SAML Attribute Sharing Profile for X.509 Authentication-Based Systems

Committee Draft, 1 June 2005

Document identifier:

sstc-saml-x509-authn-attrib-profile-cd-01

Location:

Editor:

Rick Randall, Booz Allen Hamilton

Contributors:

Rebekah Metz, Booz Allen Hamilton
Thomas Wisniewski, Entrust
Scott Cantor, Internet2
Paul Madsen, NTT
Rob Philpott, RSA Security

Abstract:

This profile specifies the use of SAML attribute queries and assertions to support distributed authorization in support of X.509v3-based authentication.

Status:

This is a Committee Draft approved by the Security Services Technical Committee on 1 June 2005.

Committee members should submit comments and potential errata to the security-services@lists.oasis-open.org list. Others should submit them by filling out the web form located at http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=security. The committee will publish on its web page (http://www.oasis-open.org/committees/security) a catalog of any changes made to this document as a result of comments.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights web page for the Security Services TC (http://www.oasis-open.org/committees/security/ipr.php).
Table of Contents

1 Introduction .. 3

1.1 Notation ... 3

2 SAML Attribute Sharing Profile for X.509 Authentication-Based Systems ... 4

2.1 Required Information .. 4

2.2 Motivating Use Case .. 4

2.2.1 Overview .. 4

2.2.2 Sequence .. 4

3 Basic Mode ... 7

3.1 <AttributeQuery> Issued by Service Provider to Identity Provider ... 7

3.1.1 <AttributeQuery> Usage ... 7

3.2 <Response> Issued by Identity Provider to Service Provider ... 7

3.2.1 <Response> Usage .. 7

4 Encrypted/Signed Mode ... 9

4.1 <AttributeQuery> Issued by Service Provider to Identity Provider ... 9

4.1.1 <AttributeQuery> Usage ... 9

4.1.2 Use of Encryption .. 9

4.1.3 Use of Digital Signatures ... 10

4.2 <Response> Issued by Identity Provider to Service Provider ... 10

4.2.1 <Response> Usage .. 10

4.2.2 Use of Encryption .. 10

4.2.3 Use of Digital Signatures ... 11

5 Implementation Guidance (Informative) .. 12

5.1 Identity Provider Policy ... 12

5.2 Caching of Attributes .. 12

6 References ... 13
1 Introduction

This profile specifies the use of SAML attribute queries and assertions to support distributed authorization in support of X.509v3-based authentication.

1.1 Notation

This specification uses normative text to describe the use of SAML attribute queries and assertions. The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "MAY", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as described in [RFC 2119]:

…they MUST only be used where it is actually required for interoperation or to limit behavior which has potential for causing harm (e.g., limiting retransmissions)...

These keywords are thus capitalized when used to unambiguously specify requirements over protocol and application features and behavior that affect the interoperability and security of implementations. When these words are not capitalized, they are meant in their natural-language sense.

Listings of XML schemas appear like this.

Example code listings appear like this.

This specification uses the following typographical conventions in text: <SAMLElement>, <ns:ForeignElement>, Attribute, Datatype, OtherKeyword.
2 SAML Attribute Sharing Profile for X.509 Authentication-Based Systems

The SAML V2.0 Assertions and Protocols specification [SAMLCore] defines an Attribute Query/Response Protocol for retrieving a principal's attributes. This profile describes the use of this protocol with the SOAP binding defined in the SAML V2.0 Bindings specification [SAMLBind], and provides additional guidelines for protecting the privacy of the principal with encryption, to support the retrieval of attributes of a principal authenticated using an X.509v3 [RFC3280] certificate.

This profile specifies two modes of operation: Basic Mode and Encrypted Mode.

2.1 Required Information

Identification:

Two modes of operation are provided by this profile, each represented by a URI:

Contact information: security-services-comment@lists.oasis-open.org

Description: Given below.

Updates: N/A

Extends: Attribute Query/Request Profile (defined in [SAMLProf])

2.2 Motivating Use Case

2.2.1 Overview

A principal attempts to access a web resource maintained at a service provider. Principal authentication is accomplished through the presentation of a trusted X.509v3 certificate (that is, the federated credential is a certificate, and not a SAML assertion) and by the demonstration of proof of possession of the associated private key.

After the principal has been authenticated, the service provider requires additional information about the principal in order to determine whether to grant access to some privileged resource(s). To get this information the service provider uses the Subject DistinguishedName (Subject DN) field of the principal's X.509v3 certificate to query an identity provider for the required information about the principal. When the identity provider returns the relevant attributes, the service provider is able to make an informed authorization decision.

2.2.2 Sequence

The sequence of steps for the full use case is shown below.

Note: The steps constrained by this profile are highlighted with a gray box. The other steps are shown only for completeness; the profile does not constrain them.
1. TLS Authentication and Initial Request

In step 1, the principal requests a secured resource from a service provider. The service provider requests that the principal be authenticated. The principal authenticates to the service provider with an X.509v3 certificate. The service provider authenticates to the principal at the same time (that is, TLS or SSL mutual authentication is performed). Subject confirmation is performed by the service provider as part of the TLS authentication.

2. Request Attributes

In step 2, the service provider sends a SAML `<AttributeQuery>` to the identity provider using a SAML SOAP Binding, using the Subject DN from the principal's X.509v3 certificate (presented in step 1 above) within the `<Subject>` element. The `<Subject>` element will contain a `<NameID>` with the value of the Subject DN from the principal's X.509v3 certificate and a format with the value of `urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName`. In the Encrypted/Signed mode, the service provider will sign the attribute request so that the identity provider will be able to verify its origin and integrity.

The service provider shall determine the location of an appropriate identity provider for the request based upon the contents of the Subject DN or the Issuer DN in the principal’s certificate. The details of locating the identity provider from the DN information are not specified by this profile.

3. Return Attributes

In step 3, after verifying that the service provider is a valid requester, the identity provider issues a `<Response>` message containing appropriate attributes pertaining to the principal.

In the Encrypted/Signed mode, the attributes returned in the `<Response>` message are encrypted as described in Section 4, and the `<Response>` message is signed by the identity provider so that the service provider will be able to verify the origin and integrity of the message.

4. Check Policy

Based on the results of the `<Response>` message from the identity provider in step 3, the service provider evaluates the access control policy for the resource being requested to determine whether the
principal should be granted access to the resource.

5. **Return Resource**

Based on the results of steps 3 and 4, the service returns the requested resource or returns an error.

Of the sequence steps described above, it is steps 2 and 3 that are profiled in Sections 3 and 4 below.
3 Basic Mode

In this mode, a service provider uses the SAML SOAP Binding to send an `<AttributeQuery>` message directly to an identity provider. This message contains a name identifier assigned to a principal that authenticated to the service provider using an X.509v3 certificate.

The service provider MAY authenticate to the identity using this mode. In addition, the requester MAY use TLS or SSL client authentication.

If the identity provider receiving the request can:

- Recognize the name identifier; and
- Fulfill the request based on authentication of the requester and any applicable policies;

it will respond with a successful `<Response>` containing the relevant attributes for the identified principal.

The `<AttributeQuery>`, `<Response>`, and `<Assertion>` elements MAY be signed using this mode.

The service provider and identity provider MAY use metadata in support of this profile for locating endpoints, communicating key information, and so on. If SAML V2.0 metadata is used, the `<md:AttributeAuthorityDescriptor>` element defined by the SAML metadata specification [SAMLMeta] and the `mdext:AttributeRequesterDescriptorType` complex type defined by the SAML metadata extension specification [SAMLMeta-Ext] SHOULD be used with this profile.

3.1 `<AttributeQuery>` Issued by Service Provider to Identity Provider

The identity provider MUST process the `<AttributeQuery>` message and any enclosed `<Attribute>` elements as described in [SAMLCore] and in Section 6 of [SAMLProf].

3.1.1 `<AttributeQuery>` Usage

The `<AttributeQuery>` element MUST conform to the following rules:

- The `<Subject>` element must contain a `<NameID>` with the value of the Subject DN from the principal’s X.509v3 certificate and a format with the value of urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName.

3.2 `<Response>` Issued by Identity Provider to Service Provider

The service provider MUST process the `<Response>` message and any enclosed `<Assertion>` elements as described in [SAMLCore] and in Section 6 of [SAMLProf].

3.2.1 `<Response>` Usage

If the identity provider wishes to return an error, it MUST NOT include any assertions in the `<Response>` message. Otherwise, if the request is successful, the `<Response>` element MUST conform to the following rules:

- It MUST contain exactly one `<Assertion>` element.
- The `<Assertion>` element MUST satisfy the following conditions:
 - It MUST contain exactly one `<AttributeStatement>` element that reflects the attributes of the principal to the service provider.
 - The `<Assertion>` element MUST contain an `<AudienceRestriction>` element that
includes the service provider's unique identifier as an <Audience>.

- Other conditions (and other <Audience> elements) MAY be included as requested by the service provider or at the discretion of the identity provider.
4 Encrypted/Signed Mode

In this mode, a service provider uses the SAML SOAP Binding to send an `<AttributeQuery>` message directly to an identity provider. It differs from the basic mode in that this message contains an encrypted name identifier assigned to a principal that authenticated to the service provider using an X.509v3 certificate.

The service provider MUST authenticate to the identity provider by signing the `<AttributeQuery>` message. In addition, the requester MAY use TLS or SSL client authentication.

If the identity provider receiving the request can:

- Decrypt and recognize the name identifier; and
- Fulfill the request based on authentication of the requester and any applicable policies;

it will respond with a successful `<Response>` containing the relevant attributes for the identified principal. The returned attributes MUST be encrypted as described below.

The responding identity provider MUST authenticate to the requester, both by signing the `<Response>` message and through TLS or SSL server authentication. The service provider and identity provider MAY use metadata in support of this profile for locating endpoints, communicating key information, and so on. If SAML V2.0 metadata is used, the `<md:AttributeAuthorityDescriptor>` element defined by the SAML metadata specification [SAMLMeta] and the `mdext:AttributeRequesterDescriptorType` complex type defined by the SAML metadata extension specification [SAMLMeta-Ext] SHOULD be used with this profile.

4.1 `<AttributeQuery>` Issued by Service Provider to Identity Provider

The identity provider MUST process the `<AttributeQuery>` message and any enclosed `<Attribute>` elements as described in [SAMLCore] and in Section 6 of [SAMLProf].

All requests MUST be made over either SSL 3.0 [SSL3] or TLS 1.0 [RFC3280] to maintain confidentiality and message integrity.

4.1.1 `<AttributeQuery>` Usage

The `<AttributeQuery>` element MUST conform to the following rules:

- The `<Subject>` element must contain an `<EncryptedID>` element carrying the encrypted value of the `<NameID>` (using XML Encryption as defined in [XMLEnc]) with the value of the principal's Subject DN from the principal’s X.509v3 certificate and a format with the value of `urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName`. See Section 4.1.2 for details on the use of encryption.
- It MUST contain a `<ds:Signature>` element carrying the signature of the service provider.

4.1.2 Use of Encryption

The SAML V2.0 assertions and protocols specification [SAMLCore] defines the `<EncryptedID>` element as a means of applying confidentiality to a name identifier.

In this mode the service provider MUST use the `<EncryptedID>` to carry the Subject DN of the principal in the `<AttributeQuery>`.

The service provider MUST be able to generate a new symmetric key for encrypting the principal's name identifier containing the Subject DN to conform to the Encrypted/Signed Mode. After performing the
encryption using this method, the service provider then places the resulting ciphertext in the
<xenc:EncryptedData> element. The symmetric key MUST be encrypted with the identity provider's
public key and the resulting ciphertext placed in the <xenc:EncryptedKey> element.

Optionally, and if supported by an identity provider, the Service Provider MAY use a previously established
symmetric key for encrypting the principal's name identifier containing the Subject DN. After performing
the encryption using this method, the service provider then places the resulting ciphertext in the
<xenc:EncryptedData> element and the <EncryptedID> element MUST NOT contain an
<xenc:EncryptedKey> element.

4.1.3 Use of Digital Signatures

The SAML V2.0 assertions and protocols specification [SAMLCore] defines how to use the
<ds:Signature> element (defined in [XMLSig]) as a means of providing integrity and authenticity for a
message.

In this mode, a service provider MUST sign the <AttributeQuery> containing the <EncryptedID> to
allow the identity provider to authenticate its origin and verify its integrity. A [FIPS 140-2] validated digital
signing algorithm SHALL be used for the digital signature operation.

4.2 <Response> Issued by Identity Provider to Service Provider

The service provider MUST process the <Response> message and any enclosed <Assertion>
elements as described in [SAMLCore] and in Section 6 of [SAMLProf].

All responses MUST be made over either SSL 3.0 [SSL3] or TLS 1.0 [RFC3280] to maintain confidentiality
and message integrity.

4.2.1 <Response> Usage

If the identity provider wishes to return an error, it MUST NOT include any assertions in the <Response>
message. Otherwise, if the request is successful, the <Response> element MUST conform to the
following rules:

- It MUST contain exactly one <EncryptedAssertion> element.
- The encrypted content of the <EncryptedAssertion> element is an <Assertion> element that
 MUST satisfy the following conditions:
 - It MUST contain exactly one <AttributeStatement> element that reflects the attributes of
 the principal to the service provider.
 - The <Assertion> element MUST contain a <ds:Signature> element carrying the
 signature of the identity provider.
 - The <Assertion> element MUST contain an <AudienceRestriction> element that
 includes the service provider's unique identifier as an <Audience>.
 - Other conditions (and other <Audience> elements) MAY be included as requested by the
 service provider or at the discretion of the identity provider.

4.2.2 Use of Encryption

The SAML V2.0 assertions and protocols specification [SAMLCore] defines the
<EncryptedAssertion> element as a mean of applying confidentiality to the contents of an assertion.

In this mode the identity provider MUST use the <EncryptedAssertion> element to carry the returned
attribute values for the principal.
The identity provider MUST be able to generate a new symmetric key for encrypting the <Assertion> to conform to the Encrypted/Signed Mode. After performing the encryption using this method, the identity provider then places the resulting ciphertext in the <xenc:EncryptedData> element. The symmetric key MUST be encrypted with the service provider's public key and the resulting ciphertext placed in the <xenc:EncryptedKey> element.

Optionally, and if supported by a service provider, the Service Provider MAY use the symmetric key used in the <AttributeQuery> for encrypting the name identifier containing the Subject DN in order to encrypt the returned <Assertion>. If the identity provider reuses the key in this manner, the <EncryptedAssertion> element MUST NOT contain an <xenc:EncryptedKey> element.

Optionally, if supported by a service provider and the service provider did not include a symmetric key in the <AttributeQuery> for encrypting the name identifier containing the Subject DN, the Service Provider MAY use a previously established symmetric key in order to encrypt the returned <Assertion>. If the identity provider reuses the key in this manner, the <EncryptedAssertion> element MUST NOT contain an <xenc:EncryptedKey> element. A [FIPS 140-2] validated encryption algorithm SHALL be used for the encryption operation.

4.2.3 Use of Digital Signatures

The SAML V2.0 assertions and protocols specification [SAMLCore] defines how to use the <ds:Signature> element (defined in [XMLSig]) as a means of providing integrity and authenticity for a message.

In this mode, the identity provider MUST sign the <Assertion> in order to allow the service provider to verify its integrity. The signature is calculated before the encryption operation. A [FIPS 140-2] validated digital signing algorithm SHALL be used for the digital signature operation.
5 Implementation Guidance (Informative)

The following non-normative guidance is provided for implementers.

5.1 Identity Provider Policy

The motivation for this profile is to specify a secure means of using X.509 authentication in association with SAML attributes. As such, security considerations are highly important from the perspective of the profile. The policy configuration of identity providers SHOULD permit only a strictly limited list of attribute responses in SAML assertions.

5.2 Caching of Attributes

A capability to cache user attributes that are returned in assertions SHOULD be provided. Cache expiration settings SHOULD be configurable by administrators. The identity of the principal for which the assertion was issued SHOULD NOT be human readable (that is, clear text) in cache files or the cache repository.
6 References

A. Acknowledgments

The editor would like to acknowledge the contributions of the OASIS Security Services Technical Committee, whose voting members at the time of publication were:

- Conor P. Cahill, AOL, Inc.
- Hal Lockhart, BEA Systems, Inc
- Steve Anderson, BMC Software
- Rick Randall, Booz Allen Hamilton
- Thomas Wisniewski, Entrust
- Carolina Canales-Vaenzuela, Ericsson
- Dana Kaufman, Forum Systems
- Irving Reid, Hewlett-Packard Company
- Guy Denton, IBM
- Heather Hinton, IBM
- Maryann Hondo, IBM
- Anthony Nadalin, IBM
- John Hughes, Individual
- Peter Michalek, Individual
- Nick Ragouzis, Individual
- Scott Cantor, Internet2
- Bob Morgan, Internet2
- Wendy Gray, JPMorganChase
- Peter Davis, NeuStar
- Jeff Hodges, NeuStar
- Frederick Hirsch, Nokia
- Senthil Sengodan, Nokia
- Cameron Morris, Novell
- Paul Madsen, NTT USA
- Ari Kermaier, Oracle
- Vamsi Motukuru, Oracle
- Brian Campbell, Ping Identity
- Darren Platt, Ping Identity
- Alberto Squassabia, Ping Identity
- Prateek Mishra, Principal Identity
- Jim Lien, RSA Security
- John Linn, RSA Security
- Rob Philpott, RSA Security
- Jahan Moreh, Sigaba
- Eve Maler, Sun Microsystems
- Ron Monzillo, Sun Microsystems
- Mike Beach, The Boeing Company
- Greg Whitehead, Trustgenix

The editor also wishes to acknowledge Tom Scavo, Santosh Chokhani, and Robert Mingo for their contributions to this specification.
B. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2005. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.