
fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 1 of 177

1

Functional Elements Specification2

Committee Specifications 1.0, 27-May-20053

Document identifier:4
fwsi-fe-1.0-guidelines-spec-cs-01.doc5

Location:6
http://www.oasis-open.org/apps/org/workgroup/fwsi/documents.php7

Editor:8
Tan Puay Siew, Singapore Institute of Manufacturing Technology, SIMTech9
(pstan@simtech.a-star.edu.sg)10

11

Contributor(s):12
Cheng Huang Kheng, SIMTech (jason@simtech.a-star.edu.sg)13

Lee Eng Wah, SIMTech (ewlee@simtech.a-star.edu.sg)14

Christopher Haddad, Individual (haddadc@cobia.net)15

Kenneth Lim, Crimson Logic Pte Ltd (kennethlim@crimsonlogic.com)16

Ravi Shankar, Crimson Logic Pte Ltd (ravishankar@crimsonlogic.com)17

Jagdip Talla, Crimson Logic Pte Ltd (jagdip@crimsonlogic.com)18

Roberto Pascual, Infocomm Development Authority (IDA) of Singapore19

(rbpascual@yahoo.com)20

Ang Chai Hong, SIMTech (chang@simtech.a-star.edu.sg)21

22

http://www.oasis-open.org/apps/org/workgroup/fwsi/documents.php
mailto:pstan@simtech.a-star.edu.sg
mailto:jason@simtech.a-star.edu.sg
mailto:ewlee@simtech.a-star.edu.sg
mailto:haddadc@cobia.net
mailto:kennethlim@crimsonlogic.com
mailto:ravishankar@crimsonlogic.com
mailto:jagdip@crimsonlogic.com
mailto:rbpascual@yahoo.com
mailto:chang@simtech.a-star.edu.sg

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 2 of 177

Abstract:23
The ability to provide robust implementations is a very important aspect to create high24
quality Web Service-enabled applications and to accelerate the adoption of Web25
Services. The Framework for Web Services Implementation (FWSI) TC aims to enable26
robust implementations by defining a practical and extensible methodology consisting of27
implementation processes and common functional elements that practitioners can adopt28
to create high quality Web Services systems without reinventing them for each29
implementation.30
This document specifies a set of Functional Elements for practitioners to instantiate into a31
technical architecture, and should be read in conjunction with the Functional Elements32
Requirements document. It is the purpose of this specification to define the right level of33
abstraction for these Functional Elements and to specify the purpose and scope of each34
Functional Element so as to facilitate efficient and effective implementation of Web35
Services.36

37

Status:38
This document is updated periodically on no particular schedule.39
Committee members should send comments on this specification to the fwsi-40
fesc@lists.oasis-open.org list. Others should subscribe to and send comments to the41
fwsi-comment@lists.oasis-open.org list. To subscribe, send an email message to fwsi-42
comment-request@lists.oasis-open.org with the word "subscribe" as the body of the43
message.44
For information on whether any patents1 have been disclosed that may be essential to45
implementing this specification, and any offers of patent licensing terms, please refer to46
the Intellectual Property Rights section of the FWSI TC web page (http://www.oasis-47
open.org/committees/fwsi/).48

1 This document contains concepts that have been filed as patents. The Intellectual Property Rights

declaration and contractual terms on use of document's content will be made available at a later date.

mailto:fwsi-fesc@lists.oasis-open.org
mailto:fwsi-fesc@lists.oasis-open.org
mailto:fwsi-comment@lists.oasis-open.org
mailto:fwsi-comment-request@lists.oasis-open.org
mailto:fwsi-comment-request@lists.oasis-open.org
http://www.oasis-open.org/committees/xxx/
http://www.oasis-open.org/committees/xxx/

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 3 of 177

Table of Contents49

1 Introduction...750

1.1 Document Outline ..751
1.2 Motivation ..852
1.3 Terminology ...853

2 List of Functional Elements ..954

2.1 Event Handler Functional Element ..955
2.1.1 Motivation ..956
2.1.2 Terms Used ...957
2.1.3 Key Features ...1158
2.1.4 Interdependencies ...1259
2.1.5 Related Technologies and Standards ...1260
2.1.6 Model...1361
2.1.7 Usage Scenarios ...1462

2.2 Group Management Functional Element ...3663
2.2.1 Motivation ..3664
2.2.2 Terms Used ...3665
2.2.3 Key Features ...3766
2.2.4 Interdependency..3867
2.2.5 Related Technologies and Standards ...3868
2.2.6 Model...3869
2.2.7 Usage Scenarios ...3970

2.3 Identity Management Functional Element..4471
2.3.1 Motivation ..4472
2.3.2 Terms Used ...4573
2.3.3 Key Features ...4674
2.3.4 Interdependencies ...4775
2.3.5 Related Technologies and Standards ...4776
2.3.6 Model...4877
2.3.7 Usage Scenarios ...4978

2.4 Log Utility Functional Element ...5579
2.4.1 Motivation ..5580
2.4.2 Terms Used ...5581
2.4.3 Key Features ...5682
2.4.4 Interdependencies ...5683
2.4.5 Related Technologies and Standards ...5684
2.4.6 Model...5785
2.4.7 Usage Scenarios ...5786

2.5 Notification Functional Element ...6587
2.5.1 Motivation ..6588
2.5.2 Terms Used ...6589
2.5.3 Key Features ...6690
2.5.4 Interdependencies ...6691
2.5.5 Related Technologies and Standards ...6792
2.5.6 Model...6793

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 4 of 177

2.5.7 Usage Scenarios ...6894
2.6 Phase and Lifecycle Management Functional Element ...7495

2.6.1 Motivation ..7496
2.6.2 Terms Used ...7497
2.6.3 Key Features ...7598
2.6.4 Interdependencies ...7699
2.6.5 Related Technologies and Standards ...76100
2.6.6 Model...76101
2.6.7 Usage Scenarios ...77102

2.7 Presentation Transformer Functional Element ..83103
2.7.1 Motivation ..83104
2.7.2 Terms Used ...83105
2.7.3 Key Features ...83106
2.7.4 Interdependencies ...83107
2.7.5 Related Technologies and Standards ...83108
2.7.6 Model...84109
2.7.7 Usage Scenario ...84110

2.8 Role and Access Management Functional Element ..86111
2.8.1 Motivation ..86112
2.8.2 Terms Used ...86113
2.8.3 Key Features ...87114
2.8.4 Interdependencies. ..88115
2.8.5 Related Technologies and Standards ...88116
2.8.6 Model...89117
2.8.7 Usage Scenario ...89118

2.9 Search Functional Element..102119
2.9.1 Motivation ..102120
2.9.2 Terms Used ...102121
2.9.3 Key Features ...103122
2.9.4 Interdependencies ...104123
2.9.5 Related Technologies and Standards ...104124
2.9.6 Model...104125
2.9.7 Usage Scenario ...104126

2.10 Secure SOAP Management Functional Element...108127
2.10.1 Motivation ..108128
2.10.2 Terms Used ...108129
2.10.3 Key Features ...109130
2.10.4 Interdependencies ...109131
2.10.5 Related Technologies and Standards ...109132
2.10.6 Model...110133
2.10.7 Usage Scenarios ...111134

2.11 Sensory Functional Element..115135
2.11.1 Motivation ..115136
2.11.2 Terms Used ...115137
2.11.3 Key Features ...116138
2.11.4 Interdependencies ...116139
2.11.5 Related Technologies and Standards ...116140
2.11.6 Model...116141
2.11.7 Usage Scenarios ...117142

2.12 Service Management Functional Element ...120143

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 5 of 177

2.12.1 Motivation ..120144
2.12.2 Terms Used ...120145
2.12.3 Key Features ...120146
2.12.4 Interdependencies ...121147
2.12.5 Related Technologies and Standards ...121148
2.12.6 Model...122149
2.12.7 Usage Scenarios ...122150

2.13 Service Registry Functional Element ...129151
2.13.1 Motivation ..129152
2.13.2 Terms Used ...129153
2.13.3 Key Features ...130154
2.13.4 Interdependencies ...130155
2.13.5 Related Technologies and Standards ...130156
2.13.6 Model...131157
2.13.7 Usage Scenario ...131158

2.14 Service Tester Functional Element ..143159
2.14.1 Motivation ..143160
2.14.2 Terms Used ...143161
2.14.3 Key Features ...143162
2.14.4 Interdependencies ...143163
2.14.5 Related Technologies and Standards ...143164
2.14.6 Model...144165
2.14.7 Usage Scenarios ...144166

2.15 User Management Functional Element..147167
2.15.1 Motivation ..147168
2.15.2 Terms Used ...147169
2.15.3 Key Features ...148170
2.15.4 Interdependencies ...149171
2.15.5 Related Technologies and Standards ...149172
2.15.6 Model...149173
2.15.7 Usage Scenarios ...150174

2.16 Web Service Aggregator Functional Element ..159175
2.16.1 Motivation ..159176
2.16.2 Terms Used ...159177
2.16.3 Key Features ...160178
2.16.4 Interdependencies ...161179
2.16.5 Related Technologies and Standards ...161180
2.16.6 Model...161181
2.16.7 Usage Scenarios ...162182

3 Functional Elements Usage Scenario ..168183

3.1 Service Monitoring ...169184
3.2 Securing SOAP Messages ..170185
3.3 Decoupled User Access Management...171186

4 References ...173187

Appendix A. Acknowledgments...175188

Appendix B. Revision History..176189

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 6 of 177

Appendix C. Notices..177190

191
192

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 7 of 177

1 Introduction193

194

The purpose of OASIS Framework for Web Services Implementation (FWSI) Technical195
Committee (TC) is to facilitate implementation of robust Web Services by defining a practical and196
extensible methodology consisting of implementation processes and common functional elements197
that practitioners can adopt to create high quality Web Services systems without re-inventing198
them for each implementation. It aims to solve the problem of the slow adoption of Web Services199
due to a lack of good Web Services methodologies for implementation, cum a lack of200
understanding and confidence in solutions that have the necessary components to reliably201
implement Web Service-enabled applications.202

203

One of the FWSI TC’s deliverables is the Functional Elements Specification, which is detailed in204
this document. This Specification specifies a set of functional elements that practical205
implementation of Web Services-based systems will require. A Functional Element (FE) is206
defined as a building block representing common reusable functionalities for Web Service-207
enabled implementations, i.e. from an application Point-Of-View. These FEs are expected to be208
implemented as reusable components, with Web Services capabilities where appropriate, and to209
be the foundation for practitioners to instantiate into a technical architecture. The210
implementations of these FEs are further supported by another complementary work that is also211
from the FWSI TC, the Web Services Implementation Methodology (WSIM) [1]. As such, the TC212
hopes that through the implementations of these FEs, robust Web Service-enabled applications213
can be constructed quickly and deployed in a rapid manner.214

215

The target audiences for this document are expected to be solution providers who intend to use216
the Functional Elements Specification to create building blocks that can be instantiated into the217
technical architecture of their solutions or software vendors and independent software vendors218
(ISVs) that are expected to build the functional elements specified into their products. Individuals219
and researchers who are interested in Web Services will also be able to benefit from this220
document. It is recommended that this document should be used in tandem with the Functional221
Elements Requirements document, to ensure that readers have a holistic view to the thought222
processes and knowledge that are encapsulated.223

224

1.1 Document Outline225

226

This document describes the Functional Elements in three main sections. In this section,227
explanation on the motivation for creating this Specification and the kind of impact that it will228
create for Web Service-enabled implementations and the terminology used in the normative part229
of this document are included.230

231

Section 2 lists the identified Functional Elements arising from requirements documented in the232
Functional Elements Requirements document [2]. Under each of the ensuing FE, the following233
descriptions are provided:234

• Motivation235

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 8 of 177

A section for providing a short introduction explaining the motivation of including the FE from236
an application Point-Of-View, including cross-referencing of the requirements for the237
Functional Element238

• Terms Used239

A glossary of the terms used. An explanation or illustration of the runtime capabilities of the240
Functional Element are also provided where appropriate.241

• Key Features242

A list of key features to be implemented are provided here and is expressed in the normative243
form.244

• Interdependencies245

In this section, the interdependencies between Functional Elements are provided to clarify246
the linkages between FEs (if any).247

• Related Technologies and Standards248

Here, the reliance of the Functional Elements on related technologies and specifications (or249
standards) are provided250

251

Section 3 provides the examples of how the Functional Elements can be assembled to accelerate252
web service-enabled applications. From these Functional Elements, a variety of solutions can be253
built.254

255

1.2 Motivation256

257

In a Service-Oriented Architecture (SOA) environment, new applications/services are created258
through the assembly of existing services. One of the key advantages of this loosely coupled259
model is that it allows the new application/service to leverage on 3rd party services. As a typical260
3rd party’s implementation of the services is done via the software component approach, this261
specification further proliferate new applications/services by defining a framework for Web262
Services implementation consisting of Functional Elements. Through these Functional Elements,263
which are implementation neutral, this Specification hopes to influence future software264
development towards assembly of services rather than ‘pure built only’.265

1.3 Terminolo gy266

267

Within this document the key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL268
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this269
document are to be interpreted as described in RFC2119 [3].270

271

Cross-references to the Functional Elements Requirements document [2] are designated272
throughout this specification to the requirement contained where the requirement number is273
enclosed in square brackets (e.g. [MANAGEMENT-005]).274

275

276

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 9 of 177

2 List of Functional Elements277

2.1 Event Han dler Functional Element278

2.1.1 Motivation279

Information is in abundance in a service-oriented environment. However, not all information is280
applicable to a particular enterprise and there lies the need to control information flow in an281
organization. In a Web Service-enabled implementation, the Event Handler Functional Element282
can help to fulfill this need by:283

• Managing the information flow through a subscription based mechanism,284

• Streamlining information into meaningful categories so as to improve relevancy to a285
potential consumer of the information, and286

• Refining information flow via a filtering mechanism287

288

This Functional Element fulfills the following requirements from the Functional Elements289
Requirements, Working Draft 01a:290

• Primary Requirements291

• MANAGEMENT-111,292

• PROCESS-005, and293

• PROCESS-100 to PROCESS-117.294

• Secondary Requirements295

• None296

2.1.2 Terms Used297

Terms Description

Active Event
Detection

Active Event Detection refers to the capability to periodically detect the
occurrence of an external Event.

Channel A Channel is a logical grouping of similar event types generated by the
suppliers. When an Event is routed to a channel, all the Event Consumers
who have subscribed to that Channel will be notified.

Event An Event is an indication of an occurrence of an activity, such as the
availability of a discounted air ticket. In such a case, it will trigger a follow-up
action such as the URL where the ticket can be bought. Interested event
consumer can then proceed with the purchase at the designated URL.

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 10 of 177

Event Consumer An Event Consumer is a receiver of the events generated by an Event
Supplier.

Event Supplier An Event Supplier generates Event. It can be an application or a service, or
even a person. Note that Event Suppliers are typically external to the Event
Handler.

Filter A Filter is a mechanism for defining Event that is of value to the Event
Consumer.

Routing Rule A Routing Rule defines how an Event is routed. An Event can be routed to a
Channel or directly to an Event Consumer.

298

Figure 1: An Overview of the Event Handler Functional Element

299

Figure 1 depicts the basic concepts of how the participating entities collaborate together in the300
Event Handler Functional Element. Beginning with the event supplier who generates an event,301
the event is subsequently routed to the routing rules engine. Depending on the rules specified by302
the event administrator on the engine, the event could be routed to an appropriate channel, for303
example, the airfreight channel. In this case, a notification message will be sent to the subscribing304
event consumers. In between that, there is a filtering engine to determine if a particular event is305
meaningful to the intended recipients and this is configurable by the recipients themselves.306

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 11 of 177

2.1.3 Key Features307

Implementations of the Event Handler Functional Element are expected to provide the following308
key features:309

1. The Functional Element MUST provide the capability to manage the creation (or registration)310
and deletion of instances of the following concepts based on a pre-defined structure:311

1.1. Event Supplier,312

1.2. Event Consumer,313

1.3. Event,314

1.4. Filter,315

1.5. Channel, and316

1.6. Routing Rule.317

2. The Functional Element MUST provide the capability to manage all the information (attribute318
values) stored in such concepts. This includes the capability to retrieve and update319
attribute’s values belonging to the concepts mentioned in Key Feature (1).320

3. The Functional Element MUST provide the capability to enable Event Suppliers to trigger321
relevant Events.322

4. The Functional Element MUST provide a mechanism to associate/unassociate Routing323
Rules to an Event.324

Example: As shown in Figure 1, where an event can be routed to Air Freight or Financial325
Channel or even to all channels based on the Routing Rules that are associated326
with the Event.327

5. As part of Key Feature (3), the Routing Rules must be able to route an event to all, specified328
Channels or individual Event Consumers.329

6. The Functional Element MUST enable Event Consumers to execute the following tasks to330
improve the relevancy of the incoming events”331

6.1. Subscribe/Unsubscribe to relevant Channel(s), and332

6.2. Apply a filter to the appropriate channel or event, which helps to refine the criteria of a333
useful event further.334

7. The Functional Element MUST provide the capability to notify relevant Event Consumers335
when an event occurs.336

Examples of notification types include SMS, email and Web Services invocations.337

8. As part of Key Feature (6), the notification must be able to handle differing requirements338
arising from different notification formats.339

Example: If the incoming event contains 2 important attributes, the order or position of340
these 2 attributes must be configurable to suit the convenience of the Event341
Consumer. This is extremely important in the case of Web Service Invocations.342

10. The Functional Element MUST provide a mechanism for managing the concepts specified343
across different application domains.344

Example: Namespace control mechanism345

346

In addition, the following key features could be provided to enhance the Functional Element347
further:348

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 12 of 177

1. The Functional Element MAY provide a mechanism to enable active event detection.349

2. If Key Feature (1) is implemented, then the Functional Element MUST provide the following350
capabilities also:351

2.1. Non-intrusive detection352

Example: The detection of a new event through periodic inspection of the audit log.353

2.2. Configurable event detection schedule354

Example: To inspect the audit log every 2 hours, where the duration between355
inspections is configurable.356

2.3. Ability to retrieve relevant data from external source(s) for further event processing by357
Event Handler358

Example: To retrieve Error Type and Message from audit log.359

3. The Functional Element MAY provide the capability to record event processing within the360
Event Handler. The logging of event processing includes the occurrences of event, sending361
of notifications, warning and error messages generated in the processing of events.362

4. The Functional Element MAY provide the capability scheduled-based event notification.363

364

2.1.4 Interdependencies365

Direct Dependency

Log Utility Functional Element The Log Utility Functional Element helps to log the audit trial.

366

Interaction Dependency

Notification Functional Element The Notification Functional Element helps to send SMS and
email to the appropriate Event Consumer.

367

2.1.5 Related Technologies and Standards368

None369

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 13 of 177

2.1.6 Model370

Figure 2: Model Of the Event Handler Functional Element [4]

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 14 of 177

2.1.7 Usage Scenarios371

2.1.7.1 Register Su pplier/Consumer372

2.1.7.1.1 Description373

This use case allows the user to register itself to the Event Handler Functional Element as an374
event supplier or an event consumer.375

2.1.7.1.2 Flow of Events376

2.1.7.1.2.1 Basic Flow377

The use case begins when the user of the Event Handler wants to register an event supplier or378
event consumer with the Event Handler.379

1: The user sends a request to Event Handler together with its profile data and operation.380

2: Based on the operation it specified, one of the following sub-flows is executed:381

• If the operation is ‘Register as supplier’, then sub-flow 2.1 is executed.382

• If the operation is ‘Register as consumer’, then sub-flow 2.2 is executed.383

• If the operation is ‘Un-register as supplier’, then sub-flow 2.3 is executed.384

• If the operation is ‘Un-register as consumer’, then sub-flow 2.4 is executed.385

• If the operation is ‘Update supplier’, then sub-flow 2.5 is executed.386

• If the operation is ‘Update consumer’, then sub-flow 2.6 is executed.387

• If the operation is ‘Retrieve supplier’, then sub-flow 2.7 is executed.388

• If the operation is ‘Retrieve consumer’, then sub-flow 2.8 is executed.389

2.1: Register as Supplier.390

2.1.1: The Functional Element gets the user profile data, i.e. namespace, name,391
description and type.392

2.1.2: The Functional Element registers the user as event supplier.393

2.1.3: The Functional Element returns the Supplier Id to the user.394

2.2: Register as Consumer.395

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 15 of 177

2.2.1: The Functional Element gets the user profile data, i.e. namespace, name,396
description and type.397

2.2.2: The Functional Element registers the user as event consumer.398

2.2.3: The Functional Element returns the Consumer Id to the user.399

2.3: Un-register as Supplier.400

2.3.1: The Functional Element gets the user namespace and name or User Id.401

2.3.2: The Functional Element checks whether the user is a supplier.402

2.3.3: The Functional Element removes the user as supplier.403

2.4: Un-register as Consumer.404

2.4.1: The Functional Element gets the user namespace and name or User Id.405

2.4.2: The Functional Element checks whether the user is a consumer.406

2.4.3: The Functional Element removes the user as consumer.407

2.5: Update Supplier.408

2.5.1: The Functional Element gets the user namespace and name or User Id together409
with the user profile.410

2.5.2: The Functional Element checks whether the user is a supplier.411

2.5.2: The Functional Element updates the user profile.412

2.6: Update Consumer.413

2.6.1: The Functional Element gets the user namespace and name or User Id together414
with the user profile.415

2.6.2: The Functional Element checks whether the user is a consumer.416

2.6.3: The Functional Element updates the user profile.417

2.7: Retrieve Supplier.418

2.7.1: The Functional Element gets the user namespace and name or User Id.419

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 16 of 177

2.7.2: The Functional Element checks whether the user is a supplier.420

2.7.3: The Functional Element returns the user profile.421

2.8: Retrieve Consumer.422

2.8.1: The Functional Element gets the user namespace and name or User Id.423

2.8.2: The Functional Element checks whether the user is a consumer.424

2.8.3: The Functional Element returns the user profile.425

3: The Functional Element returns the results to indicate the success or failure of this operation to426
the user and the use case ends.427

2.1.7.1.2.2 Alternative Flows428

1: Supplier Already Registered.429

1.1: If in the basic flow 2.1.2, the user already registered as supplier, Functional Element will430
return an error message to the user and the use case ends.431

2: Consumer Already Registered.432

2.1: If in the basic flow 2.2.2, the user already registered as consumer, Functional Element433
will return an error message to the user and the use case ends.434

3: Supplier or Consumer Not Registered.435

3.1: If in the basic flow 2.3.2, 2.4.2, 2.5.2, 2.6.2, 2.7.2, and 2.8.2, the user specified is not436
registered, Functional Element will return an error message to the user and the use case437
ends.438

4: Persistency Mechanism Error.439

4.1: If in the basic flow 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2,7 and 2.8, the Functional Element cannot440
perform data persistency, Functional Element will return an error message to the user and the441
use case ends.442

443

2.1.7.1.3 Special Req uirements444

None.445

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 17 of 177

2.1.7.1.4 Pre-Conditions446

None.447

2.1.7.1.5 Post-Condi tions448

None.449

2.1.7.2 Manage Ch annel450

2.1.7.2.1 Description451

This use case allows the user to manage channels.452

2.1.7.2.2 Flow of Events453

2.1.7.2.2.1 Basic Flow454

The use case begins when the user wants to create/retrieve/update/delete a channel455

1: The user sends request to manipulate a channel.456

2: Based on the operation it specifies, one of the following sub-flows is executed:457

• If the operation is ‘Create Channel’, the sub-flow 2.1 is executed.458

• If the operation is ‘Retrieve Channel’, the sub-flow 2.2 is executed.459

• If the operation is ‘Update Channel’, the sub-flow 2.3 is executed.460

• If the operation is ‘Delete Channel’, the sub-flow 2.4 is executed.461

2.1: Create Channel.462

2.1.1: The Functional Element gets channel definition, i.e. namespace, channel name463
and description.464

2.1.2: The Functional Element checks whether the channel exists.465

2.1.3: The Functional Element creates the channel.466

2.2: Retrieve Channel.467

2.2.1: The Functional Element gets namespace, channel name and retrieve condition.468

2.2.2: The Functional Element retrieves the channel’s information according to the469
condition.470

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 18 of 177

2.3: Update Channel.471

2.3.1: The Functional Element gets namespace, channel name and description.472

2.3.2: The Functional Element checks whether the channel exists.473

2.3.3: The Functional Element updates the channel definition.474

2.4: Delete Channel.475

2.4.1: The Functional Element gets namespace and channel name.476

2.4.2: The Functional Element checks whether the channel exists.477

2.4.3: The Functional Element removes the channel from the Functional Element.478

3: The Functional Element returns the results of the operation to the user and the use case ends.479

2.1.7.2.2.2 Alternative Flows480

1: Channel Already Exists.481

1.1: If in the basic flow 2.1.2, the channel is already defined, Functional Element returns an482
error message and the use case ends.483

2: Conditional Retrieving.484

2.1: In the basic flow 2.2.2:485

2.1 1: If the condition is the retrieval by channel name and the channel does not exist,486
then it will go to Alternative Flow 3.487

2.1.2: If the condition is the retrieval of one channel definition, it returns the definition of488
that channel and the use case ends.489

2.1.3: If the condition is the retrieval of all channels’ information, it returns all channels490
definition and the use case ends.491

2.1.4: If the condition is the retrieval of channel through channel description, it will return492
all matched channels and the use case ends.493

2.1.5: If the condition is the retrieval of registered consumers, it returns the list of494
consumer registered on the channel and the use case ends.495

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 19 of 177

3: Channel Not Found.496

3.1: If in the basic flow 2.2.2, 2.3.2 and 2.4.2, the channel does not exist, Functional497
Element will return an error message and the use case ends.498

4: Consumer Not Found.499

4.1: If in the basic flow 2.1.3, 2.5.3 and 2.6.3, the event consumer does not exist,500
Functional Element will return an error message and the use case ends.501

5: Extension Point.502

5.1: If in the basic flow 2.1.3, and 2.3.3, the event consumers that subscribed to the503
channel are provided, the use case Subscribe/un-subscribe channel will be extended.504

2.1.7.2.3 Special Req uirements505

None.506

2.1.7.2.4 Pre-Conditions507

None.508

2.1.7.2.5 Post-Condi tions509

None.510

2.1.7.3 Subscribe/Un-subscribe To Channel511

2.1.7.3.1 Description512

This use case performs the subscription or un-subscription on a channel for an event consumer.513

2.1.7.3.2 Flow of Events514

2.1.7.3.2.1 Basic Flow515

The use case begins when the user wants to subscribe or un-subscribe to a channel.516

1: The user sends the request.517

2: Based on the operation it specifies, one of the following sub-flows is executed:518

• If the operation is ‘Subscribe to Channel’, then sub-flow 2.1 is executed.519

• If the operation is ‘Un-Subscribe to Channel’, then sub-flow 2.2 is executed.520

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 20 of 177

2.1: Subscribe To Channel.521

2.1.1: The Functional Element gets event consumer Id, or consumer namespace and522
consumer name, together with channel namespace and channel name.523

2.1.2: The Functional Element checks whether the channel exists.524

2.1.3: The Functional Element adds the subscription of the consumer to the channel.525

2.2: Un-Subscribe To Channel.526

2.2.1: The Functional Element gets event consumer Id, or consumer namespace and527
consumer name, together with channel namespace and channel name.528

2.2.2: The Functional Element checks whether the channel exists.529

2.2.3: The Functional Element removes the subscription of the consumer to the channel.530

3: The Functional Element returns the results of the operation to the user and the use case ends.531

2.1.7.3.2.2 Alternative Flows532

1: Channel Not Found.533

1.1: If in the basic flow 2.1.2 and 2.2.2, the channel specified does not exist, Functional534
Element will return an error message to the user and the use case ends.535

2: Event Consumer Not Found.536

2.1: If in the basic flow 2.1.2 and 2.2.2, the event consumer related does not exist, Functional537
Element will return an error message to the user and the use case ends.538

2.1.7.3.3 Special Req uirements539

None.540

2.1.7.3.4 Pre-Conditions541

None.542

2.1.7.3.5 Post-Condi tions543

None.544

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 21 of 177

2.1.7.4 Manage Event545

2.1.7.4.1 Description546

This use case describes the scenarios of managing events.547

2.1.7.4.2 Flow of Events548

2.1.7.4.2.1 Basic Flow549

The use case begins when the user wants to manage events.550

1: The user sends a request to the Functional Element.551

2: Based on the operation it specifies, one of the following sub-flows is executed:552

• If the operation is ‘Create Event’, then sub-flow 2.1 is executed.553

• If the operation is ‘Retrieve Event Information’, then sub-flow 2.2 is executed.554

• If the operation is ‘Update Event Definition’, then sub-flow 2.3 is executed.555

• If the operation is ‘Delete Event’, then sub-flow 2.4 is executed.556

• If the operation is ‘Assign Flow’, then sub-flow 2.5 is executed.557

• If the operation is ‘Un-Assign Flow’, then sub-flow 2.6 is executed.558

2.1: Create Event559

2.1.1: The Functional Element gets event definition including namespace, event name,560
event description, event routing rule, and event attributes definition.561

2.1.2: The Functional Element verifies the parameters.562

2.1.3: The Functional Element verifies the routing rule through use case verify routing563
rule.564

2.1.4: The Functional Element creates event definition by recording the definition of565
event.566

2.2: Retrieve Event.567

2.2.1: The Functional Element gets namespace, event name, and condition.568

2.2.2: The Functional Element retrieves the event definition according to the condition.569

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 22 of 177

2.3: Update Event Definition570

2.3.1: The Functional Element gets event definition including namespace, event name,571
event description, event routing rule, and event attributes definition.572

2.3.2: The Functional Element verifies the parameters.573

2.3.3: The Functional Element verifies the routing rule through use case verify routing574
rule.575

2.3.4: The Functional Element updates the event definition.576

2.4: Delete Event.577

2.4.1: The Functional Element gets namespace and event name.578

2.4.2: The Functional Element checks whether the event exists.579

2.4.3: The Functional Element deletes the event definition.580

2.5: Assign Flow.581

2.5.1: The Functional Element gets namespace, event name and flow name.582

2.5.2: The Functional Element checks whether the event exists and flow defined.583

2.5.3: The Functional Element assigns the flow to the event.584

2.6: Un-assign Flow.585

2.6.1: The Functional Element gets namespace, event name and flow name.586

2.6.2: The Functional Element checks whether the event exists and flow defined.587

2.6.3: The Functional Element un-assigns the flow to the event.588

3: The Functional Element returns the results of the operation to the user and the use case ends.589

2.1.7.4.2.2 Alternative Flows590

1: Event Already Exist.591

1.1: If in the basic flow 2.1.2, the event already exists, Functional Element will return an error592
message to the user and the use case ends.593

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 23 of 177

2: Parameters Are Invalid.594

2.1: If in the basic flow 2.1.2 and 2.3.2, the parameters provided are invalid, Functional595
Element will return an error message to the user and the use case ends.596

3: Event Not Found.597

3.1: If in the basic flow 2.2.2, 2.3.2 and 2.4.2, the event does not exist, Functional Element598
will return an error message to the user and the use case ends.599

4: Flow Not Defined.600

4.1: If in the basic flow 2.1.2 and 2.3.2, the flow does not exist, Functional Element will return601
an error message to the user and the use case ends.602

5: Condition Retrieve.603

5.1: In the basic flow 2.2.2:604

5.1.1: If the retrieving condition is the retrieval of event definition based on event name, it605
returns event definition and the use case ends.606

5.1.2: If the retrieving condition is the retrieval of all event definition, it returns all event607
definition and the use case ends.608

5.1.3: If the retrieving condition is the retrieval of events assigned to specified channel, it609
returns the list of event definitions.610

5.1.4: If the retrieving condition is the retrieval of channels associated with specified611
event, it returns the list of channel definition.612

6: Extension Point.613

6.1: If in the basic flow 2.1.4, and 2.3.4, the event consumers that subscribed to the event are614
provided, the use case Subscribe/Un-subscribe event will be extended.615

2.1.7.4.3 Special Req uirements616

None.617

2.1.7.4.4 Pre-Conditions618

None.619

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 24 of 177

2.1.7.4.5 Post-Condi tions620

None.621

2.1.7.5 Subscribe/Un -subscribe To Event622

2.1.7.5.1 Description623

This use case performs the subscription or un-subscription on an event for an event consumer.624

2.1.7.5.2 Flow of Events625

2.1.7.5.2.1 Basic Flow626

The use case begins when the user wants to subscribe or un-subscribe an event.627

1: The user sends a request.628

2: Based on the operation it specifies, one of the following sub-flows is executed:629

• If the operation is ‘Subscribe to Event’, then sub-flow 2.1 is executed.630

• If the operation is ‘Un-Subscribe to Event’, then sub-flow 2.2 is executed.631

2.1: Subscribe To Event.632

2.1.1: The Functional Element gets event consumer Id, or consumer namespace and633
consumer name, together with event namespace and event name.634

2.1.2: The Functional Element checks whether the event exists.635

2.1.3: The Functional Element adds the subscription of the consumer to the event.636

2.2: Un-Subscribe To Event.637

2.2.1: The Functional Element gets event consumer Id, or consumer namespace and638
consumer name, together with event namespace and event name.639

2.2.2: The Functional Element checks whether the event exists.640

2.2.3: The Functional Element removes the subscription of the consumer to the event.641

3: The Functional Element returns the results of the operation to the user and the use case ends.642

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 25 of 177

2.1.7.5.2.2 Alternative Flows643

1: Event Not Found.644

1.1: If in the basic flow 2.1.2 and 2.2.2, the event specified does not exist, Functional Element645
will return an error message to the user and the use case ends.646

2: Event Consumer Not Found.647

2.1: If in the basic flow 2.1.2 and 2.2.2, the event consumer related does not exist, Functional648
Element will return an error message to the user and the use case ends.649

2.1.7.5.3 Special Req uirements650

None.651

2.1.7.5.4 Pre-Conditions652

None.653

2.1.7.5.5 Post-Condi tions654

None.655

2.1.7.6 Verify Rout ing Rule656

2.1.7.6.1 Description657

This use case verifies the syntax of routing rule.658

2.1.7.6.2 Flow of Events659

2.1.7.6.2.1 Basic Flow660

The use case begins when the user wants to verify the correctness of a routing expression.661

1: The user sends a request.662

2: The Functional Element gets the routing expression.663

3: The Functional Element checks the syntax of routing expression.664

4: The Functional Element verifies the parameters.665

5: The Functional Element returns the status of the operation to the user and the use case ends.666

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 26 of 177

2.1.7.6.2.2 Alternative Flows667

1: Routing Rule Expression Syntax Error.668

1.1: If in the basic flow 3, there is a syntax error, Functional Element will return an error669
message to the user and the use case ends.670

2: Event Consumer Not Found.671

2.1: If in the basic flow 4, the event consumer related does not exist, Functional Element will672
return an error message to the user and the use case ends.673

2.1.7.6.3 Special Req uirements674

None.675

2.1.7.6.4 Pre-Conditions676

None.677

2.1.7.6.5 Post-Condi tions678

None.679

2.1.7.7 Manage Fil ter680

2.1.7.7.1 Description681

A filter is used to filter out certain events to those event consumers even though they are the682
intended receivers according to the routing rules.683

2.1.7.7.2 Flow of Events684

2.1.7.7.2.1 Basic Flow685

The use case begins when the user wants to create/retrieve/update/delete a filter.686

1: The user sends a request to manage a filter.687

2: Based on the operation it specifies, one of the following sub-flows is executed:688

• If the operation is ‘Create Filter’, then sub-flow 2.1 is executed.689

• If the operation is ‘Retrieve Filter’, then sub-flow 2.2 s executed.690

• If the operation is ‘Update Filter’, then sub-flow 2.3 is executed.691

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 27 of 177

• If the operation is ‘Delete Filter’, then sub-flow 2.4 is executed.692

2.1: Create Filter.693

2.1.1: The Functional Element gets filter definition, i.e. consumer namespace, consumer694
name, filter name, description, event name or channel name.695

2.1.2: The Functional Element checks whether the event or channel exists.696

2.1.3: The Functional Element saves the filter definition.697

2.2: Retrieve Filter.698

2.2.1: The Functional Element gets the filter name.699

2.2.2: The Functional Element retrieves the filter information according to the name.700

2.3: Update Filter.701

2.3.1: The Functional Element gets filter definition, i.e. consumer namespace, name, filter702
name, description, event name or channel name.703

2.3.2: The Functional Element checks the parameters.704

2.3.3: The Functional Element updates the filter definition.705

2.4: Delete Filter.706

2.4.1: The Functional Element gets namespace and filter name.707

2.4.2: The Functional Element checks whether the filter exists.708

2.4.3: The Functional Element removes the filter from the Functional Element.709

3: The Functional Element returns the results of the operation to the user and the use case ends.710

2.1.7.7.2.2 Alternative Flows711

1: Filter Already Exists.712

1.1: If in the basic flow 2.1.2, the filter is already defined, Functional Element will return an713
error message and the use case ends.714

2: Event Not Found.715

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 28 of 177

2.1: If in the basic flow 2.1.2 and 2.3.2, the event used does not exist, Functional Element will716
return an error message and the use case ends.717

3: Channel Not Found.718

3.1: If in the basic flow 2.1.2 and 2.3.2, the channel used does not exist, Functional Element719
will return an error message and the use case ends.720

4: Consumer Not Found.721

4.1: If in the basic flow 2.1.3, 2.5.3, and 2.6.3, the event consumer does not exist, Functional722
Element will return an error message and the use case ends.723

2.1.7.7.3 Special Req uirements724

None.725

2.1.7.7.4 Pre-Conditions726

None.727

2.1.7.7.5 Post-Condi tions728

None.729

2.1.7.8 Notify Even t730

2.1.7.8.1 Description731

This use case allows the event supplier to notify an event to the Event Handler Functional732
Element. Once the Event Handler Functional Element receives the notification, it will process the733
event based on the processing logic defined.734

2.1.7.8.2 Flow of Events735

2.1.7.8.2.1 Basic Flow736

The use case begins when the user wants to notify an event.737

1: The user sends a notification.738

2: The Functional Element receives the notification with parameters, i.e. event supplier id or event739
supplier namespace and name.740

3: The Functional Element checks whether the event is defined and event supplier is registered.741

4: Include use case Process Event to process the notification of event.742

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 29 of 177

5: The Functional Element returns the status of the operation to the user and the use case ends.743

2.1.7.8.2.2 Alternative Flows744

1: User Is Not Registered.745

1.1: If in the basic flow 3, the user is not registered, Functional Element will return an error746
message to the user and the use case ends.747

2: Event Not Defined.748

2.1: If in the basic flow 3, the event is not defined, Functional Element will return an error749
message to the user and the use case ends.750

3: Error Returned.751

3.1: If in the basic flow 4, an error is returned by use case Process event, Functional Element752
will return an error message to the user and the use case ends.753

2.1.7.8.3 Special Req uirements754

None.755

2.1.7.8.4 Pre-Conditions756

None.757

2.1.7.8.5 Post-Condi tions758

None.759

2.1.7.9 Configure Monitoring760

2.1.7.9.1 Description761

This use case describes the capability of configuration on event monitoring. Based on the762
configuration, Event Handler will pro-actively check whether an event has happened.763

2.1.7.9.2 Flow of Events764

2.1.7.9.2.1 Basic Flow765

The use case begins when the user wants to configure the event monitoring.766

1: The user sends a request to manage a filter.767

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 30 of 177

2: Based on the operation it specifies, one of the following sub-flows is executed:768

• If the operation is ‘Add Configuration’, then sub-flow 2.1 is executed.769

• If the operation is ‘Remove Configuration’, then sub-flow 2.2 is executed.770

2.1: Add Configuration.771

2.1.1: The Functional Element gets configuration definition, i.e. configuration name,772
namespace, event name, connection parameters, condition that signifies the events and773
schedule.774

2.1.2: The Functional Element saves filter definition.775

2.2: Remove Configuration.776

2.2.1: The Functional Element gets configuration name.777

2.2.2: The Functional Element removes the configuration.778

3: The Functional Element returns the results of the operation to the user and the use case ends.779

2.1.7.9.2.2 Alternative Flows780

1: Configuration Exist.781

1.1: If in the basic flow 2.1.2, the configuration already exists, Functional Element will return782
an error message and the use case ends.783

2.1.7.9.3 Special Req uirements784

None.785

2.1.7.9.4 Pre-Conditions786

None.787

2.1.7.9.5 Post-Condi tions788

None.789

2.1.7.10 Detect Event790

2.1.7.10.1 Description791

This use case describes the event monitoring capability that Event Handler provides. Once Event792
Handler detects an event, it will trigger the pre-defined process for the event.793

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 31 of 177

2.1.7.10.2 Flow of Events794

2.1.7.10.2.1 Basic Flow795

The use case begins when the Functional Element clock generates the trigger.796

1: The Functional Element clock generates a trigger.797

2: The Functional Element receives the trigger and checks the condition for pre-defined798
monitoring sources.799

3: The Functional Element checks whether the event happens.800

4: The Functional Element returns the results of the operation and the use case ends.801

2.1.7.10.2.2 Alternative Flows802

1: External Functional Element Not Available.803

1.1: If in the basic flow 3, the external Functional Element is not available and the Event804
Handler cannot make a connection, Functional Element will return an error message and the805
use case ends.806

2: Data Not Available.807

2.1: If in the basic flow 3, the data that signifies the event cannot be accessed, Functional808
Element will return an error message and the use case ends.809

3: Extension Point.810

3.1: If in the basic flow 3, the event happens, Functional Element will extend to use case811
Process event.812

2.1.7.10.3 Special Req uirements813

None.814

2.1.7.10.4 Pre-Conditions815

None.816

2.1.7.10.5 Post-Condi tions817

None.818

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 32 of 177

2.1.7.11 Process Event819

2.1.7.11.1 Description820

This use case describes the core functionality of Event Handler. It is the engine that processes821
the events. Actor can be the Functional Element clock that triggers the scheduled event822
notification, or any user who wants to notify the event.823

2.1.7.11.2 Flow of Events824

2.1.7.11.2.1 Basic Flow825

The use case begins when there is a request to process the event.826

1: The user sends a request to process an event.827

2: Based on the actor of this use case, one of the sub-flows is executed.828

• If the initiator is the Functional Element clock, then sub-flow ‘Initiated By Functional829
Element Clock’ is executed.830

• If the initiator is other than Functional Element clock, then sub-flow ‘Initiated By Any831
User’ is executed.832

2.1: Initiated By Functional Element Clock.833

2.1.1: The Functional Element looks up scheduled events defined to find out time-due834
notification.835

2.1.2: The Functional Element retrieves the routing rule for the event.836

2.1.3: The Functional Element looks up the corresponding consumers based on the837
routing rule.838

2.1.4: The Functional Element retrieves filters defined and find out the event receivers.839

2.1.5: The Functional Element notifies or invokes the event consumers based on the840
routing rule defined.841

2.2: Initiated By Any User.842

2.2.1: The Functional Element retrieves the routing rule for the event.843

2.2.2: The Functional Element looks up the corresponding consumers.844

2.2.3: The Functional Element retrieves filters defined and find out the event receivers.845

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 33 of 177

2.2.4: The Functional Element notifies or invokes the event consumers based on the846
routing rule defined.847

3: The Functional Element logs the notification of event and the use case ends.848

2.1.7.11.2.2 Alternative Flows849

1: Notify Event.850

In basic flow 2.1.4 and 2.2.4, based on the type of consumer, one of the sub-flows is execute.851

• If the consumer type is ‘SMTP’, then sub-flow Notify via SMTP is executed.852

• If the consumer type is ‘SMS Gateway’, then sub-flow Notify via SMS Gateway is853
executed.854

• If the consumer type is ‘Notify RPC-Web Service’, then sub-flow Notify RPC-Web855
Service is executed.856

• If the consumer type is ‘Notify Document Style Web Service’ then sub-flow Notify857
Document style Web Service is executed.858

1.1: Notify via SMTP.859

1.1.1: The Functional Element gets the pre-defined message for event and forms the860
parameters.861

1.1.2: The Functional Element gets the parameters for SMTP server.862

1.1.3: The Functional Element sends out the pre-defined message and the use case863
ends.864

1.2: Notify via SMS Gateway.865

1.2.1: The Functional Element gets the pre-defined message for event and forms the866
parameters.867

1.2.2: The Functional Element gets the parameters for the SMS gateway.868

1.2.3: The Functional Element sends out the pre-defined message and the use case869
ends.870

1.3: Notify RPC-Web Service.871

1.3.1: The Functional Element gets the operation parameter.872

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 34 of 177

1.3.2: The Functional Element gets Web Services endpoint parameters.873

1.3.3: The Functional Element dynamically invokes the Web Service and the use case874
ends.875

1.4: Notify Document Style Web Service.876

1.4.1: The Functional Element gets the operation parameter.877

1.4.2: The Functional Element gets Web Services endpoint parameters.878

1.4.3: The Functional Element dynamically generates the SOAP message and sends to879
the Web Services and the use case ends.880

2: Flow Is Defined.881

If in the basic flow 2.1.2 and 2.2.1, a flow is defined for the event, Functional Element will perform882
the following steps:883

2.1: The Functional Element retrieves all the intended event consumers defined in the flow.884

2.2: The Functional Element will go to basic flow 2.2.885

2.3: The Functional Element will resume the execution from basic flow 2.1.2 or 2.2.1.886

3: Log Utility Not Available.887

3.1: If in the basic flow 3, the Log Utility Functional Element is not available, Functional888
Element will return an error message to the user and the use case ends.889

4: SMS Gateway Not Available.890

4.1: If in the Alternative Flow 1.2.3, the SMS Gateway is not available, Functional Element will891
return an error message to the user and the use case ends.892

5: SMPT Server Not Available.893

5.1: If in the Alternative Flow 1.1.3, the SMTP server is not available, Functional Element will894
return an error message to the user and the use case ends.895

6: RPC Web Service Not Available.896

6.1: If in the Alternative Flow 1.3.3, the Web Service is not available, Functional Element will897
return an error message to the user and the use case ends.898

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 35 of 177

7: Document Style Web Service Not Available.899

7.1: If in the Alternative Flow 1.4.3, document style Web Service is not available, Functional900
Element will return an error message to the user and the use case ends.901

2.1.7.11.3 Special Req uirements902

2.1.7.11.3.1 Supportability903

The application server used must have a JMS service provided.904

2.1.7.11.4 Pre-Conditions905

None.906

2.1.7.11.5 Post-Condi tions907

None.908

909

910

911

912

913

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 36 of 177

2.2 Group Ma nagement Functional Element914

2.2.1 Motivation915

The Group Management Functional Element is expected to be an integral part of the User Access916
Management (UAM) functionalities. In a Web Service-enabled implementation, this Functional917
Element helps to provide the mechanism to manage users in a collective manner. This is918
important as it provides the flexibility of adopting either coarse or fine-grain access controls, or919
both.920

921

This Functional Element fulfills the following requirements from the Functional Elements922
Requirements, Working Draft 01a:923

• Primary Requirements924

• MANAGEMENT-050 to MANAGEMENT-053, and925

• MANAGEMENT-078926

• Secondary Requirements927

• None928

2.2.2 Terms Used929

Terms Description

Group A Group is a collection of individual users, and are typically grouped
together as they have certain commonalities

Namespace Namespace is use to segregate the instantiation of the application across
different application domains. If a company has two separate standalone
application, for example, an email application and an equipment booking
application, then these two are considered as separate application domains.

User A user is loosely defined to include both human and virtual users. Virtual
users could include service users and application (or machine) users that
are utilising other services in a SOA environment.

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 37 of 177

User Access
Management /
UAM

User Access Management or UAM refer to the concept of managing users
in a holistic manner, considering all aspect which includes:

• Defining a set of basic user information that should be stored in any
enterprise application.

• Providing a means to extend this basic set of user information when
needed.

• Simplifying management by grouping related users together
through certain criteria.

• Having the flexibility of adopting both coarse and fine grain access
controls.

930

2.2.3 Key Features931

Implementations of the Group Management Functional Element are expected to provide the932
following key features:933

1. The Functional Element MUST provide a basic Group structure with a set of pre-defined934
attributes.935

2. The Functional Element MUST provide the capability to extend on the basic Group structure936
dynamically.937

3. As part of Key Feature (2), this dynamic extension MUST be definable and configurable at938
runtime implementation of the Functional Element.939

4. The Functional Element MUST provide the capability to manage the creation and deletion of940
instances of Groups based on defined structure.941

5. The Functional Element MUST provide the capability to manage all the information (attribute942
values) stored in such Groups. This includes the capability to retrieve and update attribute’s943
values belonging to a Group.944

6. The Functional Element MUST provide a mechanism to manage the collection of users in a945
Group. This includes the capability to create, retrieve, update and delete users belonging to946
a Group.947

7. The Functional Element MUST provide a mechanism for managing Groups across different948
application domains.949

Example: Namespace control mechanism950

951

In addition, the following key features could be provided to enhance the Functional Element952
further:953

1. The Functional Element MAY provide a mechanism to enable different Groups to be related954
to one another.955

2. The Functional Element MAY also provide a mechanism to enable hierarchical relationships956
between Groups.957

Example: Parent and Child Relationship.958

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 38 of 177

3. As an extension of Key Feature (2), the Functional Element MAY also provide the capability959
to enable Groups to be part of the collection of “users” of another Group.960

Example: Adding of Group “Dept-A” to “Company-XYZ” – “Dept-A” is a Group, and also part961
of the collection of Group “Company-XYZ”.962

4. The Functional Element MAY provide validity checks when managing information stored in a963
Group.964

Example: Adding of User “john” – A validity check could be imposed to ensure that a user965
“john” exists before adding to into the Group.966

967

2.2.4 Interdependency968

Direct Dependency

User Management Functional
Element

The User Management Functional Element is used to
manage the user’s attributes. The Group Management
Functional Element in turn provides useful aggregation of the
users. Together, they are able to achieve effective and
efficient management of user information.

969

2.2.5 Related Technologies and Standards970

None.971

972

2.2.6 Model973

Figure 3: Model Of the Group Management Functional Element [5]

974

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 39 of 177

2.2.7 Usage Scenarios975

2.2.7.1 Manage Group976

This use case describes the management of a group, namely the creation, deletion, retrieval and977
update of the group.978

2.2.7.1.1 Flow of Events979

2.2.7.1.1.1 Basic Flow980

This use case starts when the user wants to manage group.981

• If user wants to ‘Create Group’, then basic flow 1 is executed.982

• If user wants to ‘Retrieve Group’, then basic flow 2 is executed.983

• If user wants to ‘Update Group’, then basic flow 3 is executed.984

• If user wants to ‘Delete Group’, then basic flow 4 is executed.985

1: Create Group.986

1.1: User provides the basic information that is necessary for creating a group.987

1.2: Functional Element creates the group and the use case ends.988

2: Retrieve Group.989

2.1: User provides the necessary information for retrieving the complete group’s attributes.990

2.2: Functional Element returns the group’s information and the use case ends.991

3: Update Group.992

3.1: User provides the necessary information for updating the group’s attributes.993

3.2: Functional Element updates the group and the use case ends.994

4: Delete Group.995

4.1: User provides the necessary information for deleting a particular group.996

4.2: Functional Element deletes the group and the use case ends.997

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 40 of 177

2.2.7.1.1.2 Alternative Flows998

1: Group Exist.999

1.1: In basic flow 1.2, Functional Element detects an identical group. Functional Element1000
returns an error message and the use case ends.1001

2: Group Does Not Exist.1002

2.1: In basic flow 2.2, 3.2 and 4.2, Functional Element cannot find a group that matches the1003
user’s criteria. Functional Element returns an error message and the use case ends.1004

3: Save Updated Information.1005

3.1: In basic flow 1.2, 2.2, 3.2 and 4.2, Functional Element fails to save the updated1006
information. Functional Element returns an error message and the use case ends.1007

2.2.7.1.2 Special Req uirements1008

None.1009

2.2.7.1.3 Pre-Conditions1010

None.1011

2.2.7.1.4 Post-Condi tions1012

None.1013

2.2.7.2 Manage Group Members1014

2.2.7.2.1 Description1015

This use case is an extension of the manage group use case. Specifically, it describes the1016
scenarios to manage members in the group.1017

2.2.7.2.2 Flow of Events1018

2.2.7.2.2.1 Basic Flow1019

This use case starts when the user wants to manage members in a group.1020

• If user wants to ‘Create Members In A Group’, then basic flow 1 is executed.1021

• If user wants to ‘Retrieve Members From A Group’, then basic flow 2 is executed.1022

• If user wants to ‘Delete Members From A Group’, then basic flow 3 is executed.1023

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 41 of 177

1: Create Members In A Group.1024

1.1: User provides the necessary information for retrieving the group.1025

1.2: Functional Element adds members to the group and the use case ends.1026

2: Retrieve Members In A Group.1027

2.1: User provides the necessary information for retrieving the group.1028

2.2: Functional Element returns the members and the use case ends.1029

3: Delete Members From Group.1030

3.1: User provides the necessary information for retrieving the group.1031

3.2: User provides the necessary information for deleting members in the group.1032

3.3: Functional Element deletes members from group and the use case ends.1033

2.2.7.2.2.2 Alternative Flows1034

1: Group Does Not Exist.1035

1.1: In basic flow 1.1, 2.1 and 3.1, Functional Element cannot find the group requested.1036
Functional Element returns an error message and the use case ends.1037

2: Members Does Not Exist1038

2.1: In basic flow 3.3, the Functional Element attempts to delete a non-existence member.1039
Functional Element returns an error message and the use case ends.1040

2.2.7.2.3 Special Req uirements1041

None.1042

2.2.7.2.4 Pre-Conditions1043

None.1044

2.2.7.2.5 Post-Condi tions1045

None.1046

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 42 of 177

2.2.7.3 Manage Group Dynamic Definition1047

2.2.7.3.1 Description1048

This use case describes scenario involved in managing the dynamic group definition.1049

2.2.7.3.2 Flow of Events1050

2.2.7.3.2.1 Basic Flow1051

This use case starts when the user wants to manage dynamic group definition. This include1052
create, retrieve, update and delete dynamic group definition.1053

• If user wants to ‘Create Dynamic Definition For A Group’, then basic flow 1 is1054
executed.1055

• If user wants to ‘Retrieve Dynamic Definition For A Group’, then basic flow 2 is1056
executed.1057

• If user wants to ‘Delete Dynamic Definition For A Group’, then basic flow 3 is1058
executed.1059

• If user wants to ‘Update Dynamic Definition For A Group’, then basic flow 4 is1060
executed.1061

1062

1: Create Dynamic Definition For A Group.1063

1.1: User provides the additional definition for the group.1064

1.2: Functional Element creates the additional definition for the group and the use case ends.1065

2: Retrieve Dynamic Definition For A Group.1066

2.1: User provides the necessary information to retrieve a particular group.1067

2.2: Functional Element returns the additional definition for the group and the use case ends.1068

3: Delete Dynamic Definition For Group.1069

3.1: User provides the necessary information to retrieve a particular group.1070

3.2: Functional Element deletes the dynamic definition belonging to the group and the use1071
case ends.1072

4: Update Dynamic Definition For Group.1073

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 43 of 177

4.1: User provides the necessary information to retrieve a particular group.1074

4.2: User provides the necessary dynamic definition that needs to be updated.1075

4.3: Functional Element update the dynamic definition and the use case ends.1076

2.2.7.3.2.2 Alternative Flows1077

1: Group Does Not Exist.1078

1.1: In basic flow 1.1, 2.1, 3.1 and 4.1, Functional Element cannot find the group specified.1079
Functional Element returns an error message and the use case ends.1080

2: Dynamic Group Definition Already Exists.1081

2.1: In basic flow 1.2, Functional Element returns the error message and the use case ends.1082

3: Dynamic Group Definition Does Not Exist.1083

3.1: In basic flow 4.3, Functional Element cannot update the dynamic group definition.1084
Functional Element returns an error message and the use case ends.1085

2.2.7.3.3 Special Req uirements1086

None.1087

2.2.7.3.4 Pre-Conditions1088

None.1089

2.2.7.3.5 Post-Condi tions1090

None.1091

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 44 of 177

2.3 Identity M anagement Functional Element1092

2.3.1 Motivation1093

As secured Web Services become rampant, with each having its own authentication and1094
authorisation management, users are finding it difficult to keep track of their accounts and1095
passwords. Through the use of Identity Management, users can now voluntarily establish links1096
between their accounts so that they need not sign in multiple times to access enterprise-level1097
Web Services. This mechanism is known as Single Sign-On (SSO). SSO can further be extended1098
to access Web Services from across different business organisations that have prior agreements1099
to trust and transact with each other (also known as a circle of trust). This mechanism, which1100
involves federating and signing-in of identity’s accounts across different trusted organisations, is1101
known as Federated Identity Single Sign-On.1102

1103

Identity Management is about the management of information pertaining to an entity as well as1104
the process of identification, authentication and authorization of resources to that entity.1105

1106

Identity management generally covers the following aspects:1107

• Basic user accounts management facilities1108

• User authentication mechanism(s)1109

• User authorisation mechanism(s)1110

• Generation of audit trails for user activities1111

1112

This Functional Element fulfills the following requirements from the Functional Elements1113
Requirements, Working Draft 01a:1114

• Primary Requirements1115

• SECURITY-001,1116

• SECURITY-003 (all),1117

• SECURITY -004 (all),1118

• SECURITY -040 and1119

• SECURITY -041.1120

• Secondary Requirements1121

• None1122

1123

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 45 of 177

2.3.2 Terms Used1124

Terms Description

Assertion Assertion refers to a piece of data produced by an Assertion Authority
regarding either an act of authentication performed on a subject, attribute
information about a subject, or authorization permissions applying to the
subject with respect to a specified resource.

Assertion Authority An entity within a trusted circle that provides authentication assertions.

Access Policy A logically defined, executable and testable set of rules or behavior for
access control.

Entity Entity can refer to a person, an organization, a resource or a service.

Federated Identity An identity that has been associated, connected or binded with other
accounts for a same given Principal.

Identity Identity refers to a set of information that an entity can use to uniquely
describe itself.

Identity Provider An entity that creates, maintains, and manages identity information for
Principals and provides Principal authentication to other service providers
within a trusted circle.

Identity Repository Identity Repository refers to the storage of the identity information. Common
examples of identity repositories are relational databases, text files etc.

Principal Principal refers to an entity whose identity can be authenticated. Also
known as Subject.

Resource A resource in an application is defined to encompass users, services, data /
information, transaction and security

Security Markup
Assertion
Language

Security Markup Assertion Language refers to the set of specifications
describing assertions that are encoded in XML, profiles for attaching the
assertions to various protocols and frameworks, the request/response
protocol used to obtain assertions, and bindings of this protocol to various
transfer protocols (for example, SOAP and HTTP).

Single Sign-On
(SSO)

The ability to use proof of an existing authentication session with an identity
provider to create authenticated sessions with other service providers.

Subject Subject – see Principal.

1125

The following terms mentioned in this document are used in accordance with the terms defined in1126
the Assertions and Protocol for the OASIS Security Assertion Markup Language (SAML) v1.11127
specification.1128

• Assertion [section 2.3.2]1129

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 46 of 177

• AudienceRestrictionCondition [section 2.3.2.1.3]1130

• AuthenticationQuery [section 3.3.3]1131

• AuthenticationStatement [section 2.4.3]1132

• KeyInfo [section 5.4.5]1133

• Request [section 3.2.2]1134

• Response [section 3.4.2]1135

• Subject [section 2.4.2.1]1136

1137

2.3.3 Key Features1138

Implementations of the Identity Management Functional Element are expected to provide the1139
following key features:1140

5. The Functional Element MUST be have the mechanism to access an Identity Repository.1141

6. The Functional Element MUST provide the capability to manage the creation and deletion of1142
instances of Identity in the said Identity Repository.1143

7. The Functional Element MUST have the mechanisms to manage all the information1144
(attribute values) stored in such Identities. This includes the capability to:1145

7.1. Retrieve and update attribute’s values belonging to a Identity,1146

7.2. Encrypt sensitive user information,1147

7.3. Authenticate a user, and1148

7.4. Assign/Unassign Access Policy (or Policies).1149

Example: Different levels of privileges to access protected resources.1150

8. As part of Key Feature (3.3), the authentication of an Identity MUST be achieved at least1151
through the use of a password.1152

9. As part of Key Feature (3.3), the Functional Element MUST also provide the capability to1153
use an Assertion Authority for Single Sign-On (SSO) authentication.1154

10. As part of Key Feature (5), the SSO message exchange and protocol MUST use an1155
approved standard.1156

11. As part of Key Feature (3.4), a mechanism MUST be provided to verify the Identity’s Access1157
Policy on protected Resources.1158

12. The Functional Element MUST provide the capability to create audit trails.1159

Example: Timestamp of an Identity’s access to Resources.1160

1161

In addition, the following key features could be provided to enhance the Functional Element1162
further:1163

1. The Functional Element MAY provide an Identity Repository.1164

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 47 of 177

2. If Key Feature (1) is provided, the Functional Element MUST provide the capability to1165
manage the creation and deletion of instances of Identities based on a pre-defined structure.1166

3. The Functional Element MAY provide additional storage in the Identity Repository for an1167
Identity to customise its preferences.1168

Example: Identity’s preferred subscription of notifications/alerts for news.1169

4. The Functional Element MAY provide a capability to use an Identity Provider for Federated1170
Identity SSO authentication.1171

5. If Key Feature (4) is provided, the Federated Identity SSO message exchange and protocol1172
MUST use an approved standard.1173

1174

2.3.4 Interdependencies1175

Direct Dependencies

User Management Functional
Element

The User Management Functional Element is being used for
account management.

Role and Access Management
Functional Element

The Role and Access Management Functional Element is
being used for access control and authorization

Log Utility Functional Element The Log Utility Functional Element is being used for logging
and creation of audit trails.

1176

2.3.5 Related Technologies and Standards1177

Specifications Specific References

Web Services Security v1.0 [6] Web Services Security: SOAP Message Security 1.0 (WS-
Security 2004) – OASIS Standard 200401, March 2004

Security Assertion Markup
Language (SAML) v1.1. [7]

Assertions and Protocol for the OASIS Security Assertion
Markup Language (SAML) V1.1 – OASIS Standard, 2
September 2003

Bindings and Profiles for the OASIS Security Assertion
Markup Language (SAML) V1.1 – OASIS Standard, 2
September 2003, in particular the two schemas below:

• Assertion Schema

• Protocol Schema

Liberty Alliance Project
Specifications

Liberty Alliance ID-FF 1.2 Specifications [8]

Liberty Alliance ID-WSF 1.0 Specifications [9]

WS-Federation [10] Web Services Federation Language (WS-Federation) - 08
July 2003

1178

1179

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 48 of 177

2.3.6 Model1180

Figure 4: Model Of the Identity Management Functional Element [11]

1181

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 49 of 177

2.3.7 Usage Scenarios1182

2.3.7.1 Manage Account1183

2.3.7.1.1 Description1184

This use case describes the creation/retrieval/update/deletion of an identity’s account. An1185
identity’s account usually consists of two elements: i) the user information and ii) the associated1186
access policy.1187

As Identity Management Functional Element leverages on the User Management and Role-and-1188
Access Management Functional Element to provide for these functionalities, please refer to1189
sections 2.15 User Management Functional Element and 2.8 Role and Access Management1190
Functional Element use cases for details.1191

2.3.7.2 Request Assertion1192

2.3.7.2.1 Description1193

This use case describes the composition of either 1) an authentication query or 2) an1194
authorisation decision query and sending it to the assertion authority.1195

2.3.7.2.2 Flow of Events1196

2.3.7.2.2.1 Basic Flow1197

This use case starts when the user wants to compose a query to the assertion authority.1198

If the user requests for an authentication query, then sub-flow 1 is executed.1199

If the user requests for an authorisation decision query, then sub-flow 2 is executed.1200

1: Request for Authentication Assertion1201

1.1: The user composes a valid SAML Request with an AuthenticationQuery and sends it to1202
the assertion authority.1203

1.2: The user waits for an SAML Response from the assertion authority.1204

1.3: The user obtains the SAML Assertion from the SAML Response and use case ends.1205

2: Request for Authorisation Decision Assertion1206

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 50 of 177

2.1: The user composes a valid SAML Request with an AuthorizationDecisionQuery and1207
sends it to the assertion authority.1208

2.2: The user waits for an SAML Response from the assertion authority.1209

2.3: The user obtains the SAML Assertion from the SAML Response and use case ends.1210

2.3.7.2.2.2 Alternative Flows1211

1: Invalid Request1212

1.1: If in basic flow 1.1 or 2.1, if any of the parameters passed into the request is invalid, the1213
Functional Element flag an exception and use case ends.1214

2: Error message from assertion authority1215

2.1: If in basic flow 1.3 or 2.3, the assertion authority is unable to return an assertion (e.g.1216
user has not logged on etc.), it returns an error code and an error message.1217

2.2: The Functional Element flag an error with the error message attached and use case1218
ends.1219

2.3.7.2.3 Special Req uirements1220

None.1221

2.3.7.2.4 Pre-Conditions1222

None.1223

2.3.7.2.5 Post-Condi tions1224

None.1225

2.3.7.3 Validate Assertion1226

2.3.7.3.1 Description1227

This use case describes the validation of either 1) the Authentication Assertion or 2) the1228
Authorisation Decision Assertion1229

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 51 of 177

2.3.7.3.2 Flow of Events1230

2.3.7.3.2.1 Basic Flow1231

This use case starts when the user wants to check if the assertion it is a valid assertion from the1232
assertion authority.1233

1: The user passes the assertion to the Functional Element for validation.1234

2: The Functional Element checks if the assertion is signed by the assertion authority.1235

3: The Functional Element checks for an un-expired assertion.1236

4: The Functional Element checks if the assertion has an AudienceRestrictionCondition and1237
verifies that the service provider using the Functional Element is in the audience list.1238

5: Based on the type of assertion, one of the sub-flows is executed.1239

• If the user wants to check for a valid authentication assertion, then sub-flow 5.1 is executed.1240

• If the user wants to check for a valid authorisation decision assertion, then sub-flow 5.2 is1241
executed.1242

5.1: Validate Authentication Statement1243

5.1.1: The Functional Element checks if the assertion has indeed an1244
AuthenticationStatement.1245

5.1.2: The Functional Element checks if the Subject in the AuthenticationStatement1246
matches the userid of the principal.1247

5.1.3: The Functional Element verifies the Subject with its KeyInfo.1248

5.1.4: The Functional Element returns the status code to the user and use case ends.1249

5.2: Validate Authorisation Decision Statement1250

5.2.1: The Functional Element checks if the assertion has indeed an1251
AuthorizationDecisionStatement.1252

5.2.2: The Functional Element checks if the Resource in the1253
AuthorizationDecisionStatement matches the id of the requested resource.1254

5.2.3: The Functional Element determines if the decision is Permit.1255

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 52 of 177

5.2.4: The Functional Element returns the status code to the user and use case ends.1256

2.3.7.3.2.2 Alternative Flows1257

1: Signature Error1258

1.1: If in basic flow 2, the Functional Element is unable to verify that the signature is from the1259
assertion authority, it returns an error and use case ends.1260

2: Expired Assertion1261

2.1: If in basic flow 3, the Functional Element finds that the assertion has already expired, it1262
returns an error and use case ends.1263

3: Audience Error1264

3.1: If in basic flow 4, the service provider is not in the AudienceRestrictionCondition, the1265
Functional Element returns an error and use case ends.1266

4: Invalid Authentication Assertion1267

4.1: If in basic flow 5.1.1, the Functional Element is unable to find an1268
AuthenticationStatement, it returns an error and use case ends.1269

5: Mismatch Subject1270

5.1: If in basic flow 5.1.2, the Functional Element is unable to match the Subject in1271
AuthenticationStatement, it returns an error and use case ends.1272

6: Subject Error1273

6.1: If in basic flow 5.1.3, the Functional Element is unable to verify the Subject with the1274
KeyInfo, it returns an error and use case ends.1275

7: Invalid Authorisation Decision Assertion1276

7.1: If in basic flow 5.2.1, the Functional Element is unable to find an1277
AuthorizationDecisionStatement, it returns an error and use case ends.1278

8: Mismatch Resource1279

8.1: If in basic flow 5.2.2, the Functional Element is unable to match the resource in1280
AuthorizationDecisionStatement, it returns an error and use case ends.1281

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 53 of 177

2.3.7.3.3 Special Req uirements1282

None.1283

2.3.7.3.4 Pre-Conditions1284

None.1285

2.3.7.3.5 Post-Condi tions1286

None.1287

2.3.7.4 Create Aud it Logs1288

2.3.7.4.1 Description1289

This use case describes logging all identity management activities for audit purposes.1290

2.3.7.4.2 Flow of Events1291

2.3.7.4.2.1 Basic Flow1292

This use case starts when any of other Functional Element use cases are triggered.1293

1: The Functional Element opens an audit log file.1294

2: The Functional Element writes a timestamp identity management activity message into the1295
audit log file.1296

3: The Functional Element closes the audit log file and the use case ends.1297

2.3.7.4.2.2 Alternative Flows1298

1: Log File Not Created1299

1.1: If in the basic flow 1, the Functional Element cannot open the audit file, it creates a new1300
audit file and use case continues.1301

2: Error Writing Log1302

2.1: If in the basic flow 2, the Functional Element has error writing to file, it will flag an1303
exception and the use case ends.1304

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 54 of 177

2.3.7.4.3 Special Req uirements1305

None.1306

2.3.7.4.4 Pre-Conditions1307

None.1308

2.3.7.4.5 Post-Condi tions1309

None.1310

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 55 of 177

2.4 Log Utility Functional Element1311

2.4.1 Motivation1312

In a Web Service-enabled implementation, the Log Utility Functional Element can help to1313
organise the diagnostic output that may be generated by the implementation. In order to achieve1314
that, the following capabilities should be provided. They include:1315

• Logging information into different data sources,1316

• Allowing user defined log format to be used,1317

• Capability for storing log information, and1318

• Providing the capability to analyse the information log.1319

1320

This Functional Element fulfills the following requirements from the Functional Elements1321
Requirements, Working Draft 01a:1322

• Primary Requirements1323

• MANAGEMENT-007, [*To be fulfilled in next working draft]1324

• MANAGEMENT-110,1325

• MANAGEMENT-112 to MANAGEMENT-114, and1326

• PROCESS-009.1327

• Secondary Requirements1328

• MANAGEMENT-006,1329

• MANAGEMENT-095,1330

• MANAGEMENT-111,1331

• PROCESS-008,1332

• PROCESS-115, and1333

• PROCESS-118.1334

1335

2.4.2 Terms Used1336

Terms Description

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 56 of 177

Log Category A Log Category holds information about a log structure. This information
includes the name of the log, the data source the log is to be stored and the
format of the log.

1337

2.4.3 Key Features1338

Implementations of the Log Utility Functional Element are expected to provide the following key1339
features:1340

1. The Functional Element MUST provide the capability to define a Log Category and manage1341
it. This includes:1342

1.1. The capability to define the format of the log information,1343

1.2. The capability to choose the data source to logged to, and1344

1.3. The capability to define the name of the log category.1345

2. The Functional Element MUST provide the capability to manage logging of events/records.1346
This includes:1347

2.1. The capability to insert a new record into the log,1348

Examples of a log record could include events, transactions status, usages status or1349
users’ activities.1350

2.2. The capability to search and return result sets of search on log records, and1351

2.3. The capability to archive or delete obsolete log records.1352

1353

In addition, the following key features could be provided to enhance the Functional Element1354
further:1355

1. The Functional Element MAY also provide the capability to perform conditional search or1356
viewing of log records.1357

2. The Functional Element MAY provide the capability to perform basic statistical analysis on1358
log records. Basic statistical analysis capabilities include:1359

2.1. Minimum and maximum value calculations on numerical values,1360

2.2. Mean values calculations on numerical values, and1361

2.3. Standard deviation calculations on numerical values.1362

Note: Report Structure Creation, Generation and Notification are expected to be added in the1363
next Working Draft version under this optional key features.1364

1365

2.4.4 Interdependencies1366

None1367

2.4.5 Related Technologies and Standards1368

None1369

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 57 of 177

2.4.6 Model1370

Figure 5: Model Of the Log Utility Functional Element [12]

1371

2.4.7 Usage Scenarios1372

2.4.7.1 Manage Category1373

2.4.7.1.1 Description1374

This use case allows any user to manage log category. Log category defines the data fields that1375
the user wants to log.1376

2.4.7.1.2 Flow of Events1377

2.4.7.1.2.1 Basic Flow1378

This use case starts when users wants to manage the log category.1379

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 58 of 177

1: The users send the request to the Functional Element. The request contains the operations1380
the users want to perform.1381

2: The Functional Element receives the request. Based on the operation specified, one of the1382
following sub-flows is executed.1383

• If the operation is ‘Create Log Category’, then sub-flow 2.1 is executed.1384

• If the operation is ‘Retrieve Log Category Information’, then sub-flow 2.2 is executed.1385

• If the operation is ‘Delete Log Category’, then sub-flow 2.3 is executed.1386

2.1: Create Log Category.1387

2.1.1: The Functional Element gets the following data from the users.1388

• Category name1389

• The definition of category1390

• The data source where the log is located1391

2.1.2: The Functional Element checks the uniqueness of the category name.1392

2.1.3: The Functional Element connects to the data source according to the specified1393
data source.1394

2.1.4: The Functional Element creates the empty log in the data source.1395

2.1.5: The Functional Element writes the category name and its definition in its own1396
category definition record and the use case end.1397

2.2: Retrieve Log Category Information.1398

2.2.1: The Functional Element gets the category name.1399

2.2.2: The Functional Element checks the existence of this category.1400

2.2.3: The Functional Element retrieves the definition of this category.1401

2.2.4: The Functional Element returns the definition of this category to the user and the1402
use case ends.1403

2.3: Delete Log Category.1404

2.3.1: The Functional Element gets the category name.1405

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 59 of 177

2.3.2: The Functional Element checks the existence of this category.1406

2.3.3: The Functional Element deletes its own records of category definition and the use1407
case ends.1408

2.4.7.1.2.2 Alternative Flows1409

1: Category Already Exists.1410

1.1: In sub-flow 2.1.2, if the category name is already used by others, the Functional Element1411
returns an error message and the use case ends.1412

2: Data Source Not Available.1413

2.1: In sub-flow 2.1.3, if the data source is not available, the Functional Element returns an1414
error message and the use case ends.1415

3: Create Log Error.1416

3.1: In sub-flow 2.1.4, if the log cannot be created on the specified data source, the1417
Functional Element returns an error message and the use case ends.1418

4: Category Does Not Exist.1419

4.1: In sub-flow 2.2.1 and 2.3.1, the category cannot be found in Functional Element category1420
definition, the Functional Element returns an error message and the use case ends.1421

5: Delete Category Error.1422

5.1: In sub-flow 2.3.3, the log category cannot be deleted, the Functional Element returns an1423
error message and the use case ends.1424

2.4.7.1.3 Special Req uirements1425

None1426

2.4.7.1.4 Pre-Conditions1427

None.1428

2.4.7.1.5 Post-Condi tions1429

If the use case was successful, the category definition is saved to the Functional Element and an1430
empty log is created in the specified data source. Otherwise, the Functional Element’s state is1431
unchanged.1432

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 60 of 177

2.4.7.2 Log Event1433

2.4.7.2.1 Description1434

The use case allows any user to log any event.1435

2.4.7.2.2 Flow of Events1436

2.4.7.2.2.1 Basic Flow1437

This use case starts when users want to write to a log.1438

1: The users provide the event data, category name he/she wants to log to the Functional1439
Element.1440

2: The Functional Element gets the definition of the category.1441

3: The Functional Element connects the log data source.1442

4: The Functional Element writes the log record into the end of the log file and the use case ends.1443

2.4.7.2.2.2 Alternative Flows1444

1: Category Does Not Exist.1445

1.1: If in basic flow 2, the category that the users want to write does not exist, the Functional1446
Element returns an error message and the use case ends.1447

2: Data Source Not Available.1448

2.1: If in basic flow 3, the data source is not available, the Functional Element returns an error1449
message and the use case ends.1450

3: Data Not Match.1451

3.1: If in basic flow 4, the data provided by the users for logging does not match with the1452
category definition in the Functional Element, the Functional Element returns an error1453
message and the use case ends.1454

2.4.7.2.3 Special Req uirements1455

None.1456

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 61 of 177

2.4.7.2.4 Pre-Conditions1457

None.1458

2.4.7.2.5 Post-Condi tions1459

If the use case was successful, the log record is saved to the Functional Element. Otherwise, the1460
Functional Element’s state is unchanged.1461

2.4.7.3 View Log1462

2.4.7.3.1 Description1463

The use case allows users to retrieve the log content.1464

2.4.7.3.2 Flow of Events1465

2.4.7.3.2.1 Basic Flow1466

This use case starts when users want to view a log.1467

1: The users specify the category name and the search criteria, such as searching by event type1468
or searching by time period (starting time and end time).1469

2: The Functional Element connects to the data storage where the log records are stored.1470

3: The Functional Element retrieves the log content and returns to the service users and the use1471
case ends.1472

2.4.7.3.2.2 Alternative Flows1473

1: Search Criteria Not Valid.1474

1.1: If in basic flow 1 and 3, the search criteria specified by the users is invalid for Search1475
Service, the Functional Element returns an error message and the use case ends.1476

2.4.7.3.3 Special Req uirements1477

None.1478

2.4.7.3.4 Pre-Conditions1479

None.1480

2.4.7.3.5 Post-Condi tions1481

None.1482

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 62 of 177

2.4.7.4 Analyze Lo g Data1483

2.4.7.4.1 Description1484

The use case allows users to analyze the log data, i.e., to get statistics of certain event. The1485
service users may get statistical results on the log data, such as the cumulative events and mean1486
of two numerical values.1487

2.4.7.4.2 Flow of Events1488

2.4.7.4.2.1 Basic Flow1489

This use case starts when users want to analyze the log data.1490

1: The users specify the items to analyze, i.e. field name and category name.1491

2: The users specify the analysis method, option among max, min and mean.1492

3: The Functional Element retrieves the definition of the category and validates the parameters1493
provided by the users.1494

4: The Functional Element connects to the data source and retrieves the log data.1495

5: The Functional Element analyses the log data and does statistics on the data with respect to1496
what is specified in Step 1 and 2.1497

6: The Functional Element returns the analyzed result and the use case ends.1498

2.4.7.4.2.2 Alternative Flows1499

1: Invalid Item Specified.1500

1.1: If in basic flow 1, the analyze items specified by the users are invalid, i.e. invalid field and1501
invalid data source, the Functional Element returns an error message and the use case ends.1502

2: Category Does Not Exist.1503

2.1: If in basic flow 3, the category that the users want to write to does not exist, the1504
Functional Element returns an error message and the use case ends.1505

3: Data Source Not Available.1506

3.1: If in basic flow 4, the data source is not available, the Functional Element returns an error1507
message and the use case ends.1508

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 63 of 177

2.4.7.4.3 Special Req uirements1509

2.4.7.4.3.1 Supportability1510

Only basic statistic methods of numerical value are supported.1511

2.4.7.4.4 Pre-Conditions1512

None.1513

2.4.7.4.5 Post-Condi tions1514

None.1515

2.4.7.5 Manage Lo g1516

2.4.7.5.1 Description1517

The use case allows users to drop log and backup log.1518

2.4.7.5.2 Flow of Events1519

2.4.7.5.2.1 Basic Flow1520

The use case starts when the users want to drop and backup a log of a specific data source.1521

1: The users specify the function name to the Functional Element.1522

2: Based on the operation specified, one of the following sub-flows is executed.1523

• If the operation is ‘Delete Log’, then sub-flow 2.1 is executed.1524

• If the operation is ‘Backup Log’, then sub-flow 2.2 is executed.1525

2.1: Delete Log1526

2.1.1: The Functional Element gets category name from the users.1527

2.1.2: The Functional Element retrieves the definition of the category.1528

2.1.3: The Functional Element connects to the corresponding data source.1529

2.1.4: The Functional Element deletes the log from the data source.1530

2.2: Backup Log1531

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 64 of 177

2.2.1: The Functional Element gets the category name and the destination file name from1532
the users.1533

2.2.2: The Functional Element retrieves the definition of the category.1534

2.2.3: The Functional Element connects to the corresponding data source.1535

2.2.4: The Functional Element read the original log and writes it to the destination file.1536

2.4.7.5.2.2 Alternative Flows1537

1: Category Does Not Exist.1538

1.1: If in basic flow 2.1.2 and 2.2.2 the category that the users want to write does not exist,1539
the Functional Element returns an error message and the use case ends.1540

2: Data Source Not Available.1541

2.1: If in basic flow 2.1.4 and 2.2.4, the data source is not available, the Functional Element1542
returns an error message and the use case ends.1543

2.4.7.5.3 Special Req uirements1544

None.1545

2.4.7.5.4 Pre-Conditions1546

None.1547

2.4.7.5.5 Post-Condi tions1548

None.1549

1550

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 65 of 177

2.5 Notification Functional Element1551

2.5.1 Motivation1552

In a Web Service-enabled implementation, timely information is crucial for the management of1553
resources that it encompasses. Other uses of this Functional Element include broadcasting of1554
information to other services and this could span across both the wired and wireless medium. In1555
order to fulfill these needs, this Functional Element will cover the following aspects which include:1556

• Providing the capability to configure and link with the various gateways so as to enable1557
messages dissemination, and1558

• Providing the capability to send instantaneous or scheduled messages to the intended1559
audiences.1560

1561

This Functional Element fulfills the following requirements from the Functional Elements1562
Requirements, Working Draft 01a:1563

• Primary Requirements1564

• DELIVERY-003, and1565

• PROCESS-118.1566

• Secondary Requirements1567

• MANAGEMENT-205,1568

• PROCESS-005,1569

• PROCESS-102,1570

• PROCESS-107, and1571

• PROCESS-110.1572

1573

2.5.2 Terms Used1574

Terms Description

Default Notification
Channel

Default Notification Channel refers to the particular channel setting or value
that is assigned automatically by the Functional Element and remains in
effect unless canceled or overridden.

Device Type Device Type refers to devices such as Mobile Phone, Numeric Pager,
Alphanumeric Numeric Pager and Desktop etc.

Notification
Channel

Notification Channel refers to the various messaging channels such as SMS
(Short Message Service), Numeric Message, Alpha-numeric Message and
E-mail Message etc.

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 66 of 177

Schedule Type Schedule Type refers to the various types of Scheduling format such as
ONCE, DAILY, WEEKLY, and MONTHLY.

SMS Short Message Service

SMS Gateway A device that enable sending of numeric, alpha-numeric and SMS
messages.

SMTP Simple Mail Transfer Protocol

SMTP Server SMTP server supports email notifications.

1575

2.5.3 Key Features1576

Implementations of the Notification Functional Element are expected to provide the following key1577
features:1578

1. The Functional Element MUST support notifications using both the SMS and SMTP1579
protocols.1580

2. The Functional Element MUST provide the capability to configure supported SMS1581
gateway(s) and the SMTP servers where applicable.1582

Example: The capability to configure the username and password for SMTP server’s1583
authentication.1584

3. The Functional Element MUST provide the capability to send notifications to single and1585
multiple recipients.1586

4. The Functional Element MUST provide the capability to structure a notification based on the1587
selected protocol(s).1588

1589

In addition, the following key features could be provided to enhance the Functional Element1590
further:1591

1. The Functional Element MAY provide the capability to send notifications either instantly or1592
based on a pre-defined schedule.1593

2. If Key Feature (1) is provided, the Functional Element MAY also provide the capability to1594
send scheduled messages in the following manner:1595

2.1. Hourly,1596

2.2. Daily,1597

2.3. Weekly, and1598

2.4. Monthly (based on a particular date or particular day of the week).1599

Note: The next working draft version will attempt to look at other available protocols.1600

1601

2.5.4 Interdependencies1602

None1603

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 67 of 177

2.5.5 Related Technologies and Standards1604

Technologies Description

Short Message Service (SMS) Short Message Service is a feature available with some
wireless phones that allow users to send and/or receive short
alphanumeric messages. This Functional Element is heavily
reliance on this for transmission of messages to a pager and
hand phone.

Simple Mail Transfer Protocol
(SMTP)

A protocol used to send e-mail on the Internet. SMTP is a set
of rules regarding the interaction between a program sending
e-mail and a program receiving e-mail. This Functional
Element is heavily reliance on this for transmission of
messages to the designated email account.

1605

2.5.6 Model1606

Figure 6: Model Of the Notification Functional Element [13]

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 68 of 177

2.5.7 Usage Scenarios1607

2.5.7.1 Distribute Notification1608

2.5.7.1.1 Description1609

This use case allows the Functional Element to distribute messages to intended recipients.1610

2.5.7.1.2 Flow of Events1611

2.5.7.1.2.1 Basic Flow1612

This use case starts when the service user or system clock wishes to send message to recipient.1613

1: The Functional Element decides to send messages to recipients. Based on the operation1614
specified, one of the following sub-flows is executed.1615

• If the request is ‘Initiated By The User’, then sub-flow 1.1 is executed.1616

• If the request is ‘Initiated By The System Clock’ then sub-flow 1.2 is executed.1617

1.1: Initiated By The User1618

1.1.1: The Functional Element receives the request from the service user.1619

1.1.2: The Functional Element validates passed parameters such as message type,1620
recipient address, and message key and message length.1621

1.1.3: The Functional Element checks the availability of the connection.1622

1.1.4: The Functional Element sends message to recipient(s) and the use case end1623

1.2 : Initiated By The System Clock1624

1.2.1: The Functional Element checks scheduled message(s) and end date for scheduled1625
message.1626

1.2.2: Once the Functional Element detects scheduled messages, one of the sub-flows is1627
executed.1628

• If the Functional Element detects the scheduled notification is once, the ‘Activate1629
Once Notification’ sub-flow 1.2.2.1 is executed.1630

• If the Functional Element detects the scheduled notification is daily, the ‘Activate1631
Daily Notification’ sub-flow 1.2.2.2 is executed.1632

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 69 of 177

• If the Functional Element detects the scheduled notification is weekly, the1633
‘Activate Weekly Notification’ sub-flow 1.2.2.3 is executed.1634

• If the Functional Element detects the scheduled notification is Monthly, the1635
‘Activate Monthly Notification’ sub-flow 1.2.2.4 is executed.1636

1.2.2.1: Activate Once Notification.1637

1.2.2.1.1: The Functional Element compares the system time with the scheduled1638
message’s time and gets notification details if both times are match.1639

1.2.2.2: Activate Daily Notification.1640

1.2.2.2.1: The Functional Element compares the system time with the scheduled1641
message’s time and gets notification details if both times are match.1642

1.2.2.3: Activate Weekly Notification.1643

1.2.2.3.1: The Functional Element compares the system date and time with the1644
scheduled message’s date and time and gets notification details if both date &1645
time are match.1646

1.2.2.4: Activate Monthly Notification.1647

1.2.2.4.1: The Functional Element compares the system date and time with the1648
scheduled message’s date and time and gets notification ID if both date & time1649
are match.1650

1.2.3: The Functional Element extracts the list of recipient(s) and message(s).1651

1.2.4: The Functional Element checks the availability of connection.1652

1.2.5: The Functional Element sends message to recipient(s) and the use case ends.1653

2.5.7.1.2.2 Alternative Flows1654

1: Unsupported Message Type/Recipient Address/Message.1655

1.1: If in basic flow 1.1.2, Functional Element detects unsupported message type, recipient1656
address or message, the Functional Element returns an error message and the use case1657
ends.1658

2: Connection Fail.1659

2.1: If in basic flow 1.1.3 and 1.2.4, the Functional Element is unable to detect connection1660
type, the Functional Element returns an error message and the use case ends1661

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 70 of 177

3: Delete Scheduled Message.1662

3.1: If in basic flow 1.2.1, if the Functional Element detects that the scheduled message has1663
expired, the Functional Element will proceed to delete those messages.1664

2.5.7.1.3 Special Req uirements1665

2.5.7.1.3.1 Supportability1666

None1667

2.5.7.1.4 Pre-Conditions1668

None.1669

2.5.7.1.5 Post-Condi tions1670

None.1671

2.5.7.2 Manage Scheduled Notification1672

2.5.7.2.1 Description1673

This use case allows the service user to maintain the notification information. This includes1674
adding, changing and deleting notification information from the Functional Element.1675

2.5.7.2.2 Flow of Events1676

2.5.7.2.2.1 Basic Flow1677

This use case starts when the service user wishes to schedule notification message(s).1678

1: The Functional Element requests the service user to specify the function he/she would like to1679
perform (such as create, update and delete notification message).1680

2: Once the Functional Element user provides the requested information, one of the sub-flows is1681
executed.1682

• If the service user provides ‘Create Notification’, then sub-flow 2.1 is executed.1683

• If the service user provides ‘Delete Notification’, then sub-flow 2.2 is executed.1684

2.1 Create Notification1685

2.1.1: The Functional Element receives the request from the service user.1686

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 71 of 177

2.1.2: The Functional Element validates passed parameters such as schedule type,1687
message type, recipient address, message key and the message length.1688

2.1.3: The Functional Element generates and assigns a unique Notification ID and adds1689
the notification information to the Functional Element and ends use case.1690

2.2: Delete Notification1691

2.2.1: The Functional Element requests the service user to provide the Notification1692
information.1693

2.2.2: The Functional Element retrieves the existing Notification information.1694

2.2.3: The Functional Element deletes the Notification record and use case ends.1695

2.5.7.2.2.2 Alternative Flows1696

1: Invalid Parameters.1697

1.1: If in basic flow 2.1.2, if the Functional Element detects invalid parameters such as1698
schedule type, date & time, recipient address, message key and message, the Functional1699
Element returns an error message and the use case ends.1700

2.5.7.2.3 Special Req uirements1701

None.1702

2.5.7.2.4 Pre-Conditions1703

None.1704

2.5.7.2.5 Post-Condi tions1705

If the use case was successful, the schedule message information is added to Functional1706
Element. Otherwise, the Functional Element’s state is unchanged.1707

2.5.7.3 Configure System1708

2.5.7.3.1 Description1709

This use case allows the service user to maintain the notification Functional Element behaviors.1710
This includes configuration of supported Notification Channel, Default Notification Channel,1711
Schedule Types, and SMS and SMTP Gateway.1712

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 72 of 177

2.5.7.3.2 Flow of Events1713

2.5.7.3.2.1 Basic Flow1714

1: The Functional Element requests the service user to specify or configure the function he/she1715
would like to perform (such as create, update and delete configuration parameters).1716

2: Once the Functional Element user provides the requested information, one of the sub-flows is1717
executed.1718

• If user wishes to configure ‘Notification Channel’, then sub-flow 2.1 is executed.1719

• If user wishes to configure ‘Default Notification Channel’, then sub-flow 2.2 is executed.1720

• If user wishes to configure ‘Schedule Types’, then sub-flow 2.3 is executed.1721

• If user wishes to configure ‘SMTP server and SMS Gateway’, then sub-flow 2.4 is1722
executed.1723

2.1 Notification Channel.1724

2.1.1: The Functional Element receives the request from the service user.1725

2.1.2: The Functional Element validates passed parameters such as Notification Channel1726
information.1727

2.1.3: The Functional Element generates and assigns a unique Notification Channel ID1728
and adds the notification information to the Functional Element and the use case ends.1729

2.2: Default Notification Channel.1730

2.2.1: The Functional Element requests the service user to provide the Default1731
Notification information.1732

2.2.2: The Functional Element validates passed parameters such as Default Notification1733
Channel information.1734

2.2.3: The Functional Element updates existing Default Notification or create new Default1735
Notification information and the use case ends.1736

2.3 Schedule Types.1737

2.3.1: The Functional Element receives the request from the service user.1738

2.3.2: The Functional Element validates passed parameters such as Schedule Type.1739

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 73 of 177

2.3.3: The Functional Element generates and assigns a unique Schedule Type ID and1740
adds the Schedule Type information to the Functional Element and the use case ends.1741

2.4: SMTP server and SMS Gateway.1742

2.4.1: The Functional Element requests the service user to provide the SMTP server and1743
SMS Gateway information.1744

2.4.2: The Functional Element validates passed parameters such as SMTP server and1745
SMS Gateway information.1746

2.4.3: The Functional Element updates existing SMTP server and SMS Gateway or1747
create new SMTP server and SMS Gateway information and the use case ends.1748

2.5.7.3.2.2 Alternative Flows1749

1: Invalid Parameters.1750

1.1: If in sub-flow 2.1.2, 2.2.2, 2.3.2 and 2.4.2, if the Functional Element detects invalid1751
parameters such as Notification Channel, Default Notification Channel, and SMTP server,1752
Schedule Types and SMS Gateway information, the Functional Element returns an error1753
message and the use case ends1754

2.5.7.3.3 Special Req uirements1755

None.1756

2.5.7.3.4 Pre-Conditions1757

None.1758

2.5.7.3.5 Post-Condi tions1759

None1760

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 74 of 177

2.6 Phase and Lifecycle Management Functional Element1761

2.6.1 Motivation1762

The Phase and Lifecycle Management Functional Element is expected to be an integral part of1763
the User Access Management (UAM) functionalities that is expected to be needed by a Web1764
Service-enabled implementation. This FE is expected to fulfill the needs arising out of managing1765
the dynamic status of user information across the whole lifecycle. As such it will cover aspects1766
that include:1767

• Basic lifecycle management facilities,1768

• Basic phase management facilities, and1769

• Management of user information in phases across the whole lifecycle.1770

1771

This Functional Element fulfills the following requirements from the Functional Elements1772
Requirements, Working Draft 01a:1773

• Primary Requirements1774

• MANAGEMENT-070 to MANAGEMENT-0781775

• Secondary Requirements1776

• None1777

1778

2.6.2 Terms Used1779

Terms Description

Group A Group is a collection of individual users, and are typically grouped
together as they have certain commonalities

Namespace Namespace is use to segregate the instantiation of the application across
different application domains. If a company has two separate standalone
application, for example, an email application and an equipment booking
application, then these two are considered as separate application domains

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 75 of 177

Phase/lifecycle Phase/lifecycle refers to the phases a project goes through between when it
is conceived and when it is completed. As an example, the software
lifecycle. It typically includes the following phases.

• Requirements Analysis

• Design, Construction

• Testing (Validation)

• Installation

• Operation

• Maintenance

• Retirement.

User A user is loosely defined to include both human and virtual users. Virtual
users could include service users and application (or machine) users that
are utilising other services in a SOA environment.

User Access
Management
(UAM)

User Access Management or UAM refer to the concept of managing users
in a holistic manner, considering all aspect which includes:

• Defining a set of basic user information that should be stored in any
enterprise application.

• Providing a means to extend this basic set of user information when
needed..

• Simplifying management by grouping related users together
through certain criteria.

• Having the flexibility of adopting both coarse/fine grain access
control.

1780

2.6.3 Key Features1781

Implementations of the Phase and Lifecycle Management Functional Element are expected to1782
provide the following key features:1783

1. The Functional Element MUST provide basic structures based on a set of pre-defined1784
attributes for Lifecycle and Phase.1785

2. The Functional Element MUST provide the capability to manage the creation and deletion of1786
instances of Lifecycle and Phase based on the pre-defined structures.1787

3. The Functional Element MUST provide a means to manage the lifecycles and phases1788
contained within. This includes:1789

3.1. The capability to retrieve and update a lifecycle or phase1790

3.2. The capability to add/remove phases from a lifecycle1791

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 76 of 177

4. The Functional Element MUST provide a mechanism to manage the collection of users in a1792
Phase. This includes:1793

4.1. The capability to assign and un-assign users belonging to a Phase.1794

4.2. The users could be individual Users or Groups.1795

5. The Functional Element MUST provide a mechanism for managing Groups across different1796
application domains.1797

Example: Namespace control mechanism1798

1799

2.6.4 Interdependencies1800

Direct Dependency

Group Management Functional
Element

The Group Management Functional Element is used to
achieve effective and efficient management of user’s
information in each of the different phases..

1801

2.6.5 Related Technologies and Standards1802

None.1803

2.6.6 Model1804

1805

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 77 of 177

Figure 7: Model Of the Phase and Lifecycle Functional Element [14]

2.6.7 Usage Scenarios1806

2.6.7.1 Manage Lifecycle1807

2.6.7.1.1 Description1808

This use case is used to create, update, retrieve and delete the lifecycle.1809

2.6.7.1.2 Flow of Events1810

2.6.7.1.2.1 Basic Flow1811

This use case starts when the user wants to manage phase in lifecycle.1812

• If user wants to ‘Create Lifecycle’, then basic flow 1 is executed.1813

• If user wants to ‘Retrieve Lifecycle’, then basic flow 2 is executed.1814

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 78 of 177

• If user wants to ‘Update Lifecycle’, then basic flow 3 is executed.1815

• If user wants to ‘Delete Lifecycle’, then basic flow 4 is executed.1816

1: Create Lifecycle.1817

1.1: User provides information to create lifecycle.1818

1.2: Functional Element creates lifecycle and the use case ends.1819

2: Retrieve Lifecycle1820

2.1: User provides the lifecycle name, lifecycle namespace.1821

2.2: Functional Element returns the lifecycle information and the use case ends.1822

3: Update Lifecycle.1823

3.1: User provides the lifecycle information.1824

3.2: Functional Element updates the lifecycle-phase and the use case ends.1825

4: Delete Lifecycle.1826

4.1: User provides lifecycle name and lifecycle namespace.1827

4.2: Functional Element deletes the lifecycle and the use case ends.1828

2.6.7.1.2.2 Alternative Flows1829

1: Lifecycle Does Not Exist.1830

1.1: In basic flow 2.1, 3.1 and 4.1, if lifecycle can not be found based on lifecycle name and1831
lifecycle namespace provided by user, Functional Element returns an error message and the1832
use case ends.1833

2: Creation Of Lifecycle Fails.1834

2.1: In basic flow 1.2, if lifecycle cannot be created, the Functional Element returns an error1835
message and the use case ends1836

2.6.7.1.3 Special Req uirements1837

None.1838

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 79 of 177

2.6.7.1.4 Pre-Conditions1839

None.1840

2.6.7.1.5 Post-Condi tions1841

None.1842

2.6.7.2 Manage Ph ase1843

2.6.7.2.1 Description1844

This use case describes the management of different phases in a project.1845

2.6.7.2.2 Flow of Events1846

2.6.7.2.2.1 Basic Flow1847

This use case starts when the user wants to manage phase.1848

• If user wants to ‘Create Phase’, then basic flow 1 is executed.1849

• If user wants to ‘Retrieve Phase’, then basic flow 2 is executed.1850

• If user wants to ‘Update Phase’, then basic flow 3 is executed.1851

• If user wants to ‘Delete Phase’, then basic flow 4 is executed.1852

1: Create Phase.1853

1.1: User provides information to create phase.1854

1.2: Functional Element creates phase and the use case ends.1855

2: Retrieve Phase.1856

2.1: User provides phase name, lifecycle name and lifecycle namespace.1857

2.2: Functional Element returns the phase information and the use case ends.1858

3: Update Phase.1859

3.1: User provides the phase information.1860

3.2: Functional Element updates the phase and the use case ends.1861

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 80 of 177

4: Delete Phase.1862

4.1: User provides phase name, lifecycle name and lifecycle namespace1863

4.2: Functional Element deletes phase and the use case ends.1864

2.6.7.2.2.2 Alternative Flows1865

1: Phase Does Not Exist.1866

1.1: In basic flow 2.1, 3.1 and 4.1 if phase cannot be found based on phase name, lifecycle1867
name and lifecycle namespace provided by user, Functional Element returns an error1868
message and the use case ends.1869

2: Creation of phase fails.1870

2.1: In basic flow 1.2, if phase cannot be created, the Functional Element returns an error1871
message and the use case ends1872

2.6.7.2.3 Special Req uirements1873

None.1874

2.6.7.2.4 Pre-Conditions1875

None.1876

2.6.7.2.5 Post-Condi tions1877

None.1878

2.6.7.3 Manage Re lationship1879

2.6.7.3.1 Description1880

This use case describes the management of the relationship between user/group and phase in a1881
lifecycle.1882

2.6.7.3.2 Flow of Events1883

2.6.7.3.2.1 Basic Flow1884

This use case starts when the user wants to manage the relationship between the user/group and1885
phase.1886

• If user refers to ‘Create Relationship’, basic flow 1 is executed.1887

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 81 of 177

• If user refers to ‘Update Relationship’, basic flow 2 is executed.1888

• If user wants to ‘Retrieve Relationship’, basic flow 3 is executed.1889

• If user refers to ‘Delete Relationship’, basic flow 4 is executed.1890

1: Create Relationship.1891

1.1: User provides user/group, phase and phase information.1892

1.2: Functional Element creates relationship and the use case ends.1893

2: Update Relationship.1894

2.1: User provides user/group name and user/group namespace.1895

2.2: Functional Element updates the relationship and the use case ends.1896

3: Retrieve Relationship.1897

3.1: User provides user/group name and user/group namespace.1898

3.2: Functional Element returns the relationship and the use case ends.1899

4: Delete Relationship.1900

4.1: User provides user/group name and user/group namespace.1901

4.2: Functional Element deletes relationship between phases and users/groups and the use1902
case ends.1903

2.6.7.3.2.2 Alternative Flows1904

1: Phase Does Not Exist.1905

1.1: In basic flow 1,2, 2.2, 3.2 and 4.2, if the phase does not exist, the Functional Element1906
returns an error message and the use case ends.1907

2: User/Group Does Not Exist.1908

1.1: In basic flow 1,2, 2.2, 3.2 and 4.2, if the user/group does not exist, the Functional1909
Element returns an error message and the use case ends.1910

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 82 of 177

2.6.7.3.3 Special Req uirements1911

None.1912

2.6.7.3.4 Pre-Conditions1913

None.1914

2.6.7.3.5 Post-Condi tions1915

None.1916

1917

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 83 of 177

2.7 Presentat ion Transformer Functional Element1918

2.7.1 Motivation1919

In a Web Service implementation, there exists the need to render the eventual presentation1920
layout to different consumers depending on their receiving capabilities. As such, there is a need1921
to dynamically generate the appropriate output at runtime.1922

1923

This Functional Element fulfills the following requirements from the Functional Elements1924
Requirements, Working Draft 01a:1925

• Primary Requirements1926

• DELIVERY-001, and1927

• DELIVERY-005 to DELIVERY-007.1928

• Secondary Requirements1929

• None1930

2.7.2 Terms Used1931

Terms Description

XSL Extensible Stylesheet Language

2.7.3 Key Features1932

Implementations of the Presentation Transformer Functional Element are expected to provide the1933
following key features:1934

1. The Functional Element MUST be able to transform an XML document into a required1935
presentation format (output).1936

2. The Functional Element MUST be able to understand a XSL document for the specifications1937
of the required presentation format.1938

1939

2.7.4 Interdependencies1940

None1941

2.7.5 Related Technologies and Standards1942

None1943

1944

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 84 of 177

2.7.6 Model1945

Figure 8: Model Of the Presentation Functional Element [15]

1946

2.7.7 Usage Scenario1947

2.7.7.1 Transform Content1948

2.7.7.1.1 Description1949

This use case allows the service user to transform the content to the appropriate mark-up1950
language.1951

2.7.7.1.2 Flow of Events1952

2.7.7.1.2.1 Basic Flow1953

This use case starts when the service user wishes to transform the content to the appropriate1954
mark-up language.1955

1: The Functional Element receives the request from the service user to transform the content to1956
the appropriate mark-up language.1957

2: The Functional Element detects the type of mark-up language to be transformed.1958

3: The Functional Element extracts mark-up language type from either the XML document or1959
parameters.1960

4: The Functional Element retrieves appropriate mark-up language style sheet and transform it1961
into appropriate mark-up language.1962

5: The Functional Element returns transformed appropriate result and the use case ends.1963

2.7.7.1.2.2 Alternative Flows1964

1: Unsupported Content.1965

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 85 of 177

1.1: If in basic flow 2, the Functional Element is unable to detect the content type, the1966
Functional Element returns an error message and the use case ends.1967

2: Unsupported Mark-up Language.1968

2.1: If in basic flow 2, the Functional Element is unable to detect the supported mark-up1969
language type, the Functional Element returns an error message and the use case ends.1970

2.7.7.1.3 Pre-Conditions1971

None.1972

2.7.7.1.4 Post-Condi tions1973

None.1974

1975

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 86 of 177

2.8 Role and Access Management Functional Element1976

2.8.1 Motivation1977

The Role and Access Management Functional Element is expected to be an integral part of the1978
User Access Management (UAM) functionalities that is expected to be needed by a Web Service-1979
enabled implementation. This Functional Element is expected to fulfill the needs arising out of1980
managing access to resources within an application, based on role-based access control1981
mechanism. As such it will cover aspects that include:1982

• Management of roles and access privileges, and1983

• Assignment of roles to entities that will be accessing the resources that is being1984
managed.1985

1986

This Functional Element fulfills the following requirements from the Functional Elements1987
Requirements, Working Draft 01a:1988

• Primary Requirements1989

• MANAGEMENT-030 to MANAGEMENT-034, and1990

• MANAGEMENT-200 to MANAGEMENT-205.1991

• Secondary Requirements1992

• SECURITY-040 to SECURITY-041.1993

1994

2.8.2 Terms Used1995

Terms Description

Access Control Access Control refers to the process of ensuring that only an authorized
user can access the resources within a computer system.

Lifecycle A lifecycle refers to the sequence of phases in the lifetime of a resource.

Phase A phase refers to the different stages that a resource may be in when
viewed from a lifecycle perspective

Resource A resource in an application is defined to encompass data/information in a
system. Examples of this information include users information, transaction
information and security information.

Role A role is typically assigned to a user to define or indicate the job or
responsibility of the said user in a particular context.

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 87 of 177

Role Based
Access Control

Role Based Access Control is a model of access management mechanism.
In this model, the access control is enabled in the following manner:

• Determine who (user) is requesting access.

• Determine the role(s) of the user

• Determine the type of access that is allowed based on the role(s) of
the user

It is the task of the access control mechanism to ensure that only
processes, which are explicitly authorized, perform the operation by these
objects.

User A user is loosely defined to include both human and virtual users. Virtual
users could include service users and application (or machine) users that
are utilising other services in a SOA environment.

User Access
Management
(UAM)

User Access Management or UAM refer to the concept of managing users
in a holistic manner, considering all aspect which includes:

• Defining a set of basic user information that should be stored in any
enterprise application.

• Providing a means to extend this basic set of user information when
needed..

• Simplifying management by grouping related users together
through certain criteria.

• Having the flexibility of adopting both coarse/fine grain access
controls.

1996

2.8.3 Key Features1997

Implementations of the Secure SOAP Functional Element are expected to provide the following1998
key features:1999

1. The Functional Element MUST provide the capability to manage the creation and deletion of2000
instances of the following concepts based on a pre-defined structure:2001

1.1. Role,2002

1.2. Access, and2003

1.3. Resource2004

2. The Functional Element MUST provide the capability to manage all the information (attribute2005
values) stored in such concepts. This includes the capability to retrieve and update2006
attribute’s values belonging to a concept like Role, Access or Resource.2007

3. The Functional Element MUST provide the capability to associate a Role to its access2008
privileges through the Access structure.2009

4. The Functional Element MUST provide the capability to determine a Role’s accessibility to2010
Resources based on the access privileges that have been assigned.2011

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 88 of 177

5. The Functional Element MUST provide the ability to manage the association of users to2012
Roles via assignments of Roles to users. This will include:2013

5.1. Assignment/Un-assignment of Roles to individual Users, and2014

5.2. Assignment/Un-assignment of Roles to Groups.2015

This will provide an indirect linkage between the accessibility of specific Users to Resources2016
through the concept of Role and Access.2017

6. The Functional Element MUST provide a mechanism for managing the concepts of Role,2018
Access and Resource across different application domains.2019

Example: Namespace control mechanism2020

2021

In addition, the following key features could be provided to enhance the Functional Element2022
further:2023

1. The Functional Element MAY provide a mechanism to enable different Access instances to2024
be related to one another.2025

2. The Functional Element MAY also provide a mechanism to enable hierarchical2026
relationships between Access instances.2027

Example: Parent and Child Relationship2028

3. The Functional Element MAY provide the ability for Roles to be temporal sensitive.2029

Example: A Role is assigned to a particular Phase in a Lifecycle.2030

2031

2.8.4 Interdependencies.2032

Direct Dependencies

Phase and Lifecycle
Management Functional Element

The key abstraction, phases and lifecycle, in the Phase and
Lifecycle Management Functional Element is used as a target
for the assignment of roles and access privileges.

User Management Functional
Element

The key abstraction, user, in the User Management
Functional Element is used as a target for the assignment of
roles and access privileges.

Group Management Functional
Element

The key abstraction, group, in the Group Management
Functional Element is used as a target for the assignment of
roles and access privileges.

2.8.5 Related Technologies and Standards2033

None2034

2035

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 89 of 177

2.8.6 Model2036

Figure 9: Model Of the Role and Access Management Functional Element [16]

2037

2.8.7 Usage Scenario2038

2.8.7.1 Manage Ro le2039

2.8.7.1.1 Description2040

This use case allows the service user to manipulate the role information such as adding,2041
changing and deleting role information in the Functional Element.2042

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 90 of 177

2.8.7.1.2 Flow of Events2043

2.8.7.1.2.1 Basic Flow2044

This use case starts when any user wants to create, change or delete a role.2045

1: Service user specifies the function it would like to perform (either create a role, update a role or2046
delete a role).2047

2: Once the service user provides the requested information, one of the sub-flows is executed.2048

• If the service user provides ‘Create a Role’, then sub-flow 2.1 is executed.2049

• If the service user provides ‘Retrieve a Role’, then sub-flow 2.2 is executed.2050

• If the service user provides ‘Update a Role’, then sub-flow 2.3 is executed.2051

• If the service user provides ‘Delete a Role’, then sub-flow 2.4 is executed.2052

2.1: Create a Role.2053

2.1.1: The service user specifies role information such as the role name and description.2054

2.1.2: The Functional Element connects to the data storage.2055

2.1.3: The Functional Element checks whether the role exists in the Functional Element2056
or not, saves the role information in the data storage and the use case ends.2057

2.2: Retrieve a Role.2058

2.2.1: The service user specifies the role name for retrieval.2059

2.2.2: The Functional Element connects to the data storage.2060

2.2.3: The Functional Element retrieves the role information in the data storage and the2061
use case ends.2062

2.3: Update a Role.2063

2.3.1: The service user specifies the role name to update.2064

2.3.2: The service user specifies the target field name and value of the role.2065

2.3.3: The Functional Element connects to the data storage.2066

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 91 of 177

2.3.4: The Functional Element updates the role information in the data storage and the2067
use case ends.2068

2.4: Delete a Role.2069

2.4.1: The service user specifies the role name to delete.2070

2.4.2: The Functional Element connects to the data storage.2071

2.4.3: The Functional Element removes the record of the role in the data storage and the2072
use case ends.2073

2.8.7.1.2.2 Alternative Flows2074

1: Data Storage Not Available.2075

1.1: If in basic flow 2.1.2, 2.2.2, 2.3.3 and 2.4.2, the data storage of the role information is not2076
available, an error message is returned and the use case ends.2077

2: Role Already Exists.2078

2.1: If in basic flow 2.1.3, the Functional Element checks that the role already exists in the2079
data storage, an error message is returned and the use case ends.2080

3: Role Does Not Exist.2081

3.1: If in basic flow 2.2.3, 2.3.4 and 2.4.3, the Functional Element checks that the role does2082
not exist in the data storage, an error message is returned and the use case ends.2083

4: Role Cannot Be Deleted.2084

4.1: If in basic flow 2.4.3, the other information associated with the role, such as any access2085
level assigned, still exists, the role information may not be removed. An error message is2086
returned and the use case ends.2087

2.8.7.1.3 Special Req uirements2088

None2089

2.8.7.1.4 Pre-Conditions2090

None.2091

2.8.7.1.5 Post-Condi tions2092

If the use case was successful, the role is saved/updated/removed in the Functional Element.2093
Otherwise, the Functional Element state is unchanged.2094

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 92 of 177

2.8.7.2 Manage Resource2095

2.8.7.2.1 Description2096

This use case allows the service user to manipulate the resource information such as adding,2097
changing and deleting resource information in the Functional Element.2098

2.8.7.2.2 Flow of Events2099

2.8.7.2.2.1 Basic Flow2100

This use case starts when any user wants to create, change or delete a resource.2101

1: The user specifies the function it would like to perform.2102

2: The user provides the requested information, one of the sub-flows is executed.2103

• If the user provides ‘Create a Resource’, then sub-flow 2.1 is executed.2104

• If the user provides ‘Retrieve a Resource’, then sub-flow 2.2 is executed.2105

• If the user provides ‘Update a Resource’, then sub-flow 2.3 is executed.2106

• If the user provides ‘Delete a Resource’, then sub-flow 2.4 is executed.2107

2.1: Create a Resource.2108

2.1.1: The user specifies resource information such as the resource name and2109
description.2110

2.1.2: The Functional Element connects to the data storage.2111

2.1.3: The Functional Element checks whether the resource exists in the Functional2112
Element, saves the resource information in the data storage and the use case ends.2113

2.2: Retrieve a Resource.2114

2.2.1: The service user specifies the resource name for retrieval.2115

2.2.2: The Functional Element connects to the data storage.2116

2.2.3: The Functional Element retrieves the resource information in the data storage and2117
the use case ends.2118

2.3: Update a Resource.2119

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 93 of 177

2.3.1: The service user specifies the resource name to update.2120

2.3.2: The Functional Element connects to the data storage.2121

2.3.3: The Functional Element updates the resource information in the data storage and2122
the use case ends.2123

2.4: Delete a Resource.2124

2.4.1: The service user specifies the resource name to delete.2125

2.4.2: The Functional Element connects to the data storage.2126

2.4.3: The Functional Element removes the record of the resource in the data storage2127
and the use case ends.2128

2.8.7.2.2.2 Alternative Flows2129

1: Data Storage Not Available.2130

1.1: If in basic flow 2.1.2, 2.2.2, 2.3.2 and 2.4.2, the data storage of the resource information2131
is not available, an error message is returned and the use case ends.2132

2: Resource Already Exists.2133

2.1: If in basic flow 2.1.3, the Functional Element checks that the resource already exists in2134
the data storage, an error message is returned and the use case ends.2135

3: Resource Does Not Exist.2136

3.1: If in basic flow 2.2.3, 2.3.3 and 2.4.3, the Functional Element checks that the resource2137
does not exist in the data storage, an error message is returned and the use case ends.2138

2.8.7.2.3 Special Req uirements2139

None2140

2.8.7.2.4 Pre-Conditions2141

None.2142

2.8.7.2.5 Post-Condi tions2143

None2144

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 94 of 177

2.8.7.3 Manage Access Level2145

2.8.7.3.1 Description2146

This use case allows service user to manage the creation/retrieval/modification/deletion of access2147
level.2148

2.8.7.3.2 Flow of Events2149

2.8.7.3.2.1 Basic Flow2150

This use case starts when service user wants to manage the access levels.2151

1: The service user specifies the function it would like to perform (add, update or delete an2152
access level).2153

2: Once the service user provides the requested information, one of the sub-flows is executed.2154

• If the service user provides ‘Add an Access Level’, then sub-flow 2.1 is executed.2155

• If the service user provides ‘Retrieve an Access Level’, then sub-flow 2.2 is activated.2156

• If the service user provides ‘Update an Access Level’, then sub-flow 2.3 is activated.2157

• If the service user provides ‘Delete an Access Level’, then sub-flow 2.4 is executed.2158

2.1: Add an Access Level.2159

2.1.1: The service user specifies the access level information, which includes: name,2160
description, name of parent access level and group of resources that the access level is2161
associated with.2162

2.1.2: The Functional Element connects to the data storage.2163

2.1.3: The Functional Element check whether the access level and its parent access level2164
exist in the Functional Element, saves the access level information in the data storage2165
and the use case ends.2166

2.2: Retrieve an Access Level.2167

2.2.1: The service user specifies the access level name to retrieve.2168

2.2.2: The Functional Element connects to the data storage.2169

2.2.3: The Functional Element gets access level information from the data storage and2170
returns to the service user and the use case ends.2171

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 95 of 177

2.3: Update an Access Level.2172

2.3.1: The service user specifies the access level name.2173

2.3.2: The service user specifies the field(s) and new value(s) to update.2174

2.3.3: The Functional Element connects to the data storage.2175

2.3.4: The Functional Element updates the access level information in the data storage2176
with the value specified in 2.3.2 and the use case ends.2177

2.4: Delete an Access Level.2178

2.4.1: The service user specifies the access level name to delete.2179

2.4.2: The Functional Element connects to the data storage.2180

2.4.3: The Functional Element removes the record of the access level in the data storage2181
and the use case ends.2182

2.8.7.3.2.2 Alternative Flows2183

1: Data Storage Not Available.2184

1.1: If in basic flow 2.1.2, 2.2.2, 2.3.3 and 2.4.2, the data storage of the access level2185
information is not available, an error message is returned and the use case ends.2186

2: Access Level Already Exists.2187

2.1: If in basic flow 2.1.3, the Functional Element checks that the access level already exists2188
in the data storage, an error message is returned and the use case ends.2189

3: Access Level Cannot Be Deleted.2190

3.1: If in basic flow 2.4.3, the other information associated with the Access Level, such as2191
roles to which the access level is assigned and the parent access level still exists, the access2192
level information may not be removed. An error message is returned and the use case ends.2193

4: Parent Access Level Not Exist.2194

4.1: If in basic flow 2.1.3, the parent access level does not exist, an error message is returned2195
and the use case ends.2196

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 96 of 177

2.8.7.3.3 Special Req uirements2197

None2198

2.8.7.3.4 Pre-Conditions2199

None.2200

2.8.7.3.5 Post-Condi tions2201

None2202

2.8.7.4 Manage Ro le and Access Level Association2203

2.8.7.4.1 Description2204

This use case allows service user to assign, update and remove the access level assigned to2205
role.2206

2.8.7.4.2 Flow of Events2207

2.8.7.4.2.1 Basic Flow2208

This use case starts when service user wants to manage the relationship between access level2209
and role.2210

1: The service user specifies a role and the function he/she would like to perform on the role2211
(either assign an access level to role, update role access level, or delete role access level).2212

2: Once the service user provides the requested information, one of the sub-flows is executed.2213

• If the user provides ‘Assign an Access Level to Role’, then sub-flow 2.1 is executed.2214

• If the user provides ‘Update Access Level for Role’, then sub-flow 2.2 is executed.2215

• If the user provides ‘Delete Access Level for Role’, then sub-flow 2.3 is executed.2216

• If the user provides ‘Retrieve Access Level for Role’, then sub-flow 2.4 is executed.2217

• If the service user provides ‘Retrieve Role for Access Level’, then sub-flow 2.5 is2218
executed.2219

2.1: Assign an Access Level to Role.2220

2.1.1: The service user specifies access level that will be assigned to the role.2221

2.1.2: The Functional Element connects to the data storage.2222

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 97 of 177

2.1.3: The Functional Element checks whether the access level has been assigned to the2223
role. Functional Element saves the access level reference in the role record in the data2224
storage and the use case ends.2225

2.2: Update Access Level for Role.2226

2.2.1: The service user specifies the access level to update and the new access level2227
information.2228

2.2.2: The Functional Element connects to the data storage.2229

2.2.3: The Functional Element updates the access level reference in the role record in the2230
data storage and the use case ends.2231

2.3: Delete Access Level to Role.2232

2.3.1: The service user specifies the access level to delete.2233

2.3.2: The Functional Element connects to the data storage.2234

2.3.3: The Functional Element removes the access level reference from the record of the2235
role in the data storage and the use case ends.2236

2.4: Retrieve Access Level for Role.2237

2.4.1: The service user specifies the role to retrieve the access levels associated with it.2238

2.4.2: The Functional Element connects to the data storage.2239

2.4.3: The Functional Element retrieves the access level assigned to the role in the data2240
storage and the use case ends.2241

2.5: Retrieve Role for Access Level.2242

2.5.1: The service user specifies the access level to retrieve roles associated to it.2243

2.5.2: The Functional Element connects to the data storage.2244

2.5.3: The Functional Element retrieves roles associated to the access level in the data2245
storage and the use case ends.2246

2.8.7.4.2.2 Alternative Flows2247

1: Data Storage Not Available.2248

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 98 of 177

1.1: If in basic flow 2.1.2, 2.2.2 and 2.3.2, the data storage of the access level information is2249
not available, an error message is returned and the use case ends.2250

2: Access Level Assignment Already Exists.2251

2.1: If in basic flow 2.1.3, the Functional Element checks that the access level already exists2252
in the role record in the data storage, an error message is returned and the use case ends.2253

3: Access Level Assignment Not Exist.2254

3.1: If in basic flow 2.3.3, the access level assignment does not exist, an error message is2255
returned and the use case ends.2256

4: Access Level Not Exist.2257

4.1: If in basic flow 2.1.3, 2.2.3, 2.3.3, 2.4.3 and 2.5.3, the access level does not exist, an2258
error message is returned and the use case ends.2259

5: Role Not Exist.2260

5.1: If in basic flow 2.1.3, 2.2.3, 2.3.3, 2.4.3 and 2.5.3, the role does not exist, an error2261
message is returned and the use case ends.2262

2.8.7.4.3 Special Req uirements2263

None.2264

2.8.7.4.4 Pre-Conditions2265

None.2266

2.8.7.4.5 Post-Condi tions2267

None.2268

2.8.7.5 Manage Ro le Assignment2269

2.8.7.5.1 Description2270

The use case allows service user to assign a role to a user, a group, a phase in a lifecycle, to2271
change or to delete such assignment.2272

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 99 of 177

2.8.7.5.2 Flow of Events2273

2.8.7.5.2.1 Basic Flow2274

This use case starts when the service user wants to manage the assignment of a role. This role2275
can be assigned to a user, group, phase and lifecycle.2276

1: Service user specifies a role and an operation to perform on the role.2277

2: Once the service user provides the requested information, one of the sub-flows is executed.2278

• If the user provides ‘Assign Role’, then sub-flow 2.1 is executed.2279

• If the user provides ‘Retrieve Role’, then sub-flow 2.2 is executed.2280

• If the user provides ‘Un-assign Role’, then user sub-flow 2.3 is executed.2281

2.1: Assign Role.2282

2.1.1: The service user specifies a user/group/phase/lifecycle to which the role will be2283
assigned.2284

2.1.2: Depending of target of the assignment, the Functional Element will check for the2285
presence of one of the following Functional Elements.2286

• User Management Functional Element2287

• Group Management Functional Element2288

• Phase and Lifecycle Management Functional Element2289

2.1.3: The Functional Element checks whether the role has been assigned to the2290
intended target2291

2.1.4: The Functional Element saves the relationship between the role and the target and2292
the use case ends.2293

2.2: Retrieve Role.2294

2.2.1: The service user specifies a user/group/phase/lifecycle to retrieve all roles2295
assigned2296

2.2.2: Depending of target of the assignment, the Functional Element will check for the2297
presence of one of the following Functional Elements.2298

• User Management Functional Element2299

• Group Management Functional Element2300

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 100 of 177

• Phase and Lifecycle Management Functional Element2301

2.2.3: The Functional Element gets the roles that are assigned to the target.2302

2.2.4: The Functional Element returns the results to the service user and the use case2303
ends.2304

2.3: Un-assign Role.2305

2.3.1: The service user specifies a user/group/phase/lifecycle and the role that is to be2306
un-assigned.2307

2.3.2: Depending of target of this un-assignment, the Functional Element will check for2308
the presence of one of the following Functional Elements.2309

• User Management Functional Element2310

• Group Management Functional Element2311

• Phase and Lifecycle Management Functional Element2312

2.3.3: The Functional Element checks if the roles have been assigned to the target in the2313
first place.2314

2.3.4: The Functional Element removes the role assigned and the use case ends.2315

2.8.7.5.2.2 Alternative Flows2316

1: Dependent Functional Element not available.2317

1.1: If in basic flow 2.1.2, 2.2.2 and 2.3.2, the dependent Functional Elements are not2318
available, an error message is returned and the use case ends.2319

2: Invalid User/Group/Phase/Lifecycle Account.2320

2.1: If in basic flow 2.1.2, 2.2.2 and 2.3.2, the dependent Functional Elements are available2321
but an invalid account is provided, an error message is returned and the use case ends.2322

3: Data Storage Not Available.2323

3.1: If in basic flow 2.1.2, 2.2.2 and 2.3.2, the Functional Element is unable to access the data2324
storage, an error message is provided and the use case ends.2325

2326

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 101 of 177

2.8.7.5.3 Special Req uirements2327

None.2328

2.8.7.5.4 Pre-Conditions2329

None.2330

2.8.7.5.5 Post-Condi tions2331

None.2332

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 102 of 177

2.9 Search Fu nctional Element2333

2.9.1 Motivation2334

In a Web Service-enabled implementation, information is distributed across different sites and this2335
makes searching and collating information difficult. Against this backdrop, this Functional2336
Element is expected to fulfill the needs identified within an application by covering the following2337
aspects.2338

• Providing the capability for configuration of different types of data sources for information2339
search,2340

• Providing the facility to provide a concrete definition of data source classification for2341
information search,2342

• Providing the ability to define different search scopes for various data source2343
classification,2344

• Performing information search on those pre-configured different types of data sources2345
and2346

• Providing the provision to consolidate the return result arising from the search operation.2347

2348

This Functional Element fulfills the following requirements from the Functional Elements2349
Requirements, Working Draft 01a:2350

• Primary Requirements2351

• MANAGEMENT-009,2352

• PROCESS-030 to PROCESS-031, and2353

• PROCESS-034.2354

• Secondary Requirements2355

• None2356

2357

2.9.2 Terms Used2358

Terms Description

Data source Data source refers to any kind of information storage and retrieval
databases like RDBMS, LDAP, ODBMS, XMLDB, XML Files, TEXT Files,
etc.

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 103 of 177

Search Category A Search Category refers to some logical grouping of the data sources on
the basis of purpose of various data source purpose like NEWS, EMAIL,
USERS, GROUPS, TRANSACTIONS, etc.

Data Source Type Data Source Type refers to the various kinds of data storage format or
structure like XML, HTML, TEXT, Databases, Tables, Rows, Columns in
RDBMS, Collections, Nodes, Files & Tags in XMLDB, that are used to store
and retrieve information from different data sources

RDBMS Relational Database Management Systems

XMLDB eXtensible Markup Language (XML) Database

LDAP Lightweight Directory Access Protocol

XML eXtensible Markup Language

HTML HyperText Markup Language

2.9.3 Key Features2359

Implementations of the Search Functional Element are expected to provide the following key2360
features:2361

1. The Functional Element MUST provide a mechanism to define and manage Search2362
Categories.2363

2. The Functional Element MUST provide the capability to configure and store information2364
about targeted data sources for a particular Search Category.2365

Example: Some of the stored information would include Location, Type, Name, Data Fields2366
(of interest to the search) and access control (typically username and password) of the2367
targeted data source.2368

3. As part of Key Feature (2), the Functional Element MUST also provide the ability to2369
configure the scope of search and returned results.2370

4. The Functional Element MUST also provide a mechanism to link the Search Categories to2371
configured target data sources.2372

5. The Functional Element MUST provide the ability to search multiple data sources for a2373
defined Search Category.2374

Example: Some of the common data sources would include RDBMS, XML DB, LDAP2375
servers and flat files like XML files, text files and HTML files2376

6. The Functional Element MUST provide the ability to perform searches based on a given set2377
of keyword(s).2378

2379

In addition, the following key features could be provided to enhance the Functional Element2380
further:2381

1. The Functional Element MAY also provide the ability to perform conditional and parametric2382
searches.2383

2. The Functional Element MAY also provide the ability to restrict the scope of a search.2384

Example: By providing a particular Search Category or types of data sources for the2385
search.2386

2387

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 104 of 177

2.9.4 Interdependencies2388

None2389

2390

2.9.5 Related Technologies and Standards2391

None2392

2.9.6 Model2393

Figure 10: Model Of the Search Functional Element [17]

2.9.7 Usage Scenario2394

2.9.7.1 Manage Search Categories2395

2.9.7.1.1 Description2396

This use case allows the users to manage the different search categories.2397

2.9.7.1.2 Flow of Events2398

2.9.7.1.2.1 Basic Flow2399

This use case starts when the user wishes to manage the different data sources for search to be2400
performed on it.2401

1: The users initiates a request to configure data source(s) and type(s) by providing the data2402
source information and type to be added, removed or retrieved.2403

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 105 of 177

2: The Functional Element checks whether the data source configuration file exists.2404

3: The Functional Element checks the request. Based on the type of request, one of the sub-2405
flows is executed.2406

• If the request is to ‘Create Data Source And Type’, then sub-flow 3.1 is executed.2407

• If the request is to ‘View Data Sources And Types’, then sub-flow 3.2 is executed.2408

• If the request is to ‘Delete Data Source And Type’, then sub-flow 3.3 is executed.2409

3.1: Create Data Source and Type.2410

3.1.1: The Functional Element checks whether the same data source and type has been2411
created.2412

3.1.2: The Functional Element appends the new data source and type in the data source2413
configuration file specified.2414

3.2: View Data Source and Type.2415

3.2.1: The Functional Element retrieves all the data source and type information from the2416
data source configuration file.2417

3.2.2: The Functional Element returns the data source(s) and type(s).2418

3.3: Delete Data Source and Type.2419

3.3.1: The Functional Element checks whether the data source and type exist in the data2420
source configuration based on data source id from the data source configuration file.2421

3.3.2: The Functional Element removes the old data source and type from the data2422
source configuration file.2423

4: The Functional Element returns a success or failure flag indicating the status of the operation2424
being performed and use case ends.2425

2.9.7.1.2.2 Alternative Flows2426

1: Data Source Configuration File Not Found.2427

1.1: If in basic flow 2, the data source configuration file does not exist, the Functional Element2428
creates an empty data source configuration file.2429

2: Duplicate Data Source and Type.2430

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 106 of 177

2.1: If in basic flow 3.1.1, the same data source and type have been configured, the2431
Functional Element returns an error message and the use case end.2432

3: Data Source and Type Do Not Exist.2433

3.1: If in basic flow 3.2.1 and 3.3.1, a particular data source and type cannot be found in the2434
specified data source configuration file, the Functional Element returns an error message and2435
the use case end.2436

2.9.7.1.3 Special Req uirements2437

None.2438

2.9.7.1.4 Pre-Conditions2439

None.2440

2.9.7.1.5 Post-Condi tions2441

None.2442

2.9.7.2 Search Information2443

2.9.7.2.1 Description2444

This use case allows any users to perform search on various disparate data sources and types2445
configured to be searched and returns the matching results.2446

2.9.7.2.2 Flow of Events2447

2.9.7.2.2.1 Basic Flow2448

This use case starts when users wishes to perform information search on a data source.2449

1: Users initiates a request to perform information search on a given data source by providing2450
information to be searched, location of the data source(s) and the data source type(s).2451

2: The Functional Element checks for the existence of the specified data source(s).2452

3: The Functional Element validates the data source type(s) against the set of supported data2453
type(s) configured within the Functional Element that are available for information search.2454

4: The Functional Element performs information search based on the search parameters given by2455
the users or the other Functional Elements.2456

5: The Functional Element returns the result of the information search performed to the users or2457
other Functional Elements and use case ends.2458

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 107 of 177

2.9.7.2.2.2 Alternative Flows2459

1: Data Source(s) Are Not Available.2460

1.1: In basic flow 2, if the identified data source is not available, the Functional Element2461
returns an error message and the use case ends.2462

2: Invalid Configuration Instructions2463

2.1: In basic flow 2, if the input inform by the user is incomplete, the Functional Element2464
returns an error message and the use case ends.2465

3: Invalid Data Source Type.2466

3.1: In basic flow 3, if the data source type is invalid, the Functional Element returns an error2467
message and the use case ends.2468

4: No Matching Result.2469

4.1: In basic flow 4, if the search results in no matching results, the Functional Element2470
returns an error message and the use case ends..2471

2.9.7.2.3 Special Req uirements2472

None2473

2.9.7.2.4 Pre-Conditions2474

None.2475

2.9.7.2.5 Post-Condi tions2476

None.2477

2478

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 108 of 177

2.10 Secure SO AP Management Functional Element2479

2.10.1 Motivation2480

In a Web Services implementation, it is envisage that confidential information is being exchanged2481
all the time. Against this backdrop, it is imperative that an application in such an environment is2482
equipped with the capability to guard sensitive information from prying eyes. Secure SOAP2483
Management fulfills this need by covering the following areas.2484

• The facility of digitally signing SOAP message,2485

• The facility of encrypting SOAP message, and2486

• The capability to generate the original SOAP message after signing or encrypting the2487
message.2488

2489

This Functional Element fulfills the following requirements from the Functional Elements2490
Requirements, Working Draft 01a:2491

• Primary Requirements2492

• SECURITY-003 (SECURITY-003-3 only),2493

• SECURITY-020 (all), and2494

• SECURITY-022, and2495

• SECURITY-026.2496

• Secondary Requirements2497

• None2498

2499

2.10.2 Terms Used2500

Terms Description

Digital Signature An electronic signature that can be used to authenticate the identity
of the sender of a message, or of the signer of a document. It can
also be used to ensure that the original content of the message or
document that has been conveyed is unchanged

Encryption A method of scrambling or encoding data to prevent unauthorized
users from reading or tampering with the data. Only individuals with
access to a password or key can decrypt and use the data.

PKCS#11 The cryptographic token interface standards. Defines a technology
independent programming interface for cryptographic devices such
as smart cards.

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 109 of 177

Public Key Cryptography
Specification (PKCS)#12

The personal information exchange syntax standard. Defines a
potable format for storage and transportation of user private keys,
certificates etc.

2501

2.10.3 Key Features2502

Implementations of the Group Management Functional Element are expected to provide the2503
following key features:2504

1. The Functional Element MUST provide the capability to digitally sign SOAP messages2505
completely or partially using XML-Signature Syntax and Processing, W3C Recommendation2506
12 February 2002.2507

2. The Functional Element MUST provide the capability to validate a signed SOAP message.2508

3. The Functional Element MUST provide the capability to encrypt SOAP messages2509
completely or partially using XML-Encryption Syntax and Processing, W3C2510
Recommendation 10 December 2002.2511

4. The Functional Element MUST provide the capability to decrypt encrypted SOAP messages.2512

5. The Functional Element MUST support PKCS12 compatible digital certificates.2513

6. The Functional Element MUST be able to verify the validity and authenticity of digital2514
certificates used.2515

2516

In addition, the following key features could be provided to enhance the Functional Element2517
further:2518

1. The Functional Element MAY also support PKCS11 compatible tokens.2519

2. The Functional Element MAY also provide log support as part of the audit trails for its2520
transaction records.2521

2522

2.10.4 Interdependencies2523

Direct Dependency

Log Utility Functional Element The Log Utility Functional Element is being used for logging
and creation of audit trails.

2.10.5 Related Technologies and Standards2524

Standards / Specifications Specific References

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 110 of 177

Public Key Infrastructure (PKI) PKI is a system of digital certificates, Certificate Authorities,
and other registration authorities that verify and authenticate
the validity of each party involved in an Internet transaction

In this Functional Element, the private key and public key are
generated for the Functional Element to sign and encrypt
SOAP messages. The Functional Element uses the session
key to encrypt the SOAP message. The digital certificate is
attached to the SOAP message after the Functional Element
has signed the SOAP message.

XML-Signature Syntax and
Processing, W3C
Recommendation 12th Feb 2002
[18]

This specification addresses authentication, non-repudiation
and data-integrity issues. In addition, it also specifies the XML
syntax and processing rules for creating and representing
digital signatures.

In this Functional Element, both the digital signature on the
SOAP message and validation of the signed SOAP message
is done based on this specification.

XML-Encryption Syntax and
Processing, W3C
Recommendation 10th Dec 2002

[19]

This specification addresses data privacy by defining a
process for encrypting data and representing the result in
XML document.

In this Functional Element, the encryption and decryption of
SOAP messages are done based on this specification.

2525

2526

2.10.6 Model2527

Figure 11: Model Of the Secure SOAP Management Functional Element [20]

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 111 of 177

2.10.7 Usage Scenarios2528

2.10.7.1 Get Secured SOAP message2529

2.10.7.1.1 Description2530

This Functional Element describes the process to generate secured SOAP message.2531

2.10.7.1.2 Flow of Events2532

2.10.7.1.2.1 Basic Flow2533

This use case starts when the user wants to secure the SOAP message.2534

• If user wants to ‘Sign SOAP message’, then basic flow 1 is executed.2535

• If user wants to ‘Encrypt and Sign the SOAP message’, then basic flow 2 is executed.2536

1: Sign SOAP Message.2537

1.1: User sends the SOAP message, digital certificate and specifies the element name that2538
needs to be signed.2539

1.2: Functional Element gets the key information from the digital certificate.2540

Note: The private key will be used to sign the SOAP message and the public key will be2541
added to the SOAP message after the signing.2542

1.3: Functional Element signs the element.2543

Note: The digital signature format is expected to be based on XML-Digital Signature Syntax2544
mentioned in section 3.10.5.2545

1.4: Functional Element parses the secure SOAP message and regenerates the SOAP2546
message.2547

1.5: Functional Element returns the secured SOAP message to user and the use case ends.2548

2: Encrypt And Sign SOAP Message.2549

2.1: User sends the SOAP message, digital certificate and specify the element name that2550
needs to be encrypted.2551

2.2: User sends the receiver’s public key information to Functional Element.2552

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 112 of 177

Note: Receiver’s public key will be used to encrypt the session key, which was then used to2553
encrypt the content of the element in the SOAP message.2554

2.3: Functional Element gets key information from the user’s digital certificate.2555

Note: Private key is used to sign the SOAP message and public key is used to add into the2556
SOAP message after the signing.2557

2.4: Functional Element generates the session key.2558

Note: Session key is used to encrypt the content of the element.2559

2.5: Functional Element encrypts the content of element with the session key.2560

2.6: Functional Element encrypts session key with the receiver’s public key.2561

2.7: Functional Element signs the SOAP message after encryption.2562

2.8: Functional Element regenerates the SOAP message.2563

Note: Functional Element adds the encrypted content of the element, encrypted session key2564
information, the receiver’s public key information and the signature to the SOAP message.2565

2.9: Functional Element returns the SOAP message and the use case ends.2566

2.10.7.1.2.2 Alternative Flows2567

1: Cannot Get Key.2568

1.1: In basic flow 1.2 and 2.3, Functional Element cannot get the key information from the2569
digital certificate. The Functional Element returns an error message and the use case ends.2570

2: Cannot Sign2571

2.1: In basic flow 1.3, Functional Element cannot sign the SOAP message. The Functional2572
Element returns an error message and the use case ends.2573

3: Cannot Encrypt2574

3.1: In basic flow 2.5, Functional Element cannot encrypt the SOAP message. The Functional2575
Element returns an error message and the use case ends.2576

2.10.7.1.3 Special Req uirements2577

None.2578

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 113 of 177

2.10.7.1.4 Pre-Conditions2579

None.2580

2.10.7.1.5 Post-Condi tions2581

None.2582

2.10.7.2 Get Origina l SOAP Message2583

2.10.7.2.1 Description2584

This use case allows users to get original SOAP message.2585

2.10.7.2.2 Flow of Events2586

2.10.7.2.2.1 Basic Flow2587

This use case starts when the user wants to get the original SOAP message.2588

• If the user wants to ‘Verify the SOAP message’, then basic flow 1 is executed.2589

• If the user wants to ‘Decrypt and Verify the SOAP message’, then basic flow 2 is2590
executed.2591

1: Verify SOAP Message.2592

1.1: User sends the SOAP message and sender’s digital certificate.2593

1.2: Functional Element verifies the SOAP message.2594

Note: The sender’s certificate information will be used to verify the signature.2595

1.3: Functional Element gets the original SOAP message, returns to user and the use case2596
ends.2597

2: Decrypt And Verify The SOAP Message.2598

2.1: User sends the SOAP message, user’s digital certificate and sender’s certificate.2599

2.2: Functional Element verifies the SOAP message.2600

Note: The sender’s certificate information will be used to verify the signature.2601

2.3: Functional Element gets the user’s key information from the user’s digital certificate.2602

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 114 of 177

Note: The user’s private key will be used to decrypt the session key.2603

2.4: Functional Element decrypts the session key.2604

2.5: Functional Element decrypts the content of the element with the session key.2605

2.6: Functional Element regenerates the SOAP message.2606

Note: Functional Element removes the session key information and the digital signature2607
information from the SOAP message and gets the original one.2608

2.7: Functional Element returns the original SOAP message to user and the use case ends.2609

2.10.7.2.2.2 Alternative Flows2610

1: Verification Fails.2611

1.1: In basic flow 1.3 and 2.3, if verification fails, the Functional Element returns an error2612
message and the use case ends.2613

2: Decryption of Content Fails.2614

2.1: In basic flow 2.5, the Functional Element cannot decrypt the content of the element. The2615
Functional Element returns an error message and the use case ends.2616

2.10.7.2.3 Special Req uirements2617

None2618

2.10.7.2.4 Pre-Conditions2619

None.2620

2.10.7.2.5 Post-Condi tions2621

None.2622

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 115 of 177

2.11 Sensory F unctional Element2623

2.11.1 Motivation2624

In a Web Service implementation where the presentation capabilities of clients differ, there is a2625
need to determine the exact ability of the end devices so that the appropriate contents may be2626
forwarded. The Sensory Functional Element can help to play this role by covering the following2627
aspects within an application:2628

• Determining the presentation capabilities by inspecting incoming headers, and2629

• Determining the presentation capabilities by extracting MIME information from the2630
relevant headers.2631

2632

This Functional Element fulfills the following requirements from the Functional Elements2633
Requirements, Working Draft 01a:2634

• Primary Requirements2635

• DELIVERY-001,2636

• DELIVERY-005 to DELIVERY-006, and2637

• DELIVERY-009.2638

• Secondary Requirements2639

• MANAGEMENT-011, and2640

• MANAGEMENT-096.2641

2642

2.11.2 Terms Used2643

Terms Description

HTTP Hyper Text Transport Protocol [HTTP] refers to the protocol for moving
hypertext files across the Internet. Requires a HTTP client program on one
end, and an HTTP server program on the other end. HTTP is the most
important protocol used in the World Wide Web (WWW).

MIME Multipurpose Internet Mail Extensions (MIME) refers to a standard that
allows the embedding of arbitrary documents and other binary data of
known types (images, sound, video, and so on) into e-mail handled by
ordinary Internet electronic mail interchange protocols

Location Based
Services (LBS)

Location-based services (LBS) refer to the services that provides users of
mobile devices personalized services tailored to their current location.

2644

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 116 of 177

2.11.3 Key Features2645

Implementations of the Sensory Functional Element are expected to provide the following key2646
features:2647

1. The Functional Element MUST intercept HTTP requests from client and determines existing2648
supportability of the request’s MIME type.2649

2. The Functional Element MUST provide the mechanism to manage MIME types, including2650
the ability to add, delete and retrieve supported MIME types.2651

2652

In addition, the following key features could be provided to enhance the Functional Element2653
further:2654

1. The Functional Element MAY provide a mechanism to enable Location Based Services2655
(LBS).2656

2.11.4 Interdependencies2657

Interaction Dependency

Presentation Transformer
Functional Element

The Presentation Transformer Functional Element may be
used to generate the appropriate output for the targeted
devices.

2.11.5 Related Technologies and Standards2658

None.2659

2660

2.11.6 Model2661

 Figure 12: Model Of the Sensory Functional Element [21]

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 117 of 177

2.11.7 Usage Scenarios2662

2.11.7.1 Detect Sup ported Format2663

2.11.7.1.1 Description2664

This use case allows the service user (user/other service) to make request and based on that2665
request it detects service user’s device capabilities.2666

2.11.7.1.2 Flow of Events2667

2.11.7.1.2.1 Basic Flow2668

This use case starts when the service user wishes to use any service provided by the service2669
provider.2670

1: The Functional Element receives the request from the service user.2671

2: The Functional Element extracts MIME name and MIME type from the service user’s HTTP2672
request (even from SOAP request).2673

3: The Functional Element uses MIME name and MIME TYPE to check with the registered MIME2674
type.2675

4: The Functional Element sends device capabilities to service user and ends the use case.2676

2.11.7.1.2.2 Alternative Flows2677

1: Unsupported Device.2678

1.1 If in the basic flow 2, the Functional Element is unable to detect the service user’ device2679
capability, the Functional Element returns a error message and the use case ends.2680

2.11.7.1.3 Special Req uirements2681

None2682

2.11.7.1.3.1 Supportability2683

The edge devices must be able to support the HTTP request.2684

2.11.7.1.4 Pre-Conditions2685

None.2686

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 118 of 177

2.11.7.1.5 Post-Condi tions2687

None.2688

2.11.7.2 Manage Device Types2689

2.11.7.2.1 Description2690

This use case allows the service user to maintain the device (MIME Type information). This2691
includes adding, changing and deleting device information from the Functional Element.2692

2.11.7.2.2 Flow of Events2693

2.11.7.2.2.1 Basic Flow2694

This use case starts when the service user wishes to add or delete either device or service2695
information from the Functional Element.2696

1: The Functional Element requests that the service user specify the function he/she would like to2697
perform (either add, update or delete device or service).2698

2: Once the service user provides the requested information, one of the sub-flows is executed.2699

• If the service user provides ‘Add Device Types’, then sub-flow 2.1 is executed.2700

• If the service user provides ‘Delete Device Types’, then sub-flow 2.2 is executed.2701

2.1: Add Device Type.2702

2.1.1: The Functional Element requests that the service user provide the device2703
information. This includes: MIME Name, MIME Description, Supported MIME type.2704

2.1.2: Once the service user provides the requested information, the Functional Element2705
generates and assigns a unique MIME Id number to the device.2706

2.2: Delete Device Type.2707

2.2.1: The Functional Element requests that the service user provide the Device ID.2708

2.2.2: The Functional Element retrieves the existing device information based on the2709
Device ID.2710

2.2.3: The service user provides the delete device information and the Functional2711
Element deletes the device record from the Functional Element.2712

3: The use case ends when the service user provides the requested information or decided to2713
end use case.2714

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 119 of 177

2.11.7.2.2.2 Alternative Flows2715

1: Invalid Device Information.2716

1.1: If in the sub-flow 2.1.2, the requested information provided by the user is invalid, the2717
Functional Element returns an error message and the use case ends2718

2: Device Not Found.2719

2.1 If in the basic flows 2.2.2, the device information with the specified device is not found or2720
does not exist, the Functional Element returns an error message and the use case ends.2721

2.11.7.2.3 Special Req uirements2722

2.11.7.2.3.1 Supportability2723

Manage Device Types supports the most widespread MIME types used today.2724

2.11.7.2.4 Pre-Conditions2725

None.2726

2.11.7.2.5 Post-Condit ions2727

If the use case was successful, the device information is added, updated or deleted from the2728
Functional Element. Otherwise, the Functional Element’s state is unchanged.2729

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 120 of 177

2.12 Service Management Functional Element2730

2.12.1 Motivation2731

The ability to monitor Web Services invocation is crucial towards the adoption of this technology2732
from the security and performance standpoints. A security framework should incorporate an2733
authentication and authorisation mechanism together with an audit trail. These twin2734
considerations will serve to discourage resource misuse and in addition, will help to promote the2735
“pay-as-you-use” concept. Service throughput on the server end is another important parameter2736
that must be monitored. Administrators of services, which are sluggish, should be notified2737
immediately via any electronic means.2738

2739

This Functional Element fulfills the following requirements from the Functional Elements2740
Requirements, Working Draft 01a:2741

• Primary Requirements2742

• MANAGEMENT-090, and2743

• MANAGEMENT-093 to MANAGEMENT-096.2744

• Secondary Requirements2745

• None2746

2.12.2 Terms Used2747

Terms Description

Management
Domain

Management Domain refers to the set of servers that needs to be
monitored.

Performance
Parameters

Performance Parameters refers to the set of attributes that should be track
for the purpose of evaluating the performance of the Web Services.

Monitoring Monitoring refers to the logging and tracking of the Web Service’s

2748

2.12.3 Key Features2749

Implementations of the Service Management Functional Element are expected to provide the2750
following key features:2751

1. The Functional Element MUST provide the capability to configure the Management Domain.2752

Example: All Servers that falls under a certain IP range (192.168.20.3 to 192.168.20.22)

2. The Functional Element MUST provide the capability to discover services that are under the2753
Management Domain.2754

3. The Functional Element MUST provide the capability to configure Performance Parameters2755
that are of interest for Monitoring purposes.2756

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 121 of 177

Example: The following are some of the Performance Parameter that may be of interest:

• The time at which a Web Service request came.

• The time at which the corresponding response was sent.

• The name of the Web Service that was invoked.

4. The Functional Element MUST provide a means to log Performance Parameters.2757

2758

In addition, the following key feature could be provided to enhance the Functional Element2759
further:2760

1. The Functional Element MAY provide the capability to configure additional attributes that is2761
tagged along with a particular Web Service.2762

Example: The access permission for invoking the service.

2. The Functional Element MAY provide verification services to block unauthorized Web2763
Service’s usage.2764

Example: The header information that accompanies the request may be extracted for
relevant client’s credential. This could then be compared to the access
permission for the service.

2.12.4 Interdependencies2765

Direct Dependency

Log Utility Functional Element The Log Utility Functional Element helps to log the
Performance Parameter into the appropriate data sources

2766

Interaction Dependencies

Role and Access Management
Functional Element

In the event when authentication is required before invocation
of a particular service is allowed, the Service Management
Functional Element may extract authentication information
from the header of the incoming request and use the Role
and Access Management Functional Element to extract the
relevant role information before deciding if a user has the
privilege to access a particular Web Service.

2.12.5 Related Technologies and Standards2767

None2768

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 122 of 177

2.12.6 Model2769

Figure 13: Model Of the Service Management Functional Element [22]

2.12.7 Usage Scenarios2770

2.12.7.1 Discover Services2771

2.12.7.1.1 Description2772

This use case describes the scenario surrounding the automatic discovery of services hosted in2773
the Management Domain.2774

2.12.7.1.2 Flow of Events2775

2.12.7.1.2.1 Basic Flow2776

The use case begins when the user wants to retrieve a list of services URLs from the2777
Management Domain.2778

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 123 of 177

1: The user sends a request to retrieve the list of services URLs from the Management Domain.2779

2: The Functional Element reads from a configuration file to so as to determine the exact2780
boundaries of the Management Domain.2781

3: The Functional Element retrieves from each of the servers as stated in the configuration file a2782
list of service URLs that it is hosting2783

4: The Functional Element returns the list of service URLs back to the user and the use case2784
ends.2785

2.12.7.1.2.2 Alternative Flows2786

1: Configuration File Does Not Exist2787

1.1: In basic flow 2, the Functional Element fails to read boundaries from the configuration2788
file. The Functional Element in turn return an error message and the use case end.2789

2: Fail To Communicate With the Server2790

2.1: In basic flow 3, the Functional Element fails to communicate with the servers hosting the2791
services. The Functional Element in turn return an error message and the use case end.2792

2.12.7.1.3 Special Req uirements2793

The protocol of communicating with a server hosting the services is not standardized. Each2794
server may offer different mechanism for retrieving the list of services hosted and as such, the2795
extensibility this approach is severely limited.2796

2.12.7.1.4 Pre-Conditions2797

None.2798

2.12.7.1.5 Post-Condi tions2799

None2800

2.12.7.2 Log Performance Parameters2801

2.12.7.2.1 Description2802

This use case allows the user to log the performance parameters of all the Web Services that is2803
being hosted by an application that contains the Service Management Functional Element.2804

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 124 of 177

2.12.7.2.2 Flow of Events2805

2.12.7.2.2.1 Basic Flow2806

The use case begins when the user wants to log the performance parameters of all the Web2807
Services that is being hosted by an application that contains the Service Management Functional2808
Element.2809

1: The user sends a request to log the performance parameters of all the Web Services hosted.2810

2: The Functional Element reads from a configuration file the performance parameter to be2811
logged.2812

3: The Functional Element extracts the performance parameters for the incoming message and2813
stores them into the data store2814

4: The Functional Element next extracts the performance parameters for the outgoing message2815
and stores them into the data store2816

5: The Functional Element stores the necessary information into the data store.2817

2.12.7.2.2.2 Alternative Flows2818

1: No Performance Parameter Found.2819

1.1: In basic flow 2, the Functional Element discovers that the performance parameter to be2820
logged is not configured. The Functional Element returns an error message and the use case2821
ends.2822

2: Data Store Not Available.2823

2.1: In basic flow 5, the Functional Element detects that the data store is not available. The2824
Functional Element returns an error message and the use case ends.2825

2.12.7.2.3 Special Req uirements2826

None.2827

2.12.7.2.4 Pre-Conditions2828

None.2829

2.12.7.2.5 Post-Condi tions2830

None.2831

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 125 of 177

2.12.7.3 Authorize Usage2832

2.12.7.3.1 Description2833

This use case describes the authentication process for invoking a Web Service that is being2834
hosted by an application that contains the Service Management Functional Element.2835

2.12.7.3.2 Flow of Events2836

2.12.7.3.2.1 Basic Flow2837

The use case starts when a user accesses a service.2838

1: The user sends a request to invoke a particular Web Service.2839

2: The Functional Element extracts the following information from the incoming message2840

2.1: The username attribute that resides in the header of the incoming message2841

3: The Functional Element extracts the access privilege associated with the service from the data2842
store2843

4: The Functional Element uses the Role and Access Management Functional Element to retrieve2844
the role of the user.2845

5: The Functional Element looks up the data store to determine if the user is authorized to access2846
the service2847

6: The Functional Element allows the request to be process and the use case ends.2848

2.12.7.3.2.2 Alternative Flow2849

1: Username header not found.2850

1.1: In basic flow 2, the username attribute is not found in the header.2851

1.2: The Functional Element denies access to the requested Web Service and returns an2852
error message.2853

2: Web Service access privilege not set.2854

2.1: In basic flow 3, the Functional Element could not find the access privilege for the Web2855
Service.2856

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 126 of 177

2.2: The Functional Element denies access to the requested Web Service and returns an2857
error message.2858

3: Role and Access Management Functional Element not available2859

3.1: In basic flow 4, the Functional Element could not find the Role and Access Management2860
Functional Element.2861

3.2: The Functional Element denies access to the requested Web Service and returns an2862
error message.2863

4: User not authorize2864

41: In basic flow 5, the Functional Element looks up the data source and determines that the2865
user does not have the required privilege to access the service.2866

4.2: The Functional Element denies access to the requested Web Service and returns an2867
error message.2868

2.12.7.3.3 Special Req uirements2869

None.2870

2.12.7.3.4 Pre-Conditions2871

None.2872

2.12.7.3.5 Post-Condi tions2873

None.2874

2.12.7.4 Manage Ad ditional Information2875

2.12.7.4.1 Description2876

This use case helps to maintain the following attributes of a Web Service that is useful in2877
determining if a particular user has the privilege to invoke it.2878

• Service Name. This is the name of the service to monitor2879

• Access level. This refers to the access level of the Web Services hosted2880

• Role Names. If a user’s role matches any of the roles contained here, then he/she has2881
the privilege to access the Web Service.2882

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 127 of 177

2.12.7.4.2 Flow of Events2883

2.12.7.4.2.1 Basic Flow2884

This use case starts when user wants to manage services.2885

1: The user specifies the additional information that he wants to create/update/delete/retrieve.2886

2: Once the user provides the requested information, one of the sub-flows is executed.2887

• If the user provides ‘Create Service Parameter’, then sub-flow 2.1 is executed.2888

• If the user provides ‘Update Service Parameter’’, then sub-flow 2.2 is executed.2889

• If the user provides ‘Delete Service Parameter’’, then sub-flow 2.3 is executed.2890

• If the user provides ‘Retrieve Service Parameter’’, then sub-flow 2.4 is executed.2891

2.1: Create Service Parameter.2892

2.1.1: The user specifies the service to create with the appropriate additional information.2893

2.1.2: The Functional Element connects to the data store.2894

2.1.3: The Functional Element saves the new service in the data store and the use case2895
ends.2896

2.2: Update Service Parameter.2897

2.2.1: The user specifies the service to update with the appropriate additional information.2898

2.2.2: The Functional Element connects to the data store.2899

2.2.3: The Functional Element updates the service in the data store and the use case2900
ends.2901

2.3: Delete Service Parameter.2902

2.3.1: The user specifies the service to delete.2903

2.3.2: The Functional Element connects to the data store.2904

2.3.3: The Functional Element deletes the service in the data store and the use case2905
ends.2906

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 128 of 177

2.4: Retrieve Service Parameter.2907

2.4.1: The user specifies the service to retrieve.2908

2.4.2: The Functional Element connects to the data store.2909

2.4.3: The Functional Element retrieves the service from the data store and the use case2910
ends.2911

2.12.7.4.2.2 Alternative Flows2912

1: Data Store Not Available.2913

1.1: If in basic flow 2.1.2, 2.2.2, 2.3.2 and 2.4.2, the data store is not available, an error message2914
is returned and the use case ends.2915

2.12.7.4.3 Special Req uirements2916

None.2917

2.12.7.4.4 Pre-Conditions2918

None.2919

2.12.7.4.5 Post-Condi tions2920

None.2921

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 129 of 177

2.13 Service Registry Functional Element2922

2.13.1 Motivation2923

In a Web Service-enabled implementation, there exist the needs to maintain a central repository2924
of all the services that are available. This facilitates service lookups as well as management of2925
Web Services within the application that contains the Functional Element. In order to achieve2926
these expectations, the Functional Element will cover the following aspects.2927

• Simplify management of information in a XML registry server like UDDI and ebXML, and2928

• Simplify information publish and query from a XML registry server like UDDI and ebXML.2929

2930

This Functional Element fulfills the following requirements from the Functional Elements2931
Requirements, Working Draft 01a:2932

• Primary Requirements2933

• PROCESS-031 to PROCESS-032,2934

• PROCESS-035, and2935

• MANAGEMENT-097 to MANAGEMENT-1002936

• Secondary Requirements2937

• PROCESS-014.2938

2939

2.13.2 Terms Used2940

Terms Description

Classification /
Taxonomy

Classification / Taxonomy refers to a taxonomy that may be used to classify
or categorize any registry object instances like Organizations, Web
Services, Service Bindings, etc.

Concept / tModel Concept / tModel is used to represent taxonomy elements and their
structural relationship with each other in order to describe an internal
taxonomy.

Organization Organization provides information on organizations such as a Submitting
Organization. Each Organization may have a reference to a parent
Organization. In addition it may have a contact attribute defining the primary
contact within the organization. An Organization also has an address
attribute.

Registry Server Registry Server refers to a registry that offers a mechanism for users or
software applications to advertise and discover Web Services. An XML
registry is an infrastructure that enables the building, deployment, and
discovery of Web Services.

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 130 of 177

Service Binding Service Binding represent technical information on a specific way to access
a specific interface offered by a service.

UUID Universally Unique Identifier

2.13.3 Key Features2941

Implementations of the Service Registry Functional Element are expected to provide the following2942
key features:2943

1. The Functional Element MUST provide the capability to facilitate the management of the2944
following information in a UDDI or an ebXML compliant registry server.2945

1.1. Organisation2946

1.2. Classification / Taxonomy2947

1.3. Web Service2948

1.4. tModel2949

1.5. Service Binding2950

The management of this information includes registering, updating, deleting and searching.2951

2. As part of Key Feature (1), the Functional Element MUST provide the ability to perform the2952
operations specified across multiple registry servers.2953

2954

In addition, the following key feature could be provided to enhance the Functional Element2955
further:2956

1. The Functional Element MAY provide a mechanism to enable single step publishing of2957
services into registry servers.2958

2959

2.13.4 Interdependencies2960

None2961

2.13.5 Related Technologies and Standards2962

Specifications Description

UDDI Data Structure and API
Specification v2.0

UDDI Data Structure Specification v2.0 describes in detail the
data structure models of organizations, web services, service
categories, service bindings, and tModels. [23]

UDDI API Specification v2.0 describes in detail the
publishing, deleting, and querying API(s) to manipulate the
information stored in XML registry server like UDDI. [24]

ebXML Registry Information
Model (RIM) Specification v2.0
[25]

ebXML Registry Information Model Specification v2.0
describes in detail the data structure models of organizations,
web services, service categories, service bindings, and
tModels.

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 131 of 177

ebXML Registry Services (RS)
Specification v2.0 [26]

ebXML Registry Services Specification v2.0 describes in
detail the publishing, deleting, and querying API(s) to
manipulate the information stored in XML registry server like
UDDI.

2963

2.13.6 Model2964

Figure 14: Model Of the Service Registry Functional Element [27]

2.13.7 Usage Scenario2965

2.13.7.1 Manage Classification / Taxonomy2966

2.13.7.1.1 Description2967

This use case allows any users to create, remove and view classification/taxonomy in the2968
registry.2969

2.13.7.1.2 Flow of Events2970

2.13.7.1.2.1 Basic Flow2971

This use case starts when the users of registry server wishes to create, remove or view the2972
classification/taxonomy in the registry server.2973

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 132 of 177

2974

1: User initiates a request type to the Functional Element stating whether to create, remove or2975
view classification/taxonomy.2976

2: The Functional Element checks whether the registry server exists.2977

3: The Functional Element checks the request. Based on the type of request, one of the sub-2978
flows is executed.2979

• If the request is to ‘Create Classification/Taxonomy’, then sub-flow 3.1 is executed.2980

• If the request is to ‘View Classification/Taxonomy’, then sub-flow 3.2 is executed.2981

• If the request is to ‘Remove Classification/Taxonomy’, then sub-flow 3.3 is executed.2982

3.1: Create Classification/Taxonomy.2983

3.1.1: Other Functional Element provides username, password and registry server URL2984
to the Functional Element for authentication.2985

3.1.2: The Functional Element checks for the user validity in the identified registry server.2986

3.1.3: Other Functional Element provides classification/taxonomy information to be2987
created in the registry server.2988

3.1.4: The Functional Element checks for the duplicate classification/taxonomy name.2989

3.1.5: The Functional Element creates the classification/taxonomy information in the2990
private (default) or the public UDDI registry server according to the URL provided by2991
other Functional Element, if it does not exist.2992

3.2: View Classification/Taxonomy.2993

3.2.1: The Functional Element retrieves all the classification/taxonomy from the identified2994
registry server, which may be private (default) or public.2995

3.2.2: The Functional Element returns the classification/taxonomy information from the2996
identified registry server to other Functional Element.2997

3.3: Remove Classification/Taxonomy.2998

3.3.1: Other Functional Element provides username, password and registry server URL2999
to the Functional Element for authentication.3000

3.3.2: The Functional Element checks for the user validity in the identified registry server.3001

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 133 of 177

3.3.3: Other Functional Element provides classification/taxonomy key (i.e. UUID) to be3002
removed from the identified registry server.3003

3.3.4: The Functional Element removes the classification/taxonomy information from the3004
private (default) or the public UDDI registry server according to the URL provided by the3005
user.3006

4: The Functional Element returns the status of the operation and the use case ends.3007

2.13.7.1.2.2 Alternative Flows3008

1: Registry Server Down.3009

1.1: In the basic flow 2, if the identified registry server is down, the Functional Element3010
returns an error message and the use case ends.3011

2: Invalid Username And Password.3012

2.1: In the basic flow 3.1.2 and 3.3.2, if the username or password is invalid, the Functional3013
Element returns an error message and the use case ends.3014

3: Classification/Taxonomy Key Not Found.3015

3.1: In the basic flow 3.3.3, if the classification/taxonomy key cannot be found in the3016
specified registry server, the Functional Element returns an error message and the use3017
case ends.3018

4: Duplicate Classification/Taxonomy.3019

4.1: In the basic flow 3.1.4, If the same classification/taxonomy name has been defined in3020
the registry server, the Functional Element returns an error message and the use case3021
ends.3022

2.13.7.1.3 Special Req uirements3023

None3024

2.13.7.1.4 Pre-Conditions3025

In order to manage the classification/taxonomy in the registry server, users must be registered3026
with the registry server. Username and password will be given when a user registers with a3027
registry server.3028

2.13.7.1.5 Post-Condi tions3029

None.3030

2.13.7.2 Manage Web Services3031

2.13.7.2.1 Description3032

This use case allows any users to register, remove and view Web Services in the private (default)3033
as well as the public UDDI Registry Server.3034

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 134 of 177

2.13.7.2.2 Flow of Events3035

2.13.7.2.2.1 Basic Flow3036

This use case starts when the users of registry server wishes to create, remove and view Web3037
Services.3038

1: User initiates a request type to the Functional Element stating whether to create, remove or3039
view Web Services in the identified private or public registry server.3040

2: The Functional Element checks whether the registry server exists.3041

3: The Functional Element checks the request. Based on the type of request, one of the sub-3042
flows is executed.3043

• If the request is to ‘Create Web Service’, then sub-flow 3.1 is executed.3044

• If the request is to ‘View Web Services’, then sub-flow 3.2 is executed.3045

• If the request is to ‘Remove Web Service’, then sub-flow 3.3 is executed.3046

3.1: Create Web Service.3047

3.1.1: User provides username, password and registry server URL to the Functional3048
Element for authentication.3049

3.1.2: The Functional Element checks for the user validity in the identified registry server.3050

3.1.3: Other Functional Element provides Web Service information to be created in the3051
registry server.3052

3.1.4: The Functional Element creates the Web Service information in the private3053
(default) or the public UDDI registry server according to the URL provided by other3054
Functional Element.3055

3.2: View Web Services.3056

3.2.1: The Functional Element retrieves all the Web Services from the identified registry3057
server for specific stated conditions like service name search, business name search,3058
etc.3059

3.2.2: The Functional Element displays the Web Services information search results from3060
the identified registry server to other Functional Element.3061

3.3: Remove Web Service3062

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 135 of 177

3.3.1 User provides username, password and registry server URL to the Functional3063
Element for authentication.3064

3.3.2: The Functional Element checks for the user validity in the identified registry server.3065

3.3.3: Other Functional Element provides Web Service key (i.e. UUID) to be removed3066
from the identified registry server.3067

3.3.4: The Functional Element removes the Web Service information from the private3068
(default) or the public UDDI registry server according to the URL provided by other3069
Functional Element.3070

4: The Functional Element returns the results of the operation and the use case ends.3071

2.13.7.2.2.2 Alternative Flows3072

1: Registry Server Down.3073

1.1: In the basic flow 2, if the identified registry server is down, the Functional Element3074
returns an error message and the use case ends.3075

2: Invalid Username And Password.3076

2.1: In the basic flow 3.1.2 and 3.3.2, if the username or password is invalid, the Functional3077
Element returns an error message and the use case ends.3078

3: Web Service Key Not Found.3079

3.1: In the basic flow 3.3.3, if the Web Service key cannot be found in the specified registry3080
server, the Functional Element returns an error message and the use case ends.3081

2.13.7.2.3 Special Req uirements3082

2.13.7.2.4 Pre-Conditions3083

In order to manage Web Services in the registry server, the users must be registered with the3084
registry server. Username and password will be given when a user registers with a registry3085
server.3086

2.13.7.2.5 Post-Condi tions3087

None.3088

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 136 of 177

2.13.7.3 Manage Organization3089

2.13.7.3.1 Description3090

This use case allows any users to create, remove and view organization in the registry.3091

2.13.7.3.2 Flow of Events3092

2.13.7.3.2.1 Basic Flow3093

This use case starts when the users of registry server wishes to create, remove or view3094
Organization.3095

1: User initiates a request type to the Functional Element stating whether to create, remove or3096
view Organization.3097

2: The Functional Element checks whether the registry server exists.3098

3: The Functional Element checks the request. Based on the type of request, one of the sub-3099
flows is executed.3100

• If the request is to ‘Create Organization’, then sub-flow 3.1 is executed.3101

• If the request is to ‘View Organizations’, then sub-flow 3.2 is executed.3102

• If the request is to ‘Remove Organization’, then sub-flow 3.3 is executed.3103

3.1: Create Organization.3104

3.1.1: Other Functional Element provides username, password and registry server URL3105
to the Functional Element for authentication.3106

3.1.2: The Functional Element checks for the user validity in the identified registry server.3107

3.1.3: Other Functional Element provides organization information to be created in the3108
registry server.3109

3.1.4: The Functional Element checks for the duplicate organization name.3110

3.1.5: The Functional Element creates the organization information in the private (default)3111
or the public UDDI registry server according to the URL provided by other Functional3112
Element, if it does not exist.3113

3.2: View Organizations.3114

3.2.1: The Functional Element retrieves all the organizations from the identified registry3115
server for specific stated conditions like organization name, key, etc.3116

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 137 of 177

3.2.2: The Functional Element returns the organization information from the identified3117
registry server to other Functional Element.3118

3.3: Remove Organization.3119

3.3.1: Other Functional Element provides username, password and registry server URL3120
to the Functional Element for authentication.3121

3.3.2: The Functional Element checks for the user validity in the identified registry server.3122

3.3.3: Other Functional Element provides Organization key (i.e. UUID) to be removed3123
from the identified registry server.3124

3.3.4: The Functional Element removes the Organization information from the private3125
(default) or the public UDDI registry server according to the URL provided by the user.3126

4: The Functional Element returns the status of the operation and the use case ends.3127

2.13.7.3.2.2 Alternative Flows3128

1: Registry Server Down.3129

1.1: In the basic flow 2, if the identified registry server is down, the Functional Element3130
returns an error message and the use case ends.3131

2: Invalid Username And Password.3132

2.1: In the basic flow 3.1.2 and 3.3.2, if the username or password is invalid, the Functional3133
Element returns an error message and the use case ends.3134

3: Organization Key Not Found.3135

3.1: In the basic flow 3.3.3, if the Organization key cannot be found in the specified registry3136
server, the Functional Element returns an error message and the use case ends.3137

4: Duplicate Organization.3138

4.1: In the basic flow 3.1.4, If the same Organization name has been defined in the registry3139
server the Functional Element returns an error message and the use case ends.3140

2.13.7.3.3 Special Req uirements3141

None3142

2.13.7.3.4 Pre-Conditions3143

In order to manage Organization in the registry server, users must be registered with the registry3144
server. Username and password will be given when a user registers with a registry server.3145

2.13.7.3.5 Post-Condi tions3146

None.3147

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 138 of 177

2.13.7.4 Manage Service Binding3148

2.13.7.4.1 Description3149

This use case allows any users to register, remove and view Service Binding in the private3150
(default) as well as the public UDDI Registry Server.3151

2.13.7.4.2 Flow of Events3152

2.13.7.4.2.1 Basic Flow3153

This use case starts when the users of registry server wishes to create, remove and view Service3154
Binding.3155

1: User initiates a request type to the Functional Element stating whether to create, remove or3156
view Service Binding in the identified private or public registry server.3157

2: The Functional Element checks whether the registry server exists.3158

3: The Functional Element checks the request. Based on the type of request, one of the sub-3159
flows is executed.3160

• If the request is to ‘Create Service Binding’, then sub-flow 3.1 is executed.3161

• If the request is to ‘View Service Bindings’, then sub-flow 3.2 is executed.3162

• If the request is to ‘Remove Service Binding’, then sub-flow 3.3 is executed.3163

3.1: Create Service Binding.3164

3.1.1: User provides username, password and registry server URL to the Functional3165
Element for authentication.3166

3.1.2: The Functional Element checks for the user validity in the identified registry server.3167

3.1.3: Other Functional Element provides Service Binding information to be created in the3168
registry server.3169

3.1.4: The Functional Element creates the Service Binding information in the private3170
(default) or the public UDDI registry server according to the URL provided by other3171
Functional Element.3172

3.2: View Service Bindings.3173

3.2.1: The Functional Element retrieves all the Service Bindings from the identified3174
registry server for specific stated conditions like service binding key search, etc.3175

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 139 of 177

3.2.2: The Functional Element displays the Service Bindings information search results3176
from the identified registry server to other Functional Element.3177

3.3: Remove Service Binding3178

3.3.1 User provides username, password and registry server URL to the Functional3179
Element for authentication.3180

3.3.2: The Functional Element checks for the user validity in the identified registry server.3181

3.3.3: Other Functional Element provides Service Binding key (i.e. UUID) to be removed3182
from the identified registry server.3183

3.3.4: The Functional Element removes the Service Binding information from the private3184
(default) or the public UDDI registry server according to the URL provided by other3185
Functional Element.3186

4: The Functional Element returns the results of the operation and the use case ends.3187

2.13.7.4.2.2 Alternative Flows3188

1: Registry Server Down.3189

1.1: In the basic flow 2, if the identified registry server is down, the Functional Element returns3190
an error message and the use case ends.3191

2: Invalid Username And Password.3192

2.1: In the basic flow 3.1.2 and 3.3.2, if the username or password is invalid, the Functional3193
Element returns an error message and the use case ends.3194

3: Service Binding Key Not Found.3195

3.1: In the basic flow 3.3.3, if the Service Binding key cannot be found in the specified registry3196
server, the Functional Element returns an error message and the use case ends.3197

2.13.7.4.3 Special Req uirements3198

2.13.7.4.4 Pre-Conditions3199

In order to manage Service Binding in the registry server, the users must be registered with the3200
registry server. Username and password will be given when a user registers with a registry3201
server.3202

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 140 of 177

2.13.7.4.5 Post-Condi tions3203

None.3204

2.13.7.5 Manage tModel3205

2.13.7.5.1 Description3206

This use case allows any users to register, remove and view tModel in the private (default) as3207
well as the public UDDI Registry Server.3208

2.13.7.5.2 Flow of Events3209

2.13.7.5.2.1 Basic Flow3210

This use case starts when the users of registry server wishes to create, remove and view tModel.3211

1: User initiates a request type to the Functional Element stating whether to create, remove or3212
view tModel in the identified private or public registry server.3213

2: The Functional Element checks whether the registry server exists.3214

3: The Functional Element checks the request. Based on the type of request, one of the sub-3215
flows is executed.3216

• If the request is to ‘Create tModel’, then sub-flow 3.1 is executed.3217

• If the request is to ‘View tModels’, then sub-flow 3.2 is executed.3218

• If the request is to ‘Remove tModel’, then sub-flow 3.3 is executed.3219

3.1: Create tModel.3220

3.1.1: User provides username, password and registry server URL to the Functional3221
Element for authentication.3222

3.1.2: The Functional Element checks for the user validity in the identified registry server.3223

3.1.3: Other Functional Element provides tModel information to be created in the registry3224
server.3225

3.1.4: The Functional Element creates the tModel information in the private (default) or3226
the public UDDI registry server according to the URL provided by other Functional3227
Element.3228

3.2: View tModels.3229

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 141 of 177

3.2.1: The Functional Element retrieves all the tModels from the identified registry server3230
for specific stated conditions like tModel name search, tModel key search, etc.3231

3.2.2: The Functional Element displays the tModel information search results from the3232
identified registry server to other Functional Element.3233

3.3: Remove tModel.3234

3.3.1 User provides username, password and registry server URL to the Functional3235
Element for authentication.3236

3.3.2: The Functional Element checks for the user validity in the identified registry server.3237

3.3.3: Other Functional Element provides tModel key (i.e. UUID) to be removed from the3238
identified registry server.3239

3.3.4: The Functional Element removes the tModel information from the private (default)3240
or the public UDDI registry server according to the URL provided by other Functional3241
Element.3242

4: The Functional Element returns the results of the operation and the use case ends.3243

2.13.7.5.2.2 Alternative Flows3244

1: Registry Server Down.3245

1.1: In the basic flow 2, if the identified registry server is down, the Functional Element returns3246
an error message and the use case ends.3247

2: Invalid Username And Password.3248

2.1: In the basic flow 3.1.2 and 3.3.2, if the username or password is invalid, the Functional3249
Element returns an error message and the use case ends.3250

3: tModel Key Not Found.3251

3.1: In the basic flow 3.3.3, if the tModel key cannot be found in the specified registry server,3252
the Functional Element returns an error message and the use case ends.3253

2.13.7.5.3 Special Req uirements3254

2.13.7.5.4 Pre-Conditions3255

In order to manage tModel in the registry server, the users must be registered with the registry3256
server. Username and password will be given when a user registers with a registry server.3257

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 142 of 177

2.13.7.5.5 Post-Condi tions3258

None.3259

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 143 of 177

2.14 Service Tester Functional Element3260

2.14.1 Motivation3261

In a Web Service environment where the lifecycle of services may be rather dynamic, there exist3262
a need for a client to dynamically discover the capabilities of the hosted service and bind to these3263
services dynamically. The later is the main motivation of this Functional Element.3264

3265

This Functional Element fulfills the following requirements from the Functional Elements3266
Requirements, Working Draft 01a:3267

• Primary Requirements3268

• MANAGEMENT-091,3269

• MANAGEMENT-094, and3270

• PROCESS-130 to PROCESS-132.3271

• Secondary Requirements3272

• PROCESS-133.3273

2.14.2 Terms Used3274

Terms Description

WSDL Web Services Description Language

2.14.3 Key Features3275

Implementations of the Service Tester Functional Element are expected to provide the following3276
key features:3277

1. The Functional Element MUST provide the capability to generate a Web Service client from3278
a WSDL file.3279

2. The Functional Element MUST provide the capability to test the availability of Web Services3280
based on the generated Web Service client.3281

Example: To retrieve the response time of a particular user-specified Web Service3282
operation to test the availability of a Web Service.3283

2.14.4 Interdependencies3284

None3285

2.14.5 Related Technologies and Standards3286

Specifications Description

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 144 of 177

WSDL 1.1 [28] The ability to parse the WSDL document and generate a
client is heavily dependent on it being a conforming WSDL
document.

2.14.6 Model3287

Figure 15: Model Of the Service Tester Functional Element [29]

3288

2.14.7 Usage Scenarios3289

2.14.7.1 Generate C lient3290

2.14.7.1.1 Description3291

This use case describes the steps to generate a dynamic client3292

2.14.7.1.2 Flow of Events3293

2.14.7.1.2.1 Basic Flow3294

This use case starts when the user wants to create a dynamic client3295

1: User submits the WSDL of the Web Service.3296

2: Functional Element parses the WSDL document and extracts the necessary information.3297

3: Functional Element generates the client base on the available parameters.3298

2.14.7.1.2.2 Alternative Flows3299

1: Invalid WSDL3300

11: In basic flow 2, if the structure of the WSDL does not comply with the standard, the3301
Functional Element returns an error message and the use case ends.3302

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 145 of 177

2.14.7.1.3 Special Req uirements3303

None.3304

2.14.7.1.4 Pre-Conditions3305

None.3306

2.14.7.1.5 Post-Condi tions3307

None.3308

2.14.7.2 Test Availability3309

2.14.7.2.1 Description3310

This use case allows the user to test the availability of a Web Service.3311

2.14.7.2.2 Flow of Events3312

2.14.7.2.2.1 Basic Flow3313

This use case starts when a user wants to test the availability of a Web Service.3314

1: User forms the dynamic client as describe in the use case ‘Generate Client’.3315

2: User inputs the acceptable response time for the purpose of testing the service.3316

3: Functional Element invokes the web service and waits for the response. The response time is3317
then compared with the stipulated time and the result is subsequently returned to the user.3318

2.14.7.2.2.2 Alternative Flows3319

1: Failure to Generate the Client3320

1.1: In basic flow 1, if the Functional Element fails to generate the client, the Functional3321
Element returns an error message and the use case ends.3322

2: Time Out3323

2.1: In basic flow 3, if the response if not returned within the stipulated time, the Functional3324
Element returns an error message and the use case ends.3325

3326

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 146 of 177

2.14.7.2.3 Special Req uirements3327

None.3328

2.14.7.2.4 Pre-Conditions3329

None.3330

2.14.7.2.5 Post-Condi tions3331

None.3332

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 147 of 177

2.15 User Management Functional Element3333

2.15.1 Motivation3334

The User Management Functional Element is expected to be an integral part of the user access3335
management (UAM) functionalities that is expected to be needed by a Web Service-enabled3336
implementation. This FE is expected to fulfill the needs arising out of managing resources within3337
an application, with a user-centric viewpoint. As such it will cover aspects that include:3338

• Basic user accounts management facilities,3339

• Ability to extend dynamically from the basic set of account information,3340

• Capability for configurable policies governing account management,3341

• Providing log trails for user activities, and3342

• Management of user authentication means, either directly or indirectly.3343

3344

This Functional Element fulfills the following requirements from the Functional Elements3345
Requirements, Working Draft 01a:3346

• Primary Requirements3347

• MANAGEMENT-001 to MANAGEMENT-003,3348

• MANAGEMENT-005,3349

• MANAGEMENT-008,3350

• MANAGEMENT-012, and3351

• SECURITY-002 (all).3352

• Secondary Requirements3353

• SECURITY-001.3354

3355

2.15.2 Terms Used3356

Terms Description

Namespace Namespace is use to segregate the instantiation of the application across
different application domains. If a company has two separate standalone
application, for example, an email application and an equipment booking
application, then these two are considered as separate application domains.

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 148 of 177

User A user is loosely defined to include both human and virtual users. Virtual
users could include service users and application (or machine) users that
are utilising other services in a SOA environment.

User Access
Management /
UAM

User Access Management or UAM refer to the concept of managing users
in a holistic manner, considering all aspect which includes:

• Defining a set of basic user information that should be stored in any
enterprise application.

• Providing a means to extend this basic set of user information when
needed.

• Simplifying management by grouping related users together
through certain criteria.

• Having the flexibility of adopting both coarse/fine grain access
controls.

User Repository User Repository is where the user information is stored. It can be a
database or a flat file.

3357

2.15.3 Key Features3358

Implementations of the User Management Functional Element are expected to provide the3359
following key features:3360

1. The Functional Element MUST provide a User Repository.3361

2. The Functional Element MUST be able to control access to such a User Repository.3362

3. The Functional Element MUST provide a basic User structure with a set of pre-defined3363
attributes.3364

4. The Functional Element MUST provide the capability to extend on the basic User structure3365
dynamically.3366

5. As part of Key Feature (4), this dynamic extension MUST be definable and configurable at3367
runtime implementation of the Functional Element.3368

6. The Functional Element MUST provide the capability to manage the creation and deletion of3369
instances of Users based on defined structure.3370

7. The Functional Element MUST provide the capability to manage all the information (attribute3371
values) stored in such Users. This includes the capability to:3372

7.1. Retrieve and update attribute’s values belonging to a User,3373

7.2. Generate a random password,3374

7.3. Encrypt sensitive user information, and3375

7.4. Authenticate a user.3376

8. As part of Key Feature (7.4), the authentication of a User MUST be achieved at least3377
through the use of a password.3378

9. The Functional Element MUST provide a mechanism for managing Users across different3379
application domains.3380

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 149 of 177

Example: Namespace control mechanism3381

3382

In addition, the following key features could be provided to enhance the Functional Element3383
further:3384

1. The Functional Element MAY provide a mechanism to control the username format.3385

Example: Usernames must be at least 8 characters long.3386

2. The Functional Element MAY provide additional security mechanisms to enhance the3387
security of sensitive information like user passwords.3388

Example: Passwords are stored in security tokens, or a more secure encryption algorithms3389
for passwords.3390

3. If Key Feature (2) is provided, the Functional Element MAY also provide a selection of3391
selectable encryption algorithms.3392

4. The Functional Element MAY provide additional security policies to ensure that systems are3393
not compromised.3394

Example: Passwords must be changed every 30 days.3395

5. If Key Feature (4) is provided, the Functional Element MAY also provide a facility to notify3396
users before the password expires.3397

3398

2.15.4 Interdependencies3399

Interaction Dependencies

Group Management Functional
Element

The Group Management Functional Element may be used to
provide useful aggregation of the users.

Phase and Lifecycle
Management Functional Element

The Phase and Lifecycle Management Functional Element
may be used to maintain the relationships between various
phases of a project lifecycle and the group who is working on
it.

Role and Access Management
Functional Element

The Role and Access Management Functional Element may
be used to manage the user’s access rights by virtue of it’s
association with a group, phase or even the complete
lifecycle of the project.

3400

2.15.5 Related Technologies and Standards3401

None3402

2.15.6 Model3403

3404

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 150 of 177

Figure 16: Model Of the User Management Functional Element [30]

2.15.7 Usage Scenarios3405

2.15.7.1 Manage Naming Policy3406

2.15.7.1.1 Description3407

This use case allows any user to manage naming policy when creating/updating user accounts.3408
The service user may create, update, retrieve and delete a naming policy.3409

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 151 of 177

2.15.7.1.2 Flow of Events3410

2.15.7.1.2.1 Basic Flow3411

This use case starts when any user wants to manage naming policy for creating/updating user3412
account.3413

1: The user sends Manage Naming Policy request to the Functional Element together with the3414
specified operation.3415

2: Functional Element gets the operation. Based on the operation, one of the sub-flows is3416
executed.3417

• If the service user provides ‘Create Naming Policy’, then sub-flow 2.1 is executed.3418

• If the service user provides ‘Update Naming Policy’, then sub-flow 2.2 is executed.3419

• If the service user provides ‘Delete Naming Policy’, then sub-flow 2.3 is executed.3420

2.1: Create Naming Policy.3421

2.1.1: The service user specifies namespace, name and description of the policy to3422
create, for example, the policy name may be name length, the policy description may be3423
“=7”.3424

2.1.2: The Functional Element checks the existing naming policy.3425

2.1.3: The Functional Element generates naming policy information and adds to the3426
Functional Element and the use case ends.3427

2.2: Update Naming Policy.3428

2.2.1: The service user specifies the policy to update.3429

2.2.2: The Functional Element retrieves the existing naming policy information.3430

2.2.3: The service user provides the update naming policy information according to the3431
policy name used in creating a naming policy.3432

2.2.4: The Functional Element updates the naming policy with the updated information3433
and ends use case.3434

2.3: Retrieve Naming Policy.3435

2.3.1: The service user specifies the policy to retrieve.3436

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 152 of 177

2.3.2: The Functional Element retrieves the existing naming policy information and ends3437
the use case.3438

2.4: Delete Naming Policy.3439

2.4.1: The service user specifies the policy to delete.3440

2.4.2: The Functional Element retrieves the existing naming policy information.3441

2.4.3: The Functional Element deletes the naming policy from the Functional Element3442
and the use case ends.3443

2.15.7.1.2.2 Alternative Flows3444

1: Invalid Policy.3445

1.1: If in the basic flow 2.1.1, Functional Element detects any invalid description, Functional3446
Element returns general error message and ends the use case.3447

2: Naming Policy already exists.3448

2.1: If in the basic flow 2.1.2, the Functional Element checks the existing naming policy and3449
finds the naming policy already exists. The Functional Element returns an error and ends the3450
use case.3451

2.15.7.1.3 Special Req uirements3452

2.15.7.1.4 Pre-Conditions3453

None.3454

2.15.7.1.5 Post-Condi tions3455

If the use case was successful, the naming policy information is added to the Functional Element.3456
To do any creating and updating of User information after the naming policy is added must satisfy3457
the naming policies defined. If unsuccessful, the Functional Element’s state is unchanged.3458

2.15.7.2 Manage User Definition3459

2.15.7.2.1 Description3460

The use case allows any user to manage user definition when more basic user definition can not3461
satisfied in creating/updating user accounts. The service user may create, update, retrieve and3462
delete a user definition.3463

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 153 of 177

2.15.7.2.2 Flow of Events3464

2.15.7.2.2.1 Basic Flow3465

This use case starts when any user wants to manage user definition for creating/updating user3466
account.3467

1: The user sends Manage User Definition request to the Functional Element together with the3468
specified operation.3469

2: Functional Element gets the operation. Based on the operation, one of the sub-flows is3470
executed.3471

• If the service user provides ‘Create User Definition’, then sub-flow 2.1 is executed.3472

• If the service user provides ‘Update User Definition’, then sub-flow 2.2 is executed.3473

• If the service user provides ‘Delete User Definition’, then sub-flow 2.3 is executed.3474

2.1: Create User Definition.3475

2.1.1: The service user specifies namespace, name and description of the user definition3476
fields to create.3477

2.1.2: The Functional Element checks the existing user definition fields (including basic3478
ones).3479

2.1.3: The Functional Element generates user definition information and adds to the3480
Functional Element and the use case ends.3481

2.2: Update User Definition.3482

2.2.1: The service user specifies the user definition field to update.3483

2.2.2: The Functional Element retrieves the existing user definition information.3484

2.2.3: The service user provides the update user definition information.3485

2.2.4: The Functional Element updates the user definition with the updated information3486
and ends use case.3487

2.3: Retrieve User Definition.3488

2.3.1: The service user specifies the user definition to retrieve.3489

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 154 of 177

2.3.2: The Functional Element retrieves the existing user definition information and ends3490
the use case.3491

2.4: Delete User Definition.3492

2.4.1: The service user specifies the user definition to delete.3493

2.4.2: The Functional Element retrieves the existing user definition information.3494

2.4.3: The Functional Element deletes the user definition from the Functional Element3495
and the use case ends.3496

2.15.7.2.3 Alternative Flows3497

1: Invalid User Definition.3498

1.1: If in basic flow 2.1.1, Functional Element detects any invalid description, Functional3499
Element returns general error message and ends the use case.3500

2: User Definition already exists.3501

2.1: If in basic flow 2.1.2, the Functional Element checks the existing user definition and finds3502
the user definition already exists. The Functional Element returns an error and ends the use3503
case.3504

3: User Definition not exists.3505

3.1: If in basic flow 2.2.2, 2.3.2 and 2.4.2, the Functional Element checks the existing user3506
definition and finds the user definition does not exist. The Functional Element returns an3507
error and ends the use case.3508

2.15.7.2.4 Special Req uirements3509

None3510

2.15.7.2.5 Pre-Conditions3511

None.3512

2.15.7.2.6 Post-Condi tions3513

If the use case was successful, the user definition information is added to the Functional Element.3514
Thereafter, when creating and updating User, the User information must satisfy the user definition3515
defined earlier. If the use case fails, the Functional Element’s state is unchanged.3516

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 155 of 177

2.15.7.3 Manage User3517

This use case describes the management of a user, namely the creation, deletion, retrieval and3518
update of the user.3519

2.15.7.3.1 Flow of Events3520

2.15.7.3.1.1 Basic Flow3521

This use case starts when the user wants to manage a user.3522

• If user wants to ‘Create User, then basic flow 1 is executed.3523

• If user wants to ‘Retrieve User, then basic flow 2 is executed.3524

• If user wants to ‘Update User, then basic flow 3 is executed.3525

• If user wants to ‘Delete User, then basic flow 4 is executed.3526

1: Create User.3527

1.1: User provides the information that is necessary for creating a user.3528

1.2: The Functional Element validates the user information provided against the naming3529
policy.3530

1.3: The Functional Element validates the user information provided against the user’s3531
definition.3532

1.4: Functional Element creates the user and the use case ends.3533

2: Retrieve User.3534

2.1: User provides the necessary information for retrieving the complete user’s attributes.3535

2.2: The Functional Element returns the user’s information and the use case ends.3536

3: Update User.3537

3.1: User provides the necessary information for updating the group’s attributes.3538

3.2: The Functional Element validates the user’s information provided against the naming3539
policy.3540

3.3: The Functional Element validates the user information provided against the user’s3541
definition.3542

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 156 of 177

3.4: The Functional Element updates the user and the use case ends.3543

4: Delete User.3544

4.1: User provides the necessary information for deleting a user group.3545

4.2: Functional Element deletes the user and the use case ends.3546

2.15.7.3.1.2 Alternative Flows3547

1: User Exist.3548

1.1: In basic flow 1.4, if the Functional Element detects an identical user, the Functional3549
Element returns an error message and the use case ends.3550

2: User Does Not Exist.3551

1.1: In basic flow 2.2, 3.4 and 4.2, if the Functional Element cannot find a user that matches3552
the user’s criteria, the Functional Element returns an error message and the use case ends.3553

2.15.7.3.2 Special Req uirements3554

None.3555

2.15.7.3.3 Pre-Conditions3556

None.3557

2.15.7.3.4 Post-Condi tions3558

None.3559

2.15.7.4 Authentica te User3560

2.15.7.4.1 Description3561

This use case allows users to authenticate a user.3562

2.15.7.4.2 Flow of Events3563

2.15.7.4.2.1 Basic Flow3564

This use case starts when users wish to authenticate a user.3565

1: Users provide user name and password to Functional Element.3566

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 157 of 177

2: The Functional Element checks the user name and password.3567

3: The Functional Element returns the result to users and the use case ends.3568

2.15.7.4.2.2 Alternative Flows3569

None.3570

2.15.7.4.3 Special Req uirements3571

None.3572

2.15.7.4.4 Pre-Conditions3573

None.3574

2.15.7.4.5 Post-Condi tions3575

None.3576

2.15.7.5 Manage Password3577

This use case describes the management of password in this Functional Element.3578

2.15.7.5.1 Flow of Events3579

2.15.7.5.1.1 Basic Flow3580

This use case starts when the user wants to obtain an encrypted password. This can be3581
achieved via one of the following basic flow.3582

• If user wants to ‘Generate Password’, then basic flow 1 is executed.3583

• If user wants to ‘Encrypt Password’, then basic flow 2 is executed.3584

1: Generate Password3585

1.1: The user specifies the option of format of password among available options in the3586
Functional Element.3587

1.2: The Functional Element generates clear text password based on the format specified by3588
the service user.3589

1.3: The Functional Element includes “Encrypt Password’ use case to encrypt the clear text3590
password.3591

1.4: The Functional Element returns the clear text password and encrypted password to user3592
and the use case ends.3593

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 158 of 177

2: Encrypt Password3594

1.1: The user provides clear text password to Functional Element.3595

1.2: The user specifies the encryption algorithm to be used.3596

1.3: The Functional Element encrypts the clear text password.3597

1.4: The Functional Element returns the encrypted password to user and the use case ends.3598

2.15.7.5.1.2 Alternative Flows3599

None.3600

2.15.7.5.2 Special Req uirements3601

None.3602

2.15.7.5.3 Pre-Conditions3603

None.3604

2.15.7.5.4 Post-Condi tions3605

None.3606

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 159 of 177

2.16 Web Serv ice Aggregator Functional Element3607

2.16.1 Motivation3608

In any Web Service-enabled application, it is expected that complex business functions have to3609
be realized via aggregation of multiple Web Services. This Functional Element is expected to3610
fulfill the needs arising out of Web Services composition. As such it will cover aspects that3611
include:3612

• Facilitating the composition of Web Services, and3613

• Testing of aggregated Web Services.3614

3615

This Functional Element fulfills the following requirements from the Functional Elements3616
Requirements, Working Draft 01a:3617

• Primary Requirements3618

• PROCESS-010 to PROCESS-014.3619

• Secondary Requirements3620

• PROCESS-1313621

3622

2.16.2 Terms Used3623

Terms Description

Aggregated Web
Service

Aggregated Web Service is single Web Services that invoke multiple Web
Services to realize its functionality.

Composition Rule A Composition Rule is an expression specifying how individual Web
Services are invoked to form aggregated Web Services. It includes the
name of Web Services that are included in aggregation, specification of
aggregation sequence, data dependency among the individual Web
Services.

3624

The following diagram shows the meaning of the terms in the context of Web Services3625
aggregation.3626

3627

3628

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 160 of 177

Figure 17: An Overview of the Web Service Aggregator Functional Element

3629

2.16.3 Key Features3630

Implementations of the Web Service Aggregator Functional Element are expected to provide the3631
following key features:3632

1. The Functional Element MUST provide a mechanism for composing any number of Web3633
Services into single Web Service according to specified Composition Rule(s).3634

2. Individual web services can reside at any location, but it is expected to be accessible.3635

3. As part of Key Feature (1), the WSDL of a web service used for composition MUST be3636
available.3637

4. The Functional Element MUST support the definition, modification and removal of3638
Composition Rules.3639

5. The Functional Element MUST encapsulate the composition logic used into an interpretable3640
XML-based script based on a particular standard*.3641

Example: BPEL or WSCI. The TC will have to decide on which standard to use3642

3643

In addition, the following key features could be provided to enhance the Functional Element3644
further:3645

1. The Functional Element MAY provide the capability to transform the interpretable XML-based3646
script into an executable program.3647

2. If Key Feature (1) is provided, then the Functional Element MAY also have the following3648
capabilities:3649

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 161 of 177

2.1 The ability to test the functionality of the aggregated Web Service,3650

2.2 A WSDL to describe the aggregated Web Service, and3651

2.3 The capability to publish the aggregated Web Service into an UDDI-compliant registry3652

2.16.4 Interdependencies3653

Interaction Dependencies

Services Tester Functional
Element

The Services Tester Functional Element may be used to test
the performance of the aggregated web services

Service Registry Functional
Element

The Services Registry Functional Element may be used to
publish the aggregated web services

3654

2.16.5 Related Technologies and Standards3655

* The interpretable XML based script should follow the standard identified by TC.3656

2.16.6 Model3657

Figure 18: Model Of the Web Service Aggregation Functional Element [31]

3658

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 162 of 177

2.16.7 Usage Scenarios3659

2.16.7.1 Manage composition rule3660

2.16.7.1.1 Description3661

This use case allows the user to manage the composition rule used for Web Services3662
aggregation.3663

2.16.7.1.2 Flow of Events3664

2.16.7.1.2.1 Basic Flow3665

The use case begins when the user wants to manage a composition rule.3666

1: The user sends a request to the Functional Element together with the composition rule and3667
operation.3668

2: Based on the operation it specified, one of the following sub-flows is executed:3669

• If the operation is ‘Define a rule’, then sub-flow 2.1 is executed.3670

• If the operation is ‘Update a rule’, then sub-flow 2.2 is executed.3671

• If the operation is ‘Retrieve a rule’, then sub-flow 2.3 is executed.3672

• If the operation is ‘Remove a rule’, then sub-flow 2.4 is executed.3673

2.1: Define Rule.3674

2.1.1: The Functional Element gets the composition rule, i.e. names of all Web Service,3675
the sequence specification, parameters mapping between Web Services.3676

2.1.2: The Functional Element verifies the correctness of composition rule.3677

2.1.3: The Functional Element saves the composition rule to persistent mechanism.3678

2.2: Update Rule.3679

2.2.1: The Functional Element gets the name of composition rule.3680

2.2.2: The Functional Element retrieves the composition rule definition from persistent3681
mechanism.3682

2.2.3: The Functional Element verifies the correctness of composition rule.3683

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 163 of 177

2.2.4: The Functional Element updates the composition rule.3684

2.3: Retrieve Rule.3685

2.3.1: The Functional Element gets the name of composition rule.3686

2.3.2: The Functional Element retrieves the definition of composition rule.3687

2.3.3: The Functional Element returns the definition of rule.3688

2.4: Remove Rule.3689

2.4.1: The Functional Element gets the name of composition rule.3690

2.4.2: The Functional Element checks whether the rule exists.3691

2.4.3: The Functional Element removes the rule.3692

3: The Functional Element returns the results to indicate the success or failure of this operation to3693
the user and the use case ends.3694

2.16.7.1.2.2 Alternative Flows3695

1: Composition Rule Already Created.3696

1.1: If in the basic flow 2.1.2, the same rule already created, Functional Element will return an3697
error message to the user and the use case ends.3698

2: Composition Rule Not Exist.3699

2.1: If in the basic flow 2.2, 2.3, and 2.4 the specified rule does not exist, Functional Element3700
will return an error message to the user and the use case ends.3701

3: Persistency Mechanism Error.3702

3.1: If in the basic flow 2.1, 2.2, 2.3, and 2.4, the Functional Element cannot perform data3703
persistency, Functional Element will return an error message to the user and the use case3704
ends.3705

2.16.7.1.3 Special Req uirements3706

None.3707

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 164 of 177

2.16.7.1.4 Pre-Conditions3708

None.3709

2.16.7.1.5 Post-Condi tions3710

None.3711

2.16.7.2 Compose Web Services3712

2.16.7.2.1 Description3713

This use case will allow users to aggregate several simpler services into a higher-level service.3714

2.16.7.2.2 Flow of Events3715

2.16.7.2.2.1 Basic Flow3716

This use case begins when any user wants to compose a Web Service.3717

1: The user passes in a list of parameters for composition, including URLs of the WSDL,3718
composition rules.3719

2: Functional Element checks the signature of the Web Services to be composed via accessing3720
WSDL.3721

3: Functional Element generates interpretable XML-based script to encapsulate the composition3722
logic.3723

4: Functional Element returns the generated script and the use case ends.3724

2.16.7.2.2.2 Alternative Flows3725

1: Functional Element generates executable program and WSDL.3726

1.1: At basic flow 3, Functional Element may transform the interpretable XML-based script3727
into an executable program, if the user requested.3728

1.2: At basic flow 3, Functional Element may generate WSDL for the executable program, if3729
the user requested.3730

1.3: Functional Element returns the code of executable program and WSDL file3731

2: Functional Element detects ambiguity in Web Services signature.3732

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 165 of 177

2.1: At basic flow 2, Functional Element encounters an ambiguity in the Web Services3733
signature which it cannot resolve.3734

2.2: Functional Element returns an error message that there is a composition error.3735

3: Functional Element detects error in Web Services composition.3736

3.1: At basic flow 3, Functional Element encounters an error in the Web Services3737
composition.3738

3.2: Functional Element returns an error message that there is a composition error.3739

2.16.7.2.3 Special Req uirements3740

None.3741

2.16.7.2.4 Pre-Conditions3742

The composition rule for this Web Services aggregation must be pre-defined.3743

2.16.7.2.5 Post-Condi tions3744

The generated program is ready for deployment in any Web Services container.3745

3746

2.16.7.3 Test Aggregated Web Services3747

2.16.7.3.1 Description3748

This use case will allow users to test the functionality of aggregate web service.3749

2.16.7.3.2 Flow of Events3750

2.16.7.3.2.1 Basic Flow3751

This use case begins when any user wants to test aggregated web service.3752

1: The user passes in a list of parameters for testing, including URLs of the WSDL, values of3753
parameters for invocation.3754

2: Functional Element invokes the aggregated web service with parameters.3755

3: Functional Element compares the returned parameter with the expected values.3756

4: Functional Element returns the result of comparison and the use case ends.3757

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 166 of 177

2.16.7.3.2.2 Alternative Flows3758

1: Functional Element cannot invoke the aggregated web service.3759

1.1: At basic flow 2, Functional Element encounters problems of invoking the aggregated web3760
services.3761

1.2: Functional Element returns an error message that indicates the invocation error.3762

2.16.7.3.3 Special Req uirements3763

None.3764

2.16.7.3.4 Pre-Conditions3765

The executable program must be generated and deployed in web services hosting environment3766
and ready for invocation.3767

2.16.7.3.5 Post-Condi tions3768

None.3769

2.16.7.4 Publish Ag gregated Web Services3770

2.16.7.4.1 Description3771

This use case will allow users to publish the aggregated web services into UDDI registry.3772

2.16.7.4.2 Flow of Events3773

2.16.7.4.2.1 Basic Flow3774

This use case begins when any user wants to publish the aggregated web services into UDDI3775
registry.3776

1: The user passes in a list of parameters for publishing, including URLs of the WSDL of3777
aggregated web services, URL of UDDI and parameters of business and services description.3778

2: Functional Element checks the availability of UDDI.3779

3: Functional Element publishes services description of aggregated web services into UUDI.3780

4: Functional Element returns the publish result and the use case ends.3781

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 167 of 177

2.16.7.4.2.2 Alternative Flows3782

1: UDDI registry server is not available3783

1.1: At basic flow 2, Functional Element cannot connect to UDDI registry if UDDI registry3784
server is not available.3785

1.2: Functional Element returns the error message that UDDI connection cannot be built.3786

2: Functional Element detects error in Web Services publishing.3787

2.1: At basic flow 3, Functional Element encounters an error in the publishing Web Services.3788

2.2: Functional Element returns an error message that there is a publishing error.3789

2.16.7.4.3 Special Req uirements3790

None.3791

2.16.7.4.4 Pre-Conditions3792

The WSDL of the aggregated web services must exist.3793

2.16.7.4.5 Post-Condi tions3794

None3795

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 168 of 177

3 Functional Elements Usage Scenario3796

The Functional Elements are designed to be building blocks that can be assembled to accelerate3797
web service-enabled applications. From these Functional Elements, a variety of solutions can be3798
built. In this section, the following solutions are provided as examples3799

• A service monitoring solution for the management of services in a SOA model 3800

• Enabling security through the Secure SOAP Functional Element3801

• Decoupled User Access Management with support for multi-domain capabilities in a web3802
service environment3803

3804

3805

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 169 of 177

3.1 Service Monitoring3806

In a SOA environment, management of services includes the capability to monitor services within3807
the management domain. These includes:3808

• Monitoring the performance of services invoked3809

• Generating audit trails of services invoked3810

• Monitoring and testing the availability of services on the remote machine (server)3811

A basic solution can be realised through the aggregation of two Functional Element, namely3812
Service Management and Service Tester, as shown in Figure 19. This solution can be improved3813
with notification capabilities, using the Notification Engine, be it to a remote client, a system3814
administrator or an end user of a particular service. Further enhancement can be added with a3815
Rule Engine that will have the cognitive ability to make decisions. An example of this3816
enhancement would be the ability to decide when should notifications or alerts be sent and in3817
what form.3818

Figure 19: Service Monitoring Solution Through Aggregation of Functional Element

3819

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 170 of 177

3.2 Securing SOAP Messages3820

SOAP in its pure form does not have any built in security as it is meant to be a simple and3821
lightweight protocol. As such, where security is needed, additional capabilities must be provided.3822
Presently, standards like XML Encryption and XML Signature are available. Making use of these3823
standards, the Secure Soap Functional Element, when deployed on both the sending and3824
receiving parties, will be able to provide encryption and signing of messages as illustrated in3825
Figure 20.3826

3827

Figure 20: Securing SOAP Messages Using Secure SOAP Functional Element

3828

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 171 of 177

3.3 Decouple d User Access Management3829

User Access Management (UAM) has been implemented in many forms and in a wide variety of3830
ways, from the most basic to the most complex. At the most simple form, the functionality would3831
include username and password support. On the end of the scale, it would include functionalities3832
like distributed access management, replication capabilities and fine-grain controls just to name a3833
few.3834

In this specification, the goal is to provide a set of Functional Element that can be used as3835
building blocks for UAM, and can be extended when the need arises. It is provided as a3836
decoupled building blocks consisting of four Functional Elements, namely User Management,3837
Group Management, Role & Access Management and Phase & Lifecycle Management, as3838
illustrated in Figure 21. These Functional Elements can be used in a variety of combinatorial3839
forms, and some of these examples include:3840

• User Management only, or3841

• User Management and Group Management, or3842

• User Management and Role & Access Management, or3843

• User Management, Group Management and Role & Access Management, or3844

• All the four Functional Elements in tandem3845

On the same token, any of the Functional Elements can be replaced with similar functionality third3846
party web services. As these services are designed to be in a web service environment, each of3847
them also supports the concept of namespace. This namespace provision enables each of the3848
Functional Elements to be used as web services that can be accessed by multiple organisations3849
or to cater for users from different domains. With this, access control for example, can be defined3850
for multiple domains without corruption or interferences problems.3851

3852

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 172 of 177

Figure 21: User Access Management via Functional Element

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 173 of 177

4 References3853

1. FWSI TC, OASIS, Web Service Implementation Methodology Working Draft 0.1,
http://www.oasis-open.org/apps/org/workgroup/fwsi/documents.php, September 2004.

2. FWSI TC, OASIS, Functional Elements Requirements Working Draft 0.1a,
http://www.oasis-open.org/apps/org/workgroup/fwsi/documents.php, July 2004.

3. S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 809,
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

4. Cheng, Y.S., WSRA Use Case Specifications - Event Handler, version 1.0, JSSL of
Singapore Institute of Manufacturing Technology, November 2003.

5. Wu, Y.Z., WSRA Use Case Specifications – Group Management, version 1.4, JSSL of
Singapore Institute of Manufacturing Technology, September 2003.

6. OASIS Web Services Security TC, Web Services Security: SOAP Message Security
1.0 (WS-Security 2004), http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0.pdf, March 2004

7. OASIS, Security Assertion Markup Language (SAML) v1.0, http://www.oasis-
open.org/committees/download.php/2290/oasis-sstc-saml-1.0.zip, September 2002.

8. Liberty Alliance, ID-FF 1.2 Specifications, version 1.2,
http://www.projectliberty.org/specs/index.html#ID-FF_Specs.

9. Liberty Alliance, ID-WSF 1.0 Specifications, version 1.0,
http://www.projectliberty.org/specs/index.html#ID-WSF_Specs.

10. Web Services Federation Language (WS-Federation), http://www-
106.ibm.com/developerworks/webservices/library/ws-fed/, July 2003.

11. Chan, L.P., WSRA Use Case Specifications – Identity Management, version 0.3,
JSSL of Singapore Institute of Manufacturing Technology, December 2003.

12. Yin, Z.L., WSRA Use Case Specifications – Log Utility, version 1.2, JSSL of Singapore
Institute of Manufacturing Technology, December 2002.

13. Limbu, D.K., WSRA Use Case Specifications - Notification Engine, version 1.2, JSSL
of Singapore Institute of Manufacturing Technology, December 2002.

14. Wu, Y.Z., WSRA Use Case Specifications - Phase & LC Management, version 1.3,
JSSL of Singapore Institute of Manufacturing Technology, October 2003.

15. Jebaraj, D., WSRA Use Case Specifications – Presentation Transformer, version
1.1, JSSL of Singapore Institute of Manufacturing Technology, November 2002.

16. Xu, X.J., WSRA Use Case Specifications - Role & Access Management, version 1.3,
JSSL of Singapore Institute of Manufacturing Technology, September 2003.

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 174 of 177

17. Ramasamy, V., WSRA Use Case Specifications - Search, version 1.3, JSSL of
Singapore Institute of Manufacturing Technology, June 2004.

18. W3C, XML-Signature Syntax and Processing, W3C Recommendation,
http://www.w3.org/TR/xmldsig-core/, February 2002.

19. W3C, XML-Encryption Syntax and Processing, W3C Recommendation,
http://www.w3.org/TR/xmlenc-core, August 2002.

20. Wu, Y.Z., WSRA Use Case Specifications - Secure SOAP Management Private,
version 1.2, JSSL of Singapore Institute of Manufacturing Technology, December 2002

21. Limbu, D.K., WSRA Use Case Specifications - Sensory Engine, version 1.2, JSSL of
Singapore Institute of Manufacturing Technology, December 2002.

22. Cheng, H.K., WSRA Use Case Specifications - Service Management, version 1.2,
JSSL of Singapore Institute of Manufacturing Technology, December 2002.

23. OASIS UDDI Specification TC, Universal Description, Discovery And Integration
(UDDI) Data Structure, OASIS Standard, version 2.03,
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.pdf, July 2002.

24. OASIS UDDI Specification TC, Universal Description, Discovery And Integration
(UDDI) API Specifications, OASIS Standard, version 2.04,
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.pdf, July 2002.

25. OASIS ebXML Registry TC, ebXML Registry Information Model Specification, version
2.0, OASIS Standard, http://www.oasis-
open.org/committees/regrep/documents/2.0/specs/ebrim.pdf, April 2002.

26. OASIS ebXML Registry TC, ebXML Registry Services Specification, version 2.0,
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf, April 2002.

27. Ramasamy, V., WSRA Use Case Specifications - Service Registry, version 1.2, JSSL
of Singapore Institute of Manufacturing Technology, December 2002.

28. W3C, Web Services Description Language, version 1.1, W3C Note,
http://www.w3.org/TR/wsdl, March 2001.

29. Andersson, K., WSRA Use Case Specifications – Service Tester, version 1.2, JSSL of
Singapore Institute of Manufacturing Technology, December 2002.

30. Xu, X.J., WSRA Use Case Specifications – User Management, version 1.2, JSSL of
Singapore Institute of Manufacturing Technology, December 2002.

31. Cheng, H.K., WSRA Use Case Specifications – Web Service Aggregator, version 1.2,
JSSL of Singapore Institute of Manufacturing Technology, December 2002.

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 175 of 177

Appendix A. Acknowledgments3854

Special thanks to the following individuals who contributed significantly towards to the initial draft3855
of this work during the development of this specification:3856

• Chan Lai Peng, Singapore Institute of Manufacturing Technology3857

• Cheng Yushi, Singapore Institute of Manufacturing Technology3858

• Dilip Kumar Limbu, Singapore Institute of Manufacturing Technology3859

• V. Ramasamy, Singapore Institute of Manufacturing Technology3860

• Wu Yingzi, Singapore Institute of Manufacturing Technology3861

• Xu Xingjian, Singapore Institute of Manufacturing Technology3862

• Yin Zunliang, Singapore Institute of Manufacturing Technology3863

3864

The committee would also like to express its appreciation for the encouragement and guidance3865
provided by Jamie Clark throughout the course of the TC work.3866

3867

The committee would also like to record its heartfelt appreciation to IBM Rational (Singapore) Pte.3868
Ltd. for kindly agreeing to allow the use of the Rational Tools towards the creation of the Use3869
Case Model used in this document.3870

3871

3872

3873

3874

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 176 of 177

Appendix B. Revision History3875

The following revision of this document represents the major milestones achieved.3876

3877

Rev Date By Whom What

FWSI-FESC-
specifications-01.doc

01-July-
2004

Huang Kheng
Cheng

Puay Siew Tan

First Draft

FWSI-FESC-
specifications-02.doc

18-
October-
2004

Huang Kheng
Cheng

Puay Siew Tan

Second Draft

fwsi-fe-1.0-
guidelines-spec-wd-
03.doc

25-
November-
2004

Huang Kheng
Cheng

Second Draft (Voted version)

fwsi-fe-1.0-
guidelines-spec-cs-
01.doc

04-March-
2005

Puay Siew Tan Update the document to reflect its
change of status to a Committee
Specs (as of 16 Dec 2004)

fwsi-fe-1.0-
guidelines-spec-cs-
02.doc

27-May-
2005

Puay Siew Tan Update the document on syntactical
errors. Features are not changed.

3878

fwsi-fe-1.0-guidelines-spec-cs-02.doc 27-May-2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 177 of 177

Appendix C. Notices3879

OASIS takes no position regarding the validity or scope of any intellectual property or other rights3880
that might be claimed to pertain to the implementation or use of the technology described in this3881
document or the extent to which any license under such rights might or might not be available;3882
neither does it represent that it has made any effort to identify any such rights. Information on3883
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS3884
website. Copies of claims of rights made available for publication and any assurances of licenses3885
to be made available, or the result of an attempt made to obtain a general license or permission3886
for the use of such proprietary rights by implementors or users of this specification, can be3887
obtained from the OASIS Executive Director.3888

OASIS invites any interested party to bring to its attention any copyrights, patents or patent3889
applications, or other proprietary rights which may cover technology that may be required to3890
implement this specification. Please address the information to the OASIS Executive Director.3891

Copyright © OASIS Open 2004. All Rights Reserved.3892

This document and translations of it may be copied and furnished to others, and derivative works3893
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,3894
published and distributed, in whole or in part, without restriction of any kind, provided that the3895
above copyright notice and this paragraph are included on all such copies and derivative works.3896
However, this document itself does not be modified in any way, such as by removing the3897
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS3898
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual3899
Property Rights document must be followed, or as required to translate it into languages other3900
than English.3901

The limited permissions granted above are perpetual and will not be revoked by OASIS or its3902
successors or assigns.3903

This document and the information contained herein is provided on an “AS IS” basis and OASIS3904
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO3905
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE3906
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A3907
PARTICULAR PURPOSE.3908

	Introduction
	Document Outline
	Motivation
	Terminology

	List of Functional Elements
	Event Handler Functional Element
	Motivation
	Terms Used
	Key Features
	Interdependencies
	Related Technologies and Standards
	Model
	Usage Scenarios
	Register Supplier/Consumer
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage Channel
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Subscribe/Un-subscribe To Channel
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage Event
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Subscribe/Un-subscribe To Event
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Verify Routing Rule
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage Filter
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Notify Event
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Configure Monitoring
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Detect Event
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Process Event
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Supportability

	Pre-Conditions
	Post-Conditions

	Motivation
	Terms Used
	Key Features
	Interdependency
	Related Technologies and Standards
	Model
	Usage Scenarios
	Manage Group
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage Group Members
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage Group Dynamic Definition
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Motivation
	Terms Used
	Key Features
	Interdependencies
	Related Technologies and Standards
	Model
	Usage Scenarios
	Manage Account
	Description

	Request Assertion
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Validate Assertion
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Create Audit Logs
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Motivation
	Terms Used
	Key Features
	Interdependencies
	Related Technologies and Standards
	Model
	Usage Scenarios
	Manage Category
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Log Event
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	View Log
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Analyze Log Data
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Supportability

	Pre-Conditions
	Post-Conditions

	Manage Log
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Motivation
	Terms Used
	Key Features
	Interdependencies
	Related Technologies and Standards
	Model
	Usage Scenarios
	Distribute Notification
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Supportability

	Pre-Conditions
	Post-Conditions

	Manage Scheduled Notification
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Configure System
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Motivation
	Terms Used
	Key Features
	Interdependencies
	Related Technologies and Standards
	Model
	Usage Scenarios
	Manage Lifecycle
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage Phase
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage Relationship
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Motivation
	Terms Used
	Key Features
	Interdependencies
	Related Technologies and Standards
	Model
	Usage Scenario
	Transform Content
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Pre-Conditions
	Post-Conditions

	Motivation
	Terms Used
	Key Features
	Interdependencies.
	Related Technologies and Standards
	Model
	Usage Scenario
	Manage Role
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage Resource
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage Access Level
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage Role and Access Level Association
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage Role Assignment
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Motivation
	Terms Used
	Key Features
	Interdependencies
	Related Technologies and Standards
	Model
	Usage Scenario
	Manage Search Categories
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Search Information
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Motivation
	Terms Used
	Key Features
	Interdependencies
	Related Technologies and Standards
	Model
	Usage Scenarios
	Get Secured SOAP message
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Get Original SOAP Message
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Motivation
	Terms Used
	Key Features
	Interdependencies
	Related Technologies and Standards
	Model
	Usage Scenarios
	Detect Supported Format
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Supportability

	Pre-Conditions
	Post-Conditions

	Manage Device Types
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Supportability

	Pre-Conditions
	Post-Conditions

	Motivation
	Terms Used
	Key Features
	Interdependencies
	Related Technologies and Standards
	Model
	Usage Scenarios
	Discover Services
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Log Performance Parameters
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Authorize Usage
	Description
	Flow of Events
	Basic Flow
	Alternative Flow

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage Additional Information
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Motivation
	Terms Used
	Key Features
	Interdependencies
	Related Technologies and Standards
	Model
	Usage Scenario
	Manage Classification / Taxonomy
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage Web Services
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage Organization
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage Service Binding
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage tModel
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Motivation
	Terms Used
	Key Features
	Interdependencies
	Related Technologies and Standards
	Model
	Usage Scenarios
	Generate Client
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Test Availability
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Motivation
	Terms Used
	Key Features
	Interdependencies
	Related Technologies and Standards
	Model
	Usage Scenarios
	Manage Naming Policy
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage User Definition
	Description
	Flow of Events
	Basic Flow

	Alternative Flows
	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage User
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Authenticate User
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Manage Password
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Motivation
	Terms Used
	Key Features
	Interdependencies
	Related Technologies and Standards
	Model
	Usage Scenarios
	Manage composition rule
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Compose Web Services
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Test Aggregated Web Services
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Publish Aggregated Web Services
	Description
	Flow of Events
	Basic Flow
	Alternative Flows

	Special Requirements
	Pre-Conditions
	Post-Conditions

	Functional Elements Usage Scenario
	Service Monitoring
	Securing SOAP Messages
	Decoupled User Access Management

	References

