25

30

OASIS 9

Digital Signature Service Core
Protocols, Elements, and Bindings

Working Draft 34, 21 October 2005

Document identifier:

oasis-dss-1.0-core-spec-wd-34

Location:

Editor:

http://www.oasis-open.org/committees/dss

Stefan Drees, individual <stefan@drees.name>

Contributors:

Dimitri Andivahis, Surety

Juan Carlos Cruellas, individual
Frederick Hirsch, Nokia

Pieter Kasselman, Cybertrust

Andreas Kuehne, individual

Konrad Lanz, Austria Federal Chancellery
Paul Madsen, Entrust

John Messing, American Bar Association
Tim Moses, Entrust

Trevor Perrin, individual

Nick Pope, individual

Rich Salz, DataPower

Ed Shallow, Universal Postal Union

Abstract:

Status:

This document defines XML request/response protocols for signing and verifying XML
documents and other data. It also defines an XML timestamp format, and an XML
signature property for use with these protocols. Finally, it defines transport and security
bindings for the protocols.

This is a Working Draft produced by the OASIS Digital Signature Service Technical
Committee. Committee members should send comments on this draft to
dss@lists.oasis-open.org.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to
the Intellectual Property Rights section of the Digital Signature Service TC web page at
http://www.0asis-open.org/committees/dss/ipr.php.

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 1 of 56

http://www.oasis-open.org/spectools/docs/
mailto:stefan@drees.name
mailto:dss@lists.oasis-open.org
http://www.oasis-open.org/committees/xxx/

38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

Table of Contents

1 T 10T [0 T 1o o PP UOTPSRRR 5
0 N[7= 1o) o PSR RPPPP 5
1.2 Schema Organization and NAMESPACEScoiuuriieiiiiiiieiiiiieearieee e rreee e ee e sbreeessbeeeeeanes 5
1.3 DSS Overview (NON-NOMMEALIVE)uuuuiiieeeiiiiiiiieeeee e e s s seireer e e e e e s s s snieaeeeeeeesssnnsrenereeeeessannes 6

2 CoMMON ProtOCOl STIUCLUIES.........eiiiiiiie ettt e e e e e et e e e e e e e e s nneaeees 7
N R 1Y/ o T 2N 0V 1] L= 2P 7
2.2 Type INternNatioNalStriNGTYPE ..uueeii e e et e e et e e e e e s e e e e s e e st e e e e e e e s e ssnnrraaeeaaaeaans 7
2.3 Type samli:NameldentifierTYPEooo et 7
2.4 Element <INPUIDOCUMENTISS.......cciiiiiiiiiiieiieee et e e e e e s st e e e e e e s st re e e e e e e e s sannrnaaneeaaeaeas 7

2.4.1 Type DOCUMENIBASETYPEccoeiiiiieiiiiieieieiee ettt ettt ettt ettt ettt et et ettt et eeeseesesesesssesssesnenbnrnnes 8
2.4.2 EIemMent KDOCUMENESuiiiiiiiiiee i iiiee ettt ettt e et beee e e snbee e e s st e e e s sbbe e e s s nbe e e e enees 9
2.4.3 Element <TransformedData™cccveeiiiiiee ittt e srbee e snaaee e 10
2.4.4 Element <DOCUMENTHASNS........coiiiiiiiiiiie e 11
2.5 Element <SignatureODJECEScoii i 12
2.6 EIEMENT SRESUIES ...t e e e e e e e et a e e e e e e e e s enbaeeeas 13
2.7 Elements <Optionallnputs> and <OptioNalOULPULS>ccooviiiiiiiiiie e 14
2.8 CommOon OPLIONAI INPULS ...t e e e e e e e e e e e e e e e e snnbeeees 15
2.8.1 Optional INput <SErVICEPOLICY>.......ocuviiiiiiiiie e 15
2.8.2 Optional Input <ClaimedIdentity>ccceeeiieiiiiiie e 15
2.8.3 Optional INPUL SLANGQUAGESeiiiiiiiiei ittt e sttt e et e e st e e e s sebee e e s sbneeeeans 16
2.8.4 Optional Input <AAditioNalProfile>cooeeiiiiiice e 16
2.8.5 Optional INPUt KSCHEMASeiiiiiiii e 16
2.8.6 Optional INPUL KSCHEMAS™coviiiiiiicee e e e 16
2.9 TYpe <REQUESIBASETYPE™S ..ttt e e e e r e 17
2.10 Type <RESPONSEBASETYPES....oeeiiiiiiiiiiiiieie ettt e e e e 17
2.11 ElemMENt KRESPONSES.......cc i iiiieeiie e e ettt e e e e s e e e e e e e s s et reeee e e s e sastaaeeeeaeeseesanrraneees 18

3 The DSS Signing ProtOCOLooi et e e e e e e e e e 19
3.1 Element SSIGNREQUESES ... e e e s e e e e e e s s s e e e e e e s e st an e e e e e e e e e annrrneees 19
3.2 ElemMent SSIGNRESPONSESouiiiiiiiaiiiiiitie et e e ettt et e e e e e s e bbbt e e e e e e e s e anbbeeeeaaeeeaaaannreeeeeas 19
3.3 Processing for XML SIgNAtUIES........ccoiuuiiiiiiiiiee ittt 20

3.3.1 Basic Process for KBASEBAXIMLSccoiiiiiiiiiiiee it e s siee e stee e stree e s sibee e e snaeee e 20
3.3.2 Process Variant for <INNEXMLuuiiiiiiiiiie e 21
3.3.3 Process Variant for KESCaApeAXML>........ccceciiiiiiiiiiiiie e e 21
3.3.4 Process Variant for <Base64Data™c..cooiiiiiiiiiiiaiieiiiiieie e 22
3.3.5 Process Variant for <TransformedData>.............cccccovviviiiiiiiiiiiiiiieeeeeeeeeeeeveeevevevevevevenes 22
3.3.6 Process Variant for <DocumentHash>cccccciiiiiiii e 22

3.4 Basic Processing for CMS SIGNAtUIESc.ueiiiiiiiiieiiiiee ettt 23
3.5 Optional INPUtS and OULPULSuueeiiiieeiiiciieie e e e s s e e e e e e s s s aree e e e e e e e e ennreneees 23
3.5.1 Optional INpUt <SIGNAtUIETYPESoiiiiiiiiiee ettt e e e e e e e eabeeeees 24
oasis-dss-1.0-core-spec-wd-34 21 October 2005

Copyright © OASIS Open 2005. All Rights Reserved. Page 2 of 56

78
79
80
81
82

83
84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

101
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

3.5.2 Optional Input <AAATIMESIAMP>uviiiiieee e e e e e 24

3.5.3 Optional Input <InteNdedAUdIENCESoooiiiiiiiiii e 24
3.5.4 Optional INPUt KKEYSEIECIOI>........ccoiiiiiiiiiiiee e 24
3.5.5 Optional INPUL KPIOPEIIESS......ciiii i it e e e e e e e e e e e e e e e s e nrnreees 25
3.5.6 Optional Input <INCIUAEODBJECT>vviiiiiiiiiee e 25
3.5.7 Enveloped Signatures, Optional Input <SignaturePlacement> and Output
<DOCUMENTWItNSIGNALUIES e e e e e e e e e e e s e nenraees 27
3.5.8 Optional Input <SIgNEdREfEIrENCES>.......coiii i 29
The DSS Verifying ProtOCOIoiiiiiiiiiiiiii e 32
4.1 Element SVErfyREQUESESuiiiiiii e e e st e e e e e e e s st ae e e e e e e e e snanrrenees 32
4.2 Element SVerifyRESPONSE™Sooiiiiiiiiiiiie ettt e e 32
4.3 Basic Processing for XML SIgNatUreS...........ueuiiieeiiiiiirieiieeeessseieieeeee e e s s ssnrnneeeessesessnssnseees 32
4.3.1 Multi-Signature VerifiCationcooiii e e e 34
4.4 RESUIE COUBS...ciiiieiieiitieiie ettt e e e et e et e e e e e et e s st e e e e ae e s s s s s sbeeeeeaeeeansnnnbaneaaaeeesanseeeeeas 34
4.5 Basic Processing for CMS SIgNatUreSceueiieiiiiiiiiieeee e e ssciisieee e e e e e s ssinneeeeee e e e e snnsnneees 35
4.6 Optional INPULS @Nd OULPULScooiiiuiiieiiiiiee ettt st e e snbe e s enenes 35
4.6.1 Optional Input <VerifyManifests> and Output <VerifyManifestResults> 35
4.6.2 Optional Input <VerificationTimeE> 36
4.6.3 Optional Input <AdditionalKeyINfo>uiiiiiiee e 36
4.6.4 Optional Input <ReturnProcessingDetails> and Output <ProcessingDetails> 36
4.6.5 Optional Input <ReturnSigningTime> and Output <SigningTime>...........cccccceeeeviinnns 38
4.6.6 Optional Input <ReturnSignerldentity> and Output <Signerldentity>..................cc...... 38
4.6.7 Optional Input <ReturnUpdatedSignature> and Output <UpdatedSignature>............ 39
4.6.8 Optional Input <ReturnTransformedDocument> and Output <TransformedDocument>
.. 39
(DS SR] (=l =1 =T 4 1=T 0 £ PP PPP TSR 41
5.1 ElemMENt STIMESTAMIPoiiiiiiiie ittt e e et e e st e e e e nb e e e e e nnbae e e e annnes 41
5.1.1 XML TimeStamp TOKEN........uuiiiiiiie ittt e e e e s et e e e e e e s s st e e e e e e s st abr e e e e e e e e s eennnnnees 41
5.1.2 EIeMent STSHNTOS....coiii ittt e e e e e e abeeee e 42
5.1.3 Timestamp verification ProCeAUIE...........euiieiiiiiiiiiiiee e 42
5.2 Element <ReqUESTEITABNTILY>..........oiiii ettt e e e e e e e nrebeee 43
DSS COre BiNAINGSeeeeiiiiiieiiiit ettt ettt e e st e e s enebe e e e 44
6.1 HTTP POST Transport BINAING........c.coiiiiiiiiiiii et steree e e e e s e s siaiaaae e e e e e e e e snnrnnnees 44
6.2 SOAP 1.2 TransSPOrt BiNAINGccouaiiiiiiiiiiiiee et a e e 44
6.3 TLS SECUNLY BINAINGS ...eviiieeiieiiiieiii et s s e e e e e e s e e e e e e s s e e e e ae e e s e nnnnrnnee s 45
6.3.1 TLS X.509 Server AUtheNTICALIONoeiiiiiiiiiiiiieii et 45
6.3.2 TLS X.509 Mutual AUthentiCatioNccvviiiiiiiiiiiiiiee e e 45
6.3.3 TLS SRP AUNENTICALIONeiiiiiiiiiee ittt e e s srbae e e s snraeee e e 45
6.3.4 TLS SRP and X.509 Server AUthentiCationcccceeveiiiiiiiiiiee e 46
DSS-Defined [ENLTIEISeiiiiiiiie e e 47
7.1 Signature Type IdeNtifiersueeiiiiii e 47
A0 T T g = [S 47
7.1.2 XML TimeStamMPTOKENcuiiiiiiiee e ittt e e e e s et e e e e e e s s st re e e e e e e e e s e snabaeeeeeeeeesannneens 47
oasis-dss-1.0-core-spec-wd-34 21 October 2005

Copyright © OASIS Open 2005. All Rights Reserved. Page 3 of 56

121
122
123
124
125
126
127
128
129

130

7.1.3 RFC 3161 TiMeStampPTOKENcccoi ittt s e e e e e e e e e e e e 47

A I B 1Y SRR o | g = LU £ PP EUPP PP 47

7. 1.5 PGP SIGNALUIE ...ceiiiitiie ettt ettt bttt e et et e e e anb et e e s et b e e s annre e e e 47

8 [0 [0 g F= U K 1= PRSP 48
9 S (=] =] Lo = USSR 50
LS Lo o (L= PSR RRTP 50
Appendix A. Use of Exclusive CanoniCaliZationcoouuuiiiiiiiaieiiiiiiee e 52
AppPeNdiX B. REVISION HISTOMYciiiiiiiiiiiiiiie sttt s st e e e e e s st e e e e e e s s annra e e e e e e e e e annenes 53
PN o] 01T o To 1) O A\ i [o =R 56
oasis-dss-1.0-core-spec-wd-34 21 October 2005

Copyright © OASIS Open 2005. All Rights Reserved. Page 4 of 56

131

132
133
134
135
136

137
138
139
140

141

142

143

144
145
146
147
148

149
150

151

152

153
154
155

156
157

158
159
160
161
162
163

164
165
166

167
168

169

1 Introduction

This specification defines the XML syntax and semantics for the Digital Signature Service core
protocols, and for some associated core elements. The core protocols support the server-based
creation and verification of different types of signatures and timestamps. The core elements
include an XML timestamp format, and an XML signature property to contain a representation of
a client’s identity.

The core protocols are typically bound into other protocols for transport and security, such as
HTTP and TLS. This document provides an initial set of bindings. The core protocols are also
typically profiled to constrain optional features and add additional features. Other specifications
are being produced which profile the core for particular applications scenarios.

The following sections describe how to understand the rest of this specification.

1.1 Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",

"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be
interpreted as described in IETF RFC 2119 [RFC 2119]. These keywords are capitalized when
used to unambiguously specify requirements over protocol features and behavior that affect the
interoperability and security of implementations. When these words are not capitalized, they are
meant in their natural-language sense.

This specification uses the following typographical conventions in text: <DSSEl erment >,
<ns: For ei gnEl enent >, Attri but e, Datatype, & her Code.

Li sti ngs of DSS schemas appear |ike this.

1.2 Schema Organization and Namespaces

The structures described in this specification are contained in the schema file [Core-XSD]. All
schema listings in the current document are excerpts from the schema file. In the case of a
disagreement between the schema file and this document, the schema file takes precedence.

This schema is associated with the following XML namespace:

urn: oasi s: nanmes: tc: dss: 1. 0: core: schema

If a future version of this specification is needed, it will use a different namespace.
Conventional XML namespace prefixes are used in the schema:

e The prefix dss: stands for the DSS core namespace [Core-XSD].

e The prefix ds: stands for the W3C XML Signature namespace [XMLSig].

e The prefix xs: stands for the W3C XML Schema namespace [Schemal].

e The prefix sam : stands for the OASIS SAML Schema namespace [SAMLCorel.1].

Applications MAY use different namespace prefixes, and MAY use whatever namespace
defaulting/scoping conventions they desire, as long as they are compliant with the Namespaces
in XML specification [XML-ns].

The following schema fragment defines the XML namespaces and other header information for
the DSS core schema:

<xs:schemn xml ns: dss="urn: oasi s: nanes:tc: dss: 1. 0: core: schemn"

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 5 of 56

170
171
172

174

175

176
177
178
179
180

181
182
183
184

185
186
187
188

189
190
191
192
193
194

195
196
197
198
199

200
201
202
203
204
205

206
207
208
209

210
211
212
213
214
215

xm ns: ds="htt p: //ww. w3. or g/ 2000/ 09/ xml dsi g#"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: sam ="urn: oasi s: nanmes: tc: SAM.: 1. 0: assertion”
t ar get Nanespace="ur n: oasi s: names: tc: dss: 1. 0: cor e: schena"
el enent For mDef aul t ="qual i fi ed" attri buteFor nDef aul t ="unqual i fi ed">

1.3 DSS Overview (Non-normative)

This specification describes two XML-based request/response protocols — a signing protocol and
a verifying protocol. Through these protocols a client can send documents (or document hashes)
to a server and receive back a signature on the documents; or send documents (or document
hashes) and a signature to a server, and receive back an answer on whether the signature
verifies the documents.

These operations could be useful in a variety of contexts — for example, they could allow clients to
access a single corporate key for signing press releases, with centralized access control,
auditing, and archiving of signature requests. They could also allow clients to create and verify
signatures without needing complex client software and configuration.

The signing and verifying protocols are chiefly designed to support the creation and verification of
XML signatures [XMLSig], XML timestamps (see section 5.1), binary timestamps [RFC 3161]
and CMS signatures [RFC3369]. These protocols may also be extensible to other types of
signatures and timestamps, such as PGP signatures [RFC 2440].

It is expected that the signing and verifying protocols will be profiled to meet many different
application scenarios. In anticipation of this, these protocols have only a minimal set of required
elements, which deal with transferring “input documents” and signatures back and forth between
client and server. The input documents to be signed or verified can be transferred in their
entirety, or the client can hash the documents itself and only send the hash values, to save
bandwidth and protect the confidentiality of the document content.

All functionality besides transferring input documents and signatures is relegated to a framework
of “optional inputs” and “optional outputs”. This document defines a number of optional inputs
and outputs. Profiles of these protocols can pick and choose which optional inputs and outputs to
support, and can introduce their own optional inputs and outputs when they need functionality not
anticipated by this specification.

Examples of optional inputs to the signing protocol include: what type of signature to produce,
which key to sign with, who the signature is intended for, and what signed and unsigned
properties to place in the signature. Examples of optional inputs to the verifying protocol include:
the time for which the client would like to know the signature’s validity status, additional validation
data necessary to verify the signature (such as certificates and CRLS), and requests for the
server to return information such as the signer's name or the signing time.

The signing and verifying protocol messages must be transferred over some underlying
protocol(s) which provide message transport and security. A binding specifies how to use the
signing and verifying protocols with some underlying protocol, such as HTTP POST or TLS.
Section 6 provides an initial set of bindings.

In addition to defining the signing and verifying protocols, this specification defines two XML
elements that are related to these protocols. First, an XML timestamp element is defined in
section 5.1. The signing and verifying protocols can be used to create and verify XML
timestamps; a profile for doing so is defined in [XML-TSP]. Second, a Requester Identity
element is defined in section 5.2. This element can be used as a signature property in an XML
signature, to give the name of the end-user who requested the signature.

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 6 of 56

216
217

218

219
220

221
222
223
224
225

227

228

229
230

231

233
234
235

237

238

239
240
241

242

243
244

245

246
247
248

249

250
251
252
253
254
255

2 Common Protocol Structures

The following sections describe XML structures and types that are used in multiple places.

2.1 Type AnyType

The AnyType complex type allows arbitrary XML element content within an element of this type
(see section 3.2.1 Element Content [XML]).

<xs:conpl exType nane="AnyType" >
<XS:sequence>
<xs:any processContents="|ax"
m nCccur s="0"
maxCccur s="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>

2.2 Type InternationalStringType

The InternationalStringType complex type attaches an xni : | ang attribute to a human-
readable string to specify the string’s language.

<xs: conpl exType nane="Int ernati onal Stri ngType">
<xs: si npl eCont ent >
<xs: ext ensi on base="xs:string">
<xs:attribute ref="xnml:Ilang" use="required">
</ xs: ext ensi on base="xs:string">
</ xs: si npl eCont ent >
</ xs: conpl exType>

2.3 Type saml:NameldentifierType

The saml:NameldentifierType complex type is used where different types of names are needed
(such as email addresses, Distinguished Names, etc.). This type is borrowed from
[SAMLCorel.1] section 2.4.2.2. It consists of a string with the following attributes:

NaneQual i fi er [Optional]
The security or administrative domain that qualifies the name of the subject. This attribute
provides a means to federate names from disparate user stores without collision.

For mat [Optional]

A URI reference representing the format in which the string is provided. See section 7.3 of
[SAMLCorel.1] for some URI references that may be used as the value of the For mat
attribute.

2.4 Element <InputDocuments>

The <l nput Docunent s> element is used to send input documents to a DSS server, whether for
signing or verifying. An input document can be any piece of data that can be used as input to a
signature or timestamp calculation. An input document can even be a signature or timestamp (for
example, a pre-existing signature can be counter-signed or timestamped). An input document
could also be a <ds: Mani f est >, allowing the client to handle manifest creation and verification
while using the server to create and verify the rest of the signature.

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 7 of 56

288

289
290
291
292

293

294
295
296

297

298
299
300

The <l nput Docunent s> element consists of any number of the following elements:
<Docunent > [Any Number]

It contains an XML document as specified in section 2.4.2 of this document.
<Tr ansf or nedDat a> [Any Number]

This contains the binary output of a chain of transforms applied by a client as specified in
section 2.4.3 of this document.

<Docunent Hash> [Any Number]

This contains the hash value of an XML document or some other data after a client has
applied a sequence of transforms and also computed a hash value as specified in section
2.4.4 of this document.

<Ot her >

Other may contain arbitrary content that may be specified in a profile and can also be used to
extend the Protocol for details see section 2.1.

<xs: el ement nane="I| nput Docunent s" >
<xs: conpl exType>
<XS:sequence>
<xs:choice m nCccurs="1" nmaxCccur s="unbounded" >
<xs: el enment ref="dss: Docunent"/>
<xs: el ement ref="dss: Transf or nedDat a"/ >
<xs: el enent ref="dss: Docunent Hash"/ >
<xs:el ement name="Qther" type="dss: AnyType"/>
</ xs: choi ce>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >

When using DSS to create or verify XML signatures, each input document will usually correspond
to a single <ds: Ref erence> element. Thus, in our descriptions below of the <Docunent >,
<Tr ansf or nedDat a> and <Docunent Hash> elements, we will explain how certain elements
and attributes of a <Docunent >, <Tr ansf or nedDat a> and <Docunent Hash> correspond to
components of a <ds: Ref er ence>.

2.4.1 Type DocumentBaseType

The DocumentBaseType complex type is subclassed by <Docunent >, <Tr ansf or nredDat a>
and <Docunent Hash> elements. It contains the basic information shared by subclasses and
remaining persistent during the process from input document retrieval until digest calculation for
the relevant document. It contains the following elements and attributes:

| D [Optional]

This identifier gives the input document a unique label within a particular request message.
Through this identifier, an optional input (see sections 2.7, 3.5.6 and 3.5.7) can refer to a
particular input document.

Ref URI [Optional]

This specifies the value for a <ds: Ref er ence> element’s URl attribute when referring to this
input document. The Ref URI attribute SHOULD be specified; no more than one Ref URI
attribute may be omitted in a single signing request.

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 8 of 56

325

326
327

328
329
330
331

332
333

334
335

336

337
338
339
340

341
342

343
344

Ref Type [Optional]

This specifies the value for a <ds: Ref er ence> element’'s Type attribute when referring to
this input document.

SchenmaRef s [Optionall:

This may be used when the document contains XML documents or signatures. It refers a
single XML Schema [Schemal] which gives the ID attributes of elements within the input
document, which may be necessary if the included signatures' <ds: Ref er ence> elements
use XPointer expressions or <ds: Tr ansf or ns> require it. The <Schena> is to be used
during parsing in sections 2.5.2, 3.3.1 1.a and 4.3 and for XPath evaluation in sections 2.6,
3.5.7, 4.3.1 if they are supplied. If anything else but <Schenmas>, <Schena> are referred to
from here the server MUST report an Error. If a referred Schema is not used by the document
this MAY be ignored or reported to the client in the <Resul t >/<Resul t Message>.

A Document shall only refer to a single <Schema> or <Schenas> element. If a <Schemas>
element is referred to the document is validated against the first <Schema> inside <Schermas>
and the other <Schema> elements inside <Schenas> are assumed to be used by the first
<Schema>.

<xs: conpl exType nane="Docunent BaseType" abstract="true">
<xs:attribute name="1D" type="xs:|D' use="optional"/>
<xs:attribute nane="Ref URI " type="xs:|ID' use="optional"/>
<xs:attribute nanme="Ref Type" type="xs:|D' use="optional"/>
<xs:attribute nane="SchemaRefs" type="xs:|DREFS" use="optional"/>

</ xs: conpl exType>

2.4.2 Element <Document>
The <Docunent > element may contain the following elements (in addition to the common ones
listed in section 2.4.1):

If the content inside one of the following mutually exclusive elements <l nlineXM.>,
<EscapedXM.> or <Base64XM_> is not parseable XML data, then the server MUST return a
<Resul t> (section 2.6) issuing a <ResultMjor> RequesterError qualified by a
<Resul t M nor > Not Par seabl eXM_.Docunent .

The server MUST use the <Schenma> referred by <SchemaRef s> for validation if specified.
<Base64XM_> [Optional] [Default]

This contains a base64 string obtained after base64 encoding of a XML data. The server
MUST decode it to obtain the XML data.

<l nl i neXM_> [Optional]

The InlineXMLType clearly expresses the fact, that content of <I nl i neXM.> is inline xml that
should be equivalent to a complete XML Document. l.e. having only one DocumentElement
(see section 2.1 Well-Formed XML Documents [XML]) and not allowing anything but PI's and
Comments before and after this one element.

It contains the i gnorePls and ignoreConments attributes. These attributes indicate
respectively, if processing instructions or comments MAY be ignored.

If one or both of these attributes are not present, their values MUST be considered to be
"true"”.

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 9 of 56

390

391
392
393

394
395

<EscapedXM_> [Optional]

This contains an escaped string. The server MUST unescape (escape sequences are
processed to produce original XML sequence) it for obtaining xml data.

<Base64Dat a> [Optional]

This contains a base64 encoding of data that are not XML. The type of data is specified by its
MimeType attribute. The MimeType attribute is not required for XML signatures, but may be
required when using DSS with other signature types.

SchenmaRef s [Optionall:

As described above in 2.4.1.

<xs: el ement nanme="Docunent" type="dss: Docunent Type"/>

<xs: conpl exType nane="Docunent Type" >
<xs: conpl exCont ent >
<xs: ext ensi on base="dss: Docunent BaseType" >
<xs: choi ce>
<xs: el ement nanme="InlineXM." type="dss:|nlineXM.Type"/>
<xs:el ement nanme="Base64XM." type="xs: base64Bi nary"/>
<xs: el emrent nane="EscapedXM." type="xs:string"/>
<xs:el ement ref="dss: Base64Dat a"/ >
</ xs: choi ce>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<xs: el ement nane="Base64Dat a" >
<xs: conpl exType>
<xs: si npl eCont ent >
<xs:extensi on base="xs: base64Bi nary" >
<xs:attribute nane="M neType" type="xs:string"
use="opti onal ">
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el ement >

<xs: conpl exType name="Inl i neXM.Type" >
<Xs:sequence>
<xs:any processContents="1ax"/>

</ xs: sequence>

<xs:attribute nane="ignorePls” type="xs:bool ean"
use="optional " defaul t="true"/>

<xs:attribute nane="ignoreComents" type="xs: bool ean"
use="optional " defaul t="true"/>

</ xs: conpl exType>

2.4.3 Element <TransformedData>

The <Tr ansf or medDat a> element contains the following elements (in addition to the common
ones listed in section 2.4.1):

<ds: Transf or ms> [Optional]

This is the sequence of transforms applied by the client and specifies the value for a
<ds: Ref erence> element’s <ds: Transforns> child element. In other words, this

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 10 of 56

specifies transforms that the client has already applied to the input document before the
server will hash it.

<Baseb64Dat a> [Required]
This gives the binary output of a sequence of transforms to be hashed at the server side.

<xs: el ement name="Docunent Hash" >
<xs: conpl exType>
<xs: conpl exCont ent >
<xs: ext ensi on base="dss: Docunment BaseType" >
<XS:sequence>
<xs:el ement ref="ds: Transforns" m nCccurs="0"/>
<xs: el ement ref="dss: Base64Data"/ >
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >

2.4.4 Element <DocumentHash>

The <Docunent Hash> element contains the following elements (in addition to the common ones
listed in section 2.4.1):

<ds: Transf or ms> [Optional]

This specifies the value for a <ds: Ref er ence> element’s <ds: Tr ansf or ns> child element
when referring to this document hash. In other words, this specifies transforms that the client
has already applied to the input document before hashing it.

<ds: Di gest Met hod> [Required]

This identifies the digest algorithm used to hash the document at the client side. This
specifies the value for a <ds: Ref er ence> element’'s <ds: Di gest Met hod> child element
when referring to this input document.

<ds: Di gest Val ue> [Required]

This gives the document’s hash value. This specifies the value for a <ds: Ref er ence>
element’s <ds: Di gest Val ue> child element when referring to this input document.

<xs: el ement nane="Docunent Hash" >
<xs: conpl exType>
<xs: conpl exCont ent >
<xs: ext ensi on base="dss: Docunment BaseType" >
<XS:sequence>
<xs: el ement
<xs:el ement ref=
<xs:element ref=
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >

ref="ds: Transforns" m nOccurs="0"/>
"ds: Di gest Met hod"/ >
"ds: Di gest Val ue"/ >

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 11 of 56

2.5 Element <SignatureObject>

The <Si gnat ur eCbj ect > element contains a signature or timestamp of some sort. This
element is returned in a sign response message, and sent in a verify request message. It may
contain one of the following child elements:

<ds: Si gnat ur e> [Optional]

An XML signature [XMLSig].
<Ti nest anp> [Optional]

An XML, RFC 3161 or other timestamp (see section 5.1).
<Baseb64Si gnat ur e> [Optional]

A base64 encoding of some non-XML signature, such as a PGP [RFC 2440] or CMS [RFC
3369] signature. The type of signature is specified by its Type attribute (see section 7.1).

<Si gnat ur ePt r > [Optional]

This is used to point to an XML signature in an input (for a verify request) or output (for a sign
response) document in which a signature is enveloped.

SchemaRef s [Optional]

As described above in 2.4.1
A <Si gnat ur ePt r > contains the following attributes:
VWi chDocunent [Required]

This identifies the input document as in section 2.4.2 being pointed at (see also ID attribute in
section 2.4.1).

XPat h [Optional]
a) This identifies the signature element being pointed at.

b) The XPath expression is evaluated from the root node (see section 5.1 [XPATH]) of the
document identified by Whi chDocunent after the xml data was extracted and parsed if
necessary. The context node for the XPath evaluation is the document's DocumentElement
(see section 2.1 Well-Formed XML Documents [XML]).

c) about namespace declarations for the expression necessary for evaluation.
http://www.w3.0rg/TR/xpath#section-Introduction see also the following example below. A
piece of a XML signature of a <ds: Ref er ence> containing a <ds: Tr ansf or ns> with a
XPath filtering element that includes inline namespace prefixes declaration. This piece of text
comes from one of the signatures that were generated in the course of the interoperability
experimentation. As one can see they are added to the <ds: XPat h> element....:

<Ref erence URI ="">
<Tr ansf or ms>
<ds: Transf orm xm ns: ds="ht t p: / / www. w3. or g/ 2000/ 09/ xm dsi g#" ;
Al gorithn¥"http://ww. w3. or g/ TR/ 1999/ REC- xpat h- 19991116"; >
<ds: XPat h
xm ns: upcl="http://ww. ac. upc. edu/ nanespaces/ ns1";
xm ns: upc2="http://wwmv. ac. upc. edu/ nanespaces/ ns2"; >ancest or - or -
sel f::upcl: Root </ ds: XPat h>
</ ds: Tr ansf or n»
</ Tr ansf or ms>
<Di gest Met hod Al gori t hm="ht t p: / / www. w3. or g/ 2000/ 09/ xml dsi g#shal"/ >
<Di gest Val ue>24xf 8vf P3xJ40akf FANEVM zxXY=</ Di gest Val ue>
</ Ref er ence>

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 12 of 56

http://www.w3.org/TR/xpath#section-Introduction
http://www.w3.org/TR/1999/REC-xpath-19991116%22
http://www.ac.upc.edu/namespaces/ns1%22
http://www.ac.upc.edu/namespaces/ns2%22
http://www.w3.org/2000/09/xmldsig#sha1

525

526
527

528
529
530
531
532
533

If the XPath does not evaluate to one element the server MUST return a <Resul t > (section
2.6) issuing a <ResultMaj or> RequesterError qualified by a <ResultM nor>
XPat hEval uati onError.

<Ot her >

Other may contain arbitrary content that may be specified in a profile and can also be used to
extend the Protocol.

The following schema fragment defines the <Si gnat ur ebj ect >, <Base64Si gnat ur e>, and
<Si gnhat ur ePt r > elements:

<xs: el ement nane="Si gnat ur eCbj ect ">
<xs: conpl exType>
<XS:sequence>
<xs: choi ce>
<xs: el enment ref="ds: Signature"/>
<xs:el ement ref="dss: Ti nestamp"/>
<xs: el ement ref="dss: Base64Si gnature"/>
<xs:el ement ref="dss: SignaturePtr"/>
<xs: el enent nane="CQther" ref="dss: AnyType"/>
</ xs: choi ce>
<xs: el ement nanme="Schema" type="xs:base64Bi nary"
m nQccur s="0"/ >
</ xs: sequence>
<xs:attribute nanme="SchenmaRefs" type="xs:|DREFS"' use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="Base64Si gnhat ure" >
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: ext ensi on base="xs: base64Bi nary" >
<xs:attribute nane="Type" type="xs:anyURl"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="Si gnaturePtr">
<xs: conpl exType>
<xs:attribute nane="Wi chDocunent" type="xs:|DREF"/>
<xs:attribute name="XPath" type="xs:string" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >

2.6 Element <Result>

The <Resul t > element is returned with every response message. It contains the following child
elements:

<Resul t Maj or > [Required]
The most significant component of the result code.
<Resul t M nor > [Optional]
The least significant component of the result code.
<Resul t Message> [Optional]
A message which MAY be returned to an operator, logged, used for debugging, etc.

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 13 of 56

557
558
559
560
561
562
563
564
565
566
567
568

569
570

571

572
573
574

575
576

<xs: el ement nane="Result">
<xs: conpl exType>
<XS:sequence>
<xs: el ement nane="Resul t Maj or" type="xs:anyURl "/>
<xs: el ement nanme="Resul t M nor" type="xs:anyURl "
m nCccur s="0"/>
<xs: el ement nane="Resul t Message"
type="International Stri ngType" m nQccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

The <Resul t Mpj or > and <Resul t M nor > URIs MUST be values defined by this specification
or by some profile of this specification. The <Resul t Maj or > values defined by this specification
are:

urn: oasi s: nanmes:tc:dss: 1. 0:resul tmaj or: Success

The protocol executed successfully.
urn: oasi s: nanes:tc:dss: 1. 0: resul t maj or: Requester Error

The request could not be satisfied due to an error on the part of the requester.
urn: oasi s: nanes:tc:dss: 1. 0: resul t maj or: Responder Err or

The request could not be satisfied due to an error on the part of the responder.

This specification defines the following two <Resul t M nor > values. These values SHALL only
be returned when the <Resul t Maj or > code is Request er Err or:

urn:oasi s:nanes:tc:dss: 1.0:resul t m nor: Not Aut hori zed
The client is not authorized to perform the request.
urn: oasi s: names:tc:dss: 1. 0:resul t m nor: Not Supported
The server didn’t recognize or doesn’t support some aspect of the request.
urn:oasi s: nanes:tc:dss: 1.0:resul t m nor: Not Par seabl eXM_Docunent
The server was not able to parse a Document.
urn:oasi s: nanes:tc:dss: 1.0:resul t m nor: XM_Docurent Not Val i d
The server was not able to validate a Document.
urn: oasi s: names:tc:dss: 1. 0:resul tm nor: XPat hEval uati onErr or
The server was not able to evaluate a given XPath as required.
urn:oasi s: nanes:tc:dss:1.0:resul t m nor: MreThanOneRef Uri Oritted
The server was not able to create a signature because more than one RefURI was omitted.

The Success <Resul t Maj or > code on a verify response message SHALL be followed by a
<Resul t M nor > code which indicates the status of the signature. See section 4 for details.

2.7 Elements <Optionallnputs> and <OptionalOutputs>

All request messages can contain an <Cpt i onal | nput s> element, and all response messages
can contain an <Opt i onal Qut put s> element. Several optional inputs and outputs are defined
in this document, and profiles can define additional ones.

The <Optional | nput s> contains additional inputs associated with the processing of the
request. Profiles will specify the allowed optional inputs and their default values. The definition of

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 14 of 56

577
578

579
580
581

582
583
584
585

586
587
588
589
590
591

592
593

594
595
596

597
598

599

600
601
602
603
604

605

606

607
608
609

610
611
612
613
614

615
616
617

618
619

an <Optional | nput> MAY include a default value, so that a client may omit the
<Opti onal | nput s> yet still get service from any profile-compliant DSS server.

If a server doesn’t recognize or can’t handle any optional input, it MUST reject the request with a
<Resul t Maj or > code of Request er Error and a <Resul t M nor > code of Not Support ed
(see section 2.6).

The <Opti onal Qut put s> element contains additional protocol outputs. The client MAY
request the server to respond with certain optional outputs by sending certain optional inputs.
The server MAY also respond with outputs the client didn’'t request, depending on the server’'s
profile and policy.

The <Opti onal | nput s> and <Opti onal Qut put s> elements contain unordered inputs and
outputs. Applications MUST be able to handle optional inputs or outputs appearing in any order
within these elements. Normally, there will only be at most one occurrence of any particular
optional input or output within a protocol message. Where multiple occurrences of an optional
input (e.g. <I ncl udebj ect > in section 3.5.6) or optional output are allowed, it will be explicitly
specified (see section 4.6.8 for an example).

The following schema fragment defines the <Qpti onal | nput s> and <Opti onal Qut put s>
elements:

<xs: el ement nanme="Qpti onal | nputs" type="dss: AnyType"/>

<xs: el ement nanme="Qpti onal Qut puts" type="dss: AnyType"/ >

2.8 Common Optional Inputs

These optional inputs can be used with both the signing protocol and the verifying protocol.

2.8.1 Optional Input <ServicePolicy>

The <Servi cePol i cy> element indicates a particular policy associated with the DSS service.
The policy may include information on the characteristics of the server that are not covered by the
Prof i | e attribute (see sections 3.1 and 4.1). The <Ser vi cePol i cy> element may be used to
select a specific policy if a service supports multiple policies for a specific profile, or as a sanity-
check to make sure the server implements the policy the client expects.

<xs: el ement nanme="Servi cePolicy" type="xs:anyURl"/>

2.8.2 Optional Input <Claimedldentity>

The <O ai nedl dent i t y> element indicates the identity of the client who is making a request.
The server may use this to parameterize any aspect of its processing. Profiles that make use of
this element MUST define its semantics.

The <Supporti ngl nf o> child element can be used by profiles to carry information related to
the claimed identity. One possible use of <Supporti ngl nf o> is to carry authentication data
that authenticates the request as originating from the claimed identity (examples of authentication
data include a password or SAML Assertion [SAMLCorel.1], or a signature or MAC calculated
over the request using a client key).

The claimed identity may be authenticated using the security binding, according to section 6, or
using authentication data provided in the <Supporti ngl nf o> element. The server MUST
check that the asserted <Nanme> is authenticated before relying upon the <Narne>.

<xs: el ement nanme="C ai nedl dentity”>
<xs: conpl exType>

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 15 of 56

627

628
629
630

631

632

633
634
635
636

637

638

639

640
641

642
643

644
645
646

647

648

649
650

651

653
654
655
656

657

<XS:sequence>
<xs: el ement nane="Nane” type="sanl : Nanel dentifierType”/>
<xs: el ement nanme=" Supporti ngl nfo” type="dss: AnyType”
m nCccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

2.8.3 Optional Input <Language>

The <Language> element indicates which language the client would like to receive
InternationalStringType values in. The server should return appropriately localized strings, if
possible.

<xs: el ement nane="Language" type="xs:|anguage"/>

2.8.4 Optional Input <AdditionalProfile>

The <Addi tional Profil e> element can appear multiple times in a request. It indicates
additional profiles which modify the main profile specified by the Profi | e attribute (thus the
Profi | e attribute MUST be present; see sections 3.1 and 4.1 for details of this attribute). The
interpretation of additional profiles is determined by the main profile.

<xs: el ement nane="Additional Profile” type="xs:anyURl"/>

2.8.5 Optional Input <Schema>

<Ref Uri > [Optional]

This uri if present MUST match the targetNamespace of the contained Schema if present
otherwise the uri extracted from the targetNamespace is used.

Base64Data can be used for other not yet defined forms of verification for CMS or whatever or an
error can be thrown.

SchenaRef s[Optional]:

This is used to point to all Schemas used in this schema.

<xs: el ement nanme="Schema” type="dss: Document Type”/ >

2.8.6 Optional Input <Schemas>

<Schemas> can be used for a set of Schemas used by a Document or other Schema.

If it is referred to from a Document it is assumed that the Document is validated against the first
Schema and the other Schemas are assumed to be used by the first Schema.

<xs: el ement nane="Schemas" type="dss: SchemasType"/>
<xs: conpl exType nanme="SchemasType" >
<Xs:sequence>
<xs:el ement ref="dss: Schema" mi nCccurs="1" maxCOccur s="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 16 of 56

658

659
660

661

662
663

664

665
666
667

668
669
670
671
672

674
675
676
677
678

680
681

682

683
684

685

686
687

688

689
690

691
692
693
694
695
696

697

699
700

2.9 Type <RequestBaseType>

The <Request BaseType> structure is the base structure for request elements defined by the
core protocol or profiles. It defines the following attributes and elements:

Request | D[Optional]

This attribute is used to correlate requests with responses. When present in a request, the
server MUST return it in the response.

Pr of i | e [Optional]

This attribute indicates a particular DSS profile. It may be used to select a profile if a server
supports multiple profiles, or as a sanity-check to make sure the server implements the profile
the client expects.

<Opti onal | nput s> [Optional]
Any additional inputs to the request.
<I nput Docunent s> [Optional]
The input documents which the processing will be applied to.

<xs: el ement nanme=" Request BaseType” abstract="true”>
<XS:sequence>
<xs: el ement ref="dss: Optional | nputs” m nCccurs="0"/>
<xs: el ement ref="dss: | nput Docunents” m nCccurs="0"/>
</ xs: sequence>
<xs:attribute nane="Request| D’ type="xs:string”
use="optional "/ >
<xs:attribute nane="Profile” type="xs:anyURl " use="optional”/>
</ xs: el ement >

2.10 Type <ResponseBaseType>

The <ResponseBaseType> type is the base structure for response elements defined by the
core protocol or profiles. It defines the following attributes and elements:

Request | D[Optional]

This attribute is used to correlate requests with responses. When present in a request, the
server MUST return it in the response.

Pr of i | e [Optional]

This attribute indicates the particular DSS profile used by the server. It may be used by the
client for logging purposes or to make sure the server implements a profile the client expects.

<Resul t > [Required]
A code representing the status of the request.
<Opt i onal Cut put s> [Optional]
Any additional outputs returned by the server.
<Si gnat ur eQbj ect > [Optional]
The resulting signature or timestamp or other artifact produced by the requested processing.

<xs: el ement nane=" ResponseBaseType” >
<Xs: sequence>
<xs: el ement ref="dss: Result”/>
<xs: el ement ref="dss: Opti onal Qut puts” mni nCccurs="0"/>

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 17 of 56

701
702
703

705
706

707

708
709
710
711
712
713
714
715

716

717
718

719
720

721

</ xs: sequence>
<xs:attribute name="Request| D’ type="xs:string”
use="optional "/ >
<xs:attribute name="Profile” type="xs:anyURl” use="required”/>
</ xs: el ement >

2.11 Element <Response>

The <Response> element is an instance of the <ResponseBaseType> type. This element is
useful in cases where the DSS server is not able to respond with a special response type. E.g. a
client sends a <Si gnRequest > to a service that only supports <Veri f yRequest >'s over plain
HTTP (as opposed to protocols where some information could be derived from the header). As
the service does not support <Si gnRequest >'s it has to either generate a <Veri f yResponse>
with a "bad message" result or fail at the HTTP layer. In the former case, the client will receive a
response that does not correspond semantically to the request - it got a <Veri f yResponse> to
a <Si gnRequest >. This leaves both parties thinking that the other one is at fault.

Other use cases for this type are expected to be described in special profiles (e.g. the
Asynchronous profile).

<xs: el ement nanme=" Response” type="ResponseBaseType”/>

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 18 of 56

745
746
747
748

749
750

751

752
753

754
755
756
757

758
759

760

3 The DSS Signing Protocol

3.1 Element <SignRequest>

The <Si gnRequest > element is sent by the client to request a signature or timestamp on some
input documents. It contains the following attributes and elements inherited from
<Request BaseType>:

Request | D [Optional]

This attribute is used to correlate requests with responses. When present in a request, the
server MUST return it in the response.

Profil e [Optional]

This attribute indicates a particular DSS profile. It may be used to select a profile if a server
supports multiple profiles, or as a sanity-check to make sure the server implements the profile
the client expects.

<Opt i onal | nput s> [Optional]
Any additional inputs to the request.
<I nput Docunent s> [Required]
The input documents which the signature will be calculated over.

<xs: el ement nanme="Si gnRequest " >
<xs: conpl exType>
<xs: conpl exCont ent >
<xs: ext ensi on base="dss: Request BaseType"/ >
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >

3.2 Element <SignResponse>

The <Si gnResponse> element contains the following attributes and elements inherited from
<ResponseBaseType>:

Request | D [Optional]

This attribute is used to correlate requests with responses. When present in a request, the
server MUST return it in the response.

Profil e [Optional]

This attribute indicates the particular DSS profile used by the server. It may be used by the
client for logging purposes or to make sure the server implements a profile the client expects.

<Resul t > [Required]

A code representing the status of the request.
<Opti onal Qut put s> [Optional]

Any additional outputs returned by the server.

In addition to <ResponseBaseType> the <Si gnResponse> element defines the following
<Si gnat ur ej ect > element:

<Si gnat ur eCbj ect > [Optional]

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 19 of 56

778

779

780
781

782
783

784
785

786
787

788
789
790
791
792
793

794
795
796
797
798
799
800
801
802
803
804

805

806
807

The result signature or timestamp or, in the case of a signature being enveloped in an output
document (see section 3.5.7), pointer to the signature.

In the case of <SignaturePlacenent> being used this MUST contain a
<Si gnat ur ePt r >, having the same XPath expression as in <Si gnat ur ePl acenent > and

pointing to a

<Docurent Wt hSi gnat ur e> using it's Whi chDocunent attribute.

<xs: el ement nane="Si gnResponse" >
<xs: conpl exType>

<xs: conpl exCont ent >
<xs: ext ensi on base="dss: ResponseBaseType" >
<XS:sequence>
<xs:el ement ref="dss: Si gnatureCbject"

m nCccur s="0"/ >

</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >

</ xs: conpl exType>

</ xs: el enent >

3.3 Processing for XML Signatures

3.3.1 Basic Process for <Base64XML>

A DSS server

that produces XML signatures SHOULD perform the following steps, upon

receiving a <Si gnRequest >.

These steps may be changed or overridden by procedures defined for the optional inputs (for
example, see section 3.5.6), or by the profile or policy the server is operating under.

The ordering of
the server.

the <Document > elements inside the <l nput Docunent s> MAY be ignored by

1. For each <Docunent > in <I| nput Docunent s> the server MUST perform the following

steps:
a.

In the case of <Base64XM_> (see later sub-sections for other cases), the server
base64-decodes the data contained within <Docunent > into an octet stream.
This data MUST be a well formed XML Document as defined in [Schemal]
section 2.1. If the Ref URI attribute references within the same input document
then the server parses the octet stream to NodeSetData (see [XMLSig] section
4.3.3.3) before proceeding to the next step.

The data is processed and transforms applied by the server to produce a
canonicalized octet string as required in [XMLSig] section 4.3.3.2.

Note: Transforms are applied as a server implementation MAY choose to
increase robustness of the Signatures created. These Transforms may reflect
idiosyncrasies of different parsers or to solve encoding issues and so on. Servers
MAY also choose not to apply transforms in basic processing and to extract the
data binary or canonicalize the data directly if certain optional inputs (see
sections 3.5.7 point 2 and 1.d.v, 3.5.8) are not to be implemented.

Note: As required in [XMLSig] if the end result is an XML node set, the server
MUST attempt to convert the node set back into an octet stream using Canonical
XML [XML-C14N].

The hash of the resulting octet stream is calculated.

The server forms a <ds: Ref er ence> with the elements and attributes set as
follows:

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 20 of 56

808
809
810
811
812
813

814
815
816

817

818
819

820
821
822

823
824

825
826

827

828
829

830

831
832
833
834

835

836
837

838

839
840

841

842
843
844
845
846
847
848
849
850

851

i. If the <Docunent> has a Ref URl attribute, the <ds: Ref er ence>
element's URl attribute is set to the value of the Ref URI attribute, else
this attribute is omitted.
A signature MUST NOT be created if more than one Ref URI is omitted
in the set of input documents and the server MUST report a
RequesterError.

ii. If the <Docunent> has a Ref Type attribute, the <ds: Ref er ence>
element’s Type attribute is set to the value of the Ref Type attribute,
else this attribute is omitted.

iii. The <ds: Di gest Met hod> element is set to the hash method used.

iv. The <ds: Di gest Val ue> element is set to the hash value that is to be
calculated as per [XMLSig].

v. The <ds: Transf or ns> element is set to the sequence of transforms
applied by the server in step b. This sequence MUST describe the
effective transform as a reproducible procedure from parsing until hash.

2. References resulting from processing of optional inputs MUST be included. In doing so, the
server MAY reflect the ordering of the <Docunent > elements.

3. The server creates an XML signature using the <ds: Ref er ence> elements created in Step
1.d, according to the processing rules in [XMLSig].

3.3.2 Process Variant for <InlineXML>

In the case of an input document which contains <I nl i neXM.> Step 3.3.1 1.a is replaced with
the following step:

1.

a. The XML document is extracted from the DSS protocol envelope, without taking
inherited namespaces and attributes. Exclusive Canonical XML [XML-xcl-c14n]
MUST be applied to extract data AND assure context free extraction.

In cases like echoing and such where details could get lost, see Appendix A.

In Step 3.3.1 step 1.d.v, the <ds: Tr ansf or ns> element MUST begin with the canonicalization
transform applied under revised step 3.3.2 1.a above.

3.3.3 Process Variant for <EscapedXML>

In the case of an input document which contains <EscapedXM_> Step 3.3.1 1.a is replaced with
the following:

1.

a. In the case of <EscapedXM.> the server unescapes the data contained within
<Docunent > into a character string. If the RefURI references within the same input
document the server parses the unescaped character content to NodeSetData if
necessary. If the RefURI does not reference within the same input document then the
server canonicalizes the characters or parsed NodeSetData (see [XMLSig] section
4.3.3.3) to octet stream if necessary before proceeding to the next step.

Note: If the characters are converted to an octet stream directly a consistent
encoding including ByteOrderMark has to be ensured.

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 21 of 56

852
853

854

855
856
857
858

859
860

861
862
863
864
865
866
867

868

869
870
871
872

873
874

875
876
877

878
879
880
881

882

883
884

885
886
887
888
889

890
891

In Step 3.3.1 1.d.v, the <ds: Transf orns> element MUST begin with the canonicalization
transform applied under revised step 3.3.3 1.a above.

3.3.4 Process Variant for <Base64Data>
In the case of an input document which contains <Base64dat a> Step 1 a and Step 1 b are
replaced with the following:
1.
a. The server base64-decodes the data contained within <Documnent > into an octet
string.
b. No transforms or other changes are made to the octet string before hashing.

Note: If the RefURI references within the same input document the Document MUST
also be referenced by <l ncl udeObj ect > in section 3.5.6 to include the object as
base64 data inside a <ds: Obj ect > otherwise a <Resul t > (section 2.6) issuing a
<Resul t Maj or> RequesterError qualified by a <ResultM nor>
Not Par seabl eXM_Docunent .

3.3.5 Process Variant for <TransformedData>

In the case of an input document which contains <Tr ansf or nedDat a> Step 3.3.1 1 is replaced
with the following:

1.

a. The server base64-decodes the data contained within <Base64Dat a> of
<Tr ansf or nedDat a> into an octet string.

b. Omitted.
c. The hash over of the octet stream extracted in step a is calculated.
d. asin 3.3.1 step 1d updated as follows

i. The <ds: Transfornms> element is set to the sequence of transforms
indicated by the client in the <ds: Transforms> element within the
<TransfornmedDat a>. This sequence MUST describe the effective
transform as a reproducible procedure from parsing until digest input.

3.3.6 Process Variant for <DocumentHash>

In the case of an input document which is provided in the form of a hash value in
<Docunent Hash> Step 3.3.1 1 is replaced with the following:

1.

a. Omitted.

b. Omitted.

c. Omitted.

d. asin 3.3.1 step 1d updated as follows

i. The <ds:DigestMethod> element is set to the value in <DocumentHash>.
The <ds:DigestValue> element is set to the value in <DocumentHash>.

oasis-dss-1.0-core-spec-wd-34 21 October 2005

Copyright © OASIS Open 2005. All Rights Reserved. Page 22 of 56

892
893
894
895

896

897
898
899

900
901
902

903

904
905
906

907
908
909
910

911
912
913

914
915

916

917
918

919
920
921

922
923
924
925
926

927
928

929
930
931
932

933

934
935

ii. The <ds:Transforms> element is set to the sequence of transforms indicated
by the client in the <ds:Transforms> element within <DocumentHash>, if any
such transforms are indicated by the client. This sequence MUST describe
the effective transform as a reproducible procedure from parsing until hash.

3.4 Basic Processing for CMS Signatures

A DSS server that produces CMS signatures [RFC 3852] SHOULD perform the following steps,
upon receiving a <Si gnRequest >. These steps may be changed or overridden by the optional
inputs, or by the profile or policy the server is operating under.

The <Si gnRequest > should contain either a single <Docunent> not having Ref URI,
Ref Type set or a single <DocunentHash> not having RefURl, Ref Type,
<ds: Tr ansf or ns> set:

1. If a<Document> is present, the server hashes its contents as follows:

a. If the <Document> contains <Base64XML>, the server extracts the ancestry context
free text content of the <Base64XML> as an octet stream by base64 decoding it's
contents.

b. If the <Document> contains <InlineXML>, the server extracts the ancestry context
free text content of the <InlineXML> as an octet stream as explained in (section 3.3.2
l.a). This octet stream has to be returned as <TransformedDocument>/
<Base64XML>.

c. If the <Document> contains <EscapedXML>, the server unescapes the content of the
<EscapedXML> as a character stream and converts the character stream to an octet
stream using an encoding as explained in (section 3.3.3).

d. If the <Document> contains <Base64Data>, the server base64-decodes the text
content of the <Base64Data> into an octet stream.

e. The server hashes the resultant octet stream.

2. The server forms a Signerinfo structure based on the input document. The components of
the Signerinfo are set as follows:

a. The digestAlgorithm field is set to the OID value for the hash method that was used in
step 1l.c (for a <Document>), or to the OID value that is equivalent to the input
document’s <ds:DigestMethod> (for a <DocumentHash>).

b. The signedAttributes field’s message-digest attribute contains the hash value that
was calculated in step l.e (for a <Document>), or that was sent in the input
document’s <ds:DigestValue> (for a <DocumentHash>). Other signedAttributes may
be added by the server, according to its profile or policy, or according to the
<Properties> optional input (see section 3.5.5).

c. The remaining fields (sid, signatureAlgorithm, and signature) are filled in as per a
normal CMS signature.

3. The server creates a CMS signature (i.e. a Si gnedData structure) containing the
Si gner | nf o that was created in Step 2. The resulting Si gnedDat a should be detached
(i.e. external) unless the client sends the <Envel opi ngSi gnat ur e> optional input (see
section 3.5.8).

3.5 Optional Inputs and Outputs

This section defines some optional inputs and outputs that profiles of the DSS signing protocol
might find useful. Section 2.8 defines some common optional inputs that can also be used with

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 23 of 56

936
937

938

939
940
941

942

966
967

968
969
970
971
972
973

975

the signing protocol. Profiles of the signing protocol can define their own optional inputs and
outputs, as well. General handling of optional inputs and outputs is discussed in section 2.7.

3.5.1 Optional Input <SignatureType>

The <Si gnat ur eType> element indicates the type of signature or timestamp to produce (such
as a XML signature, a XML timestamp, a RFC 3161 timestamp, a CMS signature, etc.). See
section 7.1 for some URI references that MAY be used as the value of this element.

<xs: el ement nane="Si gnatureType” type="xs:anyURl"/>

3.5.2 Optional Input <AddTimestamp>

The <AddTi nest anp> element indicates that the client wishes the server to provide a timestamp
as a property or attribute of the resultant signature. The Type attribute, if present, indicates what
type of timestamp to apply. Profiles that use this optional input MUST define the allowed values,
and the default value, for the Type attribute (unless only a single type of timestamp is supported,
in which case the Type attribute can be omitted).

<xs: el ement nane=" AddTi nest anp” >
<xs: conpl exType>
<xs:attribute nanme="Type” type="xs:anyURl” use="optional”/>
</ xs: conpl exType>
</ xs: el ement >

3.5.3 Optional Input <IntendedAudience>

The <l nt endedAudi ence> element tells the server who the target audience of this signature is.
The server may use this to parameterize any aspect of its processing (for example, the server
may choose to sign with a key that it knows a particular recipient trusts).

<xs: el ement nane="1nt endedAudi ence” >
<xs: conpl exType>
<Xs: sequence>
<xs: el ement nanme="Reci pi ent” type="samnl : Nanel denti fi er Type”
maxCccur s=" unbounded” / >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

3.5.4 Optional Input <KeySelector>

The <KeySel ect or > element tells the server which key to use.

<xs: el ement nane="KeySel ect or” >
<xs: conpl exType>
<xs: choi ce>
<xs:el ement ref="ds: Keylnfo”/>
<xs: el enent nane="Qther" ref="dss: AnyType"/>
</ xs: choi ce>
</ xs: conpl exType>
</ xs: el ement >

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 24 of 56

3.5.5 Optional Input <Properties>

The <Properti es> element is used to request that the server add certain signed or unsigned
properties (aka “signature attributes”) into the signature. The client can send the server a
particular value to use for each property, or leave the value up to the server to determine. The
server can add additional properties, even if these aren’t requested by the client.

The <Pr operti es> element contains:
<Si gnedPr operti es> [Optional]
These properties will be covered by the signature.
<Unsi gnedPr operti es> [Optional]
These properties will not be covered by the signature.
Each <Pr oper t y> element contains:
<l dentifier> [Required]
A URI reference identifying the property.
<Val ue> [Optional]
If present, the value the server should use for the property.

This specification does not define any properties. Profiles that make use of this element MUST
define the allowed property URIs and their allowed values.

<xs: el ement nane="Properties”>
<xs: conpl exType>
<Xs: sequence>
<xs: el ement nane="Si gnedProperties”
type="dss: Properti esType” m nCccurs="0"/>
<xs: el ement nanme="Unsi gnedProperti es”
type="dss: PropertiesType” m nCccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

<xs: conpl exType nane="Properti esType” >
<Xxs: sequence>
<xs:el ement ref="dss:Property” naxCccurs="unbounded”/>
</ xs: sequence>
</ xs: conpl exType>

<xs: el ement nane="Property”>
<xs: conpl exType>
<Xs: sequence>
<xs: el ement nanme="ldentifier” type="xs:anyURl "/>
<xs: el ement nanme="Val ue” type="dss: AnyType”
m nCccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

3.5.6 Optional Input <IncludeObject>

Optional input <I ncl udeQbj ect > is used to request the creation of an XMLSig enveloping
signature as follows.
The attributes of <I ncl udeCbj ect > are:

VWi chDocument [Required]

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 25 of 56

1047

1048
1049

1050
1051
1052
1053
1054

1055
1056
1057
1058
1059

1060
1061

1062
1063

1064
1065
1066

1067
1068

Identifies the input document which will be inserted into the returned signature (see the ID
attribute in section 2.4.1).

hasObj ect TagsAndAt t ri but esSet

If True indicates that the <Docunent > contains a <ds: Obj ect > element which has been
prepared ready for direct inclusion in the <ds: Si gnat ur e>.

oj | d [optional]
Sets the 14 attribute on the returned <ds:Objects>.

cr eat eRef erence

This attribute set to true causes the <ds:0Object> to be referenced by a <ds:Reference>
and hence to be actually digested and signed. Otherwise it has to be referenced by another
reference or it is just included but not signed.

<xs: el ement nane="I ncl udeChj ect ">
<xs: conpl exType>
<xs:attribute nane="Wi chDocunent" type="xs:|DREF"/>
<xs:attribute nane="hasObj ect TagsAndAttri but esSet "
type="xs: bool ean" defaul t="fal se"/>
<xs:attribute nane="Cbjld" type="xs:string"
use="optional "/ >
<xs:attribute nane="creat eReference" type="xs: bool ean"
use="optional " defaul t="true"/>
</ xs: conpl exType>
</ xs: el ement >

3.5.6.1 XML DSig Variant Optional Input <IncludeObject>

An enveloping signature is a signature having <ds: Obj ect >s which are referenced by
<ds: Ref er ence>s having a same-document URI.

For each <l ncl udehj ect > the server creates a new <ds:0bject> element containing the
document, as identified using the Whi chDocunent attribute, as its child. This object is carried
within the enveloping signature. This <Documnent > (or documents) MUST include a “same-
document” Ref URI attribute (having a value starting with “#") which references the data to be
signed.

The URI in the Ref URI attribute of this <Docunent > should at least reference the relevant parts
of the Object to be included in the calculation for the corresponding reference. Clients MUST
generate requests in a way that some <ds: Ref er ence>’s URI values actually will reference the
<ds:0Object> generated by the server once this element will have been included in the
<ds:Signature> produced by the server.

1. For each <IncludeObject> the server MUST carry out the following steps:

a. The server identifies the <Document> that is to be placed into a <ds:Object> as
indicated by the WhichDocument attribute.

b. The data to be carried in the enveloping signature is extracted and decoded as
described in 3.3.1 Step 1 a (or equivalent step in variants of the basic process as
defined in 3.3.2 onwards depending of the form of the input document).

c. Iif the hasObjectTagsAndAttributesSet attribute is false or not present the server
builds the <ds:Object> as follows:

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 26 of 56

1069
1070

1071
1072
1073
1074

1075
1076

1077
1078
1079

1080

1081

1082
1083
1084

1085

1086
1087
1088

1089
1090

1091
1092
1093

1094
1095
1096
1097
1098

1099
1100

1101
1102

1103
1104
1105

1106
1107

1108

1109
1110

i. The server generates the new <ds:Object> and sets its Id attribute to the
value indicated in Objld attribute of the optional input if present.

i. In the case of the Document pointed at by WhichDocument having
Base64Data, <ds:Object>('s) MIME Type is to be set to the value of
<dss:Base64Data>('s) MIME Type value and the Encoding is to be set to
http://www.w3.0org/TR/xmlschema-2/#base64Binary

d. The server splices the to-be-enveloped documents as <ds:Object>(s) into the
<ds:Signature>, which is to be returned.

The server then continues with processing as specified in section 3.3.1 if create reference is true
otherwise this <Document> is excluded from further processing and basic processing is applied
for the rest of the <Document >s as specified in section 3.3.1.

3.5.6.2 CMS Enveloping Signhatures, Variant Optional Input <IncludeObject>

In the case of the optional input <I ncl udeObj ect > section 3.4 step 3 is overridden as follows.

3. The server creates a CMS signature (i.e. a SignedData structure) containing the Signerinfo
that was created in Step 3. The resulting SignedData is now internal, as the document is
enveloped in the signature.

3.5.7 Enveloped Signatures, Optional Input <SignaturePlacement>
and Output <DocumentWithSignature>
Optional input <Si gnat ur ePl acenent > is used to request the creation of an XMLDSig

enveloped signature placed within an input document. The resulting document with the
enveloped signature is placed in the optional output <Docunment Wt hSi gnat ur e>.

The server places the signature in the document identified using the Whi chDocunent attribute.
This <Docunent > MUST include a “same-document” RefURI attribute which references the data
to be signed of the form RefURI="".

In the case of an XML input document, the client may instruct the server precisely where to place
the signature with the optional <Xpat hAf t er > and <Xpat hFi r st Chi | dOf > child elements. In
the case of a non-XML input document, or when these child elements are omitted, then the server
places the signature in the input document in accordance with procedures defined in a profile or
as part of the server policy.

The <Si gnat ur ePl acenent > element contains the following attributes and elements:
Wi chDocunent [Required]

Identifies the input document which the signature will be inserted into (see the | D attribute in
section 2.4.1).

Cr eat eEnvel opedSi gnat ure
If this is set to true a reference having an enveloped signature transform is created.
<Xpat hAf t er > [Optional]

Identifies an element, inside the XML input document, after which the signature will be
inserted. (The rules for XPath evaluation are those stated in section 2.5 SignatureObject)

<Xpat hFi r st Chi | dOf > [Optional]

Identifies an element, in the XML input document, which the signature will be inserted as the
first child of. For details on the evaluation of The XPath expression see above

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 27 of 56

http://www.w3.org/TR/xmlschema-2/#base64Binary

(<Xpat hAft er >). The signature is placed immediately after the start tag of the specified
element.

<xs: el ement nanme="Si gnat ur ePl acement ">

<xs: conpl exType>
<xs: choi ce>
<xs: el ement name="XPat hAfter" type="xs:string"/>
<xs: el ement name="XPat hFi r st Chi | dOf "
type="xs:string"/>
</ xs: choi ce>
<xs:attribute nanme="Wi chDocunment" type="xs:|DREF"/>
<xs:attribute nane="Creat eEnvel opedSi gnat ure"
type="xs: bool ean" defaul t="true"/>
</ xs: conpl exType>

</ xs: el enent >

The <Docunent Wt hSi gnat ur e> optional output contains the input document with the
signature inserted. It has one child element:

<Docunent > [Required]

This contains the input document with a signature inserted in some fashion.

<xs: el ement nanme="Docunent Wt hSi gnat ure” >

<xs: conpl exType>
<Xs:sequence>
<xs: el ement ref="dss: Docunent”/>
<Xs:sequence>
</ xs: conpl exType>

</ xs: el enent >

For an XMLSig enveloped signature the client produces a request including elements set as
follows:

1.
2.

The Whi chDocument attribute is set to identify the <Docunent > to envelope the signature.

The RefURI attribute for the relevant <Docunent > is set to reference the relevant parts of
the Document to be included in the calculation for the corresponding reference. This MUST
be a relative reference within the same document. (e.g. URI="", URI="#xpointer(/)",
URI="#xpointer(/DocumentElement/ToBeSignedElement)”,
URI="#xpointer(//ToBeSignedElements)”, ...).

The createEnvelopedSignature is set to true (or simply omitted).

If the <Si gnat ur ePl acenent > element is present the server processes it as follows:

1.

The server identifies the <Documnent > that in which the signature is to be enveloped as
indicated by the Whi chDocunent attribute.
This document is extracted and decoded as described in 3.3.1 Step Fehler! Verweisquelle

konnte nicht gefunden werden. (or equivalent step in variants of the basic process as
defined in 3.3.2 onwards depending of the form of the input document).

The server splices the <ds: Si gnat ur e> to-be-enveloped into the document.

If cr eat eEnvel opedSi gnat ur e equals true create a <ds: Ref er ence> for the document
in question by performing Basic processing as in section 3.3.1 and Step 1.b to 1.d is
performed with the following amendments:

1.

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 28 of 56

1158

1159
1160
1161
1162

1163
1164

1165
1166
1167
1168
1169
1170
1171
1172
1173

1174
1175

1176
1177

1178
1179

1180
1181

1182

1183
1184
1185
1186
1187

1188
1189
1190
1191
1192
1193
1194

1195
1196
1197
1198
1199
1200

a. [No l.a]

b. [replaced] Include an EnvelopedSignatureTransform as the first transform for
calculation (even preceding transforms used for extraction) and continue as in
3.3.1 Step 1.b applied on the previously extracted document bearing the
incomplete signature.

c. (same asin 3.3.1 Step 1.c)
d. (same asin 3.3.1 Step 1.d.i to 1.d.iv) plus 1.d.v amended as follows:

v. The EnvelopedSignatureTransform is included as the first Transform
(even before excl-cl4n if it was used for extraction) in the
<ds: Transforns> element. The sequence MUST describe the
effective transform as a reproducible procedure from parsing until hash.

Note: This is necessary because the EnvelopedSignatureTransform
would not work if there was a Canonicalization before it. Similar
problems apply to transforms using the here() function, if such are to be
supported the use of Base64XML is indicated.

5. Add the returned <ds: Ref erence> as required in 3.3.1 Step Fehler! Verweisquelle
konnte nicht gefunden werden. of Basic processing.

6. The server continues with processing as specified in section 3.3.1 for the rest of the
documents.

7. The <Si gnedCbj ect > element of the result is set to point to the document with the same
VWi chDocumnent and XPath expression as in the request.

3.5.8 Optional Input <SignedReferences>

The <SignedReferences> element gives the client greater control over how the
<ds: Ref erence> elements are formed. When this element is present, step 1 of Basic
Processing (section 3.3.1) is overridden. Instead of there being a one-to-one correspondence
between input documents and <ds: Ref er ence> elements, now each <Si gnedRef er ence>
element controls the creation of a corresponding <ds: Ref er ence>.

Since each <SignedReference> refers to an input document, this allows multiple
<ds: Ref er ence> elements to be based on a single input document. Furthermore, the client
can request additional transforms to be applied to each <ds: Ref er ence>, and can set each
<ds: Ref erence> element’s | d or URl attribute. These aspects of the <ds: Ref er ence> can
only be set through the <Si gnedRef er ences> optional input; they cannot be set through the
input documents, since they are aspects of the reference to the input document, not the input
document itself.

Each <Si gnedRef er ence> element contains:
Wi chDocunent [Required]
Which input document this reference refers to (see the | D attribute in section 2.4.1).
Ref | d [Optional]
Sets the | d attribute on the corresponding <ds: Ref er ence>.
Ref URI [Optional]

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 29 of 56

1201
1202

1203
1204
1205
1206

1207
1208

1209
1210
1211

1212
1213

1214
1215

1216
1217

1218
1219
1220

1221
1222

1223
1224
1225
1226
1227

1228
1229
1230

1231
1232
1233
1234

1235
1236

1237
1238

1239
1240

1241
1242
1243

1244

overrides the Ref URl of <dss: Documnent > and if present from the <Si gnedRef er ences>
creates an additional <ds: Ref er ence>

Ref Type [Optional]
overrides the Ref Type of <dss: Docunent >

<ds: Tr ansf or ns> [Optional]

Requests the server to perform additional transforms on this reference.

When the <Si gnedRef er ences> optional input is present, basic processing 3.3.1 step 1 is
performed for each <Si gnedRef er ence> overriding steps a., b., c. and d.:

If the <Si gnat ur ePl acenent > element is present the server processes it as follows:

For each <Si gnedRef er ence> in <Si gnedRef er ences>

1. The server identifies the <Document> referenced as indicated by the WhichDocument
attribute.

2. If RefURI is present create an additional <ds:Reference> for the document in question by
performing basic processing as in section 3.3.1 Step 1 amended as follows:

1.

Unchanged.

Applies the transforms indicated in <ds:Transforms>. Afterwards, the server may
apply any other transform it considers worth according to its policy for generating a
canonicalized octet string as required in step b. of basic Processing before hashing.

Unchanged.
The server forms a <ds:Reference> with the elements and attributes set as follows:

i. Use this RefURI attribute from the <SignedReference> if present instead of
RefURI from <dss:Document> in step i. of Basic Processing.
The Id attribute is set to the <SignedReference> element’s Refld attribute. If
the <SignedReference> has no Refld attribute, the <ds:Reference>
element’s Id attribute is omitted.

v. The <ds:Transforms> used here will have to be added to <ds:Transforms> of
step v. of basic processing so that this element describes the sequence of
transforms applied by the server and describing the effective transform as a
reproducible procedure from parsing until hash.

2. Add the returned <ds:Reference> as required in 3.3.1 Step Fehler! Verweisquelle

konnte nicht gefunden werden. of Basic processing.

3. If Ref URI is not present perform basic processing for the input document not creating an
additional <ds: Ref er ence> amending Step 1 as follows:

1.
Unachanged.
Applies the transforms indicated in <ds: Tr ansf or ns>. Afterwards, the server may
apply any other transform it considers worth according to its policy for generating a
canonicalized octet string as required in step b. of basic Processing before hashing.
Unchanged.
oasis-dss-1.0-core-spec-wd-34 21 October 2005

Copyright © OASIS Open 2005. All Rights Reserved. Page 30 of 56

d. The server forms a <ds: Ref er ence> with the elements and attributes set as
follows:

i. Perform step i. of Basic Processing and the Id attribute is set to the
<Si gnedRef er ence> element’s Ref I d attribute. If the
<Si gnedRef er ence> has no Ref | d attribute, the <ds: Ref erence>
element’s | d attribute is omitted.

ii. Unchanged
iii. Unchanged
iv. Unchanged

v. The <ds:Transforns> used here wil have to be added to
<ds: Transforns> of step v. of basic processing so that this element
describes the sequence of transforms applied by the server and describing
the effective transform as a reproducible procedure from parsing until hash.

4. The server continues with processing as specified in section 3.3.1 for the rest of the
documents.

<xs: el ement nane="Si gnedRef er ences” >
<xs: conpl exType>
<XS:sequence>
<xs: el ement ref="dss: Si gnedRef erence”
maxQOccur s=" unbounded” / >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

<xs: el ement nane="Si gnedRef erence">
<xs: conpl exType>
<Xs: sequence>
<xs: el ement ref="ds: Transforns" m nCccurs="0"/>
</ xs: sequence>
<xs:attribute nane="Wi chDocunent" type="xs:|DREF" use="required"/>
<xs:attribute name="Ref URI" type="xs:anyURl" use="optional"/>
<xs:attribute nane="Refld" type="xs:string" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 31 of 56

4 The DSS Verifying Protocol

4.1 Element <VerifyRequest>

The <Veri f yRequest > inherits from <Request>. This element is sent by the client to verify a
signature or timestamp on some input documents. It contains the following additional elements:

<Si gnat ur eQbj ect > [Optional]

This element contains a signature or timestamp, or else contains a <Si gnat ur ePt r > that
points to an XML signature in one of the input documents. If this element is omitted, there
must be only a single <l nput Docurent > which the server will search to find the to-be-
verified signature(s). A <Si gnat ur ePt r > or omitted <Si gnat ur eCbj ect > MUST be used
whenever the to-be-verified signature is an XML signature which uses an Enveloped
Signature Transform; otherwise the server would have difficulty locating the signature and
applying the Enveloped Signature Transform.

<I nput Docunent s> [Optional]

The input documents which the signature was calculated over. The signature to be verified
may also be contained in one of these documents. This element may be omitted if an
enveloping signature inside the <Si gnat ur eObj ect > contains the input document(s).

<xs: el ement nane="Veri fyRequest” >
<xs: conpl exType>
<XS:sequence>
<xs:el ement ref="dss: Optional |l nputs” m nCccurs="0"/>
<xs: el ement ref="dss: Si gnatureQoject” m nCccurs="0"/>
<xs:el ement ref="dss: | nput Docunents” m nCccurs="0"/>
</ xs: sequence>
<xs:attribute nane="Request| D’ type="xs:string”
use="optional "/ >
<xs:attribute nane="Profile” type="xs:anyURl " use="optional”/>
</ xs: conpl exType>
</ xs: el ement >

4.2 Element <VerifyResponse>

The <VerifyResponse> inherits from <Response>. This element defines no additional
attributes and elements

4.3 Basic Processing for XML Signatures

A DSS server that verifies XML signatures SHOULD perform the following steps, upon receiving
a <Veri f yRequest >. These steps may be changed or overridden by the optional inputs, or by
the profile or policy the server is operating under. For more details on multi-signature verification,
see section 4.3.1.

1. The server retrieves one or more <ds: Signature> objects, as follows: If the
<Si gnat ur eoj ect > is present, the server retrieves either the <ds: Si gnat ur e> that is a
child element of the <Si gnat ur eQbj ect >, or those <ds: Si gnat ur e> objects which are
pointed to by the <Si gnat ur ePt r > in the <Si gnat ur eQbj ect >.

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 32 of 56

1319
1320
1321
1322
1323
1324
1325
1326

1327
1328
1329
1330
1331

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341

1342
1343
1344
1345

1346
1347
1348
1349

1350
1351
1352

1353
1354
1355
1356
1357

1358

1359
1360
1361
1362
1363
1364
1365

1366

a. If the <SignaturePtr> points to an input document but not a specific element in that
document, the pointed-to input document must be a <Documnent > element containing
XML either in an <l nl i neXM.>, <EscapedXM.> or <Base64XM.> element. This
document is extracted and decoded as described in 3.3.1 Step Fehler!
Verweisquelle konnte nicht gefunden werden. (or equivalent step in variants of
the basic process as defined in 3.3.2 onwards depending of the form of the input
document). The server will search and find every <ds: Si gnat ur e> element in this
input document, and verify each <ds:Signature> according to the steps below.

b. If the <Si gnat ur ehj ect > is omitted, there MUST be only a single <Document>
element. This case is handled as if a <Si gnat ur ePt r> pointing to the single
<Docunent > was present: the server will search and find every <ds: Si ghat ur e>
element in this input document, and verify each <ds: Si gnat ur e> according to the
steps below.

For each <ds: Ref er ence> in the <ds: Si gnat ur e>, the server finds the input document
with matching RefURI and RefType values. If the <ds: Ref erence> uses a same-
document URI, the XPointer should be evaluated against the input document the
<ds: Si gnat ure> is contained within, or against the <ds: Si gnature> itself if it is
contained within the <Si gnat ur eCbj ect > element. The <SchenmaRef > element or optional
input <Schema> of the input document or <Si gnat ur eObj ect > will be used, if present, to
identify ID attributes when evaluating the XPointer expression. If the <ds: Ref er ence> uses
an external URI and the corresponding input document is not present, the server will skip the
<ds: Ref er ence>, and later return a result code such as ReferencedDocumentNotPresent
to indicate this.

a. If the input document is a <Document>, the server extracts and decodes as
described in 3.3.1 Step Fehler! Verweisquelle konnte nicht gefunden werden. (or
equivalent step in variants of the basic process as defined in 3.3.2 onwards
depending of the form of the input document).

b. If the input document is a <Transfor nedDat a>, the server checks that the
<ds: Transforms> match between the <TransfornmedData> and the
<ds: Ref erence> and then hashes the resultant data object according to
<ds: Di gest Met hod>, and checks that the result matches <ds: Di gest Val ue>.

c. If the input document is a <Docunent Hash>, the server checks that the
<ds: Transf orns>, <ds: Di gest Met hod>, and <ds: Di gest Val ue> elements
match between the <Docunent Hash> and the <ds: Ref er ence>.

d. If such an input document isn't present, and the <ds: Ref er ence> uses a same-
document URI without a barename XPointer (URI=""), then the relevant input
document is the input document the <ds: Si gnat ur e> is contained within, or the
<ds: Si gnat ur e> itself if it is contained within the <Si gnat ur eCbj ect > element
and processed according to a. above.

The server then validates the signature according to section 3.2.2 in [XMLSig].

If the signature validates correctly, the server returns one of the first three <Resul t M nor >
codes listed in section 4.4, depending on the relationship of the signature to the input
documents (not including the relationship of the signature to those XML elements that were
resolved through XPointer evaluation; the client will have to inspect those relationships
manually). If the signature fails to validate correctly, the server returns some other code;
either one defined in section 4.4 of this specification, or one defined by some profile of this
specification.

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 33 of 56

1367

1368
1369
1370
1371
1372

1373
1374
1375

1376
1377
1378

1379
1380

1381

1382
1383
1384

1385
1386

1387

1388
1389
1390
1391
1392

1393
1394

1395
1396

1397
1398

1399
1400
1401

1402
1403

1404
1405

1406
1407

1408
1409

1410

4.3.1 Multi-Signature Verification

If a client requests verification of an entire input document, either using a <Si gnat ur ePt r >
without an <XPat h> or a missing <Si gnat ur ePt r > (see section 4.3 step 1), then the server
MUST determine whether the input document contains zero, one, or more than one
<ds: Si ghat ure> elements. If zero, the server should return a <Resul t Maj or > code of
RequesterError.

If more than one <ds: Si gnat ur e> elements are present, the server MUST either reject the
request with a <Resul t Maj or > code of RequesterError and a <Resul t M nor > code of
Not Suppor t ed, or accept the request and try to verify all of the signatures.

If the server accepts the request in the multi-signature case (or if only a single signature is
present) and one of the signatures fails to verify, the server should return one of the error codes
in section 4.4, reflecting the first error encountered.

If all of the signatures verify correctly, the server should return the Success <Resul t Maj or >
code and the following <Resul t M nor > code:

urn: oasi s: nanes:tc:dss: 1.0:resul tmnor: ValidMiltiSighatures

Upon receiving this result code, the client SHOULD NOT assume any particular relationship
between the signature and the input document(s). To check such a relationship, the client would
have to verify or inspect the signatures individually.

Only certain optional inputs and outputs are allowed when performing multi-signature verification.
See section 4.6 for details.

4.4 Result Codes

Whether the signature succeeds or fails to verify, the server will return the Success
<Resul t Maj or > code. The <Result M nor > URI MUST be one of the following values, or
some other value defined by some profile of this specification. The first three values listed below
indicate that the signature or timestamp is valid. Any other value SHALL signal an error of some
sort.

urn: oasi s: nanes:tc:dss: 1. 0:resultm nor:valid:signature: onAl | Docunents

The signature or timestamp is valid. Furthermore, the signature or timestamp covers all of the
input documents just as they were passed in by the client.

urn: oasi s: nanmes:tc:dss: 1. 0:resul tm nor:valid: signature: onTransfor nedDoc
unent s

The signature or timestamp is valid. Furthermore, the signature or timestamp covers all of the
input documents. However, some or all of the input documents have additional transforms
applied to them that were not specified by the client.

urn: oasi s: nanmes:tc:dss: 1.0:resul tm nor:valid:signature: not Al | Docunent sR
ef erenced

The signature or timestamp is valid. However, the signature or timestamp does not cover all
of the input documents that were passed in by the client.

urn:oasi s:nanmes:tc:dss:1.0:resul tm nor:invalid:refencedDocurment Not Prese
nt

A ds: Ref erence element is present in the ds: Si gnat ur e containing a full URI, but the
corresponding input document is not present in the request.

urn: oasi s:names:tc:dss:1.0:resultmnor:invalid:indeterm nat eKey

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 34 of 56

1411
1412

1413

1414
1415
1416

1417

1418
1419

1420

1421
1422
1423

1424

1425
1426
1427

1428
1429

1430
1431
1432
1433

1434
1435

1436
1437
1438
1439

1440

1441
1442
1443
1444

1445
1446

1447

1448
1449
1450
1451
1452

1453

The server could not determine whether the signing key is valid. For example, the server
might not have been able to construct a certificate path to the signing key.

urn: oasi s: names:tc:dss: 1. 0:resul tm nor:invalid:untrust edKey
The signature is performed by a key the server considers suspect. For example, the signing

key may have been revoked, or it may be a different key from what the server is expecting the
signer to use.

urn: oasi s:names:tc:dss:1.0:resultmnor:invalid:incorrectSignature
The signature fails to verify, indicating that the message was modified in transit, or that the
signature was performed incorrectly.

urn: oasi s: nanmes:tc:dss: 1.0:resul tm nor:inappropriate:signature
The signature or its contents are not appropriate in the current context. For example, the

signature may be associated with a signature policy and semantics which the DSS server
considers unsatisfactory.

4.5 Basic Processing for CMS Signatures

A DSS server that verifies CMS signatures SHOULD perform the following steps, upon receiving
a <Veri f yRequest >. These steps may be changed or overridden by the optional inputs, or by
the profile or policy the server is operating under.

1. The server retrieves the CMS signature by decoding the <Base64Si gnat ur e> child of
<Si gnat ur eQbj ect >.

2. The server retrieves the input data. If the CMS signature is detached, there must be a single
input document: i.e. a single <Docunent > or <Docunent Hash> element. Otherwise, if the
CMS signature is enveloping, it contains its own input data and there MUST NOT be any
input documents present.

3. The CMS signature and input data are verified in the conventional way (see [RFC 3369] for
details).

4. |If the signature validates correctly, the server returns the first <Resul t M nor > code listed in
section 4.4. If the signature fails to validate correctly, the server returns some other code;
either one defined in section 4.4 of this specification, or one defined by some profile of this
specification.

4.6 Optional Inputs and Outputs

This section defines some optional inputs and outputs that profiles of the DSS verifying protocol
might find useful. Section 2.8 defines some common optional inputs that can also be used with
the verifying protocol. Profiles of the verifying protocol can define their own optional inputs and
outputs, as well. General handling of optional inputs and outputs is discussed in section 2.7.

4.6.1 Optional Input <VerifyManifests> and Output
<VerifyManifestResults>

The presence of this element instructs the server to validate manifests in an XML signature.

On encountering such a document in step 2 of basic processing, the server shall repeat step 2 for
all the <ds: Ref er ence> elements within the manifest. In accordance with [XMLSIG] section
5.1, DSS Manifest validation does not affect a signature's core validation. The results of verifying
individual <ds:Reference>'s within a <ds:Manifest> are returned in the
<dss: Veri f yMani f est Resul t s> optional output.

The <Veri f yMani f est s> optional input is allowed in multi-signature verification.

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 35 of 56

<Ref er enceXpat h> [Required]
Identifies the manifest reference, in the XML signature, to which this result pertains.
<St at us> [Required]

Indicates the manifest validation result. It takes one of the values
urn:oasis:names:tc:dss:1.0:manifeststatus:Valid or
urn:oasis:names:tc:dss:1.0:manifeststatus:Invalid.

<xs: el ement nanme="Veri fyMani f est Resul t s"
t ype="dss: Veri f yMani f est Resul t sType"/ >
<xs: conpl exType name="VerifyManif est Resul t sType">
<Xs:sequence>
<xs:el ement ref="dss: ManifestResult" nmaxCccurs="unbounded"/>
</ xs: sequence>
</ xs: conpl exType>

<xs: el ement nanme="Mani f est Resul t ">
<xs: conpl exType>
<Xs: sequence>
<xs: el ement nane="Ref erenceXpat h" type="xs:string"/>
<xs: el ement nane="Status" type="xs:anyURl"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

4.6.2 Optional Input <VerificationTime>

This element instructs the server to attempt to determine the signature’s validity at the specified
time, instead of the current time.

This optional input is allowed in multi-signature verification.

<xs: el ement name="VerificationTi me” type="xs:dateTi ne”/>

4.6.3 Optional Input <AdditionalKeyInfo>

This element provides the server with additional data (such as certificates and CRLs) which it can
use to validate the signing key.

This optional input is not allowed in multi-signature verification.

<xs: el ement nane=" Addi ti onal Keyl nf 0” >
<xs: conpl exType>
<Xs: sequence>
<xs: el ement ref="ds: Keyl nfo”/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

4.6.4 Optional Input <ReturnProcessingDetails> and Output
<ProcessingDetails>

The presence of the <Ret ur nPr ocessi ngDet ai | s> optional input instructs the server to return

a <Pr ocessi ngDet ai | s> output.

These options are not allowed in multi-signature verification.

<xs: el ement nane="Retur nProcessi ngDetails”/>

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 36 of 56

The <Pr ocessi ngDet ai | s> optional output elaborates on what signature verification steps
succeeded or failed. It may contain the following child elements:

<Val i dDet ai | > [Any Number]
A verification detail that was evaluated and found to be valid.
<l ndet er m nat eDet ai | > [Any Number]

A verification detail that could not be evaluated or was evaluated and returned an
indeterminate result.

<l nval i dDet ai | > [Any Number]
A verification detail that was evaluated and found to be invalid.

<xs: el ement nanme="Processi ngDetail s”>
<xs: conpl exType>
<Xs: sequence>

<xs: el ement nane="ValidDetail” type="dss: Detail Type”
m nCccur s="0" naxCccur s=" unbounded”/ >

<xs: el ement nane="I ndet er m nat eDet ai | ”
type="dss: Det ai | Type”
m nCccur s="0" maxCccur s=" unbounded”/ >

<xs: el ement nane="Inval i dDetail” type="xs:dss: Detail Type
m nQccur s="0" naxOccur s=" unbounded”/ >

</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

Each detail element is of type dss: Det ai | Type. A dss: Det ai | Type contains the following
child elements and attributes:

Type [Required]

A URI which identifies the detail. It may be a value defined by this specification, or a value
defined by some other specification. For the values defined by this specification, see below.

Multiple detail elements of the same Type may appear in a single <Pr ocessi ngDet ai | s>. For
example, when a signature contains a certificate chain that certifies the signing key, there may be
details of the same Type present for each certificate in the chain, describing how each certificate
was processed.

<Code> [Optional]

A URI which more precisely specifies why this detail is valid, invalid, or indeterminate. It must
be a value defined by some other specification, since this specification defines no values for
this element.

<Message> [Optional]
A human-readable message which MAY be logged, used for debugging, etc.

<xs: conpl exType nane="Detai | Type” >
<Xs:sequence>
<xs: el ement nane="Code” type="xs:anyURl" mi nCccurs="0"/>
<xs: el ement nanme="Message” type="International StringType”
m nCccurs="0"/>
<xs:any processContents="|ax” m nCccurs="0"
maxQOccur s=" unbounded” / >
</ xs: sequence>
<xs:attribute nane="Type” type="xs:anyURI" use="required”/>
</ xs: el ement >

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 37 of 56

1546
1547

1548
1549

1550
1551
1552

1553
1554

1555
1556
1557
1558

The values for the Type attribute defined by this specification are the following:
urn: oasi s: nanes:tc:dss: 1. 0:detail:|ssuerTrust

Whether the issuer of trust information for the signing key (or one of the certifying keys) is
considered to be trustworthy.

urn: oasi s: nanmes:tc:dss: 1. 0:detail : Revocati onSt at us
Whether the trust information for the signing key (or one of the certifying keys) is revoked.
urn: oasi s: nanes:tc:dss: 1.0:detail:Validitylnterval

Whether the trust information for the signing key (or one of the certifying keys) is within its
validity interval.

urn: oasi s:names:tc:dss:1.0:detail:Signature

Whether the document signature (or one of the certifying signatures) verifies correctly.
urn:oasi s:nanes:tc:dss: 1.0:detail: Mnifest

Whether the manifests in the XML signature verified correctly.

4.6.5 Optional Input <ReturnSigningTime> and Output <SigningTime>

The presence of the <Ret ur nSi gni ngTi me> optional input instructs the server to return a
<Si gni ngTi me> output. This output typically gives the client access to a time value carried
within a signature attribute or a signature timestamp, or within a timestamp token if the signature
itself is a timestamp (e.g. see section 5.1.1). If no such value is present, and the server has no
other way of determining when the signature was performed, the server should omit the
<Si gni ngTi me> output. If there are multiple such values present, behavior is profile-defined.

These options are not allowed in multi-signature verification.

<xs: el ement nanme=" Ret ur nSi gni ngTi ne”/ >

The <Si gni ngTi me> optional output contains an indication of when the signature was
performed, and a boolean attribute that indicates whether this value is attested to by a third-party
timestamp authority (if true), or only by the signer (if false).

<xs: el ement nanme="Si gni ngTi me” >
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: extensi on base="xs: dat eTi ne” >
<xs:attribute nane="ThirdPartyTi mest anp”
type="xs: bool ean” use="required”/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el ement >

4.6.6 Optional Input <ReturnSignerldentity> and Output
<Signerldentity>

The presence of the <Ret ur nSi gner | dent i t y> optional input instructs the server to return a
<Si gner | dent i t y> output.

This optional input and output are not allowed in multi-signature verification.

<xs: el ement nanme="ReturnSi gnerldentity”/>

The <Si gner | dent i t y> optional output contains an indication of who performed the signature.

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 38 of 56

<xs: el ement nane="Signerldentity” type="sanl: NaneldentifierType”/>

4.6.7 Optional Input <ReturnUpdatedSignature> and Output
<UpdatedSignature>

The presence of the <Ret ur nUpdat edSi gnat ur e> optional input instructs the server to return
an <Updat edSi gnat ur e> output, containing a new or updated signature.

The Type attribute on <Ret ur nUpdat edSi gnat ur e>, if present, defines exactly what it means
to “update” a signature. For example, the updated signature may be the original signature with
some additional unsigned signature properties added to it (such as timestamps, counter-
signatures, or additional information for use in verification), or the updated signature could be an
entirely new signature calculated on the same input documents as the input signature. Profiles
that use this optional input MUST define the allowed values and their semantics, and the default
value, for the Type attribute (unless only a single type of updated signature is supported, in which
case the Type attribute can be omitted).

Multiple occurrences of this optional input can be present in a single verify request message. |If
multiple occurrences are present, each occurrence MUST have a different Type attribute. Each
occurrence will generate a corresponding optional output. These optional outputs SHALL be
distinguishable based on their Type attribute, which will match each output with an input.

These options are not allowed in multi-signature verification.

<xs: el ement nanme=" Ret ur nUpdat edSi gnat ur e” >
<xs: conpl exType>
<xs:attribute name="Type” type="xs:anyURl " use="optional”/>
</ xs: conpl exType>
</ xs: el ement >

The <Updat edSi gnat ur e> optional output contains the returned signature.

<xs: el ement nane=" Updat edSi gnat ure” >
<xs: conpl exType>
<XS: sequence>
<xs: el ement ref="dss:Si gnatureject”>
<Xs: sequence>
<xs:attribute nanme="Type” type="xs:anyURI” use="optional”/>
</ xs: conpl exType>
</ xs: el ement >

4.6.8 Optional Input <ReturnTransformedDocument> and Output
<TransformedDocument>

The <Ret ur nTr ansf or nedDocunent > optional input instructs the server to return an input
document to which the XML signature transforms specified by a particular <ds: Ref er ence>
have been applied. The <ds: Ref er ence> is indicated by the zero-based Whi chRef er ence
attribute (0 means the first <ds: Ref er ence> in the signature, 1 means the second, and so on).
Multiple occurrences of this optional input can be present in a single verify request message.
Each occurrence will generate a corresponding optional output.

These options are not allowed in multi-signature verification.

<xs: el ement nane="Ret ur nTr ansf or redDocunent ” >
<xs: conpl exType>
<xs:attribute nane="Wi chRef erence” type="xs:integer”
use="requi red”/>
</ xs: conpl exType>

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 39 of 56

</ xs: el enent >

The <Transf or nedDocunent > optional output contains a document corresponding to the
specified <ds: Ref er ence>, after all the transforms in the reference have been applied. In other
words, the hash value of the returned document should equal the <ds: Ref er ence> element’s
<ds: Di gest Val ue>. To match outputs to inputs, each <Tr ansf or nedDocurnent > will contain
a Wi chRef er ence attribute which matches the corresponding optional input.

<xs: el ement nane="Tr ansf or nedDocunent ” >
<xs: conpl exType>
<Xs:sequence>
<xs:el ement ref="dss: Docunment” >
</ xs: sequence>
</ xs: conpl exType>
<xs:attribute nane="Wi chRef erence” type="xs:integer”
use="required”/>
</ xs: el ement >

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 40 of 56

5 DSS Core Elements

This section defines two XML elements that may be used in conjunction with the DSS core
protocols.

5.1 Element <Timestamp>

This section defines an XML timestamp. A <Ti nest anp> contains some type of timestamp
token, such as an RFC 3161 Ti neSt anpToken [RFC 3161] or a <ds: Si ghat ur e> (aka an
“XML timestamp token”). Profiles may introduce additional types of timestamp tokens. XML
timestamps can be produced and verified using the timestamping profile of the DSS core
protocols [XML-TSP].

An XML timestamp may contain:
<ds: Si gnat ur e> [Optional]
This is an enveloping XML signature, as defined in section 5.1.1.
<RFC3161Ti neSt anpToken> [Optional]
This is a base64-encoded Ti meSt anpToken as defined in [RFC3161].

<xs: el ement nanme="Ti nest anp” >
<xs: conpl exType>
<xs: choi ce>
<xs: el ement ref="ds: Signature”/>
<xs: el ement nane="RFC3161Ti neSt anpToken”
t ype="xs: base64Bi nary”/ >
<xs: el enent nane="C her" type="AnyType"/>
<xs: choi ce>
</ xs: conpl exType>
</ xs: el ement >

5.1.1 XML Timestamp Token

An XML timestamp token is similar to an RFC 3161 Ti neSt anpToken, but is encoded as a
<Tst | nf 0> element (see section 5.1.2) inside an enveloping <ds: Si gnat ure>. This allows
conventional XML signature implementations to validate the signature, though additional
processing is still required to validate the timestamp properties (see section 5.1.3).

The following text describes how the child elements of the <ds: Si gnat ur e> MUST be used:
<ds: Keyl nf 0> [Required]

The <ds: Keyl nf o> element SHALL identify the issuer of the timestamp and MAY be
used to locate, retrieve and validate the timestamp token signature-verification key. The
exact details of this element may be specified further in a profile.

<ds: Si gnedl nf 0>/ <ds: Ref er ence> [Required]

There MUST be a single <ds: Ref er ence> element whose URI attribute references the
<ds: (bj ect > containing the enveloped <Tst | nf 0> element, and whose Type attribute
is equal to urn:oasis: names:tc:dss: 1.0:core: schema: XMLTi neSt anpToken.
For every input document being timestamped, there MUST be a single
<ds: Ref er ence> element whose URI attribute references the document.

<ds: Obj ect > [Required]

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 41 of 56

A <Tst | nf 0> element SHALL be contained in a <ds: Obj ect > element.

5.1.2 Element <TstInfo>

A <Tst | nfo> element is included in an XML timestamp token as a <ds: Si gnature> /
<ds: Obj ect > child element. A <Tst | nf 0> element has the following children:

<Seri al Nunber > [Required]

This element SHALL contain a serial number produced by the timestamp authority (TSA).
It MUST be unique across all the tokens issued by a particular TSA.

<Cr eati onTi me> [Required]
The time at which the token was issued.
<Pol i cy> [Optional]

This element SHALL identify the policy under which the token was issued. The TSA’s
policy SHOULD identify the fundamental source of its time.

<Er r or Bound> [Optional]
The TSA'’s estimate of the maximum error in its local clock.
<Or der ed> [Default="false"]

This element SHALL indicate whether or not timestamps issued by this TSA, under this
policy, are strictly ordered according to the value of the Cr eat i onTi e element value.

TSA [Optional]
The name of the TSA.

<xs:el ement nanme="Tst| nfo”>
<xs: conpl exType>
<XS:sequence>
<xs: el ement nanme="Seri al Number” type="xs:integer”/>
<xs: el ement nane="CreationTi ne” type="xs: dateTi ne”/>
<xs: el ement name="Policy” type="xs:anyURl” m nCccurs="0"/>
<xs: el ement nane="ErrorBound” type="xs:duration”
m nCccurs="0"/>
<xs: el enent nane="Ordered” type="xs:hbool ean”
defaul t="fal se” mi nCccurs="0"/>
<xs: el ement nanme="TSA" type="sanl : Nanel denti fi er Type”
m nCccurs="0"/>
<Xs:sequence>
</ xs: conpl exType>
</ xs: el ement >

5.1.3 Timestamp verification procedure

If any one of these steps results in failure, then the timestamp token SHOULD be rejected.

Locate and verify the signature-verification key corresponding to the ds: Keyl nf o/ element
contents.

Verify that the signature-verification key is authorized for verifying timestamps.

Verify that the signature-verification key conforms with all relevant aspects of the relying-party’s
policy.
Verify that all digest and signature algorithms conform with the relying-party’s policy.

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 42 of 56

Verify that the signature-verification key is consistent with the
ds: Si gnedl nf o/ Si gnat ur eMet hod/ @\l gor i t hmelement value.

Verify that there is a single ds: Si gnedl nf o/ Ref erence element whose URI attribute
references a <ds: Obj ect > containing an enveloped <Tst | nf 0> element.

Verify that each timestamped document is referenced by a single ds: Si gnedl nf o/ Ref er ence
element.

Verify that the t st | nf o/ Pol i cy element value is acceptable.
Verify all digests and the signature.

If comparing the t st | nf o/ Cr eat i onTi e element value to another time value, first verify that
they differ by more than the error bound value.

5.2 Element <Requesterldentity>

This section contains the definition of an XML Requester Identity element. This element can be
used as a signature property in an XML signature to identify the client who requested the
signature.

This element has the following children:

Nane [Required]

The name or role of the requester who requested the signature be performed.
Supporti ngl nfo [Optional]

Information supporting the name (such as a SAML Assertion [SAMLCorel.1], Liberty Alliance
Authentication Context, or X.509 Certificate).

The following schema fragment defines the <Request er | dent i t y> element:

<xs: el ement nanme=" Requesterldentity”>
<xs: conpl exType>
<Xs:sequence>
<xs: el ement nanme="Nane” type="sanl : NaneldentifierType”/>
<xs: el ement nane="Supportinglnfo” type="dss: AnyType”
m nQccur s="0"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 43 of 56

1763

1764
1765
1766
1767

1768
1769

1770

1771
1772

1773
1774
1775
1776
1777
1778
1779
1780
1781

1782
1783
1784

1785

1786
1787

1788
1789

1790
1791
1792
1793

1794
1795

1796

1797
1798
1799

1800

6 DSS Core Bindings

Mappings from DSS messages into standard communications protocols are called DSS bindings.
Transport bindings specify how DSS messages are encoded and carried over some lower-level
transport protocol. Security bindings specify how confidentiality, authentication, and integrity can
be achieved for DSS messages in the context of some transport binding.

Below we specify an initial set of bindings for DSS. Future bindings may be introduced by the
OASIS DSS TC or by other parties.

6.1 HTTP POST Transport Binding

In this binding, the DSS request/response exchange occurs within an HTTP POST exchange
[RFC 2616]. The following rules apply to the HTTP request:

The client may send an HTTP/1.0 or HTTP/1.1 request.

The Request URI may be used to indicate a particular service endpoint.

The Cont ent - Type header MUST be set to “application/xml”.

The Cont ent - Lengt h header MUST be present and correct.

The DSS request message MUST be sent in the body of the HTTP Request.
The following rules apply to the HTTP Response:

The Cont ent - Type header MUST be set to “text/xml”.

The Cont ent - Lengt h header MUST be present and correct.

The DSS response message MUST be sent in the body of the HTTP Response.

The HTTP status code MUST be set to 200 if a DSS response message is returned. Otherwise,
the status code can be set to 3xx to indicate a redirection, 4xx to indicate a low-level client error
(such as a malformed request), or 5xx to indicate a low-level server error.

6.2 SOAP 1.2 Transport Binding

In this binding, the DSS request/response exchange occurs using the SOAP 1.2 message
protocol [SOAP]. The following rules apply to the SOAP request:

A single DSS <Si gnRequest > or <Veri f yRequest > element will be transmitted within the
body of the SOAP message.

The client MUST NOT include any additional XML elements in the SOAP body.
The UTF-8 character encoding must be used for the SOAP message.

Arbitrary SOAP headers may be present.

The following rules apply to the SOAP response:

The server MUST return either a single DSS <Si gnResponse> or <Ver i f yResponse> element
within the body of the SOAP message, or a SOAP fault code.

The server MUST NOT include any additional XML elements in the SOAP body.

If a DSS server cannot parse a DSS request, or there is some error with the SOAP envelope, the
server MUST return a SOAP fault code. Otherwise, a DSS result code should be used to signal
errors.

The UTF-8 character encoding must be used for the SOAP message.

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 44 of 56

1801

1802
1803

1804

1805
1806
1807
1808

1809
1810

1811

1812
1813
1814

1815

1816
1817
1818

1819

1820
1821
1822

1823

1824

1825
1826
1827

1828

1829
1830

1831

1832
1833
1834
1835

Arbitrary SOAP headers may be present.

On receiving a DSS response in a SOAP message, the client MUST NOT send a fault code to the
DSS server.

6.3 TLS Security Bindings

TLS [RFC 2246] is a session-security protocol that can provide confidentiality, authentication, and
integrity to the HTTP POST transport binding, the SOAP 1.2 transport binding, or others. TLS
supports a variety of authentication methods, so we define several security bindings below. All of
these bindings inherit the following rules:

TLS 1.0 MUST be supported. SSL 3.0 MAY be supported. Future versions of TLS MAY be
supported.

RSA ciphersuites MUST be supported. Diffie-Hellman and DSS ciphersuites MAY be supported.

TripleDES ciphersuites MUST be supported. AES ciphersuites SHOULD be supported. Other
ciphersuites MAY be supported, except for weak ciphersuites intended to meet export
restrictions, which SHOULD NOT be supported.

6.3.1 TLS X.509 Server Authentication

The following ciphersuites defined in [RFC 2246] and [RFC 3268] are supported. The server
MUST authenticate itself with an X.509 certificate chain [RFC 3280]. The server MUST NOT
request client authentication.

MUST:

TLS_RSA_WITH_3DES_EDE_CBC_SHA
SHOULD:
TLS_RSA_WITH_AES_128 CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

6.3.2 TLS X.509 Mutual Authentication

The same ciphersuites mentioned in section 6.2.1 are supported. The server MUST authenticate
itself with an X.509 certificate chain, and MUST request client authentication. The client MUST
authenticate itself with an X.509 certificate chain.

6.3.3 TLS SRP Authentication

SRP is a way of using a username and password to accomplish mutual authentication. The
following ciphersuites defined in [draft-ietf-tls-srp-08] are supported.

MUST:

TLS_SRP_SHA WITH_3DES_EDE_CBC_SHA
SHOULD:
TLS_SRP_SHA WITH_AES_128 CBC_SHA
TLS_SRP_SHA WITH_AES_256_CBC_SHA

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 45 of 56

1836

1837
1838

1839

1840
1841
1842
1843

6.3.4 TLS SRP and X.509 Server Authentication

SRP can be combined with X.509 server authentication. The following ciphersuites defined in

[draft-ietf-tls-srp-08] are supported.
MUST:

TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA
SHOULD:

TLS_SRP_SHA RSA WITH_AES_128 CBC_SHA

TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA

oasis-dss-1.0-core-spec-wd-34
Copyright © OASIS Open 2005. All Rights Reserved.

21 October 2005
Page 46 of 56

1844

1845
1846
1847
1848

1849

1850
1851
1852
1853

1854
1855

1856

1857
1858

1859

1860
1861

1862
1863

1864
1865

1866

1867
1868

7 DSS-Defined Identifiers

The following sections define various URI-based identifiers. Where possible an existing URN is
used to specify a protocol. In the case of IETF protocols the URN of the most current RFC that
specifies the protocol is used (see [RFC 2648]). URI references created specifically for DSS
have the following stem:

urn:oasis:names:tc:dss:1.0:

7.1 Signature Type ldentifiers

The following identifiers MAY be used as the content of the <Si gnat ur eType> optional input
(see section 3.5.1).

7.1.1 XML Signature

e URI: urn:ietf:rfc:3275
e This refers to an XML signature per [XMLSig].

7.1.2 XML TimeStampToken

e URI: urn:oasis:names:tc:dss:1.0:core:schema:XMLTimeStampToken
e This refers to an XML timestamp containing an XML signature, per section 5.1.

7.1.3 RFC 3161 TimeStampToken

e URI: urn:ietf:rfc:3161

e This refers to an XML timestamp containing an ASN.1 TimeStampToken, per [RFC
3161].

7.1.4 CMS Signature

e URI: urn:ietf:rfc:3369
e This refers to a CMS signature per [RFC 3369].

7.1.5 PGP Signature

e URI: urn:ietf:rfc:2440
e This refers to a PGP signature per [RFC 2440].

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 47 of 56

1869

1870
1871
1872
1873

1874

1875
1876

1877
1878

1879
1880

1881
1882
1883
1884

1885
1886

1887
1888
1889
1890
1891

1892
1893
1894
1895

1896
1897
1898
1899

1900
1901
1902
1903

1904
1905
1906
1907
1908
1909

8 Editorial Issues

Another way of handling the options is to have each option placed within an <Qpt i on> element.
This has the advantage that each option could be tagged with a nmust Under st and attribute, so
the server would know whether it was okay to ignore the option or not. It has the disadvantage of
making things a little more verbose.

Resolution: Leave as is, per 10/20/2003 meeting.

It is suggested that the RequestID option be put in the top level of the protocol structure so that it
can be used at the basic level of the DSS protocol handler.

Resolution: This has been done, per 10/20/2003 meeting.
The utility of the <DocumentURI> element has been questioned.

Resolution: Since Rich, John, Trevor, and perhaps Andreas seem in favor of removing this, and
only Gregor and Juan Carlos, and perhaps Nick, seem in favor of keeping it, it's been removed.

Should every Output only be returned if the client requests it, through an Option?
Resolution: No — Servers can return outputs on their own initiative, per 11/3/2003 meeting.
Should Signature Placement, and elements to envelope, be made Signature Options?
Resolution: Yes — per 11/3/2003 meeting, but hasn’t been done yet.

Should <Options> be renamed? To <Additionallnputs>, <Inputs>, <Parameters>, or something
else?

Resolution: Yes - <Optionallnputs> and <OptionalOutputs>

Should we adopt a Timestamp more like Dimitri's <Tst>?

Resolution: No —instead add a <dss:Timestamp> element, per Nick's suggestion on list
The <ProcessingDetails> are a little sketchy, these could be fleshed out.

Resolution: Done — per draft 10, based on list discussions.

A <dss:SignatureObject> can contain a <dss:SignaturePtr>, which uses an XPath expression to
point to a signature. This allows a client to send an <InputDocument> to the server with an
embedded signature, and just point to the signature, without copying it. Is it acceptable to require
all servers to support XPath, for this?

Resolution: This is not only allowed but required when sending enveloped signatures to the
server, so the server knows how to apply the enveloped signature transform. This is disallowed
when the server returns signatures to the client, cause the bandwidth savings aren’'t worth the
complexity.

NOTE: This document may be updated as we work on DSS profiles. In particular, we may add
additional Signature Types, Timestamp Types, and Updated Signature Types to section 6. We
may also add additional optional inputs and outputs, if commonality is discovered across multiple
profiles.

Should <ServicePolicy> be made a permanent part of the protocols? (i.e. not an optional input?)
Resolution: Yes, added to the Request in wd-13.

Should we use URLs or URNSs for our schema namespace URI?

Resolution: URL (in draft 17)

Should we add a WSS Security Binding?

Resolution: not now

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 48 of 56

1910 Should we add some way for an external policy authority to vouch for some portion of a request?
1911 Resolution: not in the core

1912 Should RequestID be removed?

1913 Resolution: No.

1914 Should input documents have a Refld attribute?

1915 Resolution: No.

1916 Should <SignaturePtr> be optional when there’s only 1 input doc, with 1 signature?

1917 Resolution: Yes.

1918 Should the server return the <Profile> it used?

1919 Resolution: Yes.

1920 Further Issues discussed and resolved are to be found in the latest revision of the Comments
1921 Tracking Document (oasis-dss-1.0-comments-track-wd-##).

1922 Resolution: Not applicable.

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 49 of 56

1923

1924
1925
1926

1927
1928

1929

1930
1931

1932

1933
1934

1935

1936
1937

1938

1939
1940

1941

1942
1943

1944

1945
1946

1947
1948

1949

1950
1951

1952
1953

1954
1955
1956

1957
1958

1959

1960
1961

1962

9 References

9.1 Normative
[Core-XSD] S. Drees, T. Perrin, JC Cruellas, N Pope, K Lanz, et al. DSS Schema. OASIS,
October 2005.

[RFC 2119] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. IETF
RFC 2396, August 1998.

http://lwww.ietf.org/rfc/rfc2396.txt.

[RFC 2246] T Dierks, C. Allen. The TLS Protocol Version 1.0. IETF RFC 2246, January
1999.

http://lwww.ietf.org/rfc/rfc2246.txt.

[RFC 2396] T. Berners-Lee et al. Uniform Resource Identifiers (URI): Generic Syntax. IETF
RFC 2396, August 1998.

http://www.ietf.org/rfc/rfc2396.txt.

[RFC 2440] J. Callas, L. Donnerhacke, H. Finney, R. Thayer. OpenPGP Message Format.
IETF RFC 2440, November 1998.

http://lwww.ietf.org/rfc/rfc2440.txt.

[RFC 2616] R. Fielding et al. Hypertext Transfer Protocol — HTTP/1.1. IETF RFC 2616, June
1999.

http://www.ietf.org/rfc/rfc2616.txt.

[RFC 2648] R. Moats. A URN Namespace for IETF Documents. IETF RFC 2648, August
1999.

http://www.ietf.org/rfc/rfc2648.txt.

[RFC 2822] P. Resnick. Internet Message Format. IETF RFC 2822, April 2001.
http://www.ietf.org/rfc/rfc2822.txt

[RFC 3161] C. Adams, P. Cain, D. Pinkas, R. Zuccherato. Internet X.509 Public Key
Infrastructure Time-Stamp Protocol (TSP). IETF RFC 3161, August 2001.

http://lwww.ietf.org/rfc/rfc3161.txt.

[RFC 3268] P. Chown. AES Ciphersuites for TLS. IETF RFC 3268, June 2002.
http://www.ietf.org/rfc/rfc3268.txt.

[RFC 3280] R. Housley, W. Polk, W. Ford, D. Solo. Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. IETF RFC 3280, April 2002.

http://www.ietf.org/rfc/rfc3280.txt.
[RFC 3852] R. Housley. Cryptographic Message Syntax. IETF RFC 3852, July 2004.
http://www.ietf.org/rfc/rfc3852.txt.

[SAMLCorel.1] E. Maler et al. Assertions and Protocol for the OASIS Security Assertion
Markup Language (SAML) V 1.1. OASIS, November 2002.

http://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf

[Schemal] H. S. Thompson et al. XML Schema Part 1: Structures. W3C Recommendation,
May 2001.

http://www.w3.0org/TR/xmlschema-1/

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 50 of 56

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2440.txt
http://www.ietf.org/rfc/rfc2440.txt
http://www.ietf.org/rfc/rfc2648.txt
http://www.ietf.org/rfc/rfc2822.txt
http://www.ietf.org/rfc/rfc3075.txt
http://www.ietf.org/rfc/rfc3075.txt
http://www.ietf.org/rfc/rfc3075.txt
http://www.ietf.org/rfc/rfc3852.txt
http://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf
http://www.w3.org/TR/xmlschema-1/

1963
1964

1965
1966
1967

1968
1969
1970
1971

1972
1973

1974

1975

1976
1977
1978

1979
1980
1981

1982
1983

1984

1985
1986

1987
1988

1989

1990
1991

1992
1993
1994

1995
1996
1997

[SOAP] M. Gudgin et al. SOAP Version 1.2 Part 1. Messaging Framework. W3C
Recommendation, June 2003.

http://www.w3.org/TR/xmlschema-1/
[XML-C14N] J. Boyer. Canonical XML Version 1.0. W3C Recommendation, March 2001.
http://www.w3.0rg/TR/xml-c14n

[XML-ESCAPE] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, et al. Predefined
Entities in Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation, 04
February 2004,

http://www.w3.0rg/TR/REC-xml/#dt-escape

[XML-ns] T. Bray, D. Hollander, A. Layman. Namespaces in XML. wW3C
Recommendation, January 1999.

http://www.w3.0rg/TR/1999/REC-xml-names-19990114

[XML-NT-Document] http://www.w3.0rg/TR/2004/REC-xmI-20040204/#NT-document

[XML-PROLOG] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, et al. Prolog and
Document Type Declaration in Extensible Markup Language (XML) 1.0 (Third Edition), W3C
Recommendation, 04 February 2004, http://www.w3.0org/TR/REC-xml/#sec-prolog-dtd

[XMLSig] D. Eastlake et al. XML-Signature Syntax and Processing. W3C
Recommendation, February 2002.
http://www.w3.0rg/TR/2002/REC-xmldsig-core-20020212/

[XML-TSP] T. Perrin et al. XML Timestamping Profile of the OASIS Digital Signature
Services. W3C Recommendation, February 2002. OASIS, (MONTH/YEAR TBD)

[XML] Extensible Markup Language (XML) 1.0 (Third Edition). W3C Recommendation 04
February 2004 http://www.w3.0rg/TR/REC-xml/#sec-element-content

[XPATH] XML Path Language (XPath) Version 1.0. W3C Recommendation 16 November 1999
http://www.w3.0rg/TR/xpath

[XML-xcl-c14n] Exclusive XML Canonicalization Version 1.0. W3C Recommendation 18 July
2002 http://www.w3.0rg/TR/2002/REC-xml-exc-c14n-20020718/

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 51 of 56

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/2004/REC-xml-20040204/#NT-document
http://www.w3.org/TR/REC-xml/#sec-prolog-dtd
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.w3.org/TR/REC-xml/#sec-element-content
http://www.w3.org/TR/xpath
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

1998

1999
2000
2001

2002
2003
2004

2005

2006
2007
2008

2009

2010
2011
2012

2013

2014
2015
2016
2017

2018
2019

2020

2021
2022

2023

2024
2025
2026
2027

2028

Appendix A. Use of Exclusive Canonicalization

Exclusive Canonicalization of dereferenced and transformed data can be achieved by appending
exclusive canonicalization as the last transform in the <ds: Transfornms> element of
<Tr ansf or medDat a> or <Docunent Hash>.

In the case of <Docunent > being used this can be done by adding exclusive canonicalization as
the last transform in the <ds: Transforns> of a <Si gnedRef er ence> pointing to that
<Docunent >.

By doing this the resulting data produced by the chain of transforms will always be octet stream
data which will be hashed without further processing on a <ds: Ref er ence> level by the server
as indicated by basic processing section 3.3.1 step 1 b. and c.

Another possibility to apply exclusive canonicalization on <ds: Ref er ence> level is the freedom
given to servers to apply additional transforms to increase robustness. This however implies that
only trustworthy transformations are appended by a server.

As in section 3.3.1 step 1 b an implementation can choose to use exclusive canonicalization: "...
Transforms are applied as a server implementation MAY choose to increase robustness of the
Signatures created. These Transforms may reflect idiosyncrasies of different parsers or solve
encoding issues and so on. ..."

In such a case that the exclusive canonicalization is to be included in the <ds: Tr ansf or ns> as
well (cf. section 3.3.1 step 1.d.v.)

The standards default is however in line with [XMLSig] as indicated in the Note in section 3.3.1
step 1 b.

However after the server formed a <ds: Si gnedl nf 0> (section 3.3.1 step 3.) this information to
be signed also needs to be canonicalized and digested, here [XMLSig] offers the necessary
element <ds: Canoni cal i zat i onMet hod> directly and can be used to specify exclusive
canonicalization.

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 52 of 56

2029

Appendix B. Revision History

Rev Date By Whom What

wd-01 2003-10-03 Trevor Perrin Initial version

wd-02 2003-10-13 Trevor Perrin Skeleton of verify as well

wd-03 2003-10-19 Trevor Perrin Added TimeStampToken, References

wd-04 2003-10-29 Trevor Perrin Fleshed things out

wd-05 2003-11-9 Trevor Perrin Added Name, clarified options-handling

wd-06 2003-11-12 Trevor Perrin Added more options/outputs

wd-07 2003-11-25 Trevor Perrin URNSs, <Timestamp>, other changes.

Wd-08 2003-12-6 Trevor Perrin Many suggestions from Juan Carlos,
Frederick, and Nick incorporated.

wd-09 2004-1-6 Trevor Perrin A few minor tweaks to fix a typo, add
clarity, and change the order of
SignResponse’s children

wd-10 2004-1-20 Trevor Perrin Organized references, updated

processing details, touched up a few
things.

oasis-dss-1.0-core-spec-wd-34
Copyright © OASIS Open 2005. All Rights Reserved.

21 October 2005
Page 53 of 56

Rev Date By Whom What
2004-2-04 Trevor Perrin Added transport and security bindings,
Wd-11 and <Language> optional input
412 2004-2-12 Trevor Perrin Editorial suggestions from Frederick
W -
2004-2-29 Trevor Perrin Added SOAP Transport binding, and
wd-13 made ‘Profile’ attribute part of the
Request messages, instead of an
option.
2004-3-07 Trevor Perrin Fixes from Krishna
Wd-14
2004-3-08 Trevor Perrin Property URI -> QNames, added some
wd-15 Editorial issues
2004-3-21 Trevor Perrin Replaced dss:NameType with
wd-16 saml:NameldentifierType, per Nick’s
suggestion.
2004-4-02 Trevor Perrin Schema URN -> URL, TryAgainLater
wd-17
2004-4-04 Trevor Perrin Fixes from Karel Wouters
wd-18
419 2004-4-15 Trevor Perrin ResultMajor URIs, AdditionalProfile
W -
d4-20 2004-4-19 Trevor Perrin Updated <Timestamp>, few tweaks
W -
2004-5-11 Trevor Perrin CMS, special handling of
wd-21 enveloping/enveloped DSIG, multi-
signature DSIG verification.
2004-6-08 Trevor Perrin Added DTD example, added returned
Wd-23 Profile attribute on SignResponse and
VerifyResponse.
2004-6-20 Trevor Perrin Removed xmins:xml from schema.
Wd-24
2004-6-22 Trevor Perrin Fixed a typo.
Wd-25
2004-6-28 Trevor Perrin Mentioned as committee draft
Wd-26
200410-04 Trevor Perrin Gregor Karlinger's feedback
wd-27
200410-18 Trevor Perrin Added a little text to clarify manifests
wd-28 and <ReturnSigningTime>
4-29 200411-01 Trevor Perrin Added a little text to clarify
W -

<ReturnUpdatedSignature>, and added

oasis-dss-1.0-core-spec-wd-34
Copyright © OASIS Open 2005. All Rights Reserved.

21 October 2005
Page 54 of 56

Rev Date By Whom What
<SupportingInfo> to <Claimedldentity>
20041113 Trevor Perrin -
wd-30
20050627 Stefan Drees Added all resolved issues from oasis-
wd-31 dss-1.0-comments-track-wd-03
20050629 Stefan Drees Synchronized with Schema, clarified
wd-32 ambiguity issues in Basic Processing for
CMS Signatures and Transforms.
20050715 Stefan Drees Added Feedback from mailing list and
wd-33 telco 20050708. Introduced
<InlineXMLType>. Simplified basic
processing.
d-34 20051021 Stefan Drees Added Feedback from discussions of
W -

technical committee members from
20050808 through 20051020:

- Structural changes (optional inputs
etc.),

- hew basic processing,

- consistent handling of XPath and
- editorial changes/fixes.
Preparation for cd-34 candidate:

- Schema element

- Canonicalization

- Manifest validation.

oasis-dss-1.0-core-spec-wd-34
Copyright © OASIS Open 2005. All Rights Reserved.

21 October 2005
Page 55 of 56

2030

2031
2032
2033
2034
2035
2036
2037
2038
2039

2040
2041
2042

2043

2044
2045
2046
2047
2048
2049
2050
2051
2052

2053
2054

2055
2056
2057
2058
2059

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Information on
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS
website. Copies of claims of rights made available for publication and any assurances of licenses
to be made available, or the result of an attempt made to obtain a general license or permission
for the use of such proprietary rights by implementors or users of this specification, can be
obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2003. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself does not be modified in any way, such as by removing the
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual
Property Rights document must be followed, or as required to translate it into languages other
than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
SUCCEeSSOrs or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

oasis-dss-1.0-core-spec-wd-34 21 October 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 56 of 56

	1 Introduction
	1.1 Notation
	1.2 Schema Organization and Namespaces
	1.3 DSS Overview (Non-normative)

	2 Common Protocol Structures
	2.1 Type AnyType
	2.2 Type InternationalStringType
	2.3 Type saml:NameIdentifierType
	2.4 Element <InputDocuments>
	2.4.1 Type DocumentBaseType
	2.4.2 Element <Document>
	2.4.3 Element <TransformedData>
	2.4.4 Element <DocumentHash>

	2.5 Element <SignatureObject>
	2.6 Element <Result>
	2.7 Elements <OptionalInputs> and <OptionalOutputs>
	2.8 Common Optional Inputs
	2.8.1 Optional Input <ServicePolicy>
	2.8.2 Optional Input <ClaimedIdentity>
	2.8.3 Optional Input <Language>
	2.8.4 Optional Input <AdditionalProfile>
	2.8.5 Optional Input <Schema>
	2.8.6 Optional Input <Schemas>

	2.9 Type <RequestBaseType>
	2.10 Type <ResponseBaseType>
	2.11 Element <Response>

	3 The DSS Signing Protocol
	3.1 Element <SignRequest>
	3.2 Element <SignResponse>
	3.3 Processing for XML Signatures
	3.3.1 Basic Process for <Base64XML>
	3.3.2 Process Variant for <InlineXML>
	3.3.3 Process Variant for <EscapedXML>
	3.3.4 Process Variant for <Base64Data>
	3.3.5 Process Variant for <TransformedData>
	3.3.6 Process Variant for <DocumentHash>

	3.4 Basic Processing for CMS Signatures
	3.5 Optional Inputs and Outputs
	3.5.1 Optional Input <SignatureType>
	3.5.2 Optional Input <AddTimestamp>
	3.5.3 Optional Input <IntendedAudience>
	3.5.4 Optional Input <KeySelector>
	3.5.5 Optional Input <Properties>
	3.5.6 Optional Input <IncludeObject>
	3.5.6.1 XML DSig Variant Optional Input <IncludeObject>
	3.5.6.2 CMS Enveloping Signatures, Variant Optional Input <IncludeObject>

	3.5.7 Enveloped Signatures, Optional Input <SignaturePlacement> and Output <DocumentWithSignature>
	3.5.8 Optional Input <SignedReferences>

	4 The DSS Verifying Protocol
	4.1 Element <VerifyRequest>
	4.2 Element <VerifyResponse>
	4.3 Basic Processing for XML Signatures
	4.3.1 Multi-Signature Verification

	4.4 Result Codes
	4.5 Basic Processing for CMS Signatures
	4.6 Optional Inputs and Outputs
	4.6.1 Optional Input <VerifyManifests> and Output <VerifyManifestResults>
	4.6.2 Optional Input <VerificationTime>
	4.6.3 Optional Input <AdditionalKeyInfo>
	4.6.4 Optional Input <ReturnProcessingDetails> and Output <ProcessingDetails>
	4.6.5 Optional Input <ReturnSigningTime> and Output <SigningTime>
	4.6.6 Optional Input <ReturnSignerIdentity> and Output <SignerIdentity>
	4.6.7 Optional Input <ReturnUpdatedSignature> and Output <UpdatedSignature>
	4.6.8 Optional Input <ReturnTransformedDocument> and Output <TransformedDocument>

	5 DSS Core Elements
	5.1 Element <Timestamp>
	5.1.1 XML Timestamp Token
	5.1.2 Element <TstInfo>
	5.1.3 Timestamp verification procedure

	5.2 Element <RequesterIdentity>

	6 DSS Core Bindings
	6.1 HTTP POST Transport Binding
	6.2 SOAP 1.2 Transport Binding
	6.3 TLS Security Bindings
	6.3.1 TLS X.509 Server Authentication
	6.3.2 TLS X.509 Mutual Authentication
	6.3.3 TLS SRP Authentication
	6.3.4 TLS SRP and X.509 Server Authentication

	7 DSS-Defined Identifiers
	7.1 Signature Type Identifiers
	7.1.1 XML Signature
	7.1.2 XML TimeStampToken
	7.1.3 RFC 3161 TimeStampToken
	7.1.4 CMS Signature
	7.1.5 PGP Signature

	8 Editorial Issues
	9 References
	9.1 Normative

