Three or more Trading Partners conduct business using shared Business Processes and run the associated exchanges

This Scenario is about 3 or more Trading Partners having complex relationships. An example of this is the use of an external delivery service for delivering goods.

In this Scenario, each Trading Partner is involved with more than one other Trading Partner but the relationship is not linear. The product or good that is ordered by the Client with a Service Provider is delivered by a 3rd party.
In this scenario:

- Each Trading Partner defines its own Profile (CPP). Each Profile (CPP) references:
 - One or more existing Business Process found in the ebXML Registry
 - One or more Registry Definitions. Each Registry definition is built from reusable components (Core Components) found in the ebXML Registry

Each Profile (CPP) defines:

- The Commercial Transactions that the Trading Partner is able to engage into. In this case, each Trading Partner must be able to support at least 2 Commercial Transactions.
- The Technical protocol (like HTTP, SMTP etc) and the technical properties (such as special encryption, validation, authentication) that the Trading Partner supports in the engagement. In case the technical infrastructure underlying the different exchanges differs, each Trading Partner must be able to support different protocols and/or properties. (an example is that the order is done through a Web Site and the delivery is under the form of an email).
- The Trading Partners acknowledge each other profile and create a CPA. Each Trading Partner, in this Scenario, must be able to negotiate at least 2 Agreements.

Each Trading Partner is engaged in 2 Agreements (CPA).

- The Trading Partners implement the respective part of the Profile. This is done:
 - Either by creating/configuring a Business Service Interface.
 - Or properly upgrading the legacy software running at their side

In both cases, this step is about:

- Plugging the Legacy into the ebXML technical infrastructure as specified by the Messaging Service.
- Granting that the software is able to properly engage the stated conversations
- Granting that the exchanges semantically conform to the agreed upon Message definitions.
- Granting that the exchanges technical conform with the underlying ebXML Messaging Service.
- All Trading Partners may need to implement complex Business Service Interfaces to accommodate the differences in the CPA’s with different Trading Partners.

- The Trading Partners start exchanging Messages and performing the agreed upon commercial transactions.
 - The Client places an Order at the Service Provider.
 - The Service Provider Acknowledges the Order with The Client.
 - The Service Provider informs the Mail Delivery Service about a good to be delivered at the Client
 - The Mail Delivery Service delivers the good at the Client
 - The Clients notifies the Service Provider that the good is received.