
WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 1 of 76

 1
 2

Web Services Security: 3

SOAP Message Security 1.1 4

(WS-Security 2004) 5

OASIS Standard Specification, 1 February 2006 6

OASIS identifier: 7
wss-v1.1-spec-os-SOAPMessageSecurity 8

Location: 9
http://docs.oasis-open.org/wss/v1.1/ 10

Technical Committee: 11

Web Service Security (WSS) 12

Chairs: 13
Kelvin Lawrence, IBM 14

 Chris Kaler, Microsoft 15

Editors: 16
Anthony Nadalin, IBM 17
Chris Kaler, Microsoft 18

 Ronald Monzillo, Sun 19
Phillip Hallam-Baker, Verisign 20

 Abstract: 21
This specification describes enhancements to SOAP messaging to provide message 22
integrity and confidentiality. The specified mechanisms can be used to accommodate a 23
wide variety of security models and encryption technologies. 24
 25
This specification also provides a general-purpose mechanism for associating security 26
tokens with message content. No specific type of security token is required, the 27
specification is designed to be extensible (i.e.. support multiple security token formats). 28
For example, a client might provide one format for proof of identity and provide another 29
format for proof that they have a particular business certification. 30

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 2 of 76

 31
Additionally, this specification describes how to encode binary security tokens, a 32
framework for XML-based tokens, and how to include opaque encrypted keys. It also 33
includes extensibility mechanisms that can be used to further describe the characteristics 34
of the tokens that are included with a message. 35

Status: 36

This is an OASIS Standard document produced by the Web Services Security Technical 37
Committee. It was approved by the OASIS membership on 1 February 2006. Check the 38
current location noted above for possible errata to this document. 39

Technical Committee members should send comments on this specification to the 40
technical Committee’s email list. Others should send comments to the Technical 41
Committee by using the “Send A Comment” button on the Technical Committee’s web 42
page at www.oasisopen.org/committees/wss. 43
 44
For patent disclosure information that may be essential to the implementation of this 45
specification, and any offers of licensing terms, refer to the Intellectual Property Rights 46
section of the OASIS Web Services Security Technical Committee (WSS TC) web page 47
at http://www.oasis-open.org/committees/wss/ipr.php. General OASIS IPR information 48
can be found at http://www.oasis-open.org/who/intellectualproperty.shtml. 49

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 3 of 76

 50

Notices 51

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 52
that might be claimed to pertain to the implementation or use of the technology described in this 53
document or the extent to which any license under such rights might or might not be vailable; 54
neither does it represent that it has made any effort to identify any such rights. Information on 55
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 56
website. Copies of claims of rights made available for publication and any assurances of licenses 57
to be made available, or the result of an attempt made to obtain a general license or permission 58
for the use of such proprietary rights by implementors or users of this specification, can be 59
obtained from the OASIS Executive Director. OASIS invites any interested party to bring to its 60
attention any copyrights, patents or patent applications, or other proprietary rights which may 61
cover technology that may be required to implement this specification. Please address the 62
information to the OASIS Executive Director. 63
 64
Copyright (C) OASIS Open 2002-2006. All Rights Reserved. 65
 66
This document and translations of it may be copied and furnished to others, and derivative works 67
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 68
published and distributed, in whole or in part, without restriction of any kind, provided that the 69
above copyright notice and this paragraph are included on all such copies and derivative works. 70
However, this document itself may not be modified in any way, such as by removing the copyright 71
notice or references to OASIS, except as needed for the purpose of developing OASIS 72
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 73
Property Rights document must be followed, or as required to translate it into languages other 74
than English. 75
 76
The limited permissions granted above are perpetual and will not be revoked by OASIS or its 77
successors or assigns. 78
 79
This document and the information contained herein is provided on an "AS IS" basis and OASIS 80
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 81
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE 82
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 83
PARTICULAR PURPOSE. 84
 85
OASIS has been notified of intellectual property rights claimed in regard to some or all of the 86
contents of this specification. For more information consult the online list of claimed rights. 87
 88

This section is non-normative. 89

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 4 of 76

Table of Contents 90

1 Introduction ... 7 91
1.1 Goals and Requirements .. 7 92

1.1.1 Requirements... 8 93
1.1.2 Non-Goals.. 8 94

2 Notations and Terminology... 9 95
2.1 Notational Conventions ... 9 96
2.2 Namespaces ... 9 97
2.3 Acronyms and Abbreviations .. 10 98
2.4 Terminology... 11 99
2.5 Note on Examples... 12 100

3 Message Protection Mechanisms... 13 101
3.1 Message Security Model... 13 102
3.2 Message Protection... 13 103
3.3 Invalid or Missing Claims .. 14 104
3.4 Example .. 14 105

4 ID References ... 17 106
4.1 Id Attribute ... 17 107
4.2 Id Schema ... 18 108

5 Security Header .. 20 109
6 Security Tokens .. 23 110

6.1 Attaching Security Tokens .. 23 111
6.1.1 Processing Rules ... 23 112
6.1.2 Subject Confirmation.. 23 113

6.2 User Name Token ... 23 114
6.2.1 Usernames... 23 115

6.3 Binary Security Tokens ... 24 116
6.3.1 Attaching Security Tokens ... 24 117
6.3.2 Encoding Binary Security Tokens.. 24 118

6.4 XML Tokens .. 26 119
6.5 EncryptedData Token ... 26 120
6.6 Identifying and Referencing Security Tokens ... 26 121

7 Token References... 27 122
7.1 SecurityTokenReference Element .. 27 123
7.2 Direct References.. 29 124

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 5 of 76

7.3 Key Identifiers.. 30 125
7.4 Embedded References ... 32 126
7.5 ds:KeyInfo ... 33 127
7.6 Key Names.. 33 128
7.7 Encrypted Key reference... 34 129

8 Signatures... 35 130
8.1 Algorithms ... 35 131
8.2 Signing Messages... 38 132
8.3 Signing Tokens.. 38 133
8.4 Signature Validation .. 41 134
8.5 Signature Confirmation ... 42 135

8.5.1 Response Generation Rules.. 43 136
8.5.2 Response Processing Rules.. 43 137

8.6 Example .. 44 138
9 Encryption ... 45 139

9.1 xenc:ReferenceList ... 45 140
9.2 xenc:EncryptedKey ... 46 141
9.3 Encrypted Header ... 47 142
9.4 Processing Rules .. 47 143

9.4.1 Encryption .. 48 144
9.4.2 Decryption.. 48 145
9.4.3 Encryption with EncryptedHeader ... 49 146
9.4.4 Processing an EncryptedHeader ... 49 147
9.4.5 Processing the mustUnderstand attribute on EncryptedHeader 50 148

10 Security Timestamps .. 51 149
11 Extended Example.. 54 150
12 Error Handling... 57 151
13 Security Considerations .. 59 152

13.1 General Considerations .. 59 153
13.2 Additional Considerations ... 59 154

13.2.1 Replay.. 59 155
13.2.2 Combining Security Mechanisms .. 60 156
13.2.3 Challenges ... 60 157
13.2.4 Protecting Security Tokens and Keys.. 60 158
13.2.5 Protecting Timestamps and Ids ... 61 159
13.2.6 Protecting against removal and modification of XML Elements 61 160
13.2.7 Detecting Duplicate Identifiers ... 62 161

14 Interoperability Notes .. 63 162

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 6 of 76

15 Privacy Considerations ... 64 163
16 References.. 65 164
Appendix A: Acknowledgements ... 67 165
Appendix B: Revision History .. 70 166
Appendix C: Utility Elements and Attributes.. 71 167

16.1 Identification Attribute.. 71 168
16.2 Timestamp Elements .. 71 169
16.3 General Schema Types .. 72 170

Appendix D: SecurityTokenReference Model ... 73 171
 172

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 7 of 76

1 Introduction 173

This OASIS specification is the result of significant new work by the WSS Technical Committee 174
and supersedes the input submissions, Web Service Security (WS-Security) Version 1.0 April 5, 175
2002 and Web Services Security Addendum Version 1.0 August 18, 2002. 176
 177
This specification proposes a standard set of SOAP [SOAP11, SOAP12] extensions that can be 178
used when building secure Web services to implement message content integrity and 179
confidentiality. This specification refers to this set of extensions and modules as the “Web 180
Services Security: SOAP Message Security” or “WSS: SOAP Message Security”. 181
 182
This specification is flexible and is designed to be used as the basis for securing Web services 183
within a wide variety of security models including PKI, Kerberos, and SSL. Specifically, this 184
specification provides support for multiple security token formats, multiple trust domains, multiple 185
signature formats, and multiple encryption technologies. The token formats and semantics for 186
using these are defined in the associated profile documents. 187
 188
This specification provides three main mechanisms: ability to send security tokens as part of a 189
message, message integrity, and message confidentiality. These mechanisms by themselves do 190
not provide a complete security solution for Web services. Instead, this specification is a building 191
block that can be used in conjunction with other Web service extensions and higher-level 192
application-specific protocols to accommodate a wide variety of security models and security 193
technologies. 194
 195
These mechanisms can be used independently (e.g., to pass a security token) or in a tightly 196
coupled manner (e.g., signing and encrypting a message or part of a message and providing a 197
security token or token path associated with the keys used for signing and encryption). 198

1.1 Goals and Requirements 199

The goal of this specification is to enable applications to conduct secure SOAP message 200
exchanges. 201
 202
This specification is intended to provide a flexible set of mechanisms that can be used to 203
construct a range of security protocols; in other words this specification intentionally does not 204
describe explicit fixed security protocols. 205
 206
As with every security protocol, significant efforts must be applied to ensure that security 207
protocols constructed using this specification are not vulnerable to any one of a wide range of 208
attacks. The examples in this specification are meant to illustrate the syntax of these mechanisms 209
and are not intended as examples of combining these mechanisms in secure ways. 210
The focus of this specification is to describe a single-message security language that provides for 211
message security that may assume an established session, security context and/or policy 212
agreement. 213
 214

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 8 of 76

The requirements to support secure message exchange are listed below. 215

1.1.1 Requirements 216

The Web services security language must support a wide variety of security models. The 217
following list identifies the key driving requirements for this specification: 218

• Multiple security token formats 219
• Multiple trust domains 220
• Multiple signature formats 221
• Multiple encryption technologies 222
• End-to-end message content security and not just transport-level security 223

1.1.2 Non-Goals 224

The following topics are outside the scope of this document: 225
 226

• Establishing a security context or authentication mechanisms. 227
• Key derivation. 228
• Advertisement and exchange of security policy. 229
• How trust is established or determined. 230
• Non-repudiation. 231

 232

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 9 of 76

2 Notations and Terminology 233

This section specifies the notations, namespaces, and terminology used in this specification. 234

2.1 Notational Conventions 235

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 236
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be 237
interpreted as described in RFC 2119. 238
 239
When describing abstract data models, this specification uses the notational convention used by 240
the XML Infoset. Specifically, abstract property names always appear in square brackets (e.g., 241
[some property]). 242
 243
When describing concrete XML schemas, this specification uses a convention where each 244
member of an element’s [children] or [attributes] property is described using an XPath-like 245
notation (e.g., /x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence 246
of an element wildcard (<xs:any/>). The use of @{any} indicates the presence of an attribute 247
wildcard (<xs:anyAttribute/>). 248
 249
Readers are presumed to be familiar with the terms in the Internet Security Glossary [GLOS]. 250

2.2 Namespaces 251

Namespace URIs (of the general form "some-URI") represents some application-dependent or 252
context-dependent URI as defined in RFC 2396 [URI]. 253
 254
This specification is backwardly compatible with version 1.0. This means that URIs and schema 255
elements defined in 1.0 remain unchanged and new schema elements and constants are defined 256
using 1.1 namespaces and URIs. 257
 258
The XML namespace URIs that MUST be used by implementations of this specification are as 259
follows (note that elements used in this specification are from various namespaces): 260
 261

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-262
secext-1.0.xsd 263
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-264
utility-1.0.xsd 265
http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd 266

 267
This specification is designed to work with the general SOAP [SOAP11, SOAP12] message 268
structure and message processing model, and should be applicable to any version of SOAP. The 269
current SOAP 1.1 namespace URI is used herein to provide detailed examples, but there is no 270
intention to limit the applicability of this specification to a single version of SOAP. 271
 272

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 10 of 76

The namespaces used in this document are shown in the following table (note that for brevity, the 273
examples use the prefixes listed below but do not include the URIs – those listed below are 274
assumed). 275
 276

Prefix Namespace

ds http://www.w3.org/2000/09/xmldsig#

S11 http://schemas.xmlsoap.org/soap/envelope/

S12 http://www.w3.org/2003/05/soap-envelope

wsse http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-secext-1.0.xsd

wsse11 http://docs.oasis-open.org/wss/oasis-wss-
wssecurity-secext-1.1.xsd

wsu http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-utility-1.0.xsd

xenc http://www.w3.org/2001/04/xmlenc#

 277
The URLs provided for the wsse and wsu namespaces can be used to obtain the schema files. 278
 279
URI fragments defined in this document are relative to the following base URI unless otherwise 280
stated: 281
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0 282

2.3 Acronyms and Abbreviations 283

The following (non-normative) table defines acronyms and abbreviations for this document. 284
 285

Term Definition

HMAC Keyed-Hashing for Message Authentication

SHA-1 Secure Hash Algorithm 1

SOAP Simple Object Access Protocol

URI Uniform Resource Identifier

XML Extensible Markup Language

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 11 of 76

2.4 Terminology 286

Defined below are the basic definitions for the security terminology used in this specification. 287
 288
Claim – A claim is a declaration made by an entity (e.g. name, identity, key, group, privilege, 289
capability, etc). 290
 291
Claim Confirmation – A claim confirmation is the process of verifying that a claim applies to 292
an entity. 293
 294
Confidentiality – Confidentiality is the property that data is not made available to 295
unauthorized individuals, entities, or processes. 296
 297
Digest – A digest is a cryptographic checksum of an octet stream. 298
 299
Digital Signature – A digital signature is a value computed with a cryptographic algorithm 300
and bound to data in such a way that intended recipients of the data can use the digital signature 301
to verify that the data has not been altered and/or has originated from the signer of the message, 302
providing message integrity and authentication. The digital signature can be computed and 303
verified with symmetric key algorithms, where the same key is used for signing and verifying, or 304
with asymmetric key algorithms, where different keys are used for signing and verifying (a private 305
and public key pair are used). 306
 307
End-To-End Message Level Security - End-to-end message level security is 308
established when a message that traverses multiple applications (one or more SOAP 309
intermediaries) within and between business entities, e.g. companies, divisions and business 310
units, is secure over its full route through and between those business entities. This includes not 311
only messages that are initiated within the entity but also those messages that originate outside 312
the entity, whether they are Web Services or the more traditional messages. 313
 314
Integrity – Integrity is the property that data has not been modified. 315
 316
Message Confidentiality - Message Confidentiality is a property of the message and 317
encryption is the mechanism by which this property of the message is provided. 318
 319
Message Integrity - Message Integrity is a property of the message and digital signature is a 320
mechanism by which this property of the message is provided. 321
 322
Signature - In this document, signature and digital signature are used interchangeably and 323
have the same meaning. 324
 325
Security Token – A security token represents a collection (one or more) of claims. 326
 327

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 12 of 76

 328
 329
Signed Security Token – A signed security token is a security token that is asserted and 330
cryptographically signed by a specific authority (e.g. an X.509 certificate or a Kerberos ticket). 331
 332
Trust - Trust is the characteristic that one entity is willing to rely upon a second entity to execute 333
a set of actions and/or to make set of assertions about a set of subjects and/or scopes. 334

2.5 Note on Examples 335

The examples which appear in this document are only intended to illustrate the correct syntax of 336
the features being specified. The examples are NOT intended to necessarily represent best 337
practice for implementing any particular security properties. 338
 339
Specifically, the examples are constrained to contain only mechanisms defined in this document. 340
The only reason for this is to avoid requiring the reader to consult other documents merely to 341
understand the examples. It is NOT intended to suggest that the mechanisms illustrated 342
represent best practice or are the strongest available to implement the security properties in 343
question. In particular, mechanisms defined in other Token Profiles are known to be stronger, 344
more efficient and/or generally superior to some of the mechanisms shown in the examples in this 345
document. 346
 347

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 13 of 76

3 Message Protection Mechanisms 348

When securing SOAP messages, various types of threats should be considered. This includes, 349
but is not limited to: 350
 351

• the message could be modified or read by attacker or 352
• an antagonist could send messages to a service that, while well-formed, lack appropriate 353

security claims to warrant processing 354
• an antagonist could alter a message to the service which being well formed causes the 355

service to process and respond to the client for an incorrect request. 356
 357
To understand these threats this specification defines a message security model. 358

3.1 Message Security Model 359

This document specifies an abstract message security model in terms of security tokens 360
combined with digital signatures to protect and authenticate SOAP messages. 361
 362
Security tokens assert claims and can be used to assert the binding between authentication 363
secrets or keys and security identities. An authority can vouch for or endorse the claims in a 364
security token by using its key to sign or encrypt (it is recommended to use a keyed encryption) 365
the security token thereby enabling the authentication of the claims in the token. An X.509 [X509] 366
certificate, claiming the binding between one’s identity and public key, is an example of a signed 367
security token endorsed by the certificate authority. In the absence of endorsement by a third 368
party, the recipient of a security token may choose to accept the claims made in the token based 369
on its trust of the producer of the containing message. 370
 371
Signatures are used to verify message origin and integrity. Signatures are also used by message 372
producers to demonstrate knowledge of the key, typically from a third party, used to confirm the 373
claims in a security token and thus to bind their identity (and any other claims occurring in the 374
security token) to the messages they create. 375
 376
It should be noted that this security model, by itself, is subject to multiple security attacks. Refer 377
to the Security Considerations section for additional details. 378
 379
Where the specification requires that an element be "processed" it means that the element type 380
MUST be recognized to the extent that an appropriate error is returned if the element is not 381
supported. 382

3.2 Message Protection 383

Protecting the message content from being disclosed (confidentiality) or modified without 384
detection (integrity) are primary security concerns. This specification provides a means to protect 385
a message by encrypting and/or digitally signing a body, a header, or any combination of them (or 386
parts of them). 387

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 14 of 76

 388
Message integrity is provided by XML Signature [XMLSIG] in conjunction with security tokens to 389
ensure that modifications to messages are detected. The integrity mechanisms are designed to 390
support multiple signatures, potentially by multiple SOAP actors/roles, and to be extensible to 391
support additional signature formats. 392
 393
Message confidentiality leverages XML Encryption [XMLENC] in conjunction with security tokens 394
to keep portions of a SOAP message confidential. The encryption mechanisms are designed to 395
support additional encryption processes and operations by multiple SOAP actors/roles. 396
 397
This document defines syntax and semantics of signatures within a <wsse:Security> element. 398
This document does not constrain any signature appearing outside of a <wsse:Security> 399
element. 400

3.3 Invalid or Missing Claims 401

A message recipient SHOULD reject messages containing invalid signatures, messages missing 402
necessary claims or messages whose claims have unacceptable values. Such messages are 403
unauthorized (or malformed). This specification provides a flexible way for the message producer 404
to make a claim about the security properties by associating zero or more security tokens with the 405
message. An example of a security claim is the identity of the producer; the producer can claim 406
that he is Bob, known as an employee of some company, and therefore he has the right to send 407
the message. 408

3.4 Example 409

The following example illustrates the use of a custom security token and associated signature. 410
The token contains base64 encoded binary data conveying a symmetric key which, we assume, 411
can be properly authenticated by the recipient. The message producer uses the symmetric key 412
with an HMAC signing algorithm to sign the message. The message receiver uses its knowledge 413
of the shared secret to repeat the HMAC key calculation which it uses to validate the signature 414
and in the process confirm that the message was authored by the claimed user identity. 415
 416

(001) <?xml version="1.0" encoding="utf-8"?> 417
(002) <S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 418
 xmlns:ds="..."> 419
(003) <S11:Header> 420
(004) <wsse:Security 421
 xmlns:wsse="..."> 422
(005) <wsse:BinarySecurityToken ValueType=" 423
http://fabrikam123#CustomToken " 424
 EncodingType="...#Base64Binary" wsu:Id=" MyID "> 425
(006) FHUIORv... 426
(007) </wsse:BinarySecurityToken> 427
(008) <ds:Signature> 428
(009) <ds:SignedInfo> 429
(010) <ds:CanonicalizationMethod 430
 Algorithm= 431
 "http://www.w3.org/2001/10/xml-exc-c14n#"/> 432
(011) <ds:SignatureMethod 433

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 15 of 76

 Algorithm= 434
 "http://www.w3.org/2000/09/xmldsig#hmac-sha1"/> 435
(012) <ds:Reference URI="#MsgBody"> 436
(013) <ds:DigestMethod 437
 Algorithm= 438
 "http://www.w3.org/2000/09/xmldsig#sha1"/> 439
(014) <ds:DigestValue>LyLsF0Pi4wPU...</ds:DigestValue> 440
(015) </ds:Reference> 441
(016) </ds:SignedInfo> 442
(017) <ds:SignatureValue>DJbchm5gK...</ds:SignatureValue> 443
(018) <ds:KeyInfo> 444
(019) <wsse:SecurityTokenReference> 445
(020) <wsse:Reference URI="#MyID"/> 446
(021) </wsse:SecurityTokenReference> 447
(022) </ds:KeyInfo> 448
(023) </ds:Signature> 449
(024) </wsse:Security> 450
(025) </S11:Header> 451
(026) <S11:Body wsu:Id="MsgBody"> 452
(027) <tru:StockSymbol xmlns:tru="http://fabrikam123.com/payloads"> 453
 QQQ 454
 </tru:StockSymbol> 455
(028) </S11:Body> 456
(029) </S11:Envelope> 457

 458
The first two lines start the SOAP envelope. Line (003) begins the headers that are associated 459
with this SOAP message. 460
 461
Line (004) starts the <wsse:Security> header defined in this specification. This header 462
contains security information for an intended recipient. This element continues until line (024). 463
 464
Lines (005) to (007) specify a custom token that is associated with the message. In this case, it 465
uses an externally defined custom token format. 466
 467
Lines (008) to (023) specify a digital signature. This signature ensures the integrity of the signed 468
elements. The signature uses the XML Signature specification identified by the ds namespace 469
declaration in Line (002). 470
 471
Lines (009) to (016) describe what is being signed and the type of canonicalization being used. 472
 473
Line (010) specifies how to canonicalize (normalize) the data that is being signed. Lines (012) to 474
(015) select the elements that are signed and how to digest them. Specifically, line (012) 475
indicates that the <S11:Body> element is signed. In this example only the message body is 476
signed; typically all critical elements of the message are included in the signature (see the 477
Extended Example below). 478
 479
Line (017) specifies the signature value of the canonicalized form of the data that is being signed 480
as defined in the XML Signature specification. 481
 482

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 16 of 76

Lines (018) to (022) provides information, partial or complete, as to where to find the security 483
token associated with this signature. Specifically, lines (019) to (021) indicate that the security 484
token can be found at (pulled from) the specified URL. 485
 486
Lines (026) to (028) contain the body (payload) of the SOAP message. 487
 488

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 17 of 76

4 ID References 489

There are many motivations for referencing other message elements such as signature 490
references or correlating signatures to security tokens. For this reason, this specification defines 491
the wsu:Id attribute so that recipients need not understand the full schema of the message for 492
processing of the security elements. That is, they need only "know" that the wsu:Id attribute 493
represents a schema type of ID which is used to reference elements. However, because some 494
key schemas used by this specification don't allow attribute extensibility (namely XML Signature 495
and XML Encryption), this specification also allows use of their local ID attributes in addition to 496
the wsu:Id attribute and the xml:id attribute [XMLID]. As a consequence, when trying to locate 497
an element referenced in a signature, the following attributes are considered (in no particular 498
order): 499
 500

• Local ID attributes on XML Signature elements 501
• Local ID attributes on XML Encryption elements 502
• Global wsu:Id attributes (described below) on elements 503
• Profile specific defined identifiers 504
• Global xml:id attributes on elements 505

 506
In addition, when signing a part of an envelope such as the body, it is RECOMMENDED that an 507
ID reference is used instead of a more general transformation, especially XPath [XPATH]. This is 508
to simplify processing. 509
 510
Tokens and elements that are defined in this specification and related profiles to use wsu:Id 511
attributes SHOULD use wsu:Id. Elements to be signed MAY use xml:id [XMLID] or wsu:Id, 512
and use of xml:id MAY be specified in profiles. All receivers MUST be able to identify XML 513
elements carrying a wsu:Id attribute as representing an attribute of schema type ID and process 514
it accordingly. 515
 516
All receivers MAY be able to identify XML elements with a xml:id attribute as representing an ID 517
attribute and process it accordingly. Senders SHOULD use wsu:Id and MAY use xml:id. Note 518
that use of xml:id in conjunction with inclusive canonicalization may be inappropriate, as noted 519
in [XMLID] and thus this combination SHOULD be avoided. 520
 521

4.1 Id Attribute 522

There are many situations where elements within SOAP messages need to be referenced. For 523
example, when signing a SOAP message, selected elements are included in the scope of the 524
signature. XML Schema Part 2 [XMLSCHEMA] provides several built-in data types that may be 525
used for identifying and referencing elements, but their use requires that consumers of the SOAP 526
message either have or must be able to obtain the schemas where the identity or reference 527
mechanisms are defined. In some circumstances, for example, intermediaries, this can be 528
problematic and not desirable. 529

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 18 of 76

 530
Consequently a mechanism is required for identifying and referencing elements, based on the 531
SOAP foundation, which does not rely upon complete schema knowledge of the context in which 532
an element is used. This functionality can be integrated into SOAP processors so that elements 533
can be identified and referred to without dynamic schema discovery and processing. 534
 535
This section specifies a namespace-qualified global attribute for identifying an element which can 536
be applied to any element that either allows arbitrary attributes or specifically allows a particular 537
attribute. 538
 539
Alternatively, the xml:id attribute MAY be used. Applications MUST NOT specify both a 540
wsu:Id and xml:id attribute on a single element. It is an XML requirement that only one id 541
attribute be specified on a single element. 542

4.2 Id Schema 543

To simplify the processing for intermediaries and recipients, a common attribute is defined for 544
identifying an element. This attribute utilizes the XML Schema ID type and specifies a common 545
attribute for indicating this information for elements. 546
The syntax for this attribute is as follows: 547
 548

<anyElement wsu:Id="...">...</anyElement> 549
 550
The following describes the attribute illustrated above: 551
.../@wsu:Id 552

This attribute, defined as type xsd:ID, provides a well-known attribute for specifying the 553
local ID of an element. 554
 555

Two wsu:Id attributes within an XML document MUST NOT have the same value. 556
Implementations MAY rely on XML Schema validation to provide rudimentary enforcement for 557
intra-document uniqueness. However, applications SHOULD NOT rely on schema validation 558
alone to enforce uniqueness. 559
 560
This specification does not specify how this attribute will be used and it is expected that other 561
specifications MAY add additional semantics (or restrictions) for their usage of this attribute. 562
The following example illustrates use of this attribute to identify an element: 563
 564

<x:myElement wsu:Id="ID1" xmlns:x="..." 565
 xmlns:wsu="..."/> 566

 567
Conformant processors that do support XML Schema MUST treat this attribute as if it was 568
defined using a global attribute declaration. 569
 570
Conformant processors that do not support dynamic XML Schema or DTDs discovery and 571
processing are strongly encouraged to integrate this attribute definition into their parsers. That is, 572
to treat this attribute information item as if its PSVI has a [type definition] which {target 573
namespace} is "http://www.w3.org/2001/XMLSchema" and which {type} is "ID." Doing so 574
allows the processor to inherently know how to process the attribute without having to locate and 575

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 19 of 76

process the associated schema. Specifically, implementations MAY support the value of the 576
wsu:Id as the valid identifier for use as an XPointer [XPointer] shorthand pointer for 577
interoperability with XML Signature references. 578

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 20 of 76

5 Security Header 579

The <wsse:Security> header block provides a mechanism for attaching security-related 580
information targeted at a specific recipient in the form of a SOAP actor/role. This may be either 581
the ultimate recipient of the message or an intermediary. Consequently, elements of this type 582
may be present multiple times in a SOAP message. An active intermediary on the message path 583
MAY add one or more new sub-elements to an existing <wsse:Security> header block if they 584
are targeted for its SOAP node or it MAY add one or more new headers for additional targets. 585
 586
As stated, a message MAY have multiple <wsse:Security> header blocks if they are targeted 587
for separate recipients. A message MUST NOT have multiple <wsse:Security> header blocks 588
targeted (whether explicitly or implicitly) at the same recipient. However, only one 589
<wsse:Security> header block MAY omit the S11:actor or S12:role attributes. Two 590
<wsse:Security> header blocks MUST NOT have the same value for S11:actor or 591
S12:role. Message security information targeted for different recipients MUST appear in 592
different <wsse:Security> header blocks. This is due to potential processing order issues 593
(e.g. due to possible header re-ordering). The <wsse:Security> header block without a 594
specified S11:actor or S12:role MAY be processed by anyone, but MUST NOT be removed 595
prior to the final destination or endpoint. 596
 597
As elements are added to a <wsse:Security> header block, they SHOULD be prepended to 598
the existing elements. As such, the <wsse:Security> header block represents the signing and 599
encryption steps the message producer took to create the message. This prepending rule 600
ensures that the receiving application can process sub-elements in the order they appear in the 601
<wsse:Security> header block, because there will be no forward dependency among the sub-602
elements. Note that this specification does not impose any specific order of processing the sub-603
elements. The receiving application can use whatever order is required. 604
 605
When a sub-element refers to a key carried in another sub-element (for example, a signature 606
sub-element that refers to a binary security token sub-element that contains the X.509 certificate 607
used for the signature), the key-bearing element SHOULD be ordered to precede the key-using 608
Element: 609
 610

<S11:Envelope> 611
 <S11:Header> 612
 ... 613
 <wsse:Security S11:actor="..." S11:mustUnderstand="..."> 614
 ... 615
 </wsse:Security> 616
 ... 617
 </S11:Header> 618
 ... 619
</S11:Envelope> 620

 621
The following describes the attributes and elements listed in the example above: 622

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 21 of 76

/wsse:Security 623
This is the header block for passing security-related message information to a recipient. 624
 625

/wsse:Security/@S11:actor 626
This attribute allows a specific SOAP 1.1 [SOAP11] actor to be identified. This attribute 627
is optional; however, no two instances of the header block may omit an actor or specify 628
the same actor. 629
 630

/wsse:Security/@S12:role 631
This attribute allows a specific SOAP 1.2 [SOAP12] role to be identified. This attribute is 632
optional; however, no two instances of the header block may omit a role or specify the 633
same role. 634
 635

/wsse:Security/@S11:mustUnderstand 636
This SOAP 1.1 [SOAP11] attribute is used to indicate whether a header entry is 637
mandatory or optional for the recipient to process. The value of the mustUnderstand 638
attribute is either "1" or "0". The absence of the SOAP mustUnderstand attribute is 639
semantically equivalent to its presence with the value "0". 640
 641

/wsse:Security/@S12:mustUnderstand 642
This SOAP 1.2 [SPOAP12] attribute is used to indicate whether a header entry is 643
mandatory or optional for the recipient to process. The value of the mustUnderstand 644
attribute is either "true", "1" "false" or "0". The absence of the SOAP mustUnderstand 645
attribute is semantically equivalent to its presence with the value "false". 646
 647

/wsse:Security/{any} 648
This is an extensibility mechanism to allow different (extensible) types of security 649
information, based on a schema, to be passed. Unrecognized elements SHOULD cause 650
a fault. 651
 652

/wsse:Security/@{any} 653
This is an extensibility mechanism to allow additional attributes, based on schemas, to be 654
added to the header. Unrecognized attributes SHOULD cause a fault. 655
 656

All compliant implementations MUST be able to process a <wsse:Security> element. 657
 658
All compliant implementations MUST declare which profiles they support and MUST be able to 659
process a <wsse:Security> element including any sub-elements which may be defined by that 660
profile. It is RECOMMENDED that undefined elements within the <wsse:Security> header 661
not be processed. 662
 663
The next few sections outline elements that are expected to be used within a <wsse:Security> 664
header. 665
 666
When a <wsse:Security> header includes a mustUnderstand="true" attribute: 667

• The receiver MUST generate a SOAP fault if does not implement the WSS: SOAP 668
Message Security specification corresponding to the namespace. Implementation means 669

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 22 of 76

ability to interpret the schema as well as follow the required processing rules specified in 670
WSS: SOAP Message Security. 671

• The receiver MUST generate a fault if unable to interpret or process security tokens 672
contained in the <wsse:Security> header block according to the corresponding WSS: 673
SOAP Message Security token profiles. 674

• Receivers MAY ignore elements or extensions within the <wsse:Security> element, 675
based on local security policy. 676

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 23 of 76

6 Security Tokens 677

This chapter specifies some different types of security tokens and how they are attached to 678
messages. 679

6.1 Attaching Security Tokens 680

This specification defines the <wsse:Security> header as a mechanism for conveying 681
security information with and about a SOAP message. This header is, by design, extensible to 682
support many types of security information. 683
 684
For security tokens based on XML, the extensibility of the <wsse:Security> header allows for 685
these security tokens to be directly inserted into the header. 686

6.1.1 Processing Rules 687

This specification describes the processing rules for using and processing XML Signature and 688
XML Encryption. These rules MUST be followed when using any type of security token. Note 689
that if signature or encryption is used in conjunction with security tokens, they MUST be used in a 690
way that conforms to the processing rules defined by this specification. 691

6.1.2 Subject Confirmation 692

This specification does not dictate if and how claim confirmation must be done; however, it does 693
define how signatures may be used and associated with security tokens (by referencing the 694
security tokens from the signature) as a form of claim confirmation. 695

6.2 User Name Token 696

6.2.1 Usernames 697

The <wsse:UsernameToken> element is introduced as a way of providing a username. This 698
element is optionally included in the <wsse:Security> header. 699
The following illustrates the syntax of this element: 700
 701

<wsse:UsernameToken wsu:Id="..."> 702
 <wsse:Username>...</wsse:Username> 703
</wsse:UsernameToken> 704

 705
The following describes the attributes and elements listed in the example above: 706
 707
/wsse:UsernameToken 708

This element is used to represent a claimed identity. 709
 710

/wsse:UsernameToken/@wsu:Id 711

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 24 of 76

A string label for this security token. The wsu:Id allow for an open attribute model. 712
 713

/wsse:UsernameToken/wsse:Username 714
This required element specifies the claimed identity. 715
 716

/wsse:UsernameToken/wsse:Username/@{any} 717
This is an extensibility mechanism to allow additional attributes, based on schemas, to be 718
added to the <wsse:Username> element. 719
 720
/wsse:UsernameToken/{any} 721
This is an extensibility mechanism to allow different (extensible) types of security 722
information, based on a schema, to be passed. Unrecognized elements SHOULD cause 723
a fault. 724
 725

/wsse:UsernameToken/@{any} 726
This is an extensibility mechanism to allow additional attributes, based on schemas, to be 727
added to the <wsse:UsernameToken> element. Unrecognized attributes SHOULD 728
cause a fault. 729
 730
All compliant implementations MUST be able to process a <wsse:UsernameToken> 731
element. 732

The following illustrates the use of this: 733
 734

<S11:Envelope xmlns:S11="..." xmlns:wsse="..."> 735
 <S11:Header> 736
 ... 737
 <wsse:Security> 738
 <wsse:UsernameToken> 739
 <wsse:Username>Zoe</wsse:Username> 740
 </wsse:UsernameToken> 741
 </wsse:Security> 742
 ... 743
 </S11:Header> 744
 ... 745
</S11:Envelope> 746
 747

6.3 Binary Security Tokens 748

6.3.1 Attaching Security Tokens 749

For binary-formatted security tokens, this specification provides a 750
<wsse:BinarySecurityToken> element that can be included in the <wsse:Security> 751
header block. 752

6.3.2 Encoding Binary Security Tokens 753

Binary security tokens (e.g., X.509 certificates and Kerberos [KERBEROS] tickets) or other non-754
XML formats require a special encoding format for inclusion. This section describes a basic 755

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 25 of 76

framework for using binary security tokens. Subsequent specifications MUST describe the rules 756
for creating and processing specific binary security token formats. 757
 758
The <wsse:BinarySecurityToken> element defines two attributes that are used to interpret 759
it. The ValueType attribute indicates what the security token is, for example, a Kerberos ticket. 760
The EncodingType tells how the security token is encoded, for example Base64Binary. 761
The following is an overview of the syntax: 762
 763

<wsse:BinarySecurityToken wsu:Id=... 764
 EncodingType=... 765
 ValueType=.../> 766

 767
The following describes the attributes and elements listed in the example above: 768
/wsse:BinarySecurityToken 769

This element is used to include a binary-encoded security token. 770
 771

/wsse:BinarySecurityToken/@wsu:Id 772
An optional string label for this security token. 773
 774

/wsse:BinarySecurityToken/@ValueType 775
The ValueType attribute is used to indicate the "value space" of the encoded binary 776
data (e.g. an X.509 certificate). The ValueType attribute allows a URI that defines the 777
value type and space of the encoded binary data. Subsequent specifications MUST 778
define the ValueType value for the tokens that they define. The usage of ValueType is 779
RECOMMENDED. 780
 781

/wsse:BinarySecurityToken/@EncodingType 782
The EncodingType attribute is used to indicate, using a URI, the encoding format of the 783
binary data (e.g., base64 encoded). A new attribute is introduced, as there are issues 784
with the current schema validation tools that make derivations of mixed simple and 785
complex types difficult within XML Schema. The EncodingType attribute is interpreted 786
to indicate the encoding format of the element. The following encoding formats are pre-787
defined: 788
 789

URI Description

#Base64Binary
(default)

XML Schema base 64 encoding

 790
/wsse:BinarySecurityToken/@{any} 791

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 792
added. 793
 794

All compliant implementations MUST be able to process a <wsse:BinarySecurityToken> 795
element. 796

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 26 of 76

6.4 XML Tokens 797

This section presents a framework for using XML-based security tokens. Profile specifications 798
describe rules and processes for specific XML-based security token formats. 799

6.5 EncryptedData Token 800

In certain cases it is desirable that the token included in the <wsse:Security> header be 801
encrypted for the recipient processing role. In such a case the <xenc:EncryptedData> 802
element MAY be used to contain a security token and included in the <wsse:Security> 803
header. That is this specification defines the usage of <xenc:EncryptedData> to encrypt 804
security tokens contained in <wsse:Security> header. 805
 806
It should be noted that token references are not made to the <xenc:EncryptedData> element, 807
but instead to the token represented by the clear-text, once the <xenc:EncryptedData> 808
element has been processed (decrypted). Such references utilize the token profile for the 809
contained token. i.e., <xenc:EncryptedData> SHOULD NOT include an XML ID for 810
referencing the contained security token. 811
 812
All <xenc:EncryptedData> tokens SHOULD either have an embedded encryption key or 813
should be referenced by a separate encryption key. 814
When a <xenc:EncryptedData> token is processed, it is replaced in the message infoset with 815
its decrypted form. 816

6.6 Identifying and Referencing Security Tokens 817

This specification also defines multiple mechanisms for identifying and referencing security 818
tokens using the wsu:Id attribute and the <wsse:SecurityTokenReference> element (as 819
well as some additional mechanisms). Please refer to the specific profile documents for the 820
appropriate reference mechanism. However, specific extensions MAY be made to the 821
<wsse:SecurityTokenReference> element. 822

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 27 of 76

7 Token References 823

This chapter discusses and defines mechanisms for referencing security tokens and other key 824
bearing elements.. 825

7.1 SecurityTokenReference Element 826

Digital signature and encryption operations require that a key be specified. For various reasons, 827
the element containing the key in question may be located elsewhere in the message or 828
completely outside the message. The <wsse:SecurityTokenReference> element provides 829
an extensible mechanism for referencing security tokens and other key bearing elements. 830
 831
The <wsse:SecurityTokenReference> element provides an open content model for 832
referencing key bearing elements because not all of them support a common reference pattern. 833
Similarly, some have closed schemas and define their own reference mechanisms. The open 834
content model allows appropriate reference mechanisms to be used. 835
 836
If a <wsse:SecurityTokenReference> is used outside of the security header processing 837
block the meaning of the response and/or processing rules of the resulting references MUST be 838
specified by the the specific profile and are out of scope of this specification. 839
The following illustrates the syntax of this element: 840
 841

<wsse:SecurityTokenReference wsu:Id="...", wsse11:TokenType="...", 842
wsse:Usage="...", wsse:Usage="..."> 843
</wsse:SecurityTokenReference> 844

 845
The following describes the elements defined above: 846
 847
/wsse:SecurityTokenReference 848

This element provides a reference to a security token. 849
 850

/wsse:SecurityTokenReference/@wsu:Id 851
A string label for this security token reference which names the reference. This attribute 852
does not indicate the ID of what is being referenced, that SHOULD be done using a 853
fragment URI in a <wsse:Reference> element within the 854
<wsse:SecurityTokenReference> element. 855
 856

/wsse:SecurityTokenReference/@wsse11:TokenType 857
This optional attribute is used to identify, by URI, the type of the referenced token. 858
This specification recommends that token specific profiles define appropriate token type 859
identifying URI values, and that these same profiles require that these values be 860
specified in the profile defined reference forms. 861
 862

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 28 of 76

When a wsse11:TokenType attribute is specified in conjunction with a 863
wsse:KeyIdentifier/@ValueType attribute or a wsse:Reference/@ValueType 864
attribute that indicates the type of the referenced token, the security token type identified 865
by the wsse11:TokenType attribute MUST be consistent with the security token type 866
identified by the wsse:ValueType attribute. 867
 868

URI Description

http://docs.oasis-
open.org/wss/oasis-
wss-soap-message-
security-
1.1#EncryptedKey

A token type of an <xenc:EncryptedKey>

 869
/wsse:SecurityTokenReference/@wsse:Usage 870

This optional attribute is used to type the usage of the 871
<wsse:SecurityTokenReference>. Usages are specified using URIs and multiple 872
usages MAY be specified using XML list semantics. No usages are defined by this 873
specification. 874
 875

/wsse:SecurityTokenReference/{any} 876
This is an extensibility mechanism to allow different (extensible) types of security 877
references, based on a schema, to be passed. Unrecognized elements SHOULD cause a 878
fault. 879
 880

/wsse:SecurityTokenReference/@{any} 881
This is an extensibility mechanism to allow additional attributes, based on schemas, to be 882
added to the header. Unrecognized attributes SHOULD cause a fault. 883
 884

All compliant implementations MUST be able to process a 885
<wsse:SecurityTokenReference> element. 886
 887
This element can also be used as a direct child element of <ds:KeyInfo> to indicate a hint to 888
retrieve the key information from a security token placed somewhere else. In particular, it is 889
RECOMMENDED, when using XML Signature and XML Encryption, that a 890
<wsse:SecurityTokenReference> element be placed inside a <ds:KeyInfo> to reference 891
the security token used for the signature or encryption. 892
 893
There are several challenges that implementations face when trying to interoperate. Processing 894
the IDs and references requires the recipient to understand the schema. This may be an 895
expensive task and in the general case impossible as there is no way to know the "schema 896
location" for a specific namespace URI. As well, the primary goal of a reference is to uniquely 897
identify the desired token. ID references are, by definition, unique by XML. However, other 898
mechanisms such as "principal name" are not required to be unique and therefore such 899
references may be not unique. 900
 901

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 29 of 76

This specification allows for the use of multiple reference mechanisms within a single 902
<wsse:SecurityTokenReference>. When multiple references are present in a given 903
<wsse:SecurityTokenReference>, they MUST resolve to a single token in common. 904
Specific token profiles SHOULD define the reference mechanisms to be used. 905
 906
The following list provides a list of the specific reference mechanisms defined in WSS: SOAP 907
Message Security in preferred order (i.e., most specific to least specific): 908
 909

• Direct References – This allows references to included tokens using URI fragments and 910
external tokens using full URIs. 911

• Key Identifiers – This allows tokens to be referenced using an opaque value that 912
represents the token (defined by token type/profile). 913

• Key Names – This allows tokens to be referenced using a string that matches an identity 914
assertion within the security token. This is a subset match and may result in multiple 915
security tokens that match the specified name. 916

• Embedded References - This allows tokens to be embedded (as opposed to a pointer 917
to a token that resides elsewhere). 918

7.2 Direct References 919

The <wsse:Reference> element provides an extensible mechanism for directly referencing 920
security tokens using URIs. 921
 922
The following illustrates the syntax of this element: 923
 924

<wsse:SecurityTokenReference wsu:Id="..."> 925
 <wsse:Reference URI="..." ValueType="..."/> 926
</wsse:SecurityTokenReference> 927

 928
The following describes the elements defined above: 929
 930
/wsse:SecurityTokenReference/wsse:Reference 931

This element is used to identify an abstract URI location for locating a security token. 932
 933

/wsse:SecurityTokenReference/wsse:Reference/@URI 934
This optional attribute specifies an abstract URI for a security token. If a fragment is 935
specified, then it indicates the local ID of the security token being referenced. The URI 936
MUST identify a security token. The URI MUST NOT identify a 937
wsse:SecurityTokenReference element, a wsse:Embedded element, a 938
wsse:Reference element, or a wsse:KeyIdentifier element. 939
 940

/wsse:SecurityTokenReference/wsse:Reference/@ValueType 941
This optional attribute specifies a URI that is used to identify the type of token being 942
referenced. This specification does not define any processing rules around the usage of 943
this attribute, however, specifications for individual token types MAY define specific 944
processing rules and semantics around the value of the URI and its interpretation. If this 945
attribute is not present, the URI MUST be processed as a normal URI. 946
 947

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 30 of 76

In this version of the specification the use of this attribute to identify the type of the 948
referenced security token is deprecated. Profiles which require or recommend the use of 949
this attribute to identify the type of the referenced security token SHOULD evolve to 950
require or recommend the use of the 951
wsse:SecurityTokenReference/@wsse11:TokenType attribute to identify the type 952
of the referenced token. 953
 954

/wsse:SecurityTokenReference/wsse:Reference/{any} 955
This is an extensibility mechanism to allow different (extensible) types of security 956
references, based on a schema, to be passed. Unrecognized elements SHOULD cause a 957
fault. 958
 959

/wsse:SecurityTokenReference/wsse:Reference/@{any} 960
This is an extensibility mechanism to allow additional attributes, based on schemas, to be 961
added to the header. Unrecognized attributes SHOULD cause a fault. 962
 963

The following illustrates the use of this element: 964
 965

<wsse:SecurityTokenReference 966
 xmlns:wsse="..."> 967
 <wsse:Reference 968
 URI="http://www.fabrikam123.com/tokens/Zoe"/> 969
</wsse:SecurityTokenReference> 970

7.3 Key Identifiers 971

Alternatively, if a direct reference is not used, then it is RECOMMENDED that a key identifier be 972
used to specify/reference a security token instead of a <ds:KeyName>. A 973
<wsse:KeyIdentifier> is a value that can be used to uniquely identify a security token (e.g. a 974
hash of the important elements of the security token). The exact value type and generation 975
algorithm varies by security token type (and sometimes by the data within the token), 976
Consequently, the values and algorithms are described in the token-specific profiles rather than 977
this specification. 978
 979
The <wsse:KeyIdentifier> element SHALL is placed in the 980
<wsse:SecurityTokenReference> element to reference a token using an identifier. This 981
element SHOULD be used for all key identifiers. 982
 983
The processing model assumes that the key identifier for a security token is constant. 984
Consequently, processing a key identifier involves simply looking for a security token whose key 985
identifier matches the specified constant. The <wsse:KeyIdentifier> element is only allowed 986
inside a <wsse:SecurityTokenReference> element 987
The following is an overview of the syntax: 988
 989

<wsse:SecurityTokenReference> 990
 <wsse:KeyIdentifier wsu:Id="..." 991
 ValueType="..." 992
 EncodingType="..."> 993

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 31 of 76

 ... 994
 </wsse:KeyIdentifier> 995
</wsse:SecurityTokenReference> 996

 997
The following describes the attributes and elements listed in the example above: 998
 999
/wsse:SecurityTokenReference/wsse:KeyIdentifier 1000

This element is used to include a binary-encoded key identifier. 1001
 1002

/wsse:SecurityTokenReference/wsse:KeyIdentifier/@wsu:Id 1003
An optional string label for this identifier. 1004
 1005

/wsse:SecurityTokenReference/wsse:KeyIdentifier/@ValueType 1006
The optional ValueType attribute is used to indicate the type of KeyIdentifier being used. 1007
This specification defines one ValueType that can be applied to all token types. Each specific 1008
token profile specifies the KeyIdentifier types that may be used to refer to tokens of that 1009
type. It also specifies the critical semantics of the identifier, such as whether the 1010
KeyIdentifier is unique to the key or the token. If no value is specified then the key identifier 1011
will be interpreted in an application-specific manner. This URI fragment is relative to a base URI 1012
as ndicated in the table below. 1013

 1014

URI Description

http://docs.oasis-
open.org/wss/oasis-
wss-soap-message-
security-
1.1#ThumbPrintSHA1

If the security token type that the Security Token
Reference refers to already contains a
representation for the thumbprint, the value
obtained from the token MAY be used. If the
token does not contain a representation of a
thumbprint, then the value of the
KeyIdentifier MUST be the SHA1 of the
raw octets which would be encoded within the
security token element were it to be included. A
thumbprint reference MUST occur in
combination with a required to be supported (by
the applicable profile) reference form unless a
thumbprint reference is among the reference
forms required to be supported by the applicable
profile, or the parties to the communication have
agreed to accept thumbprint only references.

http://docs.oasis-
open.org/wss/oasis-
wss-soap-message-
security-
1.1#EncryptedKeySHA1

If the security token type that the Security Token
Reference refers to already contains a
representation for the EncryptedKey, the value
obtained from the token MAY be used. If the
token does not contain a representation of a
EncryptedKey, then the value of the
KeyIdentifier MUST be the SHA1 of the

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 32 of 76

raw octets which would be encoded within the
security token element were it to be included.

 1015
/wsse:SecurityTokenReference/wsse:KeyIdentifier/@EncodingType 1016

The optional EncodingType attribute is used to indicate, using a URI, the encoding 1017
format of the KeyIdentifier (#Base64Binary). This specification defines the 1018
EncodingType URI values appearing in the following table. A token specific profile MAY 1019
define additional token specific EncodingType URI values. A KeyIdentifier MUST 1020
include an EncodingType attribute when its ValueType is not sufficient to identify its 1021
encoding type. The base values defined in this specification are: 1022
 1023

URI Description

#Base64Binary XML Schema base 64 encoding

 1024
/wsse:SecurityTokenReference/wsse:KeyIdentifier/@{any} 1025

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 1026
added. 1027

7.4 Embedded References 1028

In some cases a reference may be to an embedded token (as opposed to a pointer to a token 1029
that resides elsewhere). To do this, the <wsse:Embedded> element is specified within a 1030
<wsse:SecurityTokenReference> element. The <wsse:Embedded> element is only 1031
allowed inside a <wsse:SecurityTokenReference> element. 1032
The following is an overview of the syntax: 1033
 1034

<wsse:SecurityTokenReference> 1035
 <wsse:Embedded wsu:Id="..."> 1036
 ... 1037
 </wsse:Embedded> 1038
</wsse:SecurityTokenReference> 1039

 1040
The following describes the attributes and elements listed in the example above: 1041
 1042
/wsse:SecurityTokenReference/wsse:Embedded 1043

This element is used to embed a token directly within a reference (that is, to create a 1044
local or literal reference). 1045
 1046

/wsse:SecurityTokenReference/wsse:Embedded/@wsu:Id 1047
An optional string label for this element. This allows this embedded token to be 1048
referenced by a signature or encryption. 1049
 1050

/wsse:SecurityTokenReference/wsse:Embedded/{any} 1051
This is an extensibility mechanism to allow any security token, based on schemas, to be 1052
embedded. Unrecognized elements SHOULD cause a fault. 1053

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 33 of 76

 1054
/wsse:SecurityTokenReference/wsse:Embedded/@{any} 1055

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 1056
added. Unrecognized attributes SHOULD cause a fault. 1057
 1058

The following example illustrates embedding a SAML assertion: 1059
 1060

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..."> 1061
 <S11:Header> 1062
 <wsse:Security> 1063
 ... 1064
 <wsse:SecurityTokenReference> 1065
 <wsse:Embedded wsu:Id="tok1"> 1066
 <saml:Assertion xmlns:saml="..."> 1067
 ... 1068
 </saml:Assertion> 1069
 </wsse:Embedded> 1070
 </wsse:SecurityTokenReference> 1071
 ... 1072
 <wsse:Security> 1073
 </S11:Header> 1074
 ... 1075
</S11:Envelope> 1076

7.5 ds:KeyInfo 1077

The <ds:KeyInfo> element (from XML Signature) can be used for carrying the key information 1078
and is allowed for different key types and for future extensibility. However, in this specification, 1079
the use of <wsse:BinarySecurityToken> is the RECOMMENDED mechanism to carry key 1080
material if the key type contains binary data. Please refer to the specific profile documents for the 1081
appropriate way to carry key material. 1082
 1083
The following example illustrates use of this element to fetch a named key: 1084
 1085

<ds:KeyInfo Id="..." xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 1086
 <ds:KeyName>CN=Hiroshi Maruyama, C=JP</ds:KeyName> 1087
</ds:KeyInfo> 1088

7.6 Key Names 1089

It is strongly RECOMMENDED to use <wsse:KeyIdentifier> elements. However, if key 1090
names are used, then it is strongly RECOMMENDED that <ds:KeyName> elements conform to 1091
the attribute names in section 2.3 of RFC 2253 (this is recommended by XML Signature for 1092
<ds:X509SubjectName>) for interoperability. 1093
 1094
Additionally, e-mail addresses, SHOULD conform to RFC 822: 1095

 EmailAddress=ckaler@microsoft.com 1096

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 34 of 76

7.7 Encrypted Key reference 1097

In certain cases, an <xenc:EncryptedKey> element MAY be used to carry key material 1098
encrypted for the recipient’s key. This key material is henceforth referred to as EncryptedKey. 1099
 1100
The EncryptedKey MAY be used to perform other cryptographic operations within the same 1101
message, such as signatures. The EncryptedKey MAY also be used for performing 1102
cryptographic operations in subsequent messages exchanged by the two parties. Two 1103
mechanisms are defined for referencing the EncryptedKey. 1104
 1105
When referencing the EncryptedKey within the same message that contains the 1106
<xenc:EncryptedKey> element, the <ds:KeyInfo> element of the referencing construct 1107
MUST contain a <wsse:SecurityTokenReference>. The 1108
<wsse:SecurityTokenReference> element MUST contain a <wsse:Reference> element. 1109
 1110
The URI attribute value of the <wsse:Reference> element MUST be set to the value of the ID 1111
attribute of the referenced <xenc:EncryptedKey> element that contains the EncryptedKey. 1112
When referencing the EncryptedKey in a message that does not contain the 1113
<xenc:EncryptedKey> element, the <ds:KeyInfo> element of the referencing construct 1114
MUST contain a <wsse:SecurityTokenReference>. The 1115
<wsse:SecurityTokenReference> element MUST contain a <wsse:KeyIdentifier> 1116
element. The EncodingType attribute SHOULD be set to #Base64Binary. Other encoding 1117
types MAY be specified if agreed on by all parties. The wsse11:TokenType attribute MUST be 1118
set to 1119
http://docs.oasis-open.org/wss/oasis-wss-soap-message-security-1120
1.1#EncryptedKey.The identifier for a <xenc:EncryptedKey> token is defined as the SHA1 1121
of the raw (pre-base64 encoding) octets specified in the <xenc:CipherValue> element of the 1122
referenced <xenc:EncryptedKey> token. This value is encoded as indicated in the 1123
<wsse:KeyIdentifier> reference. The <wsse:ValueType> attribute of 1124
<wsse:KeyIdentifier> MUST be set to http://docs.oasis-open.org/wss/oasis-1125
wss-soap-message-security-1.1#EncryptedKeySHA1. 1126

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 35 of 76

8 Signatures 1127

Message producers may want to enable message recipients to determine whether a message 1128
was altered in transit and to verify that the claims in a particular security token apply to the 1129
producer of the message. 1130
 1131
Demonstrating knowledge of a confirmation key associated with a token key-claim confirms the 1132
accompanying token claims. Knowledge of a confirmation key may be demonstrated by using 1133
that key to create an XML Signature, for example. The relying party’s acceptance of the claims 1134
may depend on its confidence in the token. Multiple tokens may contain a key-claim for a 1135
signature and may be referenced from the signature using a 1136
<wsse:SecurityTokenReference>. A key-claim may be an X.509 Certificate token, or a 1137
Kerberos service ticket token to give two examples. 1138
 1139
Because of the mutability of some SOAP headers, producers SHOULD NOT use the Enveloped 1140
Signature Transform defined in XML Signature. Instead, messages SHOULD explicitly include 1141
the elements to be signed. Similarly, producers SHOULD NOT use the Enveloping Signature 1142
defined in XML Signature [XMLSIG]. 1143
 1144
This specification allows for multiple signatures and signature formats to be attached to a 1145
message, each referencing different, even overlapping, parts of the message. This is important 1146
for many distributed applications where messages flow through multiple processing stages. For 1147
example, a producer may submit an order that contains an orderID header. The producer signs 1148
the orderID header and the body of the request (the contents of the order). When this is received 1149
by the order processing sub-system, it may insert a shippingID into the header. The order sub-1150
system would then sign, at a minimum, the orderID and the shippingID, and possibly the body as 1151
well. Then when this order is processed and shipped by the shipping department, a shippedInfo 1152
header might be appended. The shipping department would sign, at a minimum, the shippedInfo 1153
and the shippingID and possibly the body and forward the message to the billing department for 1154
processing. The billing department can verify the signatures and determine a valid chain of trust 1155
for the order, as well as who authorized each step in the process. 1156
 1157
All compliant implementations MUST be able to support the XML Signature standard. 1158

8.1 Algorithms 1159

This specification builds on XML Signature and therefore has the same algorithm requirements as 1160
those specified in the XML Signature specification. 1161
The following table outlines additional algorithms that are strongly RECOMMENDED by this 1162
specification: 1163
 1164

Algorithm Type Algorithm Algorithm URI

Canonicalization Exclusive XML http://www.w3.org/2001/10/xml-exc-c14n#

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 36 of 76

Canonicalization

 1165
As well, the following table outlines additional algorithms that MAY be used: 1166
 1167

Algorithm Type Algorithm Algorithm URI

Transform SOAP Message
Normalization

http://www.w3.org/TR/soap12-n11n/

 1168
The Exclusive XML Canonicalization algorithm addresses the pitfalls of general canonicalization 1169
that can occur from leaky namespaces with pre-existing signatures. 1170
 1171
Finally, if a producer wishes to sign a message before encryption, then following the ordering 1172
rules laid out in section 5, "Security Header", they SHOULD first prepend the signature element to 1173
the <wsse:Security> header, and then prepend the encryption element, resulting in a 1174
<wsse:Security> header that has the encryption element first, followed by the signature 1175
element: 1176
 1177

<wsse:Security> header
[encryption element]
[signature element]
.
.

 1178
Likewise, if a producer wishes to sign a message after encryption, they SHOULD first prepend 1179
the encryption element to the <wsse:Security> header, and then prepend the signature 1180
element. This will result in a <wsse:Security> header that has the signature element first, 1181
followed by the encryption element: 1182
 1183

<wsse:Security> header
[signature element]
[encryption element]
.
.

 1184
The XML Digital Signature WG has defined two canonicalization algorithms: XML 1185
Canonicalization and Exclusive XML Canonicalization. To prevent confusion, the first is also 1186
called Inclusive Canonicalization. Neither one solves all possible problems that can arise. The 1187
following informal discussion is intended to provide guidance on the choice of which one to use 1188
in particular circumstances. For a more detailed and technically precise discussion of these 1189
issues see: [XML-C14N] and [EXC-C14N]. 1190
 1191

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 37 of 76

There are two problems to be avoided. On the one hand, XML allows documents to be changed 1192
in various ways and still be considered equivalent. For example, duplicate namespace 1193
declarations can be removed or created. As a result, XML tools make these kinds of changes 1194
freely when processing XML. Therefore, it is vital that these equivalent forms match the same 1195
signature. 1196
 1197
On the other hand, if the signature simply covers something like xx:foo, its meaning may change 1198
if xx is redefined. In this case the signature does not prevent tampering. It might be thought that 1199
the problem could be solved by expanding all the values in line. Unfortunately, there are 1200
mechanisms like XPATH which consider xx="http://example.com/"; to be different from 1201
yy="http://example.com/"; even though both xx and yy are bound to the same namespace. 1202
The fundamental difference between the Inclusive and Exclusive Canonicalization is the 1203
namespace declarations which are placed in the output. Inclusive Canonicalization copies all the 1204
declarations that are currently in force, even if they are defined outside of the scope of the 1205
signature. It also copies any xml: attributes that are in force, such as xml:lang or xml:base. 1206
This guarantees that all the declarations you might make use of will be unambiguously specified. 1207
The problem with this is that if the signed XML is moved into another XML document which has 1208
other declarations, the Inclusive Canonicalization will copy then and the signature will be invalid. 1209
This can even happen if you simply add an attribute in a different namespace to the surrounding 1210
context. 1211
 1212
Exclusive Canonicalization tries to figure out what namespaces you are actually using and just 1213
copies those. Specifically, it copies the ones that are "visibly used", which means the ones that 1214
are a part of the XML syntax. However, it does not look into attribute values or element content, 1215
so the namespace declarations required to process these are not copied. For example 1216
if you had an attribute like xx:foo="yy:bar" it would copy the declaration for xx, but not yy. (This 1217
can even happen without your knowledge because XML processing tools might add xsi:type if 1218
you use a schema subtype.) It also does not copy the xml: attributes that are declared outside the 1219
scope of the signature. 1220
 1221
Exclusive Canonicalization allows you to create a list of the namespaces that must be declared, 1222
so that it will pick up the declarations for the ones that are not visibly used. The only problem is 1223
that the software doing the signing must know what they are. In a typical SOAP software 1224
environment, the security code will typically be unaware of all the namespaces being used by the 1225
application in the message body that it is signing. 1226
 1227
Exclusive Canonicalization is useful when you have a signed XML document that you wish to 1228
insert into other XML documents. A good example is a signed SAML assertion which might be 1229
inserted as a XML Token in the security header of various SOAP messages. The Issuer who 1230
signs the assertion will be aware of the namespaces being used and able to construct the list. 1231
The use of Exclusive Canonicalization will insure the signature verifies correctly every time. 1232
Inclusive Canonicalization is useful in the typical case of signing part or all of the SOAP body in 1233
accordance with this specification. This will insure all the declarations fall under the signature, 1234
even though the code is unaware of what namespaces are being used. At the same time, it is 1235
less likely that the signed data (and signature element) will be inserted in some other XML 1236
document. Even if this is desired, it still may not be feasible for other reasons, for example there 1237
may be Id's with the same value defined in both XML documents. 1238
 1239

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 38 of 76

In other situations it will be necessary to study the requirements of the application and the 1240
detailed operation of the canonicalization methods to determine which is appropriate. 1241
This section is non-normative. 1242

8.2 Signing Messages 1243

The <wsse:Security> header block MAY be used to carry a signature compliant with the XML 1244
Signature specification within a SOAP Envelope for the purpose of signing one or more elements 1245
in the SOAP Envelope. Multiple signature entries MAY be added into a single SOAP Envelope 1246
within one <wsse:Security> header block. Producers SHOULD sign all important elements of 1247
the message, and careful thought must be given to creating a signing policy that requires signing 1248
of parts of the message that might legitimately be altered in transit. 1249
 1250
SOAP applications MUST satisfy the following conditions: 1251
 1252

• A compliant implementation MUST be capable of processing the required elements 1253
defined in the XML Signature specification. 1254

• To add a signature to a <wsse:Security> header block, a <ds:Signature> element 1255
conforming to the XML Signature specification MUST be prepended to the existing 1256
content of the <wsse:Security> header block, in order to indicate to the receiver the 1257
correct order of operations. All the <ds:Reference> elements contained in the 1258
signature SHOULD refer to a resource within the enclosing SOAP envelope as described 1259
in the XML Signature specification. However, since the SOAP message exchange model 1260
allows intermediate applications to modify the Envelope (add or delete a header block; for 1261
example), XPath filtering does not always result in the same objects after message 1262
delivery. Care should be taken in using XPath filtering so that there is no unintentional 1263
validation failure due to such modifications. 1264

• The problem of modification by intermediaries (especially active ones) is applicable to 1265
more than just XPath processing. Digital signatures, because of canonicalization and 1266
digests, present particularly fragile examples of such relationships. If overall message 1267
processing is to remain robust, intermediaries must exercise care that the transformation 1268
algorithms used do not affect the validity of a digitally signed component. 1269

• Due to security concerns with namespaces, this specification strongly RECOMMENDS 1270
the use of the "Exclusive XML Canonicalization" algorithm or another canonicalization 1271
algorithm that provides equivalent or greater protection. 1272

• For processing efficiency it is RECOMMENDED to have the signature added and then 1273
the security token pre-pended so that a processor can read and cache the token before it 1274
is used. 1275

8.3 Signing Tokens 1276

It is often desirable to sign security tokens that are included in a message or even external to the 1277
message. The XML Signature specification provides several common ways for referencing 1278
information to be signed such as URIs, IDs, and XPath, but some token formats may not allow 1279
tokens to be referenced using URIs or IDs and XPaths may be undesirable in some situations. 1280
This specification allows different tokens to have their own unique reference mechanisms which 1281
are specified in their profile as extensions to the <wsse:SecurityTokenReference> element. 1282

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 39 of 76

This element provides a uniform referencing mechanism that is guaranteed to work with all token 1283
formats. Consequently, this specification defines a new reference option for XML Signature: the 1284
STR Dereference Transform. 1285
 1286
This transform is specified by the URI #STR-Transform and when applied to a 1287
<wsse:SecurityTokenReference> element it means that the output is the token referenced 1288
by the <wsse:SecurityTokenReference> element not the element itself. 1289
 1290
As an overview the processing model is to echo the input to the transform except when a 1291
<wsse:SecurityTokenReference> element is encountered. When one is found, the element 1292
is not echoed, but instead, it is used to locate the token(s) matching the criteria and rules defined 1293
by the <wsse:SecurityTokenReference> element and echo it (them) to the output. 1294
Consequently, the output of the transformation is the resultant sequence representing the input 1295
with any <wsse:SecurityTokenReference> elements replaced by the referenced security 1296
token(s) matched. 1297
 1298
The following illustrates an example of this transformation which references a token contained 1299
within the message envelope: 1300
 1301

... 1302
<wsse:SecurityTokenReference wsu:Id="Str1"> 1303
 ... 1304
</wsse:SecurityTokenReference> 1305
... 1306
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 1307
 <ds:SignedInfo> 1308
 ... 1309
 <ds:Reference URI="#Str1"> 1310
 <ds:Transforms> 1311
 <ds:Transform 1312
 Algorithm="...#STR-Transform"> 1313
 <wsse:TransformationParameters> 1314
 <ds:CanonicalizationMethod 1315
 Algorithm="http://www.w3.org/TR/2001/REC-xml-1316
c14n-20010315" /> 1317
 </wsse:TransformationParameters> 1318
 </ds:Transform> 1319
 <ds:DigestMethod Algorithm= 1320
 "http://www.w3.org/2000/09/xmldsig#sha1"/> 1321
 <ds:DigestValue>...</ds:DigestValue> 1322
 </ds:Reference> 1323
 </ds:SignedInfo> 1324
 <ds:SignatureValue></ds:SignatureValue> 1325
</ds:Signature> 1326
... 1327

 1328
The following describes the attributes and elements listed in the example above: 1329
 1330
/wsse:TransformationParameters 1331

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 40 of 76

This element is used to wrap parameters for a transformation allows elements even from 1332
the XML Signature namespace. 1333
 1334

/wsse:TransformationParameters/ds:Canonicalization 1335
This specifies the canonicalization algorithm to apply to the selected data. 1336
 1337

/wsse:TransformationParameters/{any} 1338
This is an extensibility mechanism to allow different (extensible) parameters to be 1339
specified in the future. Unrecognized parameters SHOULD cause a fault. 1340
 1341

/wsse:TransformationParameters/@{any} 1342
This is an extensibility mechanism to allow additional attributes, based on schemas, to be 1343
added to the element in the future. Unrecognized attributes SHOULD cause a fault. 1344

 1345
The following is a detailed specification of the transformation. The algorithm is identified by the 1346
URI: #STR-Transform. 1347
 1348
Transform Input: 1349

• The input is a node set. If the input is an octet stream, then it is automatically parsed; cf. 1350
XML Digital Signature [XMLSIG]. 1351

Transform Output: 1352
• The output is an octet steam. 1353

Syntax: 1354
• The transform takes a single mandatory parameter, a 1355

<ds:CanonicalizationMethod> element, which is used to serialize the output node 1356
set. Note, however, that the output may not be strictly in canonical form, per the 1357
canonicalization algorithm; however, the output is canonical, in the sense that it is 1358
unambiguous. However, because of syntax requirements in the XML Signature 1359
definition, this parameter MUST be wrapped in a 1360
<wsse:TransformationParameters> element. 1361

• 1362
Processing Rules: 1363

• Let N be the input node set. 1364
• Let R be the set of all <wsse:SecurityTokenReference> elements in N. 1365
• For each Ri in R, let Di be the result of dereferencing Ri. 1366
• If Di cannot be determined, then the transform MUST signal a failure. 1367
• If Di is an XML security token (e.g., a SAML assertion or a 1368

<wsse:BinarySecurityToken> element), then let Ri' be Di.Otherwise, Di is a raw 1369
binary security token; i.e., an octet stream. In this case, let Ri' be a node set consisting of 1370
a <wsse:BinarySecurityToken> element, utilizing the same namespace prefix as 1371
the <wsse:SecurityTokenReference> element Ri, with no EncodingType attribute, 1372
a ValueType attribute identifying the content of the security token, and text content 1373
consisting of the binary-encoded security token, with no white space. 1374

• Finally, employ the canonicalization method specified as a parameter to the transform to 1375
serialize N to produce the octet stream output of this transform; but, in place of any 1376
dereferenced <wsse:SecurityTokenReference> element Ri and its descendants, 1377

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 41 of 76

process the dereferenced node set Ri' instead. During this step, canonicalization of the 1378
replacement node set MUST be augmented as follows: 1379

o Note: A namespace declaration xmlns="" MUST be emitted with every apex 1380
element that has no namespace node declaring a value for the default 1381
namespace; cf. XML Decryption Transform. 1382

Note: Per the processing rules above, any <wsse:SecurityTokenReference> 1383
element is effectively replaced by the referenced <wsse:BinarySecurityToken> 1384
element and then the <wsse:BinarySecurityToken> is canonicalized in that 1385
context. Each <wsse:BinarySecurityToken> needs to be complete in a given 1386
context, so any necessary namespace declarations that are not present on an ancestor 1387
element will need to be added to the <wsse:BinarySecurityToken> element prior to 1388
canonicalization. 1389
 1390
Signing a <wsse:SecurityTokenReference> (STR) element provides authentication 1391
and integrity protection of only the STR and not the referenced security token (ST). If 1392
signing the ST is the intended behavior, the STR Dereference Transform (STRDT) may 1393
be used which replaces the STR with the ST for digest computation, effectively protecting 1394
the ST and not the STR. If protecting both the ST and the STR is desired, you may sign 1395
the STR twice, once using the STRDT and once not using the STRDT. 1396
 1397
The following table lists the full URI for each URI fragment referred to in the specification. 1398
 1399
URI Fragment Full URI
#Base64Binary http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-soap-message-security-1.0#Base64Binary
#STR-Transform http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-soap-message-security-1.0#STRTransform
#X509v3 http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-soap-message-security-1.0#X509v3

8.4 Signature Validation 1400

The validation of a <ds:Signature> element inside an <wsse:Security> header block 1401
MUST fail if: 1402

• the syntax of the content of the element does not conform to this specification, or 1403
• the validation of the signature contained in the element fails according to the core 1404

validation of the XML Signature specification [XMLSIG], or 1405
• the application applying its own validation policy rejects the message for some reason 1406

(e.g., the signature is created by an untrusted key – verifying the previous two steps only 1407
performs cryptographic validation of the signature). 1408

 1409
If the validation of the signature element fails, applications MAY report the failure to the producer 1410
using the fault codes defined in Section 12 Error Handling. 1411
 1412
The signature validation shall additionally adhere to the rules defines in signature confirmation 1413
section below, if the initiator desires signature confirmation: 1414

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 42 of 76

8.5 Signature Confirmation 1415

In the general model, the initiator uses XML Signature constructs to represent message parts of 1416
the request that were signed. The manifest of signed SOAP elements is contained in the 1417
<ds:Signature> element which in turn is placed inside the <wsse:Security> header. The 1418
<ds:Signature> element of the request contains a <ds:SignatureValue>. This element 1419
contains a base64 encoded value representing the actual digital signature. In certain situations it 1420
is desirable that initiator confirms that the message received was generated in response to a 1421
message it initiated in its unaltered form. This helps prevent certain forms of attack. This 1422
specification introduces a <wsse11:SignatureConfirmation> element to address this 1423
necessity. 1424
 1425
Compliant responder implementations that support signature confirmation, MUST include a 1426
<wsse11:SignatureConfirmation> element inside the <wsse:Security> header of the 1427
associated response message for every <ds:Signature> element that is a direct child of the 1428
<wsse:Security> header block in the originating message. The responder MUST include the 1429
contents of the <ds:SignatureValue> element of the request signature as the value of the 1430
@Value attribute of the <wsse11:SignatureConfirmation> element. The 1431
<wsse11:SignatureConfirmation> element MUST be included in the message signature of 1432
the associated response message. 1433
 1434
If the associated originating signature is received in encrypted form then the corresponding 1435
<wsse11:SignatureConfirmation> element SHOULD be encrypted to protect the original 1436
signature and keys. 1437
 1438
The schema outline for this element is as follows: 1439
 1440

<wsse11:SignatureConfirmation wsu:Id="..." Value="..." /> 1441
 1442
/wsse11:SignatureConfirmation 1443

This element indicates that the responder has processed the signature in the request. 1444
When this element is not present in a response the initiator SHOULD interpret that the 1445
responder is not compliant with this functionality. 1446
 1447

/wsse11:SignatureConfirmation/@wsu:Id 1448
Identifier to be used when referencing this element in the <ds:SignedInfo> reference 1449
list of the signature of the associated response message. This attribute MUST be present 1450
so that un-ambiguous references can be made to this 1451
<wsse11:SignatureConfirmation> element. 1452
 1453

/wsse11:SignatureConfirmation/@Value 1454
This optional attribute contains the contents of a <ds:SignatureValue> copied from 1455
the associated request. If the request was not signed, then this attribute MUST NOT be 1456
present. If this attribute is specified with an empty value, the initiator SHOULD interpret 1457
this as incorrect behavior and process accordingly. When this attribute is not present, the 1458
initiator SHOULD interpret this to mean that the response is based on a request that was 1459
not signed. 1460

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 43 of 76

8.5.1 Response Generation Rules 1461

Conformant responders MUST include at least one <wsse11:SignatureConfirmation>. 1462
element in the <wsse:Security> header in any response(s) associated with requests. That is, 1463
the normal messaging patterns are not altered. 1464
For every response message generated, the responder MUST include a 1465
<wsse11:SignatureConfirmation> element for every <ds:Signature> element it 1466
processed from the original request message. The Value attribute MUST be set to the exact 1467
value of the <ds:SignatureValue> element of the corresponding <ds:Signature> element. 1468
If no <ds:Signature> elements are present in the original request message, the responder 1469
MUST include exactly one <wsse11:SignatureConfirmation> element. The Value attribute 1470
of the <wsse11:SignatureConfirmation> element MUST NOT be present. The responder 1471
MUST include all <wsse11:SignatureConfirmation> elements in the message signature of 1472
the response message(s). If the <ds:Signature> element corresponding to a 1473
<wsse11:SignatureConfirmation> element was encrypted in the original request message, 1474
the <wsse11:SignatureConfirmation> element SHOULD be encrypted for the recipient of 1475
the response message(s). 1476
 1477

8.5.2 Response Processing Rules 1478

The signature validation shall additionally adhere to the following processing guidelines, if the 1479
initiator desires signature confirmation: 1480

• If a response message does not contain a <wsse11:SignatureConfirmation> 1481
element inside the <wsse:Security> header, the initiator SHOULD reject the response 1482
message. 1483

• If a response message does contain a <wsse11:SignatureConfirmation> element 1484
inside the <wsse:Security> header but @Value attribute is not present on 1485
<wsse11:SignatureConfirmation> element, and the associated request message 1486
did include a <ds:Signature> element, the initiator SHOULD reject the response 1487
message. 1488

• If a response message does contain a <wsse11:SignatureConfirmation> element 1489
inside the <wsse:Security> header and the @Value attribute is present on the 1490
<wsse11:SignatureConfirmation> element, but the associated request did not 1491
include a <ds:Signature> element, the initiator SHOULD reject the response 1492
message. 1493

• If a response message does contain a <wsse11:SignatureConfirmation> element 1494
inside the <wsse:Security> header, and the associated request message did include 1495
a <ds:Signature> element and the @Value attribute is present but does not match the 1496
stored signature value of the associated request message, the initiator SHOULD reject 1497
the response message. 1498

• If a response message does not contain a <wsse11:SignatureConfirmation> 1499
element inside the <wsse:Security> header corresponding to each 1500
<ds:Signature> element or if the @Value attribute present does not match the stored 1501
signature values of the associated request message, the initiator SHOULD reject the 1502
response message. 1503

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 44 of 76

8.6 Example 1504

The following sample message illustrates the use of integrity and security tokens. For this 1505
example, only the message body is signed. 1506
 1507

<?xml version="1.0" encoding="utf-8"?> 1508
<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 1509
xmlns:ds="..."> 1510
 <S11:Header> 1511
 <wsse:Security> 1512
 <wsse:BinarySecurityToken 1513
 ValueType="...#X509v3" 1514
 EncodingType="...#Base64Binary" 1515
 wsu:Id="X509Token"> 1516
 MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i... 1517
 </wsse:BinarySecurityToken> 1518
 <ds:Signature> 1519
 <ds:SignedInfo> 1520
 <ds:CanonicalizationMethod Algorithm= 1521
 "http://www.w3.org/2001/10/xml-exc-c14n#"/> 1522
 <ds:SignatureMethod Algorithm= 1523
 "http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 1524
 <ds:Reference URI="#myBody"> 1525
 <ds:Transforms> 1526
 <ds:Transform Algorithm= 1527
 "http://www.w3.org/2001/10/xml-exc-c14n#"/> 1528
 </ds:Transforms> 1529
 <ds:DigestMethod Algorithm= 1530
 "http://www.w3.org/2000/09/xmldsig#sha1"/> 1531
 <ds:DigestValue>EULddytSo1...</ds:DigestValue> 1532
 </ds:Reference> 1533
 </ds:SignedInfo> 1534
 <ds:SignatureValue> 1535
 BL8jdfToEb1l/vXcMZNNjPOV... 1536
 </ds:SignatureValue> 1537
 <ds:KeyInfo> 1538
 <wsse:SecurityTokenReference> 1539
 <wsse:Reference URI="#X509Token"/> 1540
 </wsse:SecurityTokenReference> 1541
 </ds:KeyInfo> 1542
 </ds:Signature> 1543
 </wsse:Security> 1544
 </S11:Header> 1545
 <S11:Body wsu:Id="myBody"> 1546
 <tru:StockSymbol xmlns:tru="http://www.fabrikam123.com/payloads"> 1547
 QQQ 1548
 </tru:StockSymbol> 1549
 </S11:Body> 1550
</S11:Envelope> 1551

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 45 of 76

9 Encryption 1552

This specification allows encryption of any combination of body blocks, header blocks, and any of 1553
these sub-structures by either a common symmetric key shared by the producer and the recipient 1554
or a symmetric key carried in the message in an encrypted form. 1555
 1556
In order to allow this flexibility, this specification leverages the XML Encryption standard. This 1557
specification describes how the two elements <xenc:ReferenceList> and 1558
<xenc:EncryptedKey> listed below and defined in XML Encryption can be used within the 1559
<wsse:Security> header block. When a producer or an active intermediary encrypts 1560
portion(s) of a SOAP message using XML Encryption it MUST prepend a sub-element to the 1561
<wsse:Security> header block. Furthermore, the encrypting party MUST either prepend the 1562
sub-element to an existing <wsse:Security> header block for the intended recipients or create 1563
a new <wsse:Security> header block and insert the sub-element. The combined process of 1564
encrypting portion(s) of a message and adding one of these sub-elements is called an encryption 1565
step hereafter. The sub-element MUST contain the information necessary for the recipient to 1566
identify the portions of the message that it is able to decrypt. 1567
 1568
This specification additionally defines an element <wsse11:EncryptedHeader> for containing 1569
encrypted SOAP header blocks. This specification RECOMMENDS an additional mechanism that 1570
uses this element for encrypting SOAP header blocks that complies with SOAP processing 1571
guidelines while preserving the confidentiality of attributes on the SOAP header blocks. 1572
All compliant implementations MUST be able to support the XML Encryption standard [XMLENC]. 1573

9.1 xenc:ReferenceList 1574

The <xenc:ReferenceList> element from XML Encryption [XMLENC] MAY be used to 1575
create a manifest of encrypted portion(s), which are expressed as <xenc:EncryptedData> 1576
elements within the envelope. An element or element content to be encrypted by this encryption 1577
step MUST be replaced by a corresponding <xenc:EncryptedData> according to XML 1578
Encryption. All the <xenc:EncryptedData> elements created by this encryption step 1579
SHOULD be listed in <xenc:DataReference> elements inside one or more 1580
<xenc:ReferenceList> element. 1581
 1582
Although in XML Encryption [XMLENC], <xenc:ReferenceList> was originally designed to 1583
be used within an <xenc:EncryptedKey> element (which implies that all the referenced 1584
<xenc:EncryptedData> elements are encrypted by the same key), this specification allows 1585
that <xenc:EncryptedData> elements referenced by the same <xenc:ReferenceList> 1586
MAY be encrypted by different keys. Each encryption key can be specified in <ds:KeyInfo> 1587
within individual <xenc:EncryptedData>. 1588
 1589
A typical situation where the <xenc:ReferenceList> sub-element is useful is that the 1590
producer and the recipient use a shared secret key. The following illustrates the use of this sub-1591
element: 1592

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 46 of 76

 1593
<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 1594
xmlns:ds="..." xmlns:xenc="..."> 1595
 <S11:Header> 1596
 <wsse:Security> 1597
 <xenc:ReferenceList> 1598
 <xenc:DataReference URI="#bodyID"/> 1599
 </xenc:ReferenceList> 1600
 </wsse:Security> 1601
 </S11:Header> 1602
 <S11:Body> 1603
 <xenc:EncryptedData Id="bodyID"> 1604
 <ds:KeyInfo> 1605
 <ds:KeyName>CN=Hiroshi Maruyama, C=JP</ds:KeyName> 1606
 </ds:KeyInfo> 1607
 <xenc:CipherData> 1608
 <xenc:CipherValue>...</xenc:CipherValue> 1609
 </xenc:CipherData> 1610
 </xenc:EncryptedData> 1611
 </S11:Body> 1612
</S11:Envelope> 1613

9.2 xenc:EncryptedKey 1614

When the encryption step involves encrypting elements or element contents within a SOAP 1615
envelope with a symmetric key, which is in turn to be encrypted by the recipient’s key and 1616
embedded in the message, <xenc:EncryptedKey> MAY be used for carrying such an 1617
encrypted key. This sub-element MAY contain a manifest, that is, an <xenc:ReferenceList> 1618
element, that lists the portions to be decrypted with this key. The manifest MAY appear outside 1619
the <xenc:EncryptedKey> provided that the corresponding xenc:EncryptedData 1620
elements contain <xenc:KeyInfo> elements that reference the <xenc:EncryptedKey> 1621
element.. An element or element content to be encrypted by this encryption step MUST be 1622
replaced by a corresponding <xenc:EncryptedData> according to XML Encryption. All the 1623
<xenc:EncryptedData> elements created by this encryption step SHOULD be listed in the 1624
<xenc:ReferenceList> element inside this sub-element. 1625
 1626
This construct is useful when encryption is done by a randomly generated symmetric key that is 1627
in turn encrypted by the recipient’s public key. The following illustrates the use of this element: 1628
 1629

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 1630
xmlns:ds="..." xmlns:xenc="..."> 1631
 <S11:Header> 1632
 <wsse:Security> 1633
 <xenc:EncryptedKey> 1634
 ... 1635
 <ds:KeyInfo> 1636
 <wsse:SecurityTokenReference> 1637
 <ds:X509IssuerSerial> 1638
 <ds:X509IssuerName> 1639
 DC=ACMECorp, DC=com 1640

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 47 of 76

 </ds:X509IssuerName> 1641
<ds:X509SerialNumber>12345678</ds:X509SerialNumber> 1642
 </ds:X509IssuerSerial> 1643
 </wsse:SecurityTokenReference> 1644
 </ds:KeyInfo> 1645
 ... 1646
 </xenc:EncryptedKey> 1647
 ... 1648
 </wsse:Security> 1649
 </S11:Header> 1650
 <S11:Body> 1651
 <xenc:EncryptedData Id="bodyID"> 1652
 <xenc:CipherData> 1653
 <xenc:CipherValue>...</xenc:CipherValue> 1654
 </xenc:CipherData> 1655
 </xenc:EncryptedData> 1656
 </S11:Body> 1657
</S11:Envelope> 1658

 1659
While XML Encryption specifies that <xenc:EncryptedKey> elements MAY be specified in 1660
<xenc:EncryptedData> elements, this specification strongly RECOMMENDS that 1661
<xenc:EncryptedKey> elements be placed in the <wsse:Security> header. 1662

9.3 Encrypted Header 1663

In order to be compliant with SOAP mustUnderstand processing guidelines and to prevent 1664
disclosure of information contained in attributes on a SOAP header block, this specification 1665
introduces an <wsse11:EncryptedHeader> element. This element contains exactly one 1666
<xenc:EncryptedData> element. This specification RECOMMENDS the use of 1667
<wsse11:EncryptedHeader> element for encrypting SOAP header blocks. 1668

9.4 Processing Rules 1669

Encrypted parts or using one of the sub-elements defined above MUST be in compliance with the 1670
XML Encryption specification. An encrypted SOAP envelope MUST still be a valid SOAP 1671
envelope. The message creator MUST NOT encrypt the <S11:Header>, <S12:Header>, 1672
<S11:Envelope>, <S12:Envelope>,or <S11:Body>, <S12:Body> elements but MAY 1673
encrypt child elements of either the <S11:Header>, <S12:Header> and <S11:Body> or 1674
<S12:Body> elements. Multiple steps of encryption MAY be added into a single 1675
<wsse:Security> header block if they are targeted for the same recipient. 1676
 1677
When an element or element content inside a SOAP envelope (e.g. the contents of the 1678
<S11:Body> or <S12:Body> elements) are to be encrypted, it MUST be replaced by an 1679
<xenc:EncryptedData>, according to XML Encryption and it SHOULD be referenced from the 1680
<xenc:ReferenceList> element created by this encryption step. If the target of reference is 1681
an EncryptedHeader as defined in section 9.3 above, see processing rules defined in section 1682
9.5.3 Encryption using EncryptedHeader and section 9.5.4 Decryption of EncryptedHeader 1683
below. 1684

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 48 of 76

9.4.1 Encryption 1685

The general steps (non-normative) for creating an encrypted SOAP message in compliance with 1686
this specification are listed below (note that use of <xenc:ReferenceList> is 1687
RECOMMENDED. Additionally, if the target of encryption is a SOAP header, processing rules 1688
defined in section 9.5.3 SHOULD be used). 1689

• Create a new SOAP envelope. 1690
• Create a <wsse:Security> header 1691
• When an <xenc:EncryptedKey> is used, create a <xenc:EncryptedKey> sub-1692

element of the <wsse:Security> element. This <xenc:EncryptedKey> sub-1693
element SHOULD contain an <xenc:ReferenceList> sub-element, containing a 1694
<xenc:DataReference> to each <xenc:EncryptedData> element that was 1695
encrypted using that key. 1696

• Locate data items to be encrypted, i.e., XML elements, element contents within the target 1697
SOAP envelope. 1698

• Encrypt the data items as follows: For each XML element or element content within the 1699
target SOAP envelope, encrypt it according to the processing rules of the XML 1700
Encryption specification [XMLENC]. Each selected original element or element content 1701
MUST be removed and replaced by the resulting <xenc:EncryptedData> element. 1702

• The optional <ds:KeyInfo> element in the <xenc:EncryptedData> element MAY 1703
reference another <ds:KeyInfo> element. Note that if the encryption is based on an 1704
attached security token, then a <wsse:SecurityTokenReference> element SHOULD 1705
be added to the <ds:KeyInfo> element to facilitate locating it. 1706

• Create an <xenc:DataReference> element referencing the generated 1707
<xenc:EncryptedData> elements. Add the created <xenc:DataReference> 1708
element to the <xenc:ReferenceList>. 1709

• Copy all non-encrypted data. 1710

9.4.2 Decryption 1711

On receiving a SOAP envelope containing encryption header elements, for each encryption 1712
header element the following general steps should be processed (this section is non-normative. 1713
Additionally, if the target of reference is an EncryptedHeader, processing rules as defined in 1714
section 9.5.4 below SHOULD be used): 1715
 1716

1. Identify any decryption keys that are in the recipient’s possession, then identifying any 1717
message elements that it is able to decrypt. 1718

2. Locate the <xenc:EncryptedData> items to be decrypted (possibly using the 1719
<xenc:ReferenceList>). 1720

3. Decrypt them as follows: 1721
a. For each element in the target SOAP envelope, decrypt it according to the 1722

processing rules of the XML Encryption specification and the processing rules 1723
listed above. 1724

b. If the decryption fails for some reason, applications MAY report the failure to the 1725
producer using the fault code defined in Section 12 Error Handling of this 1726
specification. 1727

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 49 of 76

c. It is possible for overlapping portions of the SOAP message to be encrypted in 1728
such a way that they are intended to be decrypted by SOAP nodes acting in 1729
different Roles. In this case, the <xenc:ReferenceList> or 1730
<xenc:EncryptedKey> elements identifying these encryption operations will 1731
necessarily appear in different <wsse:Security> headers. Since SOAP does 1732
not provide any means of specifying the order in which different Roles will 1733
process their respective headers, this order is not specified by this specification 1734
and can only be determined by a prior agreement. 1735

9.4.3 Encryption with EncryptedHeader 1736

When it is required that an entire SOAP header block including the top-level element and its 1737
attributes be encrypted, the original header block SHOULD be replaced with a 1738
<wsse11:EncryptedHeader> element. The <wsse11:EncryptedHeader> element MUST 1739
contain the <xenc:EncryptedData> produced by encrypting the header block. A wsu:Id attribute 1740
MAY be added to the <wsse11:EncryptedHeader> element for referencing. If the referencing 1741
<wsse:Security> header block defines a value for the <S12:mustUnderstand> or 1742
<S11:mustUnderstand> attribute, that attribute and associated value MUST be copied to the 1743
<wsse11:EncryptedHeader> element. If the referencing <wsse:Security> header block 1744
defines a value for the S12:role or S11:actor attribute, that attribute and associated value 1745
MUST be copied to the <wsse11:EncryptedHeader> element. If the referencing 1746
<wsse:Security> header block defines a value for the S12:relay attribute, that attribute and 1747
associated value MUST be copied to the <wsse11:EncryptedHeader> element. 1748
 1749
Any header block can be replaced with a corresponding <wsse11:EncryptedHeader> header 1750
block. This includes <wsse:Security> header blocks. (In this case, obviously if the encryption 1751
operation is specified in the same security header or in a security header targeted at a node 1752
which is reached after the node targeted by the <wsse11:EncryptedHeader> element, the 1753
decryption will not occur.) 1754
 1755
In addition, <wsse11:EncryptedHeader> header blocks can be super-encrypted and replaced 1756
by other <wsse11:EncryptedHeader> header blocks (for wrapping/tunneling scenarios). Any 1757
<wsse:Security> header that encrypts a header block targeted to a particular actor SHOULD 1758
be targeted to that same actor, unless it is a security header. 1759

9.4.4 Processing an EncryptedHeader 1760

The processing model for <wsse11:EncryptedHeader> header blocks is as follows: 1761
1. Resolve references to encrypted data specified in the <wsse:Security> header block 1762

targeted at this node. For each reference, perform the following steps. 1763
2. If the referenced element does not have a qualified name of 1764

<wsse11:EncryptedHeader> then process as per section 9.5.2 Decryption and stop 1765
the processing steps here. 1766

3. Otherwise, extract the <xenc:EncryptedData> element from the 1767
<wsse11:EncryptedHeader> element. 1768

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 50 of 76

4. Decrypt the contents of the <xenc:EncryptedData> element as per section 9.5.2 1769
Decryption and replace the <wsse11:EncryptedHeader> element with the decrypted 1770
contents. 1771

5. Process the decrypted header block as per SOAP processing guidelines. 1772
 1773
Alternatively, a processor may perform a pre-pass over the encryption references in the 1774
<wsse:Security> header: 1775

1. Resolve references to encrypted data specified in the <wsse:Security> header block 1776
targeted at this node. For each reference, perform the following steps. 1777

2. If a referenced element has a qualified name of <wsse11:EncryptedHeader> then 1778
replace the <wsse11:EncryptedHeader> element with the contained 1779
<xenc:EncryptedData> element and if present copy the value of the wsu:Id attribute 1780
from the <wsse11:EncryptedHeader> element to the <xenc:EncryptedData> 1781
element. 1782

3. Process the <wsse:Security> header block as normal. 1783
 1784
It should be noted that the results of decrypting a <wsse11:EncryptedHeader> header block 1785
could be another <wsse11:EncryptedHeader> header block. In addition, the result MAY be 1786
targeted at a different role than the role processing the <wsse11:EncryptedHeader> header 1787
block. 1788

9.4.5 Processing the mustUnderstand attribute on EncryptedHeader 1789

If the S11:mustUnderstand or S12:mustUnderstand attribute is specified on the 1790
<wsse11:EncryptedHeader> header block, and is true, then the following steps define what it 1791
means to "understand" the <wsse11:EncryptedHeader> header block: 1792

1. The processor MUST be aware of this element and know how to decrypt and convert into 1793
the original header block. This DOES NOT REQUIRE that the process know that it has 1794
the correct keys or support the indicated algorithms. 1795

2. The processor MUST, after decrypting the encrypted header block, process the 1796
decrypted header block according to the SOAP processing guidelines. The receiver 1797
MUST raise a fault if any content required to adequately process the header block 1798
remains encrypted or if the decrypted SOAP header is not understood and the value of 1799
the S12:mustUnderstand or S11:mustUnderstand attribute on the decrypted 1800
header block is true. Note that in order to comply with SOAP processing rules in this 1801
case, the processor must roll back any persistent effects of processing the security 1802
header, such as storing a received token. 1803

 1804

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 51 of 76

10 Security Timestamps 1805

It is often important for the recipient to be able to determine the freshness of security semantics. 1806
In some cases, security semantics may be so stale that the recipient may decide to ignore it. 1807
This specification does not provide a mechanism for synchronizing time. The assumption is that 1808
time is trusted or additional mechanisms, not described here, are employed to prevent replay. 1809
This specification defines and illustrates time references in terms of the xsd:dateTime type 1810
defined in XML Schema. It is RECOMMENDED that all time references use this type. All 1811
references MUST be in UTC time. Implementations MUST NOT generate time instants that 1812
specify leap seconds. If, however, other time types are used, then the ValueType attribute 1813
(described below) MUST be specified to indicate the data type of the time format. Requestors and 1814
receivers SHOULD NOT rely on other applications supporting time resolution finer than 1815
milliseconds. 1816
 1817
The <wsu:Timestamp> element provides a mechanism for expressing the creation and 1818
expiration times of the security semantics in a message. 1819
 1820
All times MUST be in UTC format as specified by the XML Schema type (dateTime). It should be 1821
noted that times support time precision as defined in the XML Schema specification. 1822
The <wsu:Timestamp> element is specified as a child of the <wsse:Security> header and 1823
may only be present at most once per header (that is, per SOAP actor/role). 1824
 1825
The ordering within the element is as illustrated below. The ordering of elements in the 1826
<wsu:Timestamp> element is fixed and MUST be preserved by intermediaries. 1827
The schema outline for the <wsu:Timestamp> element is as follows: 1828
 1829

<wsu:Timestamp wsu:Id="..."> 1830
 <wsu:Created ValueType="...">...</wsu:Created> 1831
 <wsu:Expires ValueType="...">...</wsu:Expires> 1832
 ... 1833
</wsu:Timestamp> 1834

 1835
The following describes the attributes and elements listed in the schema above: 1836
 1837
/wsu:Timestamp 1838

This is the element for indicating security semantics timestamps. 1839
 1840

/wsu:Timestamp/wsu:Created 1841
This represents the creation time of the security semantics. This element is optional, but 1842
can only be specified once in a <wsu:Timestamp> element. Within the SOAP 1843
processing model, creation is the instant that the infoset is serialized for transmission. 1844
The creation time of the message SHOULD NOT differ substantially from its transmission 1845
time. The difference in time should be minimized. 1846
 1847

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 52 of 76

/wsu:Timestamp/wsu:Expires 1848
This element represents the expiration of the security semantics. This is optional, but 1849
can appear at most once in a <wsu:Timestamp> element. Upon expiration, the 1850
requestor asserts that its security semantics are no longer valid. It is strongly 1851
RECOMMENDED that recipients (anyone who processes this message) discard (ignore) 1852
any message whose security semantics have passed their expiration. A Fault code 1853
(wsu:MessageExpired) is provided if the recipient wants to inform the requestor that its 1854
security semantics were expired. A service MAY issue a Fault indicating the security 1855
semantics have expired. 1856
 1857

/wsu:Timestamp/{any} 1858
This is an extensibility mechanism to allow additional elements to be added to the 1859
element. Unrecognized elements SHOULD cause a fault. 1860
 1861

/wsu:Timestamp/@wsu:Id 1862
This optional attribute specifies an XML Schema ID that can be used to reference this 1863
element (the timestamp). This is used, for example, to reference the timestamp in a XML 1864
Signature. 1865
 1866

/wsu:Timestamp/@{any} 1867
This is an extensibility mechanism to allow additional attributes to be added to the 1868
element. Unrecognized attributes SHOULD cause a fault. 1869
 1870

The expiration is relative to the requestor's clock. In order to evaluate the expiration time, 1871
recipients need to recognize that the requestor's clock may not be synchronized to the recipient’s 1872
clock. The recipient, therefore, MUST make an assessment of the level of trust to be placed in 1873
the requestor's clock, since the recipient is called upon to evaluate whether the expiration time is 1874
in the past relative to the requestor's, not the recipient’s, clock. The recipient may make a 1875
judgment of the requestor’s likely current clock time by means not described in this specification, 1876
for example an out-of-band clock synchronization protocol. The recipient may also use the 1877
creation time and the delays introduced by intermediate SOAP roles to estimate the degree of 1878
clock skew. 1879
 1880
The following example illustrates the use of the <wsu:Timestamp> element and its content. 1881
 1882

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..."> 1883
 <S11:Header> 1884
 <wsse:Security> 1885
 <wsu:Timestamp wsu:Id="timestamp"> 1886
 <wsu:Created>2001-09-13T08:42:00Z</wsu:Created> 1887
 <wsu:Expires>2001-10-13T09:00:00Z</wsu:Expires> 1888
 </wsu:Timestamp> 1889
 ... 1890
 </wsse:Security> 1891
 ... 1892
 </S11:Header> 1893
 <S11:Body> 1894
 ... 1895
 </S11:Body> 1896

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 53 of 76

</S11:Envelope> 1897

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 54 of 76

11 Extended Example 1898

The following sample message illustrates the use of security tokens, signatures, and encryption. 1899
For this example, the timestamp and the message body are signed prior to encryption. The 1900
decryption transformation is not needed as the signing/encryption order is specified within the 1901
<wsse:Security> header. 1902
 1903

(001) <?xml version="1.0" encoding="utf-8"?> 1904
(002) <S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 1905
xmlns:xenc="..." xmlns:ds="..."> 1906
(003) <S11:Header> 1907
(004) <wsse:Security> 1908
(005) <wsu:Timestamp wsu:Id="T0"> 1909
(006) <wsu:Created> 1910
(007) 2001-09-13T08:42:00Z</wsu:Created> 1911
(008) </wsu:Timestamp> 1912
(009) 1913
(010) <wsse:BinarySecurityToken 1914
 ValueType="...#X509v3" 1915
 wsu:Id="X509Token" 1916
 EncodingType="...#Base64Binary"> 1917
(011) MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i... 1918
(012) </wsse:BinarySecurityToken> 1919
(013) <xenc:EncryptedKey> 1920
(014) <xenc:EncryptionMethod Algorithm= 1921
 "http://www.w3.org/2001/04/xmlenc#rsa-1_5"/> 1922
(015) <ds:KeyInfo> 1923
 <wsse:SecurityTokenReference> 1924
(016) <wsse:KeyIdentifier 1925
 EncodingType="...#Base64Binary" 1926
 ValueType="...#X509v3">MIGfMa0GCSq... 1927
(017) </wsse:KeyIdentifier> 1928
 </wsse:SecurityTokenReference> 1929
(018) </ds:KeyInfo> 1930
(019) <xenc:CipherData> 1931
(020) <xenc:CipherValue>d2FpbmdvbGRfE0lm4byV0... 1932
(021) </xenc:CipherValue> 1933
(022) </xenc:CipherData> 1934
(023) <xenc:ReferenceList> 1935
(024) <xenc:DataReference URI="#enc1"/> 1936
(025) </xenc:ReferenceList> 1937
(026) </xenc:EncryptedKey> 1938
(027) <ds:Signature> 1939
(028) <ds:SignedInfo> 1940
(029) <ds:CanonicalizationMethod 1941
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1942
(030) <ds:SignatureMethod 1943
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 1944
(031) <ds:Reference URI="#T0"> 1945
(032) <ds:Transforms> 1946

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 55 of 76

(033) <ds:Transform 1947
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1948
(034) </ds:Transforms> 1949
(035) <ds:DigestMethod 1950
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 1951
(036) <ds:DigestValue>LyLsF094hPi4wPU... 1952
(037) </ds:DigestValue> 1953
(038) </ds:Reference> 1954
(039) <ds:Reference URI="#body"> 1955
(040) <ds:Transforms> 1956
(041) <ds:Transform 1957
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1958
(042) </ds:Transforms> 1959
(043) <ds:DigestMethod 1960
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 1961
(044) <ds:DigestValue>LyLsF094hPi4wPU... 1962
(045) </ds:DigestValue> 1963
(046) </ds:Reference> 1964
(047) </ds:SignedInfo> 1965
(048) <ds:SignatureValue> 1966
(049) Hp1ZkmFZ/2kQLXDJbchm5gK... 1967
(050) </ds:SignatureValue> 1968
(051) <ds:KeyInfo> 1969
(052) <wsse:SecurityTokenReference> 1970
(053) <wsse:Reference URI="#X509Token"/> 1971
(054) </wsse:SecurityTokenReference> 1972
(055) </ds:KeyInfo> 1973
(056) </ds:Signature> 1974
(057) </wsse:Security> 1975
(058) </S11:Header> 1976
(059) <S11:Body wsu:Id="body"> 1977
(060) <xenc:EncryptedData 1978
 Type="http://www.w3.org/2001/04/xmlenc#Element" 1979
 wsu:Id="enc1"> 1980
(061) <xenc:EncryptionMethod 1981
 Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-1982
cbc"/> 1983
(062) <xenc:CipherData> 1984
(063) <xenc:CipherValue>d2FpbmdvbGRfE0lm4byV0... 1985
(064) </xenc:CipherValue> 1986
(065) </xenc:CipherData> 1987
(066) </xenc:EncryptedData> 1988
(067) </S11:Body> 1989
(068) </S11:Envelope> 1990

 1991
Let's review some of the key sections of this example: 1992
Lines (003)-(058) contain the SOAP message headers. 1993
 1994
Lines (004)-(057) represent the <wsse:Security> header block. This contains the security-1995
related information for the message. 1996
 1997
Lines (005)-(008) specify the timestamp information. In this case it indicates the creation time of 1998
the security semantics. 1999

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 56 of 76

 2000
Lines (010)-(012) specify a security token that is associated with the message. In this case, it 2001
specifies an X.509 certificate that is encoded as Base64. Line (011) specifies the actual Base64 2002
encoding of the certificate. 2003
 2004
Lines (013)-(026) specify the key that is used to encrypt the body of the message. Since this is a 2005
symmetric key, it is passed in an encrypted form. Line (014) defines the algorithm used to 2006
encrypt the key. Lines (015)-(018) specify the identifier of the key that was used to encrypt the 2007
symmetric key. Lines (019)-(022) specify the actual encrypted form of the symmetric key. Lines 2008
(023)-(025) identify the encryption block in the message that uses this symmetric key. In this 2009
case it is only used to encrypt the body (Id="enc1"). 2010
 2011
Lines (027)-(056) specify the digital signature. In this example, the signature is based on the 2012
X.509 certificate. Lines (028)-(047) indicate what is being signed. Specifically, line (039) 2013
references the message body. 2014
 2015
Lines (048)-(050) indicate the actual signature value – specified in Line (043). 2016
 2017
Lines (052)-(054) indicate the key that was used for the signature. In this case, it is the X.509 2018
certificate included in the message. Line (053) provides a URI link to the Lines (010)-(012). 2019
The body of the message is represented by Lines (059)-(067). 2020
 2021
Lines (060)-(066) represent the encrypted metadata and form of the body using XML Encryption. 2022
Line (060) indicates that the "element value" is being replaced and identifies this encryption. Line 2023
(061) specifies the encryption algorithm – Triple-DES in this case. Lines (063)-(064) contain the 2024
actual cipher text (i.e., the result of the encryption). Note that we don't include a reference to the 2025
key as the key references this encryption – Line (024). 2026
 2027

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 57 of 76

12 Error Handling 2028

There are many circumstances where an error can occur while processing security information. 2029
For example: 2030
• Invalid or unsupported type of security token, signing, or encryption 2031
• Invalid or unauthenticated or unauthenticatable security token 2032
• Invalid signature 2033
• Decryption failure 2034
• Referenced security token is unavailable 2035
• Unsupported namespace 2036
 2037
If a service does not perform its normal operation because of the contents of the Security header, 2038
then that MAY be reported using SOAP's Fault Mechanism. This specification does not mandate 2039
that faults be returned as this could be used as part of a denial of service or cryptographic 2040
attack. We combine signature and encryption failures to mitigate certain types of attacks. 2041
 2042
If a failure is returned to a producer then the failure MUST be reported using the SOAP Fault 2043
mechanism. The following tables outline the predefined security fault codes. The "unsupported" 2044
classes of errors are as follows. Note that the reason text provided below is RECOMMENDED, 2045
but alternative text MAY be provided if more descriptive or preferred by the implementation. The 2046
tables below are defined in terms of SOAP 1.1. For SOAP 1.2, the Fault/Code/Value is 2047
env:Sender (as defined in SOAP 1.2) and the Fault/Code/Subcode/Value is the faultcode below 2048
and the Fault/Reason/Text is the faultstring below. 2049
 2050

Error that occurred (faultstring) faultcode

An unsupported token was provided wsse:UnsupportedSecurityToken

An unsupported signature or encryption algorithm
was used

wsse:UnsupportedAlgorithm

 2051
The "failure" class of errors are: 2052
 2053

Error that occurred (faultstring) faultcode

An error was discovered processing the
<wsse:Security> header.

wsse:InvalidSecurity

An invalid security token was provided wsse:InvalidSecurityToken

The security token could not be authenticated or
authorized

wsse:FailedAuthentication

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 58 of 76

The signature or decryption was invalid wsse:FailedCheck

Referenced security token could not be retrieved wsse:SecurityTokenUnavailable

The message has expired wsse:MessageExpired

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 59 of 76

13 Security Considerations 2054

 2055
 As stated in the Goals and Requirements section of this document, this specification is meant to 2056
provide extensible framework and flexible syntax, with which one could implement various 2057
security mechanisms. This framework and syntax by itself does not provide any guarantee of 2058
security. When implementing and using this framework and syntax, one must make every effort to 2059
ensure that the result is not vulnerable to any one of a wide range of attacks. 2060
 2061

13.1 General Considerations 2062

 2063
It is not feasible to provide a comprehensive list of security considerations for such an extensible 2064
set of mechanisms. A complete security analysis MUST be conducted on specific solutions based 2065
on this specification. Below we illustrate some of the security concerns that often come up with 2066
protocols of this type, but we stress that this is not an exhaustive list of concerns. 2067

• freshness guarantee (e.g., the danger of replay, delayed messages and the danger of 2068
relying on timestamps assuming secure clock synchronization) 2069

• proper use of digital signature and encryption (signing/encrypting critical parts of the 2070
message, interactions between signatures and encryption), i.e., signatures on (content 2071
of) encrypted messages leak information when in plain-text) 2072

• protection of security tokens (integrity) 2073
• certificate verification (including revocation issues) 2074
• the danger of using passwords without outmost protection (i.e. dictionary attacks against 2075

passwords, replay, insecurity of password derived keys, ...) 2076
• the use of randomness (or strong pseudo-randomness) 2077
• interaction between the security mechanisms implementing this standard and other 2078

system component 2079
• man-in-the-middle attacks 2080
• PKI attacks (i.e. identity mix-ups) 2081

 2082
There are other security concerns that one may need to consider in security protocols. The list 2083
above should not be used as a "check list" instead of a comprehensive security analysis. The 2084
next section will give a few details on some of the considerations in this list. 2085

13.2 Additional Considerations 2086

13.2.1 Replay 2087

Digital signatures alone do not provide message authentication. One can record a signed 2088
message and resend it (a replay attack).It is strongly RECOMMENDED that messages include 2089
digitally signed elements to allow message recipients to detect replays of the message when the 2090

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 60 of 76

messages are exchanged via an open network. These can be part of the message or of the 2091
headers defined from other SOAP extensions. Four typical approaches are: Timestamp, 2092
Sequence Number, Expirations and Message Correlation. Signed timestamps MAY be used to 2093
keep track of messages (possibly by caching the most recent timestamp from a specific service) 2094
and detect replays of previous messages. It is RECOMMENDED that timestamps be cached for 2095
a given period of time, as a guideline, a value of five minutes can be used as a minimum to detect 2096
replays, and that timestamps older than that given period of time set be rejected in interactive 2097
scenarios. 2098

13.2.2 Combining Security Mechanisms 2099

This specification defines the use of XML Signature and XML Encryption in SOAP headers. As 2100
one of the building blocks for securing SOAP messages, it is intended to be used in conjunction 2101
with other security techniques. Digital signatures need to be understood in the context of other 2102
security mechanisms and possible threats to an entity. 2103
 2104
Implementers should also be aware of all the security implications resulting from the use of digital 2105
signatures in general and XML Signature in particular. When building trust into an application 2106
based on a digital signature there are other technologies, such as certificate evaluation, that must 2107
be incorporated, but these are outside the scope of this document. 2108
 2109
As described in XML Encryption, the combination of signing and encryption over a common data 2110
item may introduce some cryptographic vulnerability. For example, encrypting digitally signed 2111
data, while leaving the digital signature in the clear, may allow plain text guessing attacks. 2112

13.2.3 Challenges 2113

When digital signatures are used for verifying the claims pertaining to the sending entity, the 2114
producer must demonstrate knowledge of the confirmation key. One way to achieve this is to use 2115
a challenge-response type of protocol. Such a protocol is outside the scope of this document. 2116
To this end, the developers can attach timestamps, expirations, and sequences to messages. 2117

13.2.4 Protecting Security Tokens and Keys 2118

Implementers should be aware of the possibility of a token substitution attack. In any situation 2119
where a digital signature is verified by reference to a token provided in the message, which 2120
specifies the key, it may be possible for an unscrupulous producer to later claim that a different 2121
token, containing the same key, but different information was intended. 2122
An example of this would be a user who had multiple X.509 certificates issued relating to the 2123
same key pair but with different attributes, constraints or reliance limits. Note that the signature of 2124
the token by its issuing authority does not prevent this attack. Nor can an authority effectively 2125
prevent a different authority from issuing a token over the same key if the user can prove 2126
possession of the secret. 2127
 2128
The most straightforward counter to this attack is to insist that the token (or its unique identifying 2129
data) be included under the signature of the producer. If the nature of the application is such that 2130
the contents of the token are irrelevant, assuming it has been issued by a trusted authority, this 2131

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 61 of 76

attack may be ignored. However because application semantics may change over time, best 2132
practice is to prevent this attack. 2133
 2134
Requestors should use digital signatures to sign security tokens that do not include signatures (or 2135
other protection mechanisms) to ensure that they have not been altered in transit. It is strongly 2136
RECOMMENDED that all relevant and immutable message content be signed by the producer. 2137
Receivers SHOULD only consider those portions of the document that are covered by the 2138
producer’s signature as being subject to the security tokens in the message. Security tokens 2139
appearing in <wsse:Security> header elements SHOULD be signed by their issuing authority 2140
so that message receivers can have confidence that the security tokens have not been forged or 2141
altered since their issuance. It is strongly RECOMMENDED that a message producer sign any 2142
<wsse:SecurityToken> elements that it is confirming and that are not signed by their issuing 2143
authority. 2144
When a requester provides, within the request, a Public Key to be used to encrypt the response, 2145
it is possible that an attacker in the middle may substitute a different Public Key, thus allowing the 2146
attacker to read the response. The best way to prevent this attack is to bind the encryption key in 2147
some way to the request. One simple way of doing this is to use the same key pair to sign the 2148
request as to encrypt the response. However, if policy requires the use of distinct key pairs for 2149
signing and encryption, then the Public Key provided in the request should be included under the 2150
signature of the request. 2151

13.2.5 Protecting Timestamps and Ids 2152

In order to trust wsu:Id attributes and <wsu:Timestamp> elements, they SHOULD be signed 2153
using the mechanisms outlined in this specification. This allows readers of the IDs and 2154
timestamps information to be certain that the IDs and timestamps haven’t been forged or altered 2155
in any way. It is strongly RECOMMENDED that IDs and timestamp elements be signed. 2156
 2157

13.2.6 Protecting against removal and modification of XML Elements 2158

XML Signatures using Shorthand XPointer References (AKA IDREF) protect against the removal 2159
and modification of XML elements; but do not protect the location of the element within the XML 2160
Document. 2161
 2162
Whether or not this is a security vulnerability depends on whether the location of the signed data 2163
within its surrounding context has any semantic import. This consideration applies to data carried 2164
in the SOAP Body or the Header. 2165
 2166
Of particular concern is the ability to relocate signed data into a SOAP Header block which is 2167
unknown to the receiver and marked mustUnderstand="false". This could have the effect of 2168
causing the receiver to ignore signed data which the sender expected would either be processed 2169
or result in the generation of a MustUnderstand fault. 2170
 2171
A similar exploit would involve relocating signed data into a SOAP Header block targeted to a 2172
S11:actor or S12:role other than that which the sender intended, and which the receiver will not 2173
process. 2174
 2175

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 62 of 76

While these attacks could apply to any portion of the message, their effects are most pernicious 2176
with SOAP header elements which may not always be present, but must be processed whenever 2177
they appear. 2178
 2179
In the general case of XML Documents and Signatures, this issue may be resolved by signing the 2180
entire XML Document and/or strict XML Schema specification and enforcement. However, 2181
because elements of the SOAP message, particularly header elements, may be legitimately 2182
modified by SOAP intermediaries, this approach is usually not appropriate. It is RECOMMENDED 2183
that applications signing any part of the SOAP body sign the entire body. 2184
 2185
Alternatives countermeasures include (but are not limited to): 2186

• References using XPath transforms with Absolute Path expressions with checks 2187
performed by the receiver that the URI and Absolute Path XPath expression evaluate to 2188
the digested nodeset. 2189

• A Reference using an XPath transform to include any significant location-dependent 2190
elements and exclude any elements that might legitimately be removed, added, or altered 2191
by intermediaries, 2192

• Using only References to elements with location-independent semantics, 2193
• Strict policy specification and enforcement regarding which message parts are to be 2194

signed. For example: 2195
o Requiring that the entire SOAP Body and all children of SOAP Header be signed, 2196
o Requiring that SOAP header elements which are marked 2197

MustUnderstand="false" and have signed descendants MUST include the 2198
MustUnderstand attribute under the signature. 2199

 2200

13.2.7 Detecting Duplicate Identifiers 2201

The <wsse:Security> processing SHOULD check for duplicate values from among the set of 2202
ID attributes that it is aware of. The wsse:Security processing MUST generate a fault if a 2203
duplicate ID value is detected. 2204
 2205
This section is non-normative. 2206

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 63 of 76

14 Interoperability Notes 2207

Based on interoperability experiences with this and similar specifications, the following list 2208
highlights several common areas where interoperability issues have been discovered. Care 2209
should be taken when implementing to avoid these issues. It should be noted that some of these 2210
may seem "obvious", but have been problematic during testing. 2211
 2212

• Key Identifiers: Make sure you understand the algorithm and how it is applied to security 2213
tokens. 2214

• EncryptedKey: The <xenc:EncryptedKey> element from XML Encryption requires a 2215
Type attribute whose value is one of a pre-defined list of values. Ensure that a correct 2216
value is used. 2217

• Encryption Padding: The XML Encryption random block cipher padding has caused 2218
issues with certain decryption implementations; be careful to follow the specifications 2219
exactly. 2220

• IDs: The specification recognizes three specific ID elements: the global wsu:Id attribute 2221
and the local ID attributes on XML Signature and XML Encryption elements (because 2222
the latter two do not allow global attributes). If any other element does not allow global 2223
attributes, it cannot be directly signed using an ID reference. Note that the global 2224
attribute wsu:Id MUST carry the namespace specification. 2225

• Time Formats: This specification uses a restricted version of the XML Schema 2226
xsd:dateTime element. Take care to ensure compliance with the specified restrictions. 2227

• Byte Order Marker (BOM): Some implementations have problems processing the BOM 2228
marker. It is suggested that usage of this be optional. 2229

• SOAP, WSDL, HTTP: Various interoperability issues have been seen with incorrect 2230
SOAP, WSDL, and HTTP semantics being applied. Care should be taken to carefully 2231
adhere to these specifications and any interoperability guidelines that are available. 2232

 2233
This section is non-normative. 2234

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 64 of 76

15 Privacy Considerations 2235

In the context of this specification, we are only concerned with potential privacy violation by the 2236
security elements defined here. Privacy of the content of the payload message is out of scope. 2237
Producers or sending applications should be aware that claims, as collected in security tokens, 2238
are typically personal information, and should thus only be sent according to the producer's 2239
privacy policies. Future standards may allow privacy obligations or restrictions to be added to this 2240
data. Unless such standards are used, the producer must ensure by out-of-band means that the 2241
recipient is bound to adhering to all restrictions associated with the data, and the recipient must 2242
similarly ensure by out-of-band means that it has the necessary consent for its intended 2243
processing of the data. 2244
 2245
If claim data are visible to intermediaries, then the policies must also allow the release to these 2246
intermediaries. As most personal information cannot be released to arbitrary parties, this will 2247
typically require that the actors are referenced in an identifiable way; such identifiable references 2248
are also typically needed to obtain appropriate encryption keys for the intermediaries. 2249
If intermediaries add claims, they should be guided by their privacy policies just like the original 2250
producers. 2251
 2252
Intermediaries may also gain traffic information from a SOAP message exchange, e.g., who 2253
communicates with whom at what time. Producers that use intermediaries should verify that 2254
releasing this traffic information to the chosen intermediaries conforms to their privacy policies. 2255
 2256
This section is non-normative. 2257

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 65 of 76

16 References 2258

[GLOSS] Informational RFC 2828, "Internet Security Glossary," May 2000. 2259

[KERBEROS] J. Kohl and C. Neuman, "The Kerberos Network Authentication Service 2260
(V5)," RFC 1510, September 1993, http://www.ietf.org/rfc/rfc1510.txt . 2261

[KEYWORDS] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," 2262
RFC 2119, Harvard University, March 1997. 2263

[SHA-1] FIPS PUB 180-1. Secure Hash Standard. U.S. Department of 2264
Commerce / National Institute of Standards and Technology. 2265
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt 2266

[SOAP11] W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000. 2267

[SOAP12] W3C Recommendation, "SOAP Version 1.2 Part 1: Messaging 2268
Framework", 23 June 2003. 2269

[SOAPSEC] W3C Note, "SOAP Security Extensions: Digital Signature," 06 February 2270
2001. 2271

[URI] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers 2272
(URI): Generic Syntax," RFC 3986, MIT/LCS, Day Software, Adobe 2273
Systems, January 2005. 2274

[XPATH] W3C Recommendation, "XML Path Language", 16 November 1999 2275

 2276

The following are non-normative references included for background and related material: 2277

[WS-SECURITY] "Web Services Security Language", IBM, Microsoft, VeriSign, April 2002. 2278
"WS-Security Addendum", IBM, Microsoft, VeriSign, August 2002. 2279
"WS-Security XML Tokens", IBM, Microsoft, VeriSign, August 2002. 2280

[XMLC14N] W3C Recommendation, "Canonical XML Version 1.0," 15 March 2001. 2281

[EXCC14N] W3C Recommendation, "Exclusive XML Canonicalization Version 1.0," 8 2282
July 2002. 2283

[XMLENC] W3C Working Draft, "XML Encryption Syntax and Processing," 04 March 2284
2002. 2285

W3C Recommendation, “Decryption Transform for XML Signature”, 10 December 2002. 2286

[XML-ns] W3C Recommendation, "Namespaces in XML," 14 January 1999. 2287

[XMLSCHEMA] W3C Recommendation, "XML Schema Part 1: Structures,"2 May 2001. 2288
W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May 2001. 2289

[XMLSIG] D. Eastlake, J. R., D. Solo, M. Bartel, J. Boyer , B. Fox , E. Simon. XML-2290
Signature Syntax and Processing, W3C Recommendation, 12 February 2291
2002. 2292

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 66 of 76

[X509] S. Santesson, et al,"Internet X.509 Public Key Infrastructure Qualified 2293
Certificates Profile," 2294
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=2295
T-REC-X.509-200003-I 2296

[WSS-SAML] OASIS Working Draft 06, "Web Services Security SAML Token Profile", 2297
21 February 2003 2298

[WSS-XrML] OASIS Working Draft 03, "Web Services Security XrML Token Profile", 2299
30 January 2003 2300

[WSS-X509] OASIS, “Web Services Security X.509 Certificate Token Profile”, 19 2301
January 2004, http://www.docs.oasis-open.org/wss/2004/01/oasis-2302
200401-wss-x509-token-profile-1.0 2303

[WSSKERBEROS] OASIS Working Draft 03, "Web Services Security Kerberos Profile", 30 2304
January 2003 2305

[WSSUSERNAME] OASIS,”Web Services Security UsernameToken Profile” 19 January 2306
2004, http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-2307
username-token-profile-1.0 2308

[WSS-XCBF] OASIS Working Draft 1.1, "Web Services Security XCBF Token Profile", 2309
30 March 2003 2310

[XMLID] W3C Recommmendation, “xml:id Version 1.0”, 9 September 2005. 2311

[XPOINTER] "XML Pointer Language (XPointer) Version 1.0, Candidate 2312
Recommendation", DeRose, Maler, Daniel, 11 September 2001. 2313

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 67 of 76

Appendix A: Acknowledgements 2314

Current Contributors:2315
Michael Hu Actional
Maneesh Sahu Actional
Duane Nickull Adobe Systems
Gene Thurston AmberPoint
Frank Siebenlist Argonne National Laboratory
Hal Lockhart BEA Systems
Denis Pilipchuk BEA Systems
Corinna Witt BEA Systems
Steve Anderson BMC Software
Rich Levinson Computer Associates
Thomas DeMartini ContentGuard
Merlin Hughes Cybertrust
Dale Moberg Cyclone Commerce
Rich Salz Datapower
Sam Wei EMC
Dana S. Kaufman Forum Systems
Toshihiro Nishimura Fujitsu
Kefeng Chen GeoTrust
Irving Reid Hewlett-Packard
Kojiro Nakayama Hitachi
Paula Austel IBM
Derek Fu IBM
Maryann Hondo IBM
Kelvin Lawrence IBM
Michael McIntosh IBM
Anthony Nadalin IBM
Nataraj Nagaratnam IBM
Bruce Rich IBM
Ron Williams IBM
Don Flinn Individual
Kate Cherry Lockheed Martin
Paul Cotton Microsoft
Vijay Gajjala Microsoft
Martin Gudgin Microsoft
Chris Kaler Microsoft
Frederick Hirsch Nokia
Abbie Barbir Nortel
Prateek Mishra Oracle
Vamsi Motukuru Oracle
Ramana Turlapi Oracle
Ben Hammond RSA Security

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 68 of 76

Rob Philpott RSA Security
Blake Dournaee Sarvega
Sundeep Peechu Sarvega
Coumara Radja Sarvega
Pete Wenzel SeeBeyond
Manveen Kaur Sun Microsystems
Ronald Monzillo Sun Microsystems
Jan Alexander Systinet
Symon Chang TIBCO Software
John Weiland US Navy
Hans Granqvist VeriSign
Phillip Hallam-Baker VeriSign
Hemma Prafullchandra VeriSign

Previous Contributors:2316
Pete Dapkus BEA
Guillermo Lao ContentGuard
TJ Pannu ContentGuard
Xin Wang ContentGuard
Shawn Sharp Cyclone Commerce
Ganesh Vaideeswaran Documentum
Tim Moses Entrust
Carolina Canales-

Valenzuela
Ericsson

Tom Rutt Fujitsu
Yutaka Kudo Hitachi
Jason Rouault HP
Bob Blakley IBM
Joel Farrell IBM
Satoshi Hada IBM
Hiroshi Maruyama IBM
David Melgar IBM
Kent Tamura IBM
Wayne Vicknair IBM
Phil Griffin Individual
Mark Hayes Individual
John Hughes Individual
Peter Rostin Individual
Davanum Srinivas Individual
Bob Morgan Individual/Internet
Bob Atkinson Microsof
Keith Ballinger Microsoft
Allen Brown Microsoft
Giovanni Della-Libera Microsoft
Alan Geller Microsoft
Johannes Klein Microsoft

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 69 of 76

Scott Konersmann Microsoft
Chris Kurt Microsoft
Brian LaMacchia Microsoft
Paul Leach Microsoft
John Manferdelli Microsoft
John Shewchuk Microsoft
Dan Simon Microsoft
Hervey Wilson Microsoft
Jeff Hodges Neustar
Senthil Sengodan Nokia
Lloyd Burch Novell
Ed Reed Novell
Charles Knouse Oblix
Vipin Samar Oracle
Jerry Schwarz Oracle
Eric Gravengaard Reactivity
Andrew Nash Reactivity
Stuart King Reed Elsevier
Martijn de Boer SAP
Jonathan Tourzan Sony
Yassir Elley Sun
Michael Nguyen The IDA of Singapore
Don Adams TIBCO
Morten Jorgensen Vordel

 2317

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 70 of 76

Appendix B: Revision History 2318

Rev Date By Whom What
 2319
This section is non-normative. 2320

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 71 of 76

Appendix C: Utility Elements and Attributes 2321

These specifications define several elements, attributes, and attribute groups which can be re-2322
used by other specifications. This appendix provides an overview of these utility components. It 2323
should be noted that the detailed descriptions are provided in the specification and this appendix 2324
will reference these sections as well as calling out other aspects not documented in the 2325
specification. 2326

16.1 Identification Attribute 2327

There are many situations where elements within SOAP messages need to be referenced. For 2328
example, when signing a SOAP message, selected elements are included in the signature. XML 2329
Schema Part 2 provides several built-in data types that may be used for identifying and 2330
referencing elements, but their use requires that consumers of the SOAP message either have or 2331
are able to obtain the schemas where the identity or reference mechanisms are defined. In some 2332
circumstances, for example, intermediaries, this can be problematic and not desirable. 2333
 2334
Consequently a mechanism is required for identifying and referencing elements, based on the 2335
SOAP foundation, which does not rely upon complete schema knowledge of the context in which 2336
an element is used. This functionality can be integrated into SOAP processors so that elements 2337
can be identified and referred to without dynamic schema discovery and processing. 2338
 2339
This specification specifies a namespace-qualified global attribute for identifying an element 2340
which can be applied to any element that either allows arbitrary attributes or specifically allows 2341
this attribute. This is a general purpose mechanism which can be re-used as needed. 2342
A detailed description can be found in Section 4.0 ID References. 2343
 2344
This section is non-normative. 2345

16.2 Timestamp Elements 2346

The specification defines XML elements which may be used to express timestamp information 2347
such as creation and expiration. While defined in the context of message security, these 2348
elements can be re-used wherever these sorts of time statements need to be made. 2349
 2350
The elements in this specification are defined and illustrated using time references in terms of the 2351
dateTime type defined in XML Schema. It is RECOMMENDED that all time references use this 2352
type for interoperability. It is further RECOMMENDED that all references be in UTC time for 2353
increased interoperability. If, however, other time types are used, then the ValueType attribute 2354
MUST be specified to indicate the data type of the time format. 2355
The following table provides an overview of these elements: 2356
 2357
Element Description
<wsu:Created> This element is used to indicate the creation time associated with

the enclosing context.

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 72 of 76

<wsu:Expires> This element is used to indicate the expiration time associated
with the enclosing context.

 2358
A detailed description can be found in Section 10. 2359
 2360
This section is non-normative. 2361
 2362

16.3 General Schema Types 2363

The schema for the utility aspects of this specification also defines some general purpose 2364
schema elements. While these elements are defined in this schema for use with this 2365
specification, they are general purpose definitions that may be used by other specifications as 2366
well. 2367
 2368
Specifically, the following schema elements are defined and can be re-used: 2369
 2370
Schema Element Description
wsu:commonAtts attribute group This attribute group defines the common

attributes recommended for elements. This
includes the wsu:Id attribute as well as
extensibility for other namespace qualified
attributes.

wsu:AttributedDateTime type This type extends the XML Schema dateTime
type to include the common attributes.

wsu:AttributedURI type This type extends the XML Schema anyURI
type to include the common attributes.

 2371
This section is non-normative. 2372
 2373

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 73 of 76

Appendix D: SecurityTokenReference Model 2374

This appendix provides a non-normative overview of the usage and processing models for the 2375
<wsse:SecurityTokenReference> element. 2376
 2377
There are several motivations for introducing the <wsse:SecurityTokenReference> 2378
element: 2379

• The XML Signature reference mechanisms are focused on "key" references rather than 2380
general token references. 2381

• The XML Signature reference mechanisms utilize a fairly closed schema which limits the 2382
extensibility that can be applied. 2383

• There are additional types of general reference mechanisms that are needed, but are not 2384
covered by XML Signature. 2385

• There are scenarios where a reference may occur outside of an XML Signature and the 2386
XML Signature schema is not appropriate or desired. 2387

• The XML Signature references may include aspects (e.g. transforms) that may not apply 2388
to all references. 2389

 2390
The following use cases drive the above motivations: 2391
 2392
Local Reference – A security token, that is included in the message in the <wsse:Security> 2393
header, is associated with an XML Signature. The figure below illustrates this: 2394

 2395

Security
Token

Signature

Reference

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 74 of 76

 2396
Remote Reference – A security token, that is not included in the message but may be available 2397
at a specific URI, is associated with an XML Signature. The figure below illustrates this: 2398
 2399

 2400
Key Identifier – A security token, which is associated with an XML Signature and identified using 2401
a known value that is the result of a well-known function of the security token (defined by the 2402
token format or profile). The figure below illustrates this where the token is located externally: 2403

 2404
Key Name – A security token is associated with an XML Signature and identified using a known 2405
value that represents a "name" assertion within the security token (defined by the token format or 2406
profile). The figure below illustrates this where the token is located externally: 2407

 2408
Format-Specific References – A security token is associated with an XML Signature and 2409
identified using a mechanism specific to the token (rather than the general mechanisms 2410

Security
Token

K-I(ST)

Signature

Key
Identifier

Security
Token

Signature

Reference

Security
Token

Name: XXX

Signature

Key
Name

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 75 of 76

described above). The figure below illustrates this: 2411
 2412
Non-Signature References – A message may contain XML that does not represent an XML 2413

signature, but may reference a security token (which may or may not be included in the 2414
message). The figure below illustrates this: 2415
 2416
 2417
All conformant implementations must be able to process the 2418
<wsse:SecurityTokenReference> element. However, they are not required to support all of 2419
the different types of references. 2420
 2421
The reference may include a wsse11:TokenType attribute which provides a "hint" for the type of 2422
desired token. 2423
 2424
If multiple sub-elements are specified, together they describe the reference for the token. 2425
There are several challenges that implementations face when trying to interoperate: 2426
ID References – The underlying XML referencing mechanism using the XML base type of ID 2427
provides a simple straightforward XML element reference. However, because this is an XML 2428
type, it can be bound to any attribute. Consequently in order to process the IDs and references 2429
requires the recipient to understand the schema. This may be an expensive task and in the 2430
general case impossible as there is no way to know the "schema location" for a specific 2431
namespace URI. 2432
 2433

Security
Token

MyStuff

Reference

MyToken
Security
Token

Signature

MyRef

WSS: SOAP Message Security (WS-Security 2004) 1 February 2006
Copyright © OASIS Open 2002-2006. All Rights Reserved. Page 76 of 76

Ambiguity – The primary goal of a reference is to uniquely identify the desired token. ID 2434
references are, by definition, unique by XML. However, other mechanisms such as "principal 2435
name" are not required to be unique and therefore such references may be unique. 2436
The XML Signature specification defines a <ds:KeyInfo> element which is used to provide 2437
information about the "key" used in the signature. For token references within signatures, it is 2438
recommended that the <wsse:SecurityTokenReference> be placed within the 2439
<ds:KeyInfo>. The XML Signature specification also defines mechanisms for referencing keys 2440
by identifier or passing specific keys. As a rule, the specific mechanisms defined in WSS: SOAP 2441
Message Security or its profiles are preferred over the mechanisms in XML Signature. 2442
The following provides additional details on the specific reference mechanisms defined in WSS: 2443
SOAP Message Security: 2444
 2445
Direct References – The <wsse:Reference> element is used to provide a URI reference to 2446
the security token. If only the fragment is specified, then it references the security token within 2447
the document whose wsu:Id matches the fragment. For non-fragment URIs, the reference is to 2448
a [potentially external] security token identified using a URI. There are no implied semantics 2449
around the processing of the URI. 2450
 2451
Key Identifiers – The <wsse:KeyIdentifier> element is used to reference a security token 2452
by specifying a known value (identifier) for the token, which is determined by applying a special 2453
function to the security token (e.g. a hash of key fields). This approach is typically unique for the 2454
specific security token but requires a profile or token-specific function to be specified. The 2455
ValueType attribute defines the type of key identifier and, consequently, identifies the type of 2456
token referenced. The EncodingType attribute specifies how the unique value (identifier) is 2457
encoded. For example, a hash value may be encoded using base 64 encoding. 2458
 2459
Key Names – The <ds:KeyName> element is used to reference a security token by specifying a 2460
specific value that is used to match an identity assertion within the security token. This is a 2461
subset match and may result in multiple security tokens that match the specified name. While 2462
XML Signature doesn't imply formatting semantics, WSS: SOAP Message Security recommends 2463
that X.509 names be specified. 2464
 2465
It is expected that, where appropriate, profiles define if and how the reference mechanisms map 2466
to the specific token profile. Specifically, the profile should answer the following questions: 2467
 2468

• What types of references can be used? 2469
• How "Key Name" references map (if at all)? 2470
• How "Key Identifier" references map (if at all)? 2471
• Are there any additional profile or format-specific references? 2472

 2473
This section is non-normative. 2474

