

cd-UBL-NDR-2.0.DRAFT 1 30 August 2006

 1

2

3

4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Universal Business Language (UBL)
Naming and Design Rules
Publication Date

30August 2006
Document identifier:

cd-UBL-NDR-2.0
Location:

http://docs.oasis-open.org/ubl/cd-UBL-NDR-2.0
Editors:

Mavis Cournane, Cognitran Limited <mavis.Cournane@cognitran.com>
Mike Grimley, US Navy <MJGrimley@acm.org>

Contributors:
Members of the OASIS UBL TC

Past Editor
Mark Crawford, SAP

Abstract:
This specification documents the naming and design rules and guidelines for the
construction of XML components for the UBL vocabulary.

Status:
This document has been approved by the OASIS Universal Business Language
Technical Committee as a Committee Draft and is submitted for consideration as
an OASIS Standard

Copyright © 2006 The Organization for the Advancement of Structured Information
Standards [OASIS]

http://docs.oasis-open.org/ubl/cd-UBL-NDR-2.0

cd-UBL-NDR-2.0.DRAFT 2 30 August 2006

26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

Table of Contents
1 Introduction 5

1.1 Audiences 5
1.2 Scope 6
1.3 Terminology and Notation 6
1.4 Guiding Principles 7

1.4.1 Adherence to General UBL Guiding Principles 8
1.4.2 Design for Extensibility 9
1.4.3 Relationship to Tools 9
1.4.4 Choice of Schema Language 10

2 Relationship to ebXML Core Components 11
2.1 Mapping Business Information Entities to XSD 15

3 General XML Constructs 20
3.1 Overall Schema Structure 20

3.1.1 Element declarations within document schemas 22
3.2 Naming and Modeling Constraints 22

3.2.1 Naming Constraints 22
3.2.2 Modeling Constraints 23

3.3 Reusability Scheme 24
3.4 Extension Scheme 25
3.5 Namespace Scheme 27

3.5.1 Declaring Namespaces 28
3.5.2 Namespace Uniform Resource Identifiers 29
3.5.3 Schema Location 31
3.5.4 Persistence 31

3.6 Versioning Scheme 32
3.7 Modularity Strategy 35

3.7.1 UBL Modularity Model 36
3.7.2 Internal and External Schema Modules 40
3.7.3 Internal Schema Modules 40
3.7.4 External Schema Modules 41

3.8 Annotation and Documentation Requirements 45
3.8.1 Schema Annotation 45
3.8.2 Embedded documentation 45

4 Naming Rules 50
4.1 General Naming Rules 50
4.2 Type Naming Rules 54

cd-UBL-NDR-2.0.DRAFT 3 30 August 2006

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

4.2.1 Complex Type Names for CCTS Aggregate Business Information Entities
(ABIEs) 54
4.2.2 Complex Type Names for CCTS Basic Business Information Entity (BBIE)
Properties 54

4.3 Element Naming Rules 56
4.3.1 Element Names for CCTS Aggregate Business Information Entities (ABIEs)
 56
4.3.2 Element Names for CCTS Basic Business Information Entity (BBIE)
Properties 57
4.3.3 Element Names for CCTS Association Business Information Entities
(ASBIEs) 57

4.4 Attributes in UBL 58
5 Declarations and Definitions 59

5.1 Type Definitions 59
5.1.1 General Type Definitions 59
5.1.2 Simple Types 59
5.1.3 Complex Types 60

5.2 Element Declarations 63
5.2.1 Elements Bound to Complex Types 63
5.2.2 Elements Representing ASBIEs 64
5.2.3 Code List Import 64
5.2.4 Empty Elements 64

6 Code Lists 65
7 Miscellaneous XSD Rules 67

7.1 xsd:simpleType 67
7.2 Namespace Declaration 67
7.3 xsd:substitutionGroup 67
7.4 xsd:final 67
7.5 xsd: notation 68
7.6 xsd:all 68
7.7 xsd:choice 68
7.8 xsd:include 68
7.9 xsd:union 68
7.10 xsd:appinfo 69
7.11 xsd:schemaLocation 69
7.12 xsd:nillable 69
7.13 xsd:anyAttribute 69
7.14 Extension and Restriction 70

cd-UBL-NDR-2.0.DRAFT 4 30 August 2006

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

8 Instance Documents 71
Appendix A. UBL NDR 2.0 Checklist 72

A.1 Attribute Declaration rules 72
A.2 Code List rules 73
A.3 ComplexType Definition rules 73
A.4 Complex Type Naming rules 75
A.5 Documentation rules 75
A.6 Element Declaration rules 80
A.7 Element Naming rules 81
A.8 General Naming rules 81
A.9 General Type Definition Rules 82
A.10 General XML Schema Rules 82
A.11 Modelling constraint rules 86
A.12 Naming constraint rules 86
A.13 Namespace Rules 86
A.14 Root element declaration rules 87
A.15 Schema structure modularity rules 88
A.16 Standards Adherence rules 89
A.17 Versioning rules 89

Appendix B. Technical Terminology 92
Appendix C. References 98
Appendix D. Notices 99

cd-UBL-NDR-2.0.DRAFT 5 30 August 2006

1 Introduction 123

124
125
126
127
128
129
130
131
132
133

134
135
136
137
138
139
140
141

142
143
144
145
146

147
148
149
150

XML is often described as the lingua franca of e-commerce. The implication is that by
standardizing on XML, enterprises will be able to trade with anyone, any time, without
the need for the costly custom integration work that has been necessary in the past. But
this vision of XML-based “plug-and-play” commerce is overly simplistic. Of course
XML can be used to create electronic catalogs, purchase orders, invoices, shipping
notices, and the other documents needed to conduct business. But XML by itself doesn't
guarantee that these documents can be understood by any business other than the one that
creates them. XML is only the foundation on which additional standards can be defined
to achieve the goal of true interoperability. The Universal Business Language (UBL)
initiative is the next step in achieving this goal.

The task of creating a universal XML business language is a challenging one. Most large
enterprises have already invested significant time and money in an e-business
infrastructure and are reluctant to change the way they conduct electronic business.
Furthermore, every company has different requirements for the information exchanged in
a specific business process, such as procurement or supply-chain optimization. A
standard business language must strike a difficult balance, adapting to the specific needs
of a given company while remaining general enough to let different companies in
different industries communicate with each other.

The UBL effort addresses this problem by building on the work of the electronic business
XML (ebXML) initiative. UBL is organized as an OASIS Technical Committee to
guarantee a rigorous, open process for the standardization of the XML business language.
The development of UBL within OASIS also helps ensure a fit with other essential
ebXML specifications.

This specification documents the rules and guidelines for the naming and design of XML
components for the UBL library. It contains only rules that have been agreed on by the
OASIS UBL Technical Committee. Consumers of the Naming and Design Rules
Specification should consult previous UBL position papers that are available at
http://www.oasis-open.org/committees/ubl/ndrsc/. These provide a useful
background to the development of the current rule set.

151
152

153

154
155
156
157
158
159

1.1 Audiences
This document has several primary and secondary targets that together constitute its
intended audience. Our primary target audience is the members of the UBL Technical
Committee. Specifically, the UBL Technical Committee will use the rules in this
document to create normative form schemas for business transactions. Developers
implementing ebXML Core Components may find the rules contained herein sufficiently
useful to merit adoption as, or infusion into, their own approaches to ebXML Core

http://www.oasis-open.org/committees/ubl/ndrsc/

cd-UBL-NDR-2.0.DRAFT 6 30 August 2006

160
161
162

163

164
165
166
167

168

169
170
171
172
173

174
175
176
177
178
179
180
181
182
183
184
185
186

Component based XML schema development. All other XML Schema developers may
find the rules contained herein sufficiently useful to merit consideration for adoption as,
or infusion into, their own approaches to XML schema development.

1.2 Scope
This specification conveys a normative set of XML schema design rules and naming
conventions for the creation of business based XML schemas for business documents
being exchanged between two parties using XML constructs defined in accordance with
the ebXML Core Components Technical Specification.

1.3 Terminology and Notation
The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to
be interpreted as described in Internet Engineering Task Force (IETF) Request for
Comments (RFC) 2119. Non-capitalized forms of these words are used in the regular
English sense.

[Definition] – A formal definition of a term. Definitions are normative.
[Example] – A representation of a definition or a rule. Examples are informative.
[Note] – Explanatory information. Notes are informative.
[RRRn] – Identification of a rule that requires conformance to ensure that an XML
Schema is UBL conformant. The value RRR is a prefix to categorize the type of
rule where the value of RRR is as defined in Table 1 and n (1..n) indicates the
sequential number of the rule within its category. In order to ensure continuity
across versions of the specification, rule numbers that are deleted in future
versions will not be re-issued, and any new rules will be assigned the next higher
number – regardless of location in the text. Future versions will contain an
appendix that lists deleted rules and the reason for their deletion. Only rules and
definitions are normative; all other text is explanatory.
Figure 1 - Rule Prefix Token Value

Rule Prefix Token Value
ATD Attribute Declaration
CDL Code List
CTD ComplexType Definition
CTN ComplexType Naming Rules (CTN)
DOC Documentation
ELD Element Declaration
ELN Element Naming
GNR General Naming
GTD General Type Definition
GXS General XML Schema
IND Instance Document

cd-UBL-NDR-2.0.DRAFT 7 30 August 2006

MDC Modeling Constraints
NMC Naming Constraints
NMS Namespace
RED Root Element Declaration
SSM Schema Structure Modularity
VER Versioning

Bold – The bolding of words is used to represent example names or parts of names taken
from the library.

187
188

189

190
191

192
193
194

195
196

197

198

199

200

201
202
203
204

205

206

207

208

209

Courier – All words appearing in courier font are values, objects, and keywords.

Italics – All words appearing in italics, when not titles or used for emphasis, are special
terms defined in Appendix C.

Keywords – keywords reflect concepts or constructs expressed in the language of their
source standard. Keywords have been given an identifying prefix to reflect their source.
The following prefixes are used:

xsd: – represents W3C XML Schema Definition Language. If a concept, the words will
be in upper camel case, and if a construct, they will be in lower camel case.

xsd: – complexType represents an XSD construct

xsd: – SchemaExpression represents a concept

ccts: – represents ISO 15000-5 ebXML Core Components Technical Specification

ubl: – represents the OASIS Universal Business Language

The terms “W3C XML Schema” and “XSD” are used throughout this document. They
are considered synonymous; both refer to XML Schemas that conform to Parts 1 and 2 of
the W3C XML Schema Definition Language (XSD) Recommendations. See Appendix C
for additional term definitions.

1.4 Guiding Principles
The UBL guiding principles encompass three areas:

 General UBL guiding principles

 Extensibility

 Relationship to tools

cd-UBL-NDR-2.0.DRAFT 8 30 August 2006

210

211
212
213

214

215
216

217
218
219
220
221

222
223

224
225

226
227

228
229
230
231
232
233
234
235

236
237

238
239

240
241

242
243

1.4.1 Adherence to General UBL Guiding Principles

The UBL Technical Committee has approved a set of high-level guiding principles.
These principles were adhered to during development of UBL NDR. These UBL guiding
principles are:

 Internet Use – UBL shall be straightforwardly usable over the Internet.

 Interchange and Application Use – UBL is intended for interchange and
application use.

 Tool Use and Support – The design of UBL will not make any
assumptions about sophisticated tools for creation, management, storage,
or presentation being available. The lowest common denominator for tools
is incredibly low (for example, Notepad) and the variety of tools used is
staggering. We do not see this situation changing in the near term.

 Legibility – UBL documents should be human-readable and reasonably
clear.

 Simplicity – The design of UBL must be as simple as possible (but no
simpler).

 80/20 Rule – The design of UBL should provide the 20% of features that
accommodate 80% of the needs.

 Component Reuse –The design of UBL document types should contain as
many common features as possible. The nature of e-commerce
transactions is to pass along information that gets incorporated into the
next transaction down the line. For example, a purchase order contains
information that will be copied into the purchase order response. This
forms the basis of our need for a core library of reusable components.
Reuse in this context is important, not only for the efficient development
of software, but also for keeping audit trails.

 Standardization – The number of ways to express the same information in
a UBL document is to be kept as close to one as possible.

 Domain Expertise – UBL will leverage expertise in a variety of domains
through interaction with appropriate development efforts.

 Customization and Maintenance – The design of UBL must facilitate
customization and maintenance.

 Context Sensitivity – The design of UBL must ensure that context-
sensitive document types aren’t precluded.

cd-UBL-NDR-2.0.DRAFT 9 30 August 2006

244
245
246
247
248
249
250

251
252
253
254

255
256
257
258
259

260
261

262
263
264
265
266

267

268
269
270

271

272
273
274
275
276
277

 Prescriptiveness – UBL design will balance prescriptiveness in any single
usage scenario with prescriptiveness across the breadth of usage scenarios
supported. Having precise, tight content models and datatypes is a good
thing (and for this reason, we might want to advocate the creation of more
document type “flavors” rather than less). However, in an interchange
format, it is often difficult to get the prescriptiveness that would be desired
in any single usage scenario.

 Content Orientation – Most UBL document types should be as “content-
oriented” (as opposed to merely structural) as possible. Some document
types, such as product catalogs, will likely have a place for structural
material such as paragraphs, but these will be rare.

 XML Technology – UBL design will avail itself of standard XML
processing technology wherever possible (XML itself, XML Schema,
XSLT, XPath, and so on). However, UBL will be cautious about basing
decisions on “standards” (foundational or vocabulary) that are works in
progress.

 Relationship to Other Namespaces – UBL design will be cautious about
making dependencies on other namespaces.

 Legacy formats – UBL is not responsible for catering to legacy formats;
companies (such as ERP vendors) can compete to come up with good
solutions to permanent conversion. This is not to say that mappings to and
from other XML dialects or non-XML legacy formats wouldn’t be very
valuable.

1.4.2 Design for Extensibility

 UBL Naming and Design Rules 2.0 provides an extension mechanism to the meet the
needs of customizers. This extension mechanism is embodied within 3.4 of the
specification.

1.4.3 Relationship to Tools

The UBL NDR makes no assumptions on the availability or capabilities of tools to
generate UBL conformant XSD schemas. In conformance with UBL guiding principles,
the UBL NDR design process has scrupulously avoided establishing any naming or
design rules that sub-optimize the UBL schemas in favor of tool generation. Additionally,
in conformance with UBL guiding principles, the NDR is sufficiently rigorous to avoid
requiring human judgment at schema generation time.

cd-UBL-NDR-2.0.DRAFT 10 30 August 2006

278

279
280
281
282
283
284
285

286
287
288

1.4.4 Choice of Schema Language

The W3C XML Schema Definition Language has become the generally accepted schema
language that is experiencing the most widespread adoption. Although other schema
languages exist that offer their own advantages and disadvantages, UBL has determined
that the best approach for developing an international XML business standard is to base
its work on W3C XSD. Consequently, all UBL schema design rules are based on the
W3C XML Schema Recommendations: XML Schema Part 1: Structures and XML
Schema Part 2: Datatypes.

By aligning with W3C specifications holding recommended status, UBL can ensure that
its products and deliverables are well suited for use by the widest possible audience with
the best availability of common support tools.

cd-UBL-NDR-2.0.DRAFT 11 30 August 2006

2 Relationship to ebXML Core Components 289

290
291
292
293
294
295
296

297
298
299
300

UBL employs the methodology and model described in Core Components Technical
Specification, ISO 15000-5 to build the UBL Component Library. The Core Components
concept defines a new paradigm in the design and implementation of reusable
syntactically neutral information building blocks. Syntax neutral Core Components are
intended to form the basis of business information standardization efforts and to be
realized in syntactically specific instantiations such as ANSI ASC X12, UN/EDIFACT,
and XML representations such as UBL.

The essence of the Core Components specification is captured in context neutral and
context specific building blocks. The context neutral components are defined as Core
Components (ccts:CoreComponents). Context neutral ccts:CoreComponents are
defined in CCTS as “A building block for the creation of a semantically correct and

cd-UBL-NDR-2.0.DRAFT 12 30 August 2006

301
302
303

304
305
306
307
308
309

meaningful information exchange package. It contains only the information pieces
necessary to describe a specific concept.”1 Figure 2-1 illustrates the various pieces of the
overall ccts:CoreComponents metamodel.

The context specific components are defined as Business Information Entities
(ccts:BusinessInformationEntities).2 Context specific ccts:Business
InformationEntities are defined in CCTS as “A piece of business data or a group of
pieces of business data with a unique Business Semantic definition.”3 Figure 2-2
illustrates the various pieces of the overall ccts:BusinessInformationEntity
metamodel and their relationship with the ccts:CoreComponents metamodel.

1 ISO 15000-5

2 ISO 15000-5 for a detailed discussion of the ebXML context mechanism.

3 ISO 15000-5

cd-UBL-NDR-2.0.DRAFT 13 30 August 2006

310
311
312
313
314
315
316

As shown in Figure 2-2, there are different types of ccts:CoreComponents and
ccts:BusinessInformationEntities. Each type of ccts:CoreComponent and
ccts:BusinessInformationEntity has specific relationships between and
amongst the other components and entities. The context neutral ccts:Core
Components are the linchpin that establishes the formal relationship between the various
context-specific ccts:BusinessInformationEntities.
Figure 2-1 Core Components and Datatypes Metamodel4

4 ISO 15000-5

cd-UBL-NDR-2.0.DRAFT 14 30 August 2006

Core Component
Business Term 0..*

Registry Class
Unique Identifier 1..1
Dictionary EntryName 1..1
Definition 1..1

CC Property
Property Term 1..1
Cardinality 1..1

Aggregate Core Component (ACC)
Object Class Term 1..1

1..*1..*

Association Core Component (ASCC)

Association CC Property

1

0..*

1

0..* 1

1

1

1

Supplementary Component

Content Component

Basic Core Component (BCC)

Core Component Type (CCT)
Primary Representation Term 1..1
Secondary Representation Term 0..*

1..*1..*

11

Basic CC Property

11 11

Suppl ementary Component Restri cti on

Content Component Restriction

Data Type
Qual ifier Term 0..1

0..* 10..*
+basis

1
1

0..*

1

0..*

0..*0..*

0..*0..*

 317

cd-UBL-NDR-2.0.DRAFT 15 30 August 2006

318 Figure 2-2. Business Information Entities Basic Definition Model

Registry Class
Unique Identif ier 1..1

Business Context Dictionary Entry Name 1..1
Def inition 1..1

1..*

0..*

+cont ex t 1..*

0..*

Business Inf ormation Entity (BIE)
Business Term 0..*

Core Component
0..* 10..*

+basis

1

Association BIE Property Association CC Property

Association Core
Component (ASCC)

1

1

1

1

Association Business
Inf ormation Enti ty (ASBI E)

1

1

1

1

10..*

+basis

10..*

Aggregate Business
Inf ormation Entity (ABIE)
Qualif ier Term 0..1
Cardinality 1..1

1

0..*

1

0..*

Aggregate Core
Component (ACC)

Object Class Term 1..1

0..*

1

0..*

1

10..*

+basis

10..*

CC Property
Property Term 1..1
Cardinality 1 .. 1

1..*1..*

BIE Property
Qualif ier Term 0..1

1..*1..*

10..*

+basis

10..*

Basic Business Inf ormation
Entity (BBIE)

Basic BIE Property

1

1

1

1

Basic Core Component (BCC)

Basic CC Property

10..*

+basis

10..*

1

1

1

1
0..*

Data Ty pe
Qualif ier Term 0..1

1

0..*

1
0..*

1
0..*

1

319

320

321
322
323
324
325

2.1 Mapping Business Information Entities to XSD
UBL consists of a library of ccts:BusinessInformationEntities (BIEs). In
creating this library, UBL has defined how each of the BIE components map to an XSD
construct (See figure 2-3). In defining this mapping, UBL has analyzed the CCTS
metamodel and determined the optimal usage of XSD to express the various BIE
components. As stated above, a

cd-UBL-NDR-2.0.DRAFT 16 30 August 2006

326 Figure 2-3. UBL Document Metamodel

327
328
329
330
331
332

333
334
335
336

BIE can be a ccts:AggregateBusinessInformationEntity (ABIE), a
ccts:BasicBusinessInformationEntity (BBIE), or a
ccts:AssociationBusinessInformationEntity (ASBIE). In understanding the
logic of the UBL binding of BIEs to XSD expressions, it is important to understand the
basic constructs of the ABIEs and their relationships as shown in Figure 2-2.

Both Aggregate and Basic Business Information Entities must have a unique name
(Dictionary Entry Name). The ABIEs are treated as objects and are defined as
xsd:complexTypes. The BBIEs are treated as attributes of the ABIE and are found in
the content model of the ABIE as a referenced xsd:element. The BBIEs are based on a

cd-UBL-NDR-2.0.DRAFT 17 30 August 2006

337
338

339
340
341
342

343
344
345
346

347
348
349
350

reusable ccts:BasicBusinessInformationEntityProperty (BBIE
Property) which are defined as xsd:complexTypes.

A BBIE Property represents an intrinsic property of an ABIE. BBIE Properties are linked
to a Datatype. UBL uses two types of Datatypes – unqualified, that are provided by the
UN/CEFACT Unqualified Datatype (udt) schema module, and qualified datatypes that
are defined by UBL.

UBL’s use of the UN/CEFACT Unqualified Datatype schema module is primarily
confined to its importation. It must not be assumed that UBL’s adoption of the UDT
schema module extends to any of the Advanced Technology Group's (ATG) rules that
have a bearing on the use of the UDT.

The ccts:UnqualifiedDatatypes correspond to ccts:RepresentationTerms.
The ubl:QualifiedDatatypes are derived from ccts:UnqualifiedDatatypes
with restrictions to the allowed values or ranges of the corresponding
ccts:ContentComponent or ccts:SupplementaryComponent.

cd-UBL-NDR-2.0.DRAFT 18 30 August 2006

351
352
353
354

355
356
357
358
359
360
361
362
363

CCTS defines an approved set of primary and secondary representation terms. However,
these representation terms are simply naming conventions to identify the Datatype of an
object, not actual constructs. These representation terms are in fact the basis for
Datatypes as defined in the CCTS.

A ccts:Datatype “defines the set of valid values that can be used for a particular
Basic Core Component Property or Basic Business Information Entity Property
Datatype”5 The ccts:Datatypes can be either unqualified—no restrictions applied—
or qualified through the application of restrictions. The sum total of the datatypes is then
instantiated as the basis for the various XSD simple and complex types defined in the
UBL schemas. CCTS supports datatypes that are qualified, i.e. it enables users to define
their own datatypes for their syntax neutral constructs. Thus ccts:Datatypes allow
UBL to identify restrictions for elements when restrictions to the corresponding
ccts:ContentComponent or ccts:SupplementaryComponent are required.

5 ISO 15000-5

cd-UBL-NDR-2.0.DRAFT 19 30 August 2006

364
365
366
367
368
369
370

371
372

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

There are two kinds of Business Information Entity Properties - Basic and Association. A
ccts:AssociationBusinessInformationEntityProperty (ASBIE Property)
represents an extrinsic property – in other words an association from one ABIE instance
to another ABIE instance. It is the ASBIE Property that expresses the relationship
between ABIEs . Due to their unique extrinsic association role, ASBIEs are not defined
as xsd:complexTypes, rather they are either declared as elements that are then bound
to the xsd:complexType of the associated ABIE ,or they are reclassified ABIEs.

As stated above, BBIEs define the intrinsic structure of an ABIE. These BBIEs are the
“leaf” types in the system in that they contain no ASBIE Properties.

A BBIE must have a ccts:CoreComponentType. All ccts:CoreComponentTypes
are low-level types, such as Identifiers and Dates. A ccts:CoreComponentType
describes these low-level types for use by ccts:CoreComponents, and (in parallel) a
ccts:Datatype, corresponding to that ccts:CoreComponentType, describes these
low-level types for use by BBIEs. Every ccts:CoreComponentType has a single
ccts:ContentComponent and one or more ccts:Supplementary
Components. A ccts:ContentComponent is of some Primitive Type. All
ccts:CoreComponentTypes and their corresponding content and supplementary
components are pre-defined in the CCTS. UBL has developed an xsd:SchemaModule
that defines each of the pre-defined ccts:CoreComponentTypes as an
xsd:complexType or xsd:simpleType and declares ccts:Supplementary
Components as an xsd:attribute or uses the predefined facets of the built-in
xsd:Datatype for those that are used as the base expression for an
xsd:simpleType. UBL continues to work with UN/CEFACT and the Open
Applications Group to develop a single normative schema for representing
ccts:CoreComponentTypes.

cd-UBL-NDR-2.0.DRAFT 20 30 August 2006

3 General XML Constructs 389

390

391

392

393

394

395

396

397

398

399
400
401

This chapter defines UBL rules related to general XML constructs to include:

 Overall Schema Structure

 Naming and Modeling Constraints

 Reusability Scheme

 Namespace Scheme

 Versioning Scheme

 Modularity Strategy

 Annotation and Documentation Requirements

3.1 Overall Schema Structure
A key aspect of developing standards is to ensure consistency in their implementation.
Therefore, it is essential to provide a mechanism that will guarantee that each occurrence
of a UBL conformant schema will have the same look and feel.

[GXS1] UBL Schema, except in the case of extension, where the 'UBL Extensions' 402
element is used, MUST conform to the following physical layout as 403
applicable: 404

<!-- ======= XML Declaration======== --> 405

<?xml version="1.0" encoding="UTF-8"?> 406

<!-- ======= Schema Header ======= --> 407

 Document Name: < Document name as indicated in Section 3.6 > 408

 Generated On: < Date schema was generated > 409

<!-- ===== xsd:schema Element With Namespaces Declarations ===== --> 410

xsd:schema element to include version attribute and namespace declarations in the 411
following order: 412

 xmlns:xsd 413

 Target namespace 414

 Default namespace 415

 CommonAggregateComponents 416

cd-UBL-NDR-2.0.DRAFT 21 30 August 2006

 CommonBasicComponents 417

 CoreComponentTypes 418

 Unqualified Datatypes 419

 Qualified Datatypes 420

 Identifier Schemes 421

 Code Lists 422

Attribute Declarations – elementFormDefault="qualified" 423
attributeFormDefault="unqualified" 424

 Version Attribute 425

<!-- ===== Imports ===== --> 426

CommonAggregateComponents schema module 427

CommonBasicComponents schema module 428

Unqualified Types schema module 429

Qualified Types schema module 430

 431

<!-- ===== Root Element ===== --> 432

Root Element Declaration 433

Root Element Type Definition 434

<!-- ===== Element Declarations ===== --> 435

alphabetized order 436

<!-- ===== Type Definitions ===== --> 437

All type definitions segregated by basic and aggregates as follows 438

<!-- ===== Aggregate Business Information Entity Type Definitions ===== --> 439

alphabetized order of ccts:AggregateBusinessInformationEntity xsd:TypeDefinitions 440

<!-- =====Basic Business Information Entity Type Definitions ===== --> 441

alphabetized order of ccts:BasicBusinessInformationEntities 442

<!-- ===== Copyright Notice ===== --> 443

Required OASIS full copyright notice. 444

cd-UBL-NDR-2.0.DRAFT 22 30 August 2006

445 3.1.1 Element declarations within document schemas

 [Definition] Document schema – 446

The overarching schema within a specific namespace that conveys the business 447
document functionality of that namespace. The document schema declares a target 448
namespace and is likely to xsd:include internal schema modules or xsd:import 449
external schema modules. Each namespace will have one, and only one, document 450
schema. 451

452
453
454

455

456
457
458
459

In order to facilitate the management and reuse of UBL constructs, all global elements,
excluding the root element of the document schema, must reside in either the Common
Aggregate Components (CAC) or Common Basic Components (CBC) schema modules.

3.1.1.1 Root Element

UBL has chosen a global element approach. Inside a UBL document schema only a
single global element is declared. Because all UBL instance documents conform to a
UBL document schema, the single global element declared in that document schema will
be the root element of the instance.

[RED2] The root element MUST be the only global element declared in document 460
schemas. 461

462

463

464
465
466
467

468

469
470
471
472
473
474
475

3.2 Naming and Modeling Constraints
A key aspect of UBL is to base its work on process modeling and data analysis as
precursors to developing the UBL library. In determining how best to affect this work,
several constraints have been identified that directly impact the process modeling and
data analysis, as well as the resultant UBL Schema.

3.2.1 Naming Constraints

A primary aspect of the UBL library documentation is its spreadsheet models. The entries
in these spreadsheet models fully define the constructs available for use in UBL business
documents. These spreadsheet entries contain fully conformant CCTS dictionary entry
names as well as truncated UBL XML element names developed in conformance with the
rules in section 4. The dictionary entry name ties the information to its standardized
semantics, while the name of the corresponding XML element is only shorthand for this
full name. The rules for element naming and dictionary entry naming are different.

[NMC1] Each dictionary entry name MUST define one and only one fully qualified 476
path (FQP) for an element or attribute. 477

cd-UBL-NDR-2.0.DRAFT 23 30 August 2006

478
479
480
481

482

483
484

485

486
487
488
489
490
491

492

493
494
495

The fully qualified path anchors the use of that construct to a particular location in a
business message. The definition of the construct identifies any semantic dependencies
that the FQP has on other elements and attributes within the UBL library that are not
otherwise enforced or made explicit in its structural definition.

3.2.2 Modeling Constraints

In keeping with UBL guiding principles, modeling constraints are limited to those
necessary to ensure consistency in development of the UBL library.

3.2.2.2 Defining Classes

UBL is based on instantiating ebXML ccts:BusinessInformationEntities
(BIEs). UBL models and the XML expressions of those models are class driven.
Specifically, the UBL library defines classes for each
ccts:AggregateBusinessInformationEntity (ABIE) and the UBL schemas
instantiate those classes. The attributes of those classes consist of
ccts:BasicBusinessInformationEntities (BBIEs).

3.2.2.3 Core Component Types

Each BBIE has an associated ccts:CoreComponentType. The CCTS specifies an
approved set of ccts:CoreComponentTypes. To ensure conformance, UBL is limited
to using this approved set.

[MDC1] UBL Libraries and Schemas MUST only use ebXML Core Component 496
approved ccts:CoreComponentTypes, except in the case of extension, 497
where the 'UBLExtensions' element is used. 498

499
500
501

502

503
504
505
506
507

Customization is a key aspect of UBL’s reusability across business verticals. The UBL
rules have been developed in recognition of the need to support customizations. Specific
UBL customization rules are detailed in the UBL customization guidelines.

3.2.2.4 Mixed Content
UBL documents are designed to effect data-centric electronic commerce. Including
mixed content in business documents is undesirable because business transactions are
based on exchange of discrete pieces of data that must be clearly unambiguous. The
white space aspects of mixed content make processing unnecessarily difficult and add a
layer of complexity not desirable in business exchanges.
[MDC2] Mixed content MUST NOT be used except where contained in an 508

xsd:documentation element. 509

cd-UBL-NDR-2.0.DRAFT 24 30 August 2006

510

511
512
513

514

515
516
517

518

3.3 Reusability Scheme
The effective management of the UBL library requires that all element declarations are
unique across the breadth of the UBL library. Consequently, UBL elements are declared
globally.

3.3.1.5 Reusable Elements

UBL elements are global and qualified. Hence in the example below, the <Address>
element is directly reusable as a modular component and some software can be used
without modification.

Example
<xsd:element name="Party" type="PartyType"/> 519
 <xsd:complexType name="PartyType"> 520
 <xsd:annotation> 521
 <!—Documentation goes here --> 522
 </xsd:annotation> 523
 <xsd:sequence> 524
 <xsd:element ref="cbc:MarkCareIndicator" minOccurs="0" 525
maxOccurs="1"> 526
 ... 527
 </xsd:element> 528
 <xsd:element ref="cbc:MarkAttentionIndicator" minOccurs="0" 529
maxOccurs="1"> 530
 ... 531
 </xsd:element> 532
 <xsd:element ref="PartyIdentification" minOccurs="0" 533
maxOccurs="unbounded"> 534
 ... 535
 </xsd:element> 536
 <xsd:element ref="PartyName" minOccurs="0" maxOccurs="1"> 537
 ... 538
 </xsd:element> 539
 <xsd:element ref="Address" minOccurs="0" maxOccurs="1"> 540
 ... 541
 </xsd:element> 542
 ... 543
 </xsd:sequence> 544
 </xsd:complexType> 545
<xsd:element name="Address" type="AddressType"/> 546
<xsd:complexType name="AddressType"> 547
 ... 548
 <xsd:sequence> 549
 <xsd:element ref="cbc:CityName" minOccurs="0" maxOccurs="1"> 550
 ... 551
 </xsd:element> 552
 <xsd:element ref="cbc:PostalZone" minOccurs="0" maxOccurs="1"> 553
 ... 554
 </xsd:element> 555
 ... 556
 </xsd:sequence> 557
</xsd:complexType> 558

559
560
561
562

Software written to work with UBL's standard library will work with new assemblies of
the same components since global elements will remain consistent and unchanged. The
globally declared <Address> element is fully reusable without regard to the reusability
of types and provides a solid mechanism for ensuring that extensions to the UBL core

cd-UBL-NDR-2.0.DRAFT 25 30 August 2006

563
564

library will provide consistency and semantic clarity regardless of its placement within a
particular type.

[ELD2] All element declarations MUST be global 565

566

567
568
569
570

571
572
573
574
575

3.4 Extension Scheme
There is a recognized requirement that some organizations are required by law to send
additional information not covered by the UBL document structure, thus requiring an
extension to the UBL message. The xsd:any construct is seen as the most efficient way
to implement this requirement.

In general, UBL restricts the use of xsd:any because this feature permits the
introduction of potentially unknown elements into an XML instance. However, limiting
its use to a single, predefined element mitigates this risk. Since it is a priority that there
can be meaningful validation of the UBL document instances the value of the
xsd:processContents attribute of the element must be set to “skip”, thereby

cd-UBL-NDR-2.0.DRAFT 26 30 August 2006

576
577

removing the potential for errors in the validation layer. There is cardinality restriction in
the case of extension.

[GXS14] The xsd:any element MUST NOT be used except within the 578
'ExtensionContentType' type definition, and with xsd:processContents= 579
"skip" for non-UBL namespaces. 580

581
582

The following rules apply in the order below.

[ELD12] The 'UBL Extensions' element MUST be declared as the first child of the 583
document element with xsd:minOccurs="0". 584

585

[ELD13] The 'UBLProfileID' element MUST be declared immediately following the 586
'UBL Extensions' element with xsd:minOccurs="0".". 587

cd-UBL-NDR-2.0.DRAFT 27 30 August 2006

588

[ELD14] The 'UBLSubsetID' element MUST be declared immediately following the 589
'UBLProfileID' element with xsd:minOccurs="0". 590

591

592

593
594
595
596
597

3.5 Namespace Scheme
The concept of XML namespaces is defined in the W3C XML namespaces technical
specification.6 The use of XML namespace is specified in the W3C XML Schema (XSD)
Recommendation. A namespace is declared in the root element of a Schema using a
namespace identifier. Namespace declarations can also identify an associated prefix—
shorthand identifier—that allows for compression of the namespace name. For each UBL

6 Tim Bray, D Hollander, A Layman, R Tobin; Namespaces in XML 1.1, W3C Recommendation, February
2004.

cd-UBL-NDR-2.0.DRAFT 28 30 August 2006

598
599

600

601
602
603
604

namespace, a normative token is defined as its prefix. These tokens are defined in the
versioning scheme section.

3.5.1 Declaring Namespaces

Neither XML 1.0 nor XSD require the use of Namespaces. However the use of
namespaces is essential to managing the complex UBL library. UBL will use UBL-
defined schemas (created by UBL) and UBL-used schemas (created by external
activities) and both require a consistent approach to namespace declarations.

[NMS1] Every UBL-defined –or -used schema module, except internal schema 605
modules, MUST have a namespace declared using the 606
xsd:targetNamespace attribute. 607

608
609
610
611
612
613
614

Each UBL schema module consists of a logical grouping of lower level artifacts that
together comprise an association that will be able to be used in a variety of UBL
schemas. These schema modules are grouped into a schema set. Each schema set is
assigned a namespace that identifies that group of schema modules. As constructs are
changed, new versions will be created. The schema set is the versioned entity, all schema
modules within that package are of the same version, and each version has a unique
namespace.

[Definition] Schema Set – 615

A collection of schema instances that together comprise the names in a specific UBL 616
namespace. 617

618
619
620
621

Schema validation ensures that an instance conforms to its declared schema. There
should never be two (different) schemas with the same namespace Uniform Resource
Identifier (URI). In keeping with Rule NMS1, each UBL schema module will be part of a
versioned namespace.

[NMS2] Every UBL-defined-or -used major version schema set MUST have its own 622
unique namespace. 623

624
625
626
627

UBL’s extension methodology encourages a wide variety in the number of schema
modules that are created as derivations from UBL schema modules. Clarity and
consistency requires that customized schema not be confused with those developed by
UBL.

[NMS3] UBL namespaces MUST only contain UBL developed schema modules. 628

cd-UBL-NDR-2.0.DRAFT 29 30 August 2006

629

630
631
632
633

634
635
636

3.5.2 Namespace Uniform Resource Identifiers

A UBL namespace name must be a URI reference that conforms to RFC 2396.7 UBL has
adopted the Uniform Resource Name (URN) scheme as the standard for URIs for
UBLnamespaces, in conformance with IETF’s RFC 3121, as defined in this next
section.8

Rule NMS2 requires separate namespaces for each UBL schema set. The UBL
namespace rules differentiate between committee draft and OASIS Standard status. For
each schema holding draft status, a UBL namespace must be declared and named.

7 T. Berners-Lee, R. Fielding, L. Masinter; Internet Engineering Task Force (IETF) RFC 2396, Uniform
Resource Identifiers (URI): Generic Syntax, Internet Society, August 1998.

8 Karl Best, N. Walsh,; Internet Engineering Task Force (IETF) RFC 3121, A URN Namespace for OASIS,
June 2001.

cd-UBL-NDR-2.0.DRAFT 30 30 August 2006

 [NMS4] The namespace names for UBL Schemas holding committee draft status 637
MUST be of the form: 638

 urn:oasis:names:tc:ubl:schema:<subtype>:<document-id> 639

640

641
642
643

The format for document-id is found in the next section.

For each UBL schema holding OASIS Standard status, a UBL namespace must be
declared and named using the same notation, but with the value ‘specification”
replacing the value ‘tc’.

[NMS5] The namespace names for UBL Schemas holding OASIS Standard status 644
MUST be of the form: 645
 646
urn:oasis:names:specification:ubl:schema:<subtype>:<docum647
ent-id> 648

cd-UBL-NDR-2.0.DRAFT 31 30 August 2006

649

650
651
652
653
654
655

656

657
658
659
660
661

3.5.3 Schema Location

UBL schemas use a URN namespace scheme. In contrast, schema locations are typically
defined as a Uniform Resource Locator (URL). UBL schemas must be available both at
design time and run time. As such, the UBL schema locations will differ from the UBL
namespace declarations. UBL, as an OASIS TC, will utilize an OASIS URL for hosting
UBL schemas. UBL will use the committee directory http://www.oasis-
open.org/committees/ubl/schema/.

3.5.4 Persistence

A key differentiator in selecting URNs to define UBL namespaces is URN persistence.
UBL namespaces must never violate this functionality by subsequently changing once it
has been declared. Conversely, changes to a schema may result in a new namespace
declaration. Thus a published schema version and its namespace association will always
be inviolate.

cd-UBL-NDR-2.0.DRAFT 32 30 August 2006

[NMS6] UBL published namespaces MUST never be changed. 662

663

664
665
666
667

668
669
670
671

3.6 Versioning Scheme
UBL has adopted a two-layer versioning scheme. Major version information is captured
within the namespace name of each UBL schema module while combined major and
minor version information is captured within the xsd:version attribute of the xsd:schema
element.

UBL namespaces conform to the OASIS namespace rules defined in RFC 3121. 9 The
last field of the namespace name is called document-id. UBL has decided to include
versioning information as part of the document-id component of the namespace. Only major
version information will be captured within the document-id. The major field has an

9 Karl Best, N. Walsh; Internet Engineering Task Force (IETF) RFC 3121, A URN Namespace for OASIS,
June 2001.

cd-UBL-NDR-2.0.DRAFT 33 30 August 2006

optional revision extension which can be used for draft schemas. For example, the
namespace URI for the draft Invoice domain has this form:

672
673

674
675

676
677
678

urn:oasis:names:tc:ubl:schema:xsd:Invoice-<major>[.<revision>]

The major-version field is “1” for the first release of a namespace. Subsequent major
releases increment the value by 1. For example, the first namespace URI for the first
major release of the Invoice document has the form:

urn:oasis:names:tc:ubl:schema:xsd:Invoice-1 679

680 The second major release will have a URI of the form:

urn:oasis:names:tc:ubl:schema:xsd:Invoice-2 681

682
683

In general, the namespace URI for every major release of the Invoice domain has the
form:

urn:oasis:names:tc:ubl:schema:xsd:Invoice:-<major-
number>[.<revision>]

684
685
686

[VER1] Every UBL Schema and schema module major version committee draft 687
MUST have an RFC 3121 document-id of the form 688

 <name>-<major>[.<revision>] 689
690 691

[VER11] Every UBL Schema and schema module major version committee draft 692
MUST capture its version number in the xsd:version attribute of the 693
xsd:schema element in the form 694

 <major>.0[.<revision>] 695
696 697

[VER2] Every UBL Schema and schema module major version OASIS Standard 698
MUST have an RFC 3121 document-id of the form 699

 <name>-<major> 700
701

[VER12] Every UBL Schema and schema module major version OASIS Standard 702
MUST capture its version number in the xsd:version attribute of the 703
xsd:schema element in the form 704

 <major>.0 705

706
707
708
709
710

For each document produced by the TC, the TC will determine the value of the <name>
variable. In UBL, the major-version field must be changed in a release that breaks
compatibility with the previous release of that namespace. If a change does not break
compatibility then only the minor version need change. Subsequent minor releases begin
with minor-version 1.

cd-UBL-NDR-2.0.DRAFT 34 30 August 2006

711 Example

The namespace URI for the first minor release of the Invoice domain has this form: 712
 713
urn:oasis:names:tc:ubl:schema:xsd:Invoice-<major> 714
 715
The value of the xsd:schema xsd:version attribute for the first minor release of the 716
Invoice domain has this form: 717
 718
<major>.1 719 720

[VER3] Every minor version release of a UBL schema or schema module committee 721
draft MUST have an RFC 3121 document-id of the form 722

 <name>-<major>[.<revision>] 723
724 725

[VER13] Every minor version release of a UBL schema or schema module committee 726
draft MUST capture its version information in the xsd:version attribute in 727
the form 728

 <major>.<non-zero>[.<revision>] 729
730 731 732

[VER4] Every minor version release of a UBL schema or schema module OASIS 733
Standard MUST have an RFC 3121 document-id of the form 734

 <name>-<major> 735
736 737

[VER14] Every minor version release of a UBL schema or schema module OASIS 738
Standard MUST capture its version information in the xsd:version 739
attribute in the form 740

 <major>.<non-zero> 741

742
743
744

Once a schema version is assigned a namespace, that schema version and that namespace
will be associated in perpetuity. However, because minor schema versions will retain the
major version namespace, this is not a one-to-one relationship.

[VER5] For UBL Minor version changes the namespace name MUST not change, 745

746 UBL is composed of a number of interdependent namespaces. For instance, namespaces
whose URI’s start with urn:oasis:names:tc:ubl:schema:xsd:Invoice-* are
dependent upon the common basic and aggregate namespaces, whose URI’s have the

747
748

form urn:oasis:names:tc:ubl:schema:xsd:CommonBasicComponents-* and 749
urn:oasis:names:tc:ubl:schema:xsd:CommonAggregateComponents-* respectively.
If either of the common namespaces requires a major version change then its namespace
URI must change. If its namespace URI changes then any schema that imports the new
version of the namespace must also change (to update the namespace declaration). And
since this would require a major version change to the importing schema, its namespace
URI in turn must change. The outcome is twofold:

750
751
752
753
754
755

cd-UBL-NDR-2.0.DRAFT 35 30 August 2006

756
757
758
759
760

761
762

763
764
765
766

 There should never be ambiguity at the point of reference in a namespace
declaration or version identification. A dependent schema imports
precisely the version of the namespace that is needed. The dependent
schema never needs to account for the possibility that the imported
namespace can change.

 When a dependent schema is upgraded to import a new version of a
schema, the dependent schema’s version must change.

Minor version changes, however, would not require changes to the namespace URI of
any schemas. Because of this, semantic compatibility across minor versions (as well as
major versions) is essential. Semantic compatibility in this sense pertains to preserving
the business function.

[VER10] UBL Schema and schema module minor version changes MUST not break 767
semantic compatibility with prior versions. 768

769
770
771

Version numbers are based on a logical progression. All major and minor version
numbers will be based on positive integers. Version numbers always increment positively
by one.

[VER6] Every UBL Schema and schema module major version number MUST be a 772
sequentially assigned, incremental number greater than zero. 773

774

[VER7] Every UBL Schema and schema module minor version number MUST be a 775
sequentially assigned, incremental non-negative integer. 776

777
778

UBL version information will also be captured in instances of UBL document schemas
via a ubl:UBLVersionID element.

[VER15] Every UBL document schema MUST declare an optional element named 779
"UBLVersionID" immediately following the optional 'UBL Extensions' 780
element. 781

782

783
784
785
786
787

3.7 Modularity Strategy
There are many possible mappings of XML schema constructs to namespaces and to
files. In addition to the logical taming of complexity that namespaces provide, dividing
the physical realization of schema into multiple files—schema modules—provides a
mechanism whereby reusable components can be imported as needed without the need to
import overly complex complete schema.

[SSM1] UBL Schema expressions MAY be split into multiple schema modules. 788

cd-UBL-NDR-2.0.DRAFT 36 30 August 2006

[Definition] schema module – 789

A schema document containing type definitions and element declarations intended to 790
be reused in multiple schemas. 791

792

793
794
795
796
797
798
799
800
801
802

803
804
805

3.7.1 UBL Modularity Model

UBL relies extensively on modularity in schema design. There is no single UBL root
schema. Rather, there are a number of UBL document schemas, each of which expresses
a separate business function. The UBL modularity approach is structured so that users
can reuse individual document schemas without having to import the entire UBL
document schema library. Additionally, a document schema can import individual
modules without having to import all UBL schema modules. Each document schema will
define its own dependencies. The UBL schema modularity model ensures that logical
associations exist between document and internal schema modules and that individual
modules can be reused to the maximum extent possible. This is accomplished through the
use of document and internal schema modules as shown in Figure 3-1.

If the contents of a namespace are small enough then they can be completely specified
within a single schema.
Figure 3-1. UBL Schema Modularity Model

cd-UBL-NDR-2.0.DRAFT 37 30 August 2006

W3C XML SchemaFile Namespace

Document Schema Schema
Module

ExternalSchemaModule

Internal Schema Module

1

11 1 1

In different
namespace than

Document
Schema

Shaded area is a
"schema set"

Internal Schema Modules
are in same namespace as

Document Schema

The four required
namespaces are

represented by their
prefixes - udt, qdt, cbc,

cac

imported

5..*

included

0..*

udt = Unqualified Datatype, qdt = Qualified Datatype, cbc = Common Basic Components, cac = Common Aggregate Components,
806
807

808
809
810
811
812
813
814
815

816
817
818
819

Figure 3-1 shows the one-to-one correspondence between document schemas and
namespaces. It also shows the one-to-one correspondence between files and schema
modules. As shown in figure 3-1, there are two types of schema in the UBL library –
document schema and schema modules. Document schemas are always in their own
namespace. Schema modules may be in a document schema namespace as in the case of
internal schema modules, or in a separate namespace as in the ubl:qdt, ubl:cbc and
ubl:cac schema modules. Both types of schema modules are conformant with W3C
XSD.

A namespace is a collection of semantically related elements, types and attributes. For
larger namespaces, schema modules – internal schema modules – may be defined. UBL
document schemas may have zero or more internal modules that they include. The
document schema for a namespace then includes those internal modules.

 [Definition] Internal schema module – 820

A schema that is part of a schema set within a specific namespace. 821

822 Figure 3-2 Schema Modules

cd-UBL-NDR-2.0.DRAFT 38 30 August 2006

 823

824

825
826

Another way to visualize the structure is by example. Figure 3-2 depicts instances of the
various schema modules from the previous diagram.

cd-UBL-NDR-2.0.DRAFT 39 30 August 2006

827
828

Figure 3-3 Order and Invoice Schema Import of Common Component Schema Modules

829

cd-UBL-NDR-2.0.DRAFT 40 30 August 2006

830
831
832
833
834

835
836

837

838
839
840
841
842

Figure 3-3 shows how the order and invoice document schemas import the
"CommonAggregateComponents Schema Module” and “CommonBasicComponents
Schema Module” external schema modules. It also shows how the order document
schema includes various internal modules – modules local to that namespace. The clear
boxes show how the various schema modules are grouped into namespaces.

Any UBL schema module, be it a document schema or an internal module, may import
other document schemas from other namespaces.

3.7.1.6 Limitations on Import

If two namespaces are mutually dependent then clearly, importing one will cause the
other to be imported as well. For this reason there must not exist circular dependencies
between UBL schema modules. By extension, there must not exist circular dependencies
between namespaces. A namespace “A” dependent upon type definitions or element
declaration defined in another namespace “B” must import “B’s” document schema.

[SSM2] A document schema in one UBL namespace that is dependent upon type 843
definitions or element declarations defined in another namespace MUST only 844
import the document schema from that namespace. 845

846
847
848

To ensure there is no ambiguity in understanding this rule, an additional rule is necessary
to address potentially circular dependencies as well – schema A must not import internal
schema modules of schema B.

[SSM3] A document schema in one UBL namespace that is dependant upon type 849
definitions or element declarations defined in another namespace MUST NOT 850
import internal schema modules from that namespace. 851

852

853
854

855

856
857
858

3.7.2 Internal and External Schema Modules

As illustrated in Figure 3-1 and 3-2 UBL schema modules will be either internal or
external schema modules.

3.7.3 Internal Schema Modules

UBL internal schema modules do not declare a target namespace, but instead reside in the
namespace of their parent schema. All internal schema modules will be accessed using
xsd:include.

[SSM6] All UBL internal schema modules MUST be in the same namespace as their 859
corresponding document schema. 860

861
862
863

UBL internal schema modules will necessarily have semantically meaningful names.
Internal schema module names will identify the parent schema module, the internal
schema module function, and the schema module itself.

cd-UBL-NDR-2.0.DRAFT 41 30 August 2006

[SSM7] Each UBL internal schema module MUST be named 864
{ParentSchemaModuleName}{InternalSchemaModuleFunction}{sc865
hema module} 866

867

868
869
870

3.7.4 External Schema Modules

UBL is dedicated to maximizing reuse. As the complex types and global element
declarations will be reused in multiple UBL schemas, a logical modularity approach is to
create UBL schema modules based on collections of reusable types and elements.

[SSM8] A UBL schema module MAY be created for reusable components. 871

872
873
874

875

876

877

878

879

880

881

882
883

884

885

As identified in rule SSM2, UBL will create external schema modules. These external
schema modules will be based on logical groupings of contents. At a minimum, UBL
schema modules will be comprised of:

 UBL CommonAggregateComponents

 UBL CommonBasicComponents

 UBL Qualified Datatypes

In addition UBL will use the following schema modules provided by UN/CEFACT.

 CCTS Core Component Types

 CCTS Unqualified Datatypes

 UN/CEFACT Code Lists

Furthermore, where extensions are used an extension schema module must be provided.
This schema module must be named:

 CommonExtensionComponents

This schema module must not import UBL-defined external schema modules.

[SSM21] The UBL extensions schema module MUST be identified as 886
CommonExtensionComponents in the document name within the schema 887
header. 888

889

890
891
892
893

3.7.4.7 UBL Common Aggregate Components Schema Module

The UBL library will also contain a wide variety of ccts:AggregateBusiness
InformationEntities (ABIEs). As defined in rule CTD1, each of these ABIEs will
be defined as an xsd:complexType. Although some of these complex types may be
used in only one UBL Schema, many will be reused in multiple UBL schema modules.

cd-UBL-NDR-2.0.DRAFT 42 30 August 2006

894
895
896

An aggregation of all of the ABIE xsd:complexType definitions that are used in
multiple UBL schema modules into a single schema module of common aggregate types
will provide for maximum ease of reuse.

[SSM9] A schema module defining all UBL Common Aggregate Components MUST 897
be created. 898

899
900

The normative name for this xsd:ComplexType schema module will be based on its
ABIE content.

[SSM10] The UBL Common Aggregate Components schema module MUST be 901
identified as CommonAggregateComponents in the document name within 902
the schema header. 903

904 Example

Document Name: CommonAggregateComponents 905

906

907
908

3.7.4.7.1 UBL CommonAggregateComponents Schema Module Namespace

In keeping with the overall UBL namespace approach, a singular namespace must be
created for storing the ubl:CommonAggregateComponents schema module.

[NMS7] The ubl:CommonAggregateComponents schema module MUST reside in 909
its own namespace. 910

911
912

To ensure consistency in expressing this module, a normative token that will be used
consistently in all UBL Schemas must be defined.

[NMS8] The ubl:CommonAggregateComponents schema module namespace 913
MUST be represented by the namespace prefix “cac” when referenced in 914
other schemas. 915

916

917
918
919
920
921
922
923
924
925

3.7.4.8 UBL CommonBasicComponents Schema Module

The UBL library will contain a wide variety of ccts:BasicBusinessInformation
Entities (BBIEs). These BBIEs are based on
ccts:BasicBusinessInformationEntityProperties (BBIE Properties). BBIE
Properties are reusable in multiple BBIEs. As defined in rule CTD25, each of these BBIE
Properties is defined as an xsd:complexType. Although some of these complex types
may be used in only one UBL Schema, many will be reused in multiple UBL schema
modules. To maximize reuse and standardization, all of the BBIE properties
xsd:ComplexType definitions that are used in multiple UBL schema modules will be
aggregated into a single schema module of common basic types.

 [SSM11] A schema module defining all UBL Common Basic Components MUST be 926
created. 927

cd-UBL-NDR-2.0.DRAFT 43 30 August 2006

928
929

The normative name for this schema module will be based on its BBIE property
xsd:ComplexType content.

[SSM12] The UBL Common Basic Components schema module MUST be identified as 930
CommonBasicComponents in the document name within the schema 931
header. 932

933

934
935

3.7.4.8.1 UBL CommonBasicComponents Schema Module Namespace

In keeping with the overall UBL namespace approach, a singular namespace must be
created for storing the ubl:CommonBasicComponents schema module.

[NMS9] The ubl:CommonBasicComponents schema module MUST reside in its 936
own namespace. 937

938
939
940

To ensure consistency in expressing the ubl:CommonBasicComponents schema
module, a normative token that will be used consistently in all UBL Schema must be
defined.

[NMS10] The ubl:CommonBasicComponents schema module namespace MUST be 941
represented by the namespace prefix “cbc” when referenced in other schemas. 942

943

944
945
946
947
948
949
950

951
952
953
954
955
956
957
958
959

960

961
962

3.7.4.9 CCTS CoreComponentType Schema Module

The CCTS defines an authorized set of Core Component Types (ccts:Core
ComponentTypes) that convey content and supplementary information related to
exchanged data. As the basis for all higher level CCTS models, the ccts:Core
ComponentTypes are reusable in every UBL schema. An external schema module
consisting of a complex type definition for each ccts:CoreComponentType is
essential to maximize reusability. UBL uses the ccts:CoreComponentType schema
module provided by the UN/CEFACT CCTS Datatypes Schema Modules

The CCTS defines an authorized set of primary and secondary Representation Terms
(ccts:RepresentationTerms) that describes the form of every ccts:Business
InformationEntity. These ccts:RepresentationTerms are instantiated in the
form of datatypes that are reusable in every UBL schema. The ccts:Datatype defines
the set of valid values that can be used for its associated ccts:BasicBusiness
InformationEntity Property. These datatypes may be qualified or unqualified, that
is to say restricted or unrestricted. We refer to these as ccts:Unqualified
Datatypes (even though they are technically ccts:Datatypes)or
ubl:QualifiedDatatypes.

3.7.4.9.1 CCTS Unqualified Datatypes Schema Module

UBL has adopted the UN/CEFACT Unqualified Datatype schema module. This includes
the code list schema modules that are imported into this schema module. When the

cd-UBL-NDR-2.0.DRAFT 44 30 August 2006

963
964

ccts:UnqualifiedDatatypes schema module is referenced, the “udt” namespace
prefix must be used.

[NMS17] The ccts:UnqualifiedDatatypes schema module namespace MUST be 965
represented by the token “udt” when referenced in other schemas. 966

967

968

969
970
971
972

3.7.4.9.2 UBL Qualified Datatypes Schema Module

The ubl:QualifiedDatatype is defined by specifying restrictions on the
ccts:UnqualifiedDatatype. To align the UBL qualified Datatypes
(ubl:QualifiedDatatypes) with the UBL modularity and reuse goals, the creation of
a single schema module that defines all ubl:QualifiedDatatypes is required.

[SSM18] A schema module defining all UBL Qualified Datatypes MUST be created. 973

974
975

The ubl:QualifiedDatatypes must be based upon the
ccts:UnqualifiedDatypes.

[SSM20] The UBL Qualified Datatypes schema module MUST import the 976
ccts:UnQualifiedDatatypes schema module. 977

978
979

The ubl:QualifiedDatatypes schema module name must follow the UBL module
naming approach.

[SSM19] The UBL Qualified Datatypes schema module MUST be identified as 980
QualifiedDatatypes in the document name in the schema header. 981

982

983
984

3.7.4.9.3 UBL Qualified Datatypes Schema Module Namespace

In keeping with the overall UBL namespace approach, a singular namespace must be
created for storing the ubl:QualifiedDatatypes schema module.

[NMS15] The ubl:QualifiedDatatypes schema module MUST reside in its own 985
namespace. 986

987
988

To ensure consistency in expressing the ubl:QualifiedDatatypes schema
module, a normative token that will be used in all UBL schemas must be defined.

[NMS16] The ubl:QualifiedDatatypes schema module namespace MUST be 989
represented by the namespace prefix “qdt” when referenced in other schemas. 990

991
992

To ensure consistency in expressing the CommonExtensionComponents schema
module, a normative token that will be used in all UBL schemas must be defined.

cd-UBL-NDR-2.0.DRAFT 45 30 August 2006

[NMS18] The CommonExtensionComponents schema module namespace MUST be 993
represented by the namespace prefix 'ext' when referenced in other schemas. 994

995

996
997
998
999

1000

1001

1002
1003
1004
1005
1006
1007
1008

3.8 Annotation and Documentation Requirements
Annotation is an essential tool in understanding and reusing a schema. UBL, as an
implementation of CCTS, requires an extensive amount of annotation to provide all
necessary metadata required by the CCTS specification. Each construct declared or
defined within the UBL library contains the requisite associated metadata to fully
describe its nature and support the CCTS requirement.

3.8.1 Schema Annotation

Although the UBL schema annotation is necessary, its volume results in a considerable
increase in the size of the UBL schemas with undesirable performance impacts. To
address this issue, two schemas will be developed for each UBL schema. A normative,
fully annotated schema will be provided to facilitate greater understanding of the schema
module and its components, and to meet the CCTS metadata requirements. A non-
normative schema devoid of annotation will also be provided that can be used at run-time
if required to meet processor resource constraints.

[GXS2] UBL MUST provide two schemas for each transaction. One normative 1009
schema shall be fully annotated. One non-normative schema shall be a run-1010
time schema devoid of documentation. 1011

1012

1013
1014
1015
1016
1017
1018

1019
1020
1021
1022

1023
1024
1025
1026

3.8.2 Embedded documentation

The information about each UBL ccts:BusinessInformationEntity is in the UBL
spreadsheet models. UBL spreadsheets contain all necessary information to produce fully
annotated schemas. Fully annotated schemas are valuable tools to implementers to assist
in understanding the nuances of the information contained therein. UBL annotations will
consist of information currently required by Section 7 of the CCTS and supplemented by
metadata from the UBL spreadsheet models.

The absence of an optional annotation inside the structured set of annotations in the
documentation element implies the use of the default value. For example, there are
several annotations relating to context such as ccts:BusinessContext or
ccts:IndustryContext whose absence implies that their value is "all contexts".

The following rules describe the documentation requirements for each
ubl:QualifiedDatatype and ccts:UnqualifiedDatatype definition. None of
these documentation rules apply in the case of extension where the 'UBL Extensions'
element is used.

cd-UBL-NDR-2.0.DRAFT 46 30 August 2006

[DOC1] The xsd:documentation element for every Datatype MUST contain a 1027
structured set of annotations in the following sequence and pattern (as defined 1028
in CCTS Section 7): 1029

 • DictionaryEntryName (mandatory) 1030

 • Version (mandatory): 1031

 • Definition(mandatory) 1032

 • RepresentationTerm (mandatory) 1033

 • QualifierTerm(s) (mandatory, where used) 1034

 • UniqueIdentifier (mandatory) 1035

 • Usage Rule(s) (optional) 1036

 • Content Component Restriction (optional) 1037
1038

 [DOC2] A Datatype definition MAY contain one or more Content Component 1039
Restrictions to provide additional information on the relationship between the 1040
Datatype and its corresponding Core Component Type. If used the Content 1041
Component Restrictions must contain a structured set of annotations in the 1042
following patterns: 1043

 • RestrictionType (mandatory): Defines the type of format restriction that applies 1044
to the Content Component. 1045

 • RestrictionValue (mandatory): The actual value of the format restriction that 1046
applies to the Content Component. 1047

 • ExpressionType (optional): Defines the type of the regular expression of the 1048
restriction value. 1049

1050

[DOC3] A Datatype definition MAY contain one or more Supplementary Component 1051
Restrictions to provide additional information on the relationship between the 1052
Datatype and its corresponding Core Component Type. If used the 1053
Supplementary Component Restrictions must contain a structured set of 1054
annotations in the following patterns: 1055

 • SupplementaryComponentName (mandatory): Identifies the Supplementary 1056
Component on which the restriction applies. 1057

 • RestrictionValue (mandatory, repetitive): The actual value(s) that is (are) 1058
valid for the Supplementary Component 1059

1060
1061

The following rule describes the documentation requirements for each ccts:Basic
BusinessInformationEntity definition.

[DOC4] The xsd:documentation element for every Basic Business Information 1062
Entity MUST contain a structured set of annotations in the following patterns: 1063

cd-UBL-NDR-2.0.DRAFT 47 30 August 2006

 • ComponentType (mandatory): The type of component to which the object 1064
belongs. For Basic Business Information Entities this must be “BBIE”. 1065

 • DictionaryEntryName (mandatory): The official name of a Basic Business 1066
Information Entity. 1067

 • Version (optional): An indication of the evolution over time of the Basic 1068
Business Information Entity. 1069

 • Definition(mandatory): The semantic meaning of a Basic Business Information 1070
Entity. 1071

 • Cardinality(mandatory): Indication whether the Basic Business Information 1072
Entity represents a not-applicable, optional, mandatory and/or repetitive 1073
characteristic of the Aggregate Business Information Entity. 1074

 • ObjectClassQualifier (optional): The qualifier for the object class. 1075

 • ObjectClass(mandatory): The Object Class containing the Basic Business 1076
Information Entity. 1077

 • PropertyTermQualifier (optional): A qualifier is a word or words which help 1078
define and differentiate a Basic Business Information Entity. 1079

 • PropertyTerm(mandatory): Property Term represents the distinguishing 1080
characteristic or Property of the Object Class and shall occur naturally in the 1081
definition of the Basic Business Information Entity. 1082

 • RepresentationTerm (mandatory): A Representation Term describes the form in 1083
which the Basic Business Information Entity is represented. 1084

 • DataTypeQualifier (optional): semantically meaningful name that differentiates 1085
the Datatype of the Basic Business Information Entity from its underlying 1086
Core Component Type. 1087

 • DataType (mandatory): Defines the Datatype used for the Basic Business 1088
Information Entity. 1089

 • AlternativeBusinessTerms (optional): Any synonym terms under which the 1090
Basic Business Information Entity is commonly known and used in the 1091
business. 1092

 • Examples (optional): Examples of possible values for the Basic Business 1093
Information Entity. 1094

1095
1096

The following rule describes the documentation requirements for each
ccts:AggregateBusinessInformationEntity definition.

[DOC5] The xsd:documentation element for every Aggregate Business 1097
Information Entity MUST contain a structured set of annotations in the 1098
following sequence and pattern: 1099

cd-UBL-NDR-2.0.DRAFT 48 30 August 2006

 • ComponentType (mandatory): The type of component to which the object 1100
belongs. For Aggregate Business Information Entities this must be “ABIE”. 1101

 • DictionaryEntryName (mandatory): The official name of the Aggregate 1102
Business Information Entity . 1103

 • Version (optional): An indication of the evolution over time of the Aggregate 1104
Business Information Entity. 1105

 • Definition(mandatory): The semantic meaning of the Aggregate Business 1106
Information Entity. 1107

 • ObjectClassQualifier (optional): The qualifier for the object class. 1108

 • ObjectClass(mandatory): The Object Class represented by the Aggregate 1109
Business Information Entity. 1110

 • AlternativeBusinessTerms (optional): Any synonym terms under which the 1111
Aggregate Business Information Entity is commonly known and used in the 1112
business. 1113

1114
1115

The following rule describes the documentation requirements for each
ccts:AssociationBusinessInformationEntity definition.

 [DOC6] The xsd:documentation element for every Association Business 1116
Information Entity element declaration MUST contain a structured set of 1117
annotations in the following sequence and pattern: 1118

 • ComponentType (mandatory): The type of component to which the object 1119
belongs. For Association Business Information Entities this must be “ASBIE”. 1120

 • DictionaryEntryName (mandatory): The official name of the Association 1121
Business Information Entity. 1122

 • Version (optional): An indication of the evolution over time of the Association 1123
Business Information Entity. 1124

 • Definition(mandatory): The semantic meaning of the Association Business 1125
Information Entity. 1126

 • Cardinality(mandatory): Indication whether the Association Business 1127
Information Entity represents an optional, mandatory and/or repetitive 1128
assocation. 1129

 • ObjectClass(mandatory): The Object Class containing the Association Business 1130
Information Entity. 1131

 • PropertyTermQualifier (optional): A qualifier is a word or words which help 1132
define and differentiate the Association Business Information Entity. 1133

 • PropertyTerm(mandatory): Property Term represents the Aggregate Business 1134
Information Entity contained by the Association Business Information Entity. 1135

cd-UBL-NDR-2.0.DRAFT 49 30 August 2006

 • AssociatedObjectClassQualifier (optional): Associated Object Class Qualifiers 1136
describe the 'context' of the relationship with another ABIE. That is, it is the 1137
role the contained Aggregate Business Information Entity plays within its 1138
association with the containing Aggregate Business Information Entity. 1139

 • AssociatedObjectClass (mandatory); Associated Object Class is the Object 1140
Class at the other end of this association. It represents the Aggregate Business 1141
Information Entity contained by the Association Business Information Entity. 1142

1143

[DOC8] The xsd:documentation element for every Supplementary Component 1144
attribute declarationMUST contain a structured set of annotations in the 1145
following sequence and pattern: 1146

 • Name (mandatory): Name in the Registry of a Supplementary Component of a 1147
Core Component Type. 1148

 • Definition (mandatory): A clear, unambiguous and complete explanation of the 1149
meaning of a Supplementary Component and its relevance for the related Core 1150
Component Type. 1151

 • Primitive type (mandatory): PrimitiveType to be used for the representation of 1152
the value of a Supplementary Component. 1153

 • Possible Value(s) (optional): one possible value of a Supplementary 1154
Component. 1155

1156

[DOC9] The xsd:documentation element for every Supplementary Component 1157
attribute declaration containing restrictions MUST include the following 1158
additional information appended to the information required by DOC8: 1159

 • Restriction Value(s) (mandatory): The actual value(s) that is (are) valid for the 1160
Supplementary Component. 1161

cd-UBL-NDR-2.0.DRAFT 50 30 August 2006

4 Naming Rules 1162

1163
1164

1165
1166
1167
1168
1169

1170
1171

1172
1173

1174
1175
1176
1177
1178

1179

1180
1181
1182
1183

The rules in this section make use of the following special concepts related to XML
elements.

 Top-level element: An element that encloses a whole UBL business
message. Note that UBL business messages might be carried by
messaging transport protocols that themselves have higher-level XML
structure. Thus, a UBL top-level element is not necessarily the root
element of the XML document that carries it.

 Lower-level element: An element that appears inside a UBL business
message. Lower-level elements consist of intermediate and leaf level.

 Intermediate element: An element not at the top level that is of a complex
type, only containing other elements and possibly attributes.

 Leaf element: An element containing only character data (though it may
also have attributes). Note that, because of the XSD mechanisms involved,
a leaf element that has attributes must be declared as having a complex
type, but a leaf element with no attributes may be declared with either a
simple type or a complex type.

4.1 General Naming Rules
In keeping with CCTS, UBL will use English as its normative language. If the UBL
Library is translated into other languages for localization purposes, these additional
languages might require additional restrictions. Such restrictions are expected be
formulated as additional rules and published as appropriate.

[GNR1] UBL XML element and type names MUST be in the English language, using 1184
the primary English spellings provided in the Oxford English Dictionary. 1185

1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

The CCTS adheres to the International Organization for Standardization
(ISO)/International Electrotechnical Commission (IEC) Technical Specification 11179
Information technology – Specification and standardization of data elements. The UBL
component library, as a syntax-neutral representation, is also fully conformant to those
rules. The UBL syntax-specific XSD instantiation of the UBL component library—in
some cases—refines the CCTS naming rules to leverage the capabilities of XML and
XSD. Specifically, truncation rules are applied to allow for reuse of element names
across parent element environments and to maintain brevity and clarity. CCTS, as an
implementation of 11179, furthers its basic tenets of data standardization into higher-
level constructs as expressed by the ccts:DictionaryEntryNames of those constructs

cd-UBL-NDR-2.0.DRAFT 51 30 August 2006

1196
1197
1198
1199
1200

– such as those for ccts:BasicBusinessInformationEntities and
ccts:AggregateBusinessInformationEntities. Since UBL is an
implementation of CCTS, UBL uses CCTS dictionary entry names as the basis for UBL
XML schema construct names. UBL converts these ccts:DictionaryEntryNames
into UBL XML schema construct names using strict transformation rules.

[GNR2] UBL XML element and type names MUST be consistently derived from 1201
CCTS conformant dictionary entry names. 1202

1203
1204
1205

Dictionary entry names contain periods, spaces, other separators, and characters not
allowed by W3C XML. These separators and characters are not appropriate for UBL
XML component names.

[GNR3] UBL XML element and type names constructed from 1206
ccts:DictionaryEntryNames MUST NOT include periods, spaces, other 1207
separators, or characters not allowed by W3C XML 1.0 for XML names. 1208

1209
1210
1211
1212
1213

Acronyms and abbreviations impact on semantic interoperability, and as such are to be
avoided to the maximum extent practicable. Since some abbreviations will inevitably be
necessary, UBL will maintain a normative list of authorized acronyms and abbreviations.
The intent of this restriction is to facilitate the use of common semantics and greater
understanding.

[GNR4] UBL XML element, and simple and complex type names MUST NOT use 1214
acronyms, abbreviations, or other word truncations, except those in the list of 1215
exceptions maintained and published by the UBL TC. 1216

1217
1218
1219
1220

1221

UBL does not desire a proliferation of acronyms and abbreviations. An exception list will
be maintained and tightly controlled by UBL. Any additions will only occur after careful
scrutiny to include assurance that any addition is critically necessary, and that any
addition will not in any way create semantic ambiguity.

Once an acronym or abbreviation has been approved, it is essential to ensuring semantic
clarity and interoperability that the acronym or abbreviation is always used. 1222

[GNR6] The acronyms and abbreviations listed in the UBL-approved list MUST 1223
always be used in place of the word or phrase they represent. 1224

1225
1226

Generally speaking, the names for UBL XML constructs must always be singular. The
only exception permissible is where the concept itself is pluralized.

[GNR7] UBL XML element, and type names MUST be in singular form unless the 1227
concept itself is plural. 1228

1229 Example:
Terms 1230

cd-UBL-NDR-2.0.DRAFT 52 30 August 2006

1231
1232

Approved acronyms and abbreviations must be used consistently across documents. To
facilitate consistency the following rules must be applied.

[GNR10] Acronyms and abbreviations at the beginning of an attribute name MUST 1233
appear in all lower case. All other acronym and abbreviation usage in an 1234
attribute declaration MUST appear in upper case. 1235

1236

[GNR11] Acronyms and abbreviations MUST appear in all upper case for all element 1237
declarations and type definitions. 1238

1239
1240
1241
1242
1243

XML is case sensitive. Consistency in the use of case for a specific XML component
(element, type) is essential to ensure every occurrence of a component is treated as the
same. This is especially true in a business-based data-centric environment such as what is
being addressed by UBL. Additionally, the use of visualization mechanisms such as
capitalization techniques assist in ease of readability and ensure consistency in

cd-UBL-NDR-2.0.DRAFT 53 30 August 2006

1244
1245
1246
1247

application and semantic clarity. The ebXML architecture document specifies a standard
use of upper and lower camel case for expressing XML elements and attributes
respectively.10 UBL will adhere to the ebXML standard. Specifically, UBL element and
type names will be in UpperCamelCase (UCC).

 [GNR8] The UpperCamelCase (UCC) convention MUST be used for naming elements 1248
and types 1249

1250 Example:
CurrencyBaseRate 1251
CityNameType 1252
 1253

10 ebXML, ebXML Technical Architecture Specification v1.0.4, 16 February 2001

cd-UBL-NDR-2.0.DRAFT 54 30 August 2006

1254

1255
1256
1257

1258
1259
1260
1261
1262

1263
1264

1265
1266
1267

4.2 Type Naming Rules
UBL identifies several categories of naming rules for types, namely for complex types
based on Aggregate Business Information Entities, Basic Business Information Entities,
and Basic Business Information Entity Properties.

Each of these CCTS constructs have a ccts:DictionaryEntryName that is a fully
qualified construct based on ISO 11179. As such, these names convey explicit semantic
clarity with respect to the data being described. Accordingly, these ccts:Dictionary
EntryNames provide a mechanism for ensuring that UBL xsd:complexType names
are semantically unambiguous, and that there are no duplications of UBL type names.

4.2.1 Complex Type Names for CCTS Aggregate Business
Information Entities (ABIEs)

 UBL xsd:complexType names for ABIEs will be derived from their dictionary entry
name by removing separators to follow general naming rules, and appending the suffix
“Type” to replace the word “Details.”

[CTN1] A UBL xsd:complexType name based on an ccts:Aggregate 1268
BusinessInformationEntity MUST be the ccts:Dictionary 1269
EntryName with the separators removed and with the “Details” suffix 1270
replaced with “Type”. 1271

1272 Example:
ccts:AggregateBusiness
 InformationEntity

UBL xsd:complexType

Address. Details AddressType
Financial Account. Details FinancialAccountType

4.2.2 Complex Type Names for CCTS Basic Business Information
Entity (BBIE) Properties

1273
1274

1275
1276
1277
1278
1279
1280

All BBIE Properties are reusable across multiple BBIEs. The CCTS does not specify, but
implies, that BBIE Property names are the reusable property term and representation term
of the family of BBIEs that are based on them. The UBL xsd:complexType names for
BBIE Properties will be derived from the shared property and representation terms
portion of the dictionary entry names in which they appear by removing separators to
follow general naming rules, and appending the suffix “Type”.

[CTN2] A UBL xsd:complexType name based on a ccts:BasicBusiness 1281
InformationEntityProperty MUST be the ccts:Dictionary 1282
EntryName shared property term and its qualifiers and representation term of 1283

cd-UBL-NDR-2.0.DRAFT 55 30 August 2006

the ccts:BasicBusinessInformationEntity, with the separators 1284
removed and with the “Type” suffix appended after the representation term. 1285

1286 Example:
 <!--===== Basic Business Information Entity Type Definitions ===== --> 1287
 <xsd:complexType name="ChargeIndicatorType"> 1288
 ... 1289
 </xsd:comlextType> 1290

1291

[CTN6] A UBL xsd:complexType name based on a ccts:BasicBusiness 1292
InformationEntityProperty and with a . ccts:BasicBusiness 1293
InformationEntityRepresentationTerm of 'Text' MUST have 1294
the word "Text" removed from the end of its name. 1295

1296

[CTN7] A UBL xsd:complexType name based on a ccts:BasicBusiness 1297
InformationEntityProperty and with a . ccts:BasicBusiness 1298
InformationEntityRepresentationTerm of 'Identifier' MUST 1299
have the word "Identifier" replaced by the word "ID" at the end of its name. 1300

1301

[CTN8] A UBL xsd:complexType name based on a ccts:BasicBusiness 1302
InformationEntityProperty MUST remove all duplication of words 1303
that occur as a result of duplicate property terms and representation terms. 1304

cd-UBL-NDR-2.0.DRAFT 56 30 August 2006

1305

1306
1307
1308
1309
1310

1311
1312

4.3 Element Naming Rules
As defined in the UBL Model (See Figure 2-3), UBL elements will be created for
ccts:AggregateBusinessInformationEntities, ccts:BasicBusiness
InformationEntities, and ccts:AssociationBusinessInformation
Entities. UBL element names will reflect this relationship in full conformance with
ISO11179 element naming rules.

4.3.1 Element Names for CCTS Aggregate Business Information
Entities (ABIEs)

[ELN1] A UBL global element name based on a ccts:ABIE MUST be the same as 1313
the name of the corresponding xsd:complexType to which it is bound, with 1314
the word “Type” removed. 1315

1316
1317

1318

For example, a UBL xsd:complexType name based on the ABIE Party. Details
will be PartyType. The global element based on PartyType will be named Party .

Example:
 1319
 1320

<xsd:element name="Party" type="PartyType"/> 1321
 <xsd:complexType name="PartyType"> 1322
 1323
 <xsd:annotation> 1324
 1325
 —!--Documentation goes here--> </xsd:annotation> 1326
 1327
 <xsd:sequence> 1328
 1329
 <xsd:element ref="cbc:MarkCareIndicator" minOccurs="0" 1330
maxOccurs="1"> 1331
 1332
 ... 1333
 1334
 </xsd:element> 1335
 1336
 <xsd:element ref="cbc:MarkAttentionIndicator" minOccurs="0" 1337
maxOccurs="1"> 1338
 1339
 ... 1340
 1341
 </xsd:element> 1342
 1343
 <xsd:element ref="PartyIdentification" minOccurs="0" 1344
maxOccurs="unbounded"> 1345
 1346
 ... 1347
 1348
 </xsd:element> 1349
 1350
 <xsd:element ref="PartyName" minOccurs="0" maxOccurs="1"> 1351
 1352
 ... 1353

cd-UBL-NDR-2.0.DRAFT 57 30 August 2006

 1354
 </xsd:element> 1355
 1356
 <xsd:element ref="Address" minOccurs="0" maxOccurs="1"> 1357
 1358
 ... 1359
 </xsd:element> 1360
 ... 1361
 1362
 </xsd:sequence> 1363
 1364

1365
1366

1367

4.3.2 Element Names for CCTS Basic Business Information Entity
(BBIE) Properties

The same naming concept used for ABIEs applies to BBIE Properties.

[ELN2] A UBL global element name based on a ccts:BBIEProperty MUST be the 1368
same as the name of the corresponding xsd:complexType to which it is 1369
bound, with the word “Type” removed. 1370

Example: 1371
 <!--===== Basic Business Information Entity Type Definitions =====--> 1372
 <xsd:complexType name="ChargeIndicatorType"> 1373
 ... 1374
 </xsd:comlextType> 1375
 ... 1376
 <!--===== Basic Business Information Entity Property Element Declarations 1377
=====--> 1378
 <xsd:element name="ChargeIndicator" type="ChargeIndicatorType"/> 1379

1380
1381

1382
1383
1384
1385
1386

4.3.3 Element Names for CCTS Association Business Information
Entities (ASBIEs)

An ASBIE is not a class like an ABIE or a BBIE Property that is reused as a BBIE.
Rather, it is an association between two classes. As such, an element representing the
ASBIE does not have its own unique xsd:complexType. Instead, when an element
representing an ASBIE is declared, the element is bound to the xsd:complexType of its
associated ABIE by referencing its global element declaration.

[ELN3] A UBL global element name based on a ccts:ASBIE MUST be the 1387
ccts:ASBIE dictionary entry name property term and its qualifiers; and the 1388
object class term and qualifiers of its associated ccts:ABIE. All 1389
ccts:DictionaryEntryName separators MUST be removed.. 1390

cd-UBL-NDR-2.0.DRAFT 58 30 August 2006

1391

1392
1393
1394
1395
1396

4.4 Attributes in UBL
UBL, as a transactional based XML exchange format, has chosen to significantly restrict
the use of attributes. This restriction is in keeping with the fact that attribute usage is
relegated to supplementary components only; all “primary” business data appears
exclusively in element content. These attributes are defined in the UN/CEFACT
Unqualified Datatype schema module.

cd-UBL-NDR-2.0.DRAFT 59 30 August 2006

5 Declarations and Definitions 1397

1398
1399
1400
1401

1402

1403

1404
1405
1406

In W3C XML Schema, elements are defined in terms of complex or simple types and
attributes are defined in terms of simple types. The rules in this section govern the
consistent structuring of these type constructs and the manner for unambiguously and
thoroughly documenting them in the UBL Library.

5.1 Type Definitions

5.1.1 General Type Definitions

Since UBL elements and types are intended to be reusable, all types must be named. This
permits other types to establish elements that reference these types, and also supports the
use of extensions for the purposes of versioning and customization.

[GTD1] All types MUST be named. 1407

1408 Example:
 <xsd:complexType name="QuantityType"> 1409
 ... 1410
 </xsd:complexType> 1411

1412
1413
1414
1415
1416
1417
1418
1419

UBL disallows the use of the type xsd:anyType, because this feature permits the
introduction of potentially unknown types into an XML instance. UBL intends that all
constructs within the instance be described by the schemas describing that instance -
xsd:anyType is seen as working counter to the requirements of interoperability. In
consequence, particular attention is given to the need to enable meaningful validation of
the UBL document instances. Were it not for this, xsd:anyType might have been
allowed.
[GTD2] The predefined XML Schema type xsd:anyType MUST NOT be used. 1420

1421

1422
1423
1424
1425
1426
1427
1428
1429
1430

5.1.2 Simple Types

The Core Components Technical Specification provides a set of constructs for the
modeling of basic data, Core Component Types. These are represented in UBL with a
library of complex types, with the effect that most "simple" data is represented as
property sets defined according to the CCTs, made up of content components and
supplementary components. In most cases, the supplementary components are expressed
as XML attributes, the content component becomes element content, and the CCT is
represented with an xsd:complexType. There are exceptions to this rule in those cases
where all of a CCT's properties can be expressed without the use of attributes. In these
cases, an xsd:simpleType is used.

cd-UBL-NDR-2.0.DRAFT 60 30 August 2006

1431
1432
1433

1434

1435
1436
1437
1438

UBL does not define its own simple types. These are defined in the UN/CEFACT
Unqualified Datatype schema module. UBL may define restrictions of these simple types
in the UBL Qualified Datatype schema module.

5.1.3 Complex Types

Since even simple datatypes are modeled as property sets in most cases, the XML
expression of these models primarily employs xsd:complexType. To facilitate reuse,
versioning, and customization, all complex types are named. In the UBL model ABIEs,
are considered classes (objects) .

[CTD1] For every class identified in the UBL model, a named xsd:complexType 1439
MUST be defined. 1440

1441 Example:
 <xsd:complexType name="BuildingNameType"> 1442
 1443
 1444
 1445
 </xsd:complexType> 1446
 1447

1448
1449

Every class identified in the UBL model consists of properties. These properties are
either ASBIEs, when the property represents another class, or BBIE properties.

[CTD25] For every ccts:BBIEProperty identified in the UBL model a named 1450
xsd:complexType must be defined. 1451

1452

1453

1454
1455
1456
1457

5.1.3.10 Aggregate Business Information Entities (ABIEs)

The concept of an ABIE encapsulates the relationship between a class (the ABIE) and its
properties (those data items contained within the ABIE). UBL represents this relationship
by defining an xsd:complexType for each ABIE with its properties represented as a
sequence of references to global elements.

 [CTD2] Every ccts:ABIE xsd:complexType definition content model MUST use 1458
the xsd:sequence element containing references to the appropriate global 1459
element declarations. 1460

1461 Example:
<xsd:complexType name=”AddressType”> 1462
 1463
 ... 1464
 1465
 <xsd:sequence> 1466
 1467
 <xsd:element ref=”cbc:CityName” minOccurs=”0” maxOccurs=”1”> 1468

cd-UBL-NDR-2.0.DRAFT 61 30 August 2006

 1469
 ... 1470
 1471
 </xsd:element> 1472
 1473
 <xsd:element ref=”cbc:PostalZone” minOccurs=”0” maxOccurs=”1”> 1474
 1475
 ... 1476
 </xsd:element>... 1477
 1478
 </xsd:sequence> 1479
 1480
 </xsd:complexType> 1481

1482

1483
1484
1485
1486
1487
1488
1489
1490
1491
1492

5.1.3.11 Basic Business Information Entities (BBIEs)

All BBIEs, in accordance with the Core Components Technical Specification, have a
representation term. This may be a primary or secondary representation term.
Representation terms describe the structural representation of the BBIE. These
representation terms are expressed in the UBL Model as Unqualified Datatypes bound to
a Core Component Type that describes their structure. In addition to the Unqualified
Datatypes defined in CCTS, UBL has defined a set of Qualified Datatypes that are
derived from the CCTS Unqualified Datatypes.There are a set of rules concerning the
way these relationships are expressed in the UBL XML library. As discussed above,
BBIE Properties are represented with complex types. Within these are
xsd:simpleContent elements that extend the Datatypes.

[CTD3] Every ccts:BBIEProperty xsd:complexType definition content model 1493
MUST use the xsd:simpleContent element. 1494

1495

[CTD4] Every ccts:BBIEProperty xsd:complexType content model 1496
xsd:simpleContent element MUST consist of an xsd:extension 1497
element. 1498

1499

[CTD5] Every ccts:BBIEProperty xsd:complexType content model xsd:base 1500
attribute value MUST be the UN/CEFACT Unqualified Datatype or UBL 1501
Qualified Datatype as appropriate. 1502

1503 Example:
 <xsd:complexType name="StreetNameType”> 1504
 <xsd:simpleContent> 1505
 <xsd:extension base=”udt:NameType”/> 1506
 </xsd:simpleContent> 1507
 </xsd:complexType> 1508

1509

1510
1511
1512

5.1.3.12 Datatypes

There is a direct one-to-one relationship between ccts:CoreComponentTypes and
ccts:PrimaryRepresentationTerms. Additionally, there are several
ccts:SecondaryRepresentationTerms that are semantic refinements of their

cd-UBL-NDR-2.0.DRAFT 62 30 August 2006

1513
1514
1515
1516
1517
1518
1519
1520

1521

1522
1523
1524
1525
1526
1527
1528
1529

parent ccts:PrimaryRepresentationTerm. The total set of
ccts:RepresentationTerms by their nature represent ccts:Datatypes.
Specifically, for each ccts:PrimaryRepresentationTerm or
ccts:SecondaryRepresentationTerm, a ccts:UnqualifiedDatatype exists. In
the UBL XML Library, these ccts:UnqualifiedDatatypes are expressed as
complex or simple types that are of the type of its corresponding
ccts:CoreComponentType. UBL uses the ccts:UnqualifiedDatatypes that are
provided by the UN/CEFACT Unqualified Datatype (udt) schema module.

5.1.3.12.1 Qualified Datatypes

The data types defined in the unqualified data type schema module are intended to be
suitable as the xsd:base type for some, but not all BBIEs. As business process modeling
reveals the need for specialized data types, new ‘qualified’ types will need to be defined.
These new ccts:QualifiedDatatype must be based on an
ccts:UnqualifiedDatatype and must represent a semantic or technical restriction of
the ccts:UnqualifiedDatatype. Technical restrictions must be implemented as a
xsd:restriction or as a new xsd:simpleType if the supplementary components of the
qualified data type map directly to the properties of a built-in XSD data type.

[CTD6] For every Qualified Datatype used in the UBL model, a named 1530
xsd:complexType or xsd:simpleType MUST be defined. 1531

1532

[CTD20] A ccts:QualifiedDataType MUST be based on an unqualified data type 1533
and add some semantic and/or technical restriction to the unqualified data 1534
type. 1535

1536

[CTD21] The name of a ccts:QualifiedDataType MUST be the name of its base 1537
ccts:UnqualifiedDataType with separators and spaces removed and 1538
with its qualifier term added. 1539

1540 In accordance with rule GXS3 built-in XSD data types will be used whenever possible.

[CTD22] Every qualified datatype based on an unqualified datatype 1541
xsd:complexType whose supplementary components map directly to the 1542
properties of an XSD built-in data type 1543

 MUST be defined as an xsd:simpleType 1544

 MUST contain one xsd:restriction element 1545

 MUST include an xsd:base attribute that defines the specific XSD built-in 1546
data type required for the content component 1547

cd-UBL-NDR-2.0.DRAFT 63 30 August 2006

1548

[CTD23] Every qualified datatype based on an unqualified datatype 1549
xsd:complexType whose supplementary components do not map directly to 1550
the properties of an XSD built-in data type 1551

 MUST be defined as an xsd:complexType 1552

 MUST contain one xsd:simpleContent element 1553

 MUST contain one xsd:restriction element 1554

 MUST include the unqualified datatype as its xsd:base attribute 1555

1556

[CTD24] Every qualified datatype based on an unqualified datatype xsd:simpleType 1557

 MUST contain one xsd:restriction element 1558

 MUST include the unqualified datatype as its xsd:base attribute 1559

1560 5.1.3.13 Core Component Types
 UBL has adopted UN/CEFACT's Core Component Type schema module. 1561

1562

1563

1564
1565
1566
1567

5.2 Element Declarations

5.2.1 Elements Bound to Complex Types

The binding of UBL elements to their xsd:complexType is based on the associations
identified in the UBL model. For the ccts:BasicBusinessInformationEntities
(BBIEs) and ccts:AggregateBusinessInformationEntities (ABIEs), the UBL
elements will be directly associated to its corresponding xsd:complexType.

[ELD3] For every class and property identified in the UBL model, a global element 1568
bound to the corresponding xsd:complexType MUST be declared. 1569

1570 Example:

For the Party.Details object class, a complex type/global element declaration pair 1571
is created through the declaration of a Party element that is of type PartyType. 1572

cd-UBL-NDR-2.0.DRAFT 64 30 August 2006

1573
1574
1575

1576

The element thus created is useful for reuse in the building of new business messages.
The complex type thus created is useful for both reuse and customization, in the building
of both new and contextualized business messages.

Example:
 <xsd:element name=”BuyerParty” type=”BuyerPartyType”/> 1577
 <xsd:complexType name=”BuyerPartyType" ... 1578
 </xsd:complexType> 1579

1580

1581
1582
1583
1584

5.2.2 Elements Representing ASBIEs

A ccts:AssociationBusinessInformationEntity (ASBIE) is not a class like
ABIEs. Rather, it is an association between two classes. As such, the element declaration
will bind the element to the xsd:complexType of the associatedABIE. There are two
types of ASBIEs – those that have qualifiers in the object class, and those that do not.

[ELD4] When a ccts:ASBIE is unqualified, it is bound via reference to the global 1585
ccts:ABIE element to which it is associated. 1586

1587

[ELD11] When a ccts:ASBIE is qualified, a new element MUST be declared and 1588
bound to the xsd:complexType of its associated ccts:ABIE. 1589

1590 5.2.3 Code List Import
[ELD6] The code list xsd:import element MUST contain the namespace and 1591

schema location attributes. 1592

1593 5.2.4 Empty Elements
[ELD7] Empty elements MUST not be declared, except in the case of extension, 1594

where the 'UBL Extensions' element is used. 1595

cd-UBL-NDR-2.0.DRAFT 65 12 May 2006

6 Code Lists 1596

1597

1598

UBL has adopted the Code Methodology11 as proposed by G Ken Holman.

In addition to the methodology, the following rules apply.

[CDL1] All UBL Codes MUST be part of a UBL or externally maintained Code List. 1599

1600
1601

Because the majority of code lists are owned and maintained by external agencies, UBL
will make maximum use of such external code lists where they exist.

[CDL2] The UBL Library SHOULD identify and use external standardized code lists 1602
rather than develop its own UBL-native code lists. 1603

11 Ken's Code List Methodology Reference required

cd-UBL-NDR-2.0.DRAFT 66 12 May 2006

1604
1605
1606
1607

In some cases the UBL Library may extend an existing code list to meet specific business
requirements. In others cases the UBL Library may have to create and maintain a code
list where a suitable code list does not exist in the public domain. Both of these types of
code lists would be considered UBL-internal code lists.

[CDL3] The UBL Library MAY design and use an internal code list where an existing 1608
external code list needs to be extended, or where no suitable external code list 1609
exists. 1610

1611
1612

UBL-internal code lists will be designed with maximum re-use in mind to facilitate
maximum use by others.

cd-UBL-NDR-2.0.DRAFT 67 12 May 2006

7 Miscellaneous XSD Rules 1613

1614
1615
1616

1617

1618
1619
1620

UBL, as a business standard vocabulary, requires consistency in its development. The
number of UBL Schema developers will expand over time. To ensure consistency, it is
necessary to address the optional features in XSD that are not addressed elsewhere.

7.1 xsd:simpleType
UBL guiding principles require maximum reuse. XSD provides for forty four built-in
Datatypes expressed as simple types. In keeping with the maximize re-use guiding
principle, these built-in simple types should be used wherever possible.

[GXS3] Built-in XSD Simple Types SHOULD be used wherever possible. 1621

1622

1623
1624
1625

7.2 Namespace Declaration
The W3C XSD specification allows for the use of any token to represent its location. To
ensure consistency, UBL has adopted the generally accepted convention of using the
“xsd” token for all UBL schema and schema modules.

[GXS4] All W3C XML Schema constructs in UBL Schema and schema modules 1626
MUST contain the following namespace declaration on the xsd schema 1627
element: 1628

 xmlns:xsd="http://www.w3.org/2001/XMLSchema” 1629

1630

1631
1632
1633

7.3 xsd:substitutionGroup
The xsd:substitutionGroup feature enables a type definition to identify substitution
elements in a group. Although a useful feature in document centric XML applications,
this feature is not used by UBL.

[GXS5] The xsd:substitutionGroup feature MUST NOT be used. 1634

1635

1636
1637
1638
1639

7.4 xsd:final
UBL does not use extensions in its normative schema. Extensions are allowed by
customizers as outlined in the Guidelines for Customization. UBL may determine that
certain type definitions are innapropriate for any customization. In those instances, the
xsd:final attribute will be used.

[GXS6] The xsd:final attribute MUST be used to control extensions where there is 1640
a desire to prohibit further extensions. 1641

cd-UBL-NDR-2.0.DRAFT 68 12 May 2006

1642

1643
1644
1645
1646
1647
1648

7.5 xsd: notation
The xsd:notation attribute identifies a notation. Notation declarations corresponding
to all the <notation> element information items in the [children], if any, plus any
included or imported declarations. Per XSD Part 2, “It is an ·error· for NOTATION to be
used directly in a schema. Only Datatypes that are ·derived· from NOTATION by
specifying a value for ·enumeration· can be used in a schema.” The UBL schema model
does not require or support the use of this feature.

[GXS7] xsd:notation MUST NOT be used. 1649

1650

1651
1652
1653
1654
1655

7.6 xsd:all
The xsd:all compositor requires occurrence indicators of minOccurs = 0 and
maxOccurs = 1. The xsd:all compositor allows for elements to occur in any order.
The result is that in an instance document, elements can occur in any order, are always
optional, and never occur more than once. Such restrictions are inconsistent with data-
centric scenarios such as UBL.

[GXS8] The xsd:all element MUST NOT be used. 1656

1657

1658
1659
1660
1661
1662

7.7 xsd:choice
The xsd:choice compositor allows for any element declared inside it to occur in the
instance document, but only one. As with the xsd:all compositor, this feature is
inconsistent with business transaction exchanges. UBL recognizes that it is a very useful
construct in situations where customization and extensibility are not a concern, however,
UBL does not recommend its use because xsd:choice cannot be extended.

[GXS9] The xsd:choice element SHOULD NOT be used where customisation and 1663
extensibility are a concern. 1664

1665

1666
1667

1668

1669
1670
1671
1672

7.8 xsd:include
xsd:include can only be used when the including schema is in the same namespace as the
included schema.

7.9 xsd:union
The xsd:union feature provides a mechanism whereby a datatype is created as a union
of two or more existing datatypes. With UBL’s strict adherence to the use of
ccts:Datatypes that are explicitly declared in the UBL library, this feature is
inappropriate except for codelists. In some cases external customizers may choose to use

http://www.w3.org/TR/xml-infoset/#infoitem.element

cd-UBL-NDR-2.0.DRAFT 69 12 May 2006

1673
1674

this technique for codelists and as such the use of the union technique may prove
beneficial for customizers.

[GXS11] The xsd:union technique MUST NOT be used except for Code Lists. The 1675
xsd:union technique MAY be used for Code Lists. 1676

1677

1678
1679
1680
1681
1682
1683

7.10 xsd:appinfo
The xsd:appinfo feature is used by schema to convey processing instructions to a
processing application, Stylesheet, or other tool. Some users of UBL have determined
that this technique poses a security risk and have employed techniques for stripping
xsd:appinfo from schemas. As UBL is committed to ensuring the widest possible
target audience for its XML library, this feature is not used – except to convey non-
normative information.

[GXS12] UBL designed schema SHOULD NOT use xsd:appinfo. If used, 1684
xsd:appinfo MUST only be used to convey non-normative information. 1685

1686

1687
1688

7.11 xsd:schemaLocation
UBL is an international standard that will be used in perpetuity by companies around the
globe. It is important that these users have unfettered access to all UBL schema.

[GXS15] Each xsd:schemaLocation attribute declaration MUST contain a system-1689
resolvable URL, which at the time of release from OASIS shall be a relative 1690
URL referencing the location of the schema or schema module in the release 1691
package. 1692

1693 7.12 xsd:nillable
[GXS16] The built in xsd:nillable attribute MUST NOT be used for any UBL 1694

declared element. 1695

1696

1697
1698
1699
1700
1701
1702
1703

7.13 xsd:anyAttribute
UBL disallows the use of xsd:anyAttribute, because this feature permits the
introduction of potentially unknown attributes into an XML instance. UBL intends that
all constructs within the instance be described by the schemas describing that –instance–-
xsd:anyAttribute is seen as working counter to the requirements of interoperability.
In consequence, particular attention is given to the need to enable meaningful validation
of the UBL document instances. Were it not for this, xsd:anyAttribute might have
been allowed.
[GXS17] The xsd:anyAttribute MUST NOT be used. 1704

cd-UBL-NDR-2.0.DRAFT 70 12 May 2006

1705

1706
1707
1708

7.14 Extension and Restriction
UBL fully recognizes the value of supporting extension and restriction of its core library
by customizers. The UBL extension and restriction recommendations are discussed in the
Guidelines for the Customization of UBL Schemas available as part of UBL 1.0.

[GXS13] Complex Type extension or restriction MAY be used where appropriate. 1709

cd-UBL-NDR-2.0.DRAFT 71 12 May 2006

8 Instance Documents 1710

1711
1712
1713
1714
1715
1716

Previous drafts of this document contained a section specifying several rules governing
conformant UBL instances. Since these rules, addressing instance validation, character
encoding, and empty elements, do not pertain to schema design or the naming of
information items, they have been relocated to the UBL 2.0 specification as document
constraints to be observed in addition to the constraints expressed in the UBL 2.0
schemas.

cd-UBL-NDR-2.0.DRAFT 72 12 May 2006

Appendix A. UBL NDR 2.0 Checklist 1717

1718
1719
1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

The following checklist constitutes all UBL XML naming and design rules as defined in
UBL Naming and Design Rules version 2.0, 26 January 2006. The checklist is in
alphabetical sequence as follows:

Attribute Declaration Rules (ATD)

Code List Rules (CDL)

ComplexType Definition Rules (CTD)

ComplexType Naming Rules (CTN)

Documentation Rules (DOC)

Element Declaration Rules (ELD)

Element Naming Rules (ELN)

General Naming Rules (GNR)

General Type Definition Rules (GTD)

General XML Schema Rules (GXS)

Modeling Constraints Rules (MDC)

Naming Constraints Rules (NMC)

Namespace Rules (NMS)

Root Element Declaration Rules (RED)

Schema Structure Modularity Rules (SSM)

Versioning Rules (VER)

A.1 Attribute Declaration rules

[ATD6] (See GXS15)

[ATD7] (See GXS16)

cd-UBL-NDR-2.0.DRAFT 73 12 May 2006

[ATD8] (See GXS17)

 1737

A.2 Code List rules

[CDL1] All UBL Codes MUST be part of a UBL or externally maintained Code
List.

[CDL2] The UBL Library SHOULD identify and use external standardized code
lists rather than develop its own UBL-native code lists.

[CDL3] The UBL Library MAY design and use an internal code list where an
existing external code list needs to be extended, or where no suitable
external code list exists.

 1738

A.3 ComplexType Definition rules

[CTD1] For every class identified in the UBL model, a named
xsd:complexType MUST be defined.

[CTD2] Every ccts:ABIE xsd:complexType definition content model MUST
use the xsd:sequence element containing references to the appropriate
global element declarations.

[CTD3] Every ccts:BBIEProperty xsd:complexType definition content
model MUST use the xsd:simpleContent element.

[CTD4] Every ccts:BBIEProperty xsd:complexType content model
xsd:simpleContent element MUST consist of an xsd:extension
element.

[CTD5] Every ccts:BBIEProperty xsd:complexType content model
xsd:base attribute value MUST be the UN/CEFACT Unqualified
Datatype or UBL qualified Datatype as appropriate.

cd-UBL-NDR-2.0.DRAFT 74 12 May 2006

[CTD6] For every Qualified Datatype used in the UBL model, a named
xsd:complexType or xsd:simpleType MUST be defined.

[CTD20] A ccts:QualifiedDataType MUST be based on an unqualified data
type and add some semantic and/or technical restriction to the unqualified
data type.

[CTD21] The name of a ccts:QualifiedDataType MUST be the name of its
base ccts:UnqualifiedDataType with separators and spaces removed
and with its qualifier term added.

[CTD22] Every qualified datatype based on an unqualified datatype
xsd:complexType whose supplementary components map directly to the
properties of an XSD built-in data type

 MUST be defined as an xsd:simpleType

 MUST contain one xsd:restriction element

 MUST include an xsd:base attribute that defines the specific
XSD built-in data type required for the content component

[CTD23] Every qualified datatype based on an unqualified datatype
xsd:complexType whose supplementary components do not map directly to
the properties of an XSD built-in data type

 MUST be defined as an xsd:complexType

 MUST contain one xsd:simpleContent element

 MUST contain one xsd:restriction element

 MUST include the unqualified datatype as its xsd:base attribute

[CTD24] Every qualified datatype based on an unqualified datatype
xsd:simpleType

 MUST contain one xsd:restriction element

 MUST include the unqualified datatype as its xsd:base attribute

[CTD25] For every ccts:BBIEProperty identified in the UBL model a named

cd-UBL-NDR-2.0.DRAFT 75 12 May 2006

xsd:complexType must be defined.

 1739

A.4 Complex Type Naming rules

[CTN1] A UBL xsd:complexType name based on an ccts:Aggregate
BusinessInformationEntity MUST be the
ccts:DictionaryEntryName with the separators removed and with the
“Details” suffix replaced with “Type”.

[CTN2] A UBL xsd:complexType name based on a ccts:BasicBusiness
InformationEntityProperty MUST be the ccts:Dictionary
EntryName shared property term and its qualifiers and representation term
of the ccts:BasicBusinessInformationEntity, with the separators
removed and with the “Type” suffix appended after the representation
term.

[CTN6] A UBL xsd:complexType name based on a ccts:BasicBusiness
InformationEntityProperty and with a . ccts:BasicBusiness
InformationEntityRepresentationTerm of 'Text' MUST have
the word "Text" removed from the end of its name.

[CTN7] A UBL xsd:complexType name based on a ccts:BasicBusiness
InformationEntityProperty and with a . ccts:BasicBusiness
InformationEntityRepresentationTerm of 'Identifier'
MUST have the word "Identifier" replaced by the word "ID" at the end of
its name.

[CTN8] A UBL xsd:complexType name based on a ccts:BasicBusiness
InformationEntityProperty MUST remove all duplication of words
that occur as a result of duplicate property terms and representation terms.

 1740

A.5 Documentation rules

[DOC1] The xsd:documentation element for every Datatype MUST contain a
structured set of annotations in the following sequence and pattern (as

cd-UBL-NDR-2.0.DRAFT 76 12 May 2006

defined in CCTS Section 7):

DictionaryEntryName (mandatory)

Version (mandatory):

Definition(mandatory)

RepresentationTerm (mandatory)

QualifierTerm(s) (mandatory, where used)

UniqueIdentifier (mandatory)

Usage Rule(s) (optional)

Content Component Restriction (optional)

[DOC2] A Datatype definition MAY contain one or more Content Component
Restrictions to provide additional information on the relationship between
the Datatype and its corresponding Core Component Type. If used the
Content Component Restrictions must contain a structured set of
annotations in the following patterns:

RestrictionType (mandatory): Defines the type of format restriction that
applies to the Content Component.

RestrictionValue (mandatory): The actual value of the format restriction
that applies to the Content Component.

ExpressionType (optional): Defines the type of the regular expression of
the restriction value.

[DOC3] A Datatype definition MAY contain one or more Supplementary
Component Restrictions to provide additional information on the
relationship between the Datatype and its corresponding Core Component
Type. If used the Supplementary Component Restrictions must contain a
structured set of annotations in the following patterns:

SupplementaryComponentName (mandatory): Identifies the
Supplementary Component on which the restriction applies.

RestrictionValue (mandatory, repetitive): The actual value(s) that is (are)
valid for the Supplementary Component

cd-UBL-NDR-2.0.DRAFT 77 12 May 2006

[DOC4] The xsd:documentation element for every Basic Business Information
Entity MUST contain a structured set of annotations in the following
patterns:

ComponentType (mandatory): The type of component to which the object
belongs. For Basic Business Information Entities this must be “BBIE”.

DictionaryEntryName (mandatory): The official name of a Basic Business
Information Entity.

Version (optional): An indication of the evolution over time of the Basic
Business Information Entity.

Definition(mandatory): The semantic meaning of a Basic Business
Information Entity.

Cardinality(mandatory): Indication whether the Basic Business Information
Entity represents a not-applicable, optional, mandatory and/or repetitive
characteristic of the Aggregate Business Information Entity.

ObjectClassQualifier (optional): The qualifier for the object class.

ObjectClass(mandatory): The Object Class containing the Basic Business
Information Entity.

PropertyTermQualifier (optional): A qualifier is a word or words which
help define and differentiate a Basic Business Information Entity.

PropertyTerm(mandatory): Property Term represents the distinguishing
characteristic or Property of the Object Class and shall occur naturally in
the definition of the Basic Business Information Entity.

RepresentationTerm (mandatory): A Representation Term describes the
form in which the Basic Business Information Entity is represented.

DataTypeQualifier (optional): semantically meaningful name that
differentiates the Datatype of the Basic Business Information Entity from
its underlying Core Component Type.

DataType (mandatory): Defines the Datatype used for the Basic Business
Information Entity.

AlternativeBusinessTerms (optional): Any synonym terms under which the
Basic Business Information Entity is commonly known and used in the
business.

cd-UBL-NDR-2.0.DRAFT 78 12 May 2006

Examples (optional): Examples of possible values for the Basic Business
Information Entity

[DOC5] The xsd:documentation element for every Aggregate Business
Information Entity MUST contain a structured set of annotations in the
following sequence and pattern:

ComponentType (mandatory): The type of component to which the object
belongs. For Aggregate Business Information Entities this must be
“ABIE”.

DictionaryEntryName (mandatory): The official name of the Aggregate
Business Information Entity .

Version (optional): An indication of the evolution over time of the
Aggregate Business Information Entity.

Definition(mandatory): The semantic meaning of the Aggregate Business
Information Entity.

ObjectClassQualifier (optional): The qualifier for the object class.

ObjectClass(mandatory): The Object Class represented by the Aggregate
Business Information Entity.

AlternativeBusinessTerms (optional): Any synonym terms under which the
Aggregate Business Information Entity is commonly known and used in
the business.

[DOC6] The xsd:documentation element for every Association Business
Information Entity element declaration MUST contain a structured set of
annotations in the following sequence and pattern:

ComponentType (mandatory): The type of component to which the object
belongs. For Association Business Information Entities this must be
“ASBIE”.

DictionaryEntryName (mandatory): The official name of the Association
Business Information Entity.

Version (optional): An indication of the evolution over time of the
Association Business Information Entity.

Definition(mandatory): The semantic meaning of the Association Business
Information Entity.

cd-UBL-NDR-2.0.DRAFT 79 12 May 2006

Cardinality(mandatory): Indication whether the Association Business
Information Entity represents an optional, mandatory and/or repetitive
assocation.

ObjectClass(mandatory): The Object Class containing the Association
Business Information Entity.

PropertyTermQualifier (optional): A qualifier is a word or words which
help define and differentiate the Association Business Information Entity.

PropertyTerm(mandatory): Property Term represents the Aggregate
Business Information Entity contained by the Association Business
Information Entity.

AssociatedObjectClassQualifier (optional): Associated Object Class
Qualifiers describe the 'context' of the relationship with another ABIE.
That is, it is the role the contained Aggregate Business Information Entity
plays within its association with the containing Aggregate Business
Information Entity.

AssociatedObjectClass (mandatory); Associated Object Class is the Object
Class at the other end of this association. It represents the Aggregate
Business Information Entity contained by the Association Business
Information Entity.

[DOC8] The xsd:documentation element for every Supplementary Component
attribute declarationMUST contain a structured set of annotations in the
following sequence and pattern:

Name (mandatory): Name in the Registry of a Supplementary Component
of a Core Component Type.

Definition (mandatory): A clear, unambiguous and complete explanation of
the meaning of a Supplementary Component and its relevance for the
related Core Component Type.

Primitive type (mandatory): PrimitiveType to be used for the representation
of the value of a Supplementary Component.

Possible Value(s) (optional): one possible value of a Supplementary
Component.

[DOC9] The xsd:documentation element for every Supplementary Component
attribute declaration containing restrictions MUST include the following

cd-UBL-NDR-2.0.DRAFT 80 12 May 2006

additional information appended to the information required by DOC8:

Restriction Value(s) (mandatory): The actual value(s) that is (are) valid for
the Supplementary Component.

 1741

A.6 Element Declaration rules

[ELD2] All element declarations MUST be global

[ELD3] For every class and property identified in the UBL model, a global element
bound to the corresponding xsd:complexType MUST be declared.

[ELD4] When a ccts:ASBIE is unqualified, it is bound via reference to the global
ccts:ABIE element to which it is associated.

[ELD6] The code list xsd:import element MUST contain the namespace and
schema location attributes.

[ELD7] Empty elements MUST not be declared, except in the case of extension,
where the 'UBLExtensions' element is used.

[ELD9] (See GXS14)

[ELD11] When a ccts:ASBIE is qualified, a new element MUST be declared and
bound to the xsd:complexType of its associated ccts:ABIE.

[ELD12] The 'UBLExtensions' element MUST be declared as the first child of the
document element with xsd:minOccurs="0".

[ELD13] The 'UBLProfileID' element MUST be declared immediately following the
'UBLExtensions' element with xsd:minOccurs="0".

[ELD14] The 'UBLSubsetID' element MUST be declared immediately following the
'UBLProfileID' element with xsd:minOccurs="0".

 1742

cd-UBL-NDR-2.0.DRAFT 81 12 May 2006

A.7 Element Naming rules

[ELN1] A UBL global element name based on a ccts:ABIE MUST be the same
as the name of the corresponding xsd:complexType to which it is bound,
with the word “Type” removed.

[ELN2] A UBL global element name based on a ccts:BBIEProperty MUST be
the same as the name of the corresponding xsd:complexType to which
it is bound, with the word “Type” removed.

[ELN3] A UBL global element name based on a ccts:ASBIE MUST be the
ccts:ASBIE dictionary entry name property term and its qualifiers; and
the object class term and qualifiers of its associated ccts:ABIE. All
ccts:DictionaryEntryName separators MUST be removed..

A.8 General Naming rules

[GNR1] UBL XML element and type names MUST be in the English language,
using the primary English spellings provided in the Oxford English
Dictionary.

[GNR2] UBL XML element and type names MUST be consistently derived from
CCTS conformant dictionary entry names.

[GNR3] UBL XML element and type names constructed from
ccts:DictionaryEntryNames MUST NOT include periods, spaces,
other separators, or characters not allowed by W3C XML 1.0 for XML
names

[GNR4] UBL XML element, and simple and complex type names MUST NOT use
acronyms, abbreviations, or other word truncations, except those in the list
of exceptions maintained and published by the UBL TC.

[GNR6] The acronyms and abbreviations listed in the UBL-approved list MUST
always be used in place of the word or phrase they represent.

cd-UBL-NDR-2.0.DRAFT 82 12 May 2006

[GNR7] UBL XML element, and type names MUST be in singular form unless the
concept itself is plural.

[GNR8] The UpperCamelCase (UCC) convention MUST be used for naming
elements and types.

[GNR10] Acronyms and abbreviations at the beginning of an attribute name MUST
appear in all lower case. All other acronym and abbreviation usage in an
attribute declaration MUST appear in upper case.

[GNR11] Acronyms and abbreviations MUST appear in all upper case for all element
declarations and type definitions.

 1743

A.9 General Type Definition Rules

[GTD1] All types MUST be named.

[GTD2] The predefined XML Schema type xsd:anyType MUST NOT be used.

 1744

A.10 General XML Schema Rules

[GXS1] UBL Schema MUST conform to the following physical layout as
applicable:

<!-- ======= XML Declaration======== -->

<?xml version="1.0" encoding="UTF-8"?>

<!-- ======= Schema Header ======= -->

 Document Name: < Document name as indicated in Section 3.6 >

 Generated On: < Date schema was generated >

<!-- ===== Copyright Notice ===== -->

cd-UBL-NDR-2.0.DRAFT 83 12 May 2006

“Copyright „ 2001-2004 The Organization for the Advancement of
Structured Information Standards (OASIS). All rights reserved.

<!-- ===== xsd:schema Element With Namespaces Declarations ===== --
>

xsd:schema element to include version attribute and namespace
declarations in the following order:

xmlns:xsd

Target namespace

Default namespace

CommonAggregateComponents

CommonBasicComponents

CoreComponentTypes

Unspecialized Unqualified Datatypes

Specialized Qualified Datatypes

Identifier Schemes

Code Lists

Attribute Declarations – elementFormDefault="”qualified"”
attributeFormDefault="”unqualified"”

 Version Attribute

<!-- ===== Imports ===== -->

CommonAggregateComponents schema module

CommonBasicComponents schema module

Unspecialized Unqualified Types schema module

Specialized Qualified Types schema module

<!-- ===== Global Attributes ===== -->

Global Attributes and Attribute Groups

cd-UBL-NDR-2.0.DRAFT 84 12 May 2006

<!-- ===== Root Element ===== -->

Root Element Declaration

Root Element Type Definition

<!-- ===== Element Declarations ===== -->

alphabetized order

<!-- ===== Type Definitions ===== -->

All type definitions segregated by basic and aggregates as follows

<!-- ===== Aggregate Business Information Entity Type Definitions
===== -->

alphabetized order of ccts:AggregateBusinessInformationEntity
xsd:TypeDefinitions

<!-- =====Basic Business Information Entity Type Definitions ===== -->

alphabetized order of ccts:BasicBusinessInformationEntities

<!-- ===== Copyright Notice ===== -->

Required OASIS full copyright notice.

[GXS2]
UBL MUST provide two schemas for each transaction. One normative
schema shall be fully annotated. One non-normative schema shall be a run-
time schema devoid of documentation..

[GXS3] Built-in XSD Simple Types SHOULD be used wherever possible.

[GXS4] All W3C XML Schema constructs in UBL Schema and schema modules
MUST contain the following namespace declaration on the xsd schema
element:
 xmlns:xsd="http://www.w3.org/2001/XMLSchema”

[GXS5] The xsd:substitutionGroup feature MUST NOT be used.

cd-UBL-NDR-2.0.DRAFT 85 12 May 2006

[GXS6] The xsd:final attribute MUST be used to control extensions where there
is a desire to prohibit further extensions.

[GXS7] xsd:notation MUST NOT be used.

[GXS8] The xsd:all element MUST NOT be used.

[GXS9] The xsd:choice element SHOULD NOT be used where customisation
and extensibility are a concern.

[GXS11] The xsd:union technique MUST NOT be used except for Code Lists.
The xsd:union technique MAY be used for Code Lists.

[GXS12] UBL designed schema SHOULD NOT use xsd:appinfo. If used,
xsd:appinfo MUST only be used to convey non-normative information.

[GXS13] Complex Type extension or restriction MAY be used where appropriate.

[GXS14] The xsd:any element MUST NOT be used except within the
'ExtensionContentType' type definition, and with xsd:processContents=
"skip" for non-UBL namespaces.

[GXS15] Each xsd:schemaLocation attribute declaration MUST contain a
system-resolvable URL, which at the time of release from OASIS shall be
a relative URL referencing the location of the schema or schema module in
the release package.

[GXS16] The built in xsd:nillable attribute MUST NOT be used for any UBL
declared element.

[GXS17] The xsd:anyAttribute MUST NOT be used.

 1745

1746

cd-UBL-NDR-2.0.DRAFT 86 12 May 2006

A.11 Modelling constraint rules

[MDC1] UBL Libraries and Schemas MUST only use ebXML Core Component
approved ccts:CoreComponentTypes, except in the case of extension,
where the 'UBL Extensions' element is used

[MDC2] Mixed content MUST NOT be used except where contained in an
xsd:documentation element

 1747

A.12 Naming constraint rules

[NMC1] Each dictionary entry name MUST define one and only one fully qualified
path (FQP) for an element or attribute.

 1748

A.13 Namespace Rules

[NMS1] Every UBL-defined –or -used schema module, except internal schema
modules, MUST have a namespace declared using the
xsd:targetNamespace attribute.

[NMS2] Every UBL-defined-or -used major version schema set MUST have its own
unique namespace.

[NMS3] UBL namespaces MUST only contain UBL developed schema modules.

[NMS4] The namespace names for UBL Schemas holding committee draft status
MUST be of the form:

urn:oasis:names:tc:ubl:schema:<subtype>:<document-id>

[NMS5] The namespace names for UBL Schemas holding OASIS Standard status
MUST be of the form:

urn:oasis:names:specification:ubl:schema:<subtype>:<docum

cd-UBL-NDR-2.0.DRAFT 87 12 May 2006

ent-id>

[NMS6] UBL published namespaces MUST never be changed.

[NMS7] The ubl:CommonAggregateComponents schema module MUST reside in
its own namespace.

[NMS8] The ubl:CommonAggregateComponents schema module namespace
MUST be represented by the namespace prefix “cac” when referenced in
other schemas.

[NMS9] The ubl:CommonBasicComponents schema module MUST reside in its
own namespace.

[NMS10] The UBL:CommonBasicComponents schema module namespace MUST be
represented by the namespace prefix “cbc” when referenced in other schemas.

[NMS15] The ubl:QualifiedDatatypes schema module MUST reside in its own
namespace.

[NMS16] The ubl:QualifiedDatatypes schema module namespace MUST be
represented by the namespace prefix “qdt” when referenced in other schemas.

[NMS17] The ccts:UnqualifiedDatatypes schema module namespace MUST be
represented by the token “udt”when referenced in other schemas.

[NMS18] The CommonExtensionComponents schema module namespace MUST be
represented by the namespace prefix 'ext' when referenced in other schemas.

 1749

A.14 Root element declaration rules

[RED2] The root element MUST be the only global element declared in document
schemas.

 1750

cd-UBL-NDR-2.0.DRAFT 88 12 May 2006

A.15 Schema structure modularity rules

[SSM1] UBL Schema expressions MAY be split into multiple schema modules.

[SSM2] A document schema in one UBL namespace that is dependent upon type
definitions or element declarations defined in another namespace MUST only
import the document schema from that namespace.

[SSM3] A document schema in one UBL namespace that is dependant upon type
definitions or element declarations defined in another namespace MUST
NOT import internal schema modules from that namespace.

[SSM5] UBL schema modules MUST either be treated as external schema modules or
as internal schema modules of the document schema.

[SSM6] All UBL internal schema modules MUST be in the same namespace as their
corresponding document schema.

[SSM7] Each UBL internal schema module MUST be named
{ParentSchemaModuleName}{InternalSchemaModuleFunction}{schema
module}

[SSM8] A UBL schema module MAY be created for reusable components.

[SSM9] A schema module defining all UBL Common Aggregate Components MUST
be created.

[SSM10] The UBL Common Aggregate Components schema module MUST be
identified as CommonAggregateComponents in the document name within
the schema header.

[SSM11] A schema module defining all UBLCommon Basic Components MUST be
created.

[SSM12] The UBL Common Basic Components schema module MUST be identified
as CommonBasicComponents in the document name within the schema
header.

[SSM18] A schema module defining all UBL Qualified Datatypes MUST be created.

cd-UBL-NDR-2.0.DRAFT 89 12 May 2006

[SSM19] The UBL Qualified Datatypes schema module MUST be identified as
QualifiedDatatypes in the document name in the schema header.

[SSM20] The UBL Qualified Datatypes schema module MUST import the
ccts:UnQualifiedDatatypes schema module.

SSM21 The UBL extensions schema module MUST be identified as
CommonExtensionComponents in the document name within the schema
header.

A.16 Standards Adherence rules

 1751

A.17 Versioning rules

[VER1] Every UBL Schema and schema module major version committee draft
MUST have an RFC 3121 document-id of the form

<name>-<major>[.<revision>]

[VER2] Every UBL Schema and schema module major version OASIS Standard
MUST have an RFC 3121 document-id of the form

<name>-<major>

[VER3] Every minor version release of a UBL schema or schema module committee
draft MUST have an RFC 3121 document-id of the form

<name>-<major>[.<revision>]

[VER4] Every minor version release of a UBL schema or schema module OASIS
Standard MUST have an RFC 3121 document-id of the form

<name>-<major >

[VER5] For UBL Minor version changes the namespace name MUST not change

[VER6] Every UBL Schema and schema module major version number MUST be a
sequentially assigned, incremental number greater than zero.

cd-UBL-NDR-2.0.DRAFT 90 12 May 2006

[VER7] Every UBL Schema and schema module minor version number MUST be a
sequentially assigned, incremental non-negative integer.

f[VER10] UBL Schema and schema module minor version changes MUST not break
semantic compatibility with prior versions.

[VER11] Every UBL Schema and schema module major version committee draft
MUST capture its version number in the xsd:version attribute of the
xsd:schema element in the form

<major>.0[.<revision>]

[VER12] Every UBL Schema and schema module major version OASIS Standard
MUST capture its version number in the xsd:version attribute of the
xsd:schema element in the form

<major>.0

[VER13] Every minor version release of a UBL schema or schema module committee
draft MUST capture its version information in the xsd:version attribute in
the form

<major>.<non-zero>[.<revision>]

[VER14] Every minor version release of a UBL schema or schema module OASIS
Standard MUST capture its version information in the xsd:version attribute
in the form

<major>.<non-zero>

[VER15] Every UBL document schema MUST declare an optional element named
"UBLVersionID" immediately following the optional 'UBL Extensions'
element.

 1752

cd-UBL-NDR-2.0.DRAFT 91 12 May 2006

 1753

1754 .

cd-UBL-NDR-2.0.DRAFT 92 12 May 2006

Appendix B. Technical Terminology 1755

1756

Ad hoc schema processing Doing partial schema processing, but not with official
schema validator software; e.g., reading through
schema to get the default values out of it.

Aggregate Business
Information Entity (ABIE)

A collection of related pieces of business information
that together convey a distinct business meaning in a
specific Business Context. Expressed in modelling
terms, it is the representation of an Object Class, in a
specific Business Context.

Application-level validation Adherence to business requirements, such as valid
account numbers.

Assembly Using parts of the library of reusable UBL components
to create a new kind of business document type.

Business Context Defines a context in which a business has chosen to
employ an information entity.

The formal description of a specific business
circumstance as identified by the values of a set of
Context Categories, allowing different business
circumstances to be uniquely distinguished.

cd-UBL-NDR-2.0.DRAFT 93 12 May 2006

Business Object An unambiguously identified, specified, referenceable,
registerable and re-useable scenario or scenario
component of a business transaction.

The term business object is used in two distinct but
related ways, with slightly different meanings for each
usage:

In a business model, business objects describe a
business itself, and its business context. The business
objects capture business concepts and express an
abstract view of the business’s “real world”. The term
“modeling business object” is used to designate this
usage.

In a design for a software system or in program code,
business objects reflects how business concepts are
represented in software. The abstraction here reflects
the transformation of business ideas into a software
realization. The term “systems business objects” is
used to designate this usage.

business semantic(s) A precise meaning of words from a business
perspective.

Business Term This is a synonym under which the Core Component or
Business Information Entity is commonly known and
used in the business. A Core Component or Business
Information Entity may have several business terms or
synonyms.

class A description of a set of objects that share the same
attributes, operations, methods, relationships, and
semantics. A class may use a set of interfaces to
specify collections of operations it provides to its
environment. See interface.

cd-UBL-NDR-2.0.DRAFT 94 12 May 2006

class diagram Shows static structure of concepts, types, and classes.
Concepts show how users think about the world; types
show interfaces of software components; classes show
implementation of software components. (OMG
Distilled)

A diagram that shows a collection of declarative
(static) model elements, such as classes, types, and
their contents and relationships. (Rational Unified
Process)

classification scheme This is an officially supported scheme to describe a
given Context Category

Common attribute An attribute that has identical meaning on the multiple
elements on which it appears. A common attribute
might or might not correspond to an XSD global
attribute.

component One of the individual entities contributing to a whole.

context Defines the circumstances in which a Business Process
may be used. This is specified by a set of Context
Categories known as Business Context. (See Business
Context.)

context category A group of one or more related values used to express a
characteristic of a business circumstance.

Document schema A schema document corresponding to a single
namespace, which is likely to pull in (by including or
importing) schema modules.

Core Component

A building block for the creation of a semantically
correct and meaningful information exchange package.
It contains only the information pieces necessary to
describe a specific concept.

cd-UBL-NDR-2.0.DRAFT 95 12 May 2006

Core Component Type A Core Component which consists of one and only one
Content Component that carries the actual content plus
one or more Supplementary Components giving an
essential extra definition to the Content Component.
Core Component Types do not have business
semantics.

Datatype A descriptor of a set of values that lack identity and
whose operations do not have side effects. Datatypes
include primitive pre-defined types and user-definable
types. Pre-defined types include numbers, string and
time. User-definable types include enumerations.
(XSD)

Defines the set of valid values that can be used for a
particular Basic Core Component Property or Basic
Business Information Entity Property. It is defined by
specifying restrictions on the Core Component Type
that forms the basis of the Datatype. (CCTS)

Generic BIE A semantic model that has a “zeroed” context. We are
assuming that it covers the requirements of 80% of
business uses, and therefore is useful in that state.

instance An individual entity satisfying the description of a class
or type.

Instance constraint checking Additional validation checking of an instance, beyond
what XSD makes available, that relies only on
constraints describable in terms of the instance and not
additional business knowledge; e.g., checking co-
occurrence constraints across elements and attributes.
Such constraints might be able to be described in terms
of Schematron.

Instance root/doctype This is still mushy. The transitive closure of all the
declarations imported from whatever namespaces are
necessary. A doctype may have several namespaces
used within it.

Intermediate element An element not at the top level that is of a complex
type, only containing other elements and attributes.

cd-UBL-NDR-2.0.DRAFT 96 12 May 2006

Internal schema module: A schema module that does not declare a target
namespace.

Leaf element An element containing only character data (though it
may also have attributes). Note that, because of the
XSD mechanisms involved, a leaf element that has
attributes must be declared as having a complex type,
but a leaf element with no attributes may be declared
with either a simple type or a complex type.

Lower-level element An element that appears inside a business message.
Lower-level elements consist of intermediate and leaf
level.

Object Class The logical data grouping (in a logical data model) to
which a data element belongs (ISO11179). The Object
Class is the part of a Core Component’s Dictionary
Entry Name that represents an activity or object in a
specific Context.

Namespace schema module: A schema module that declares a target namespace and
is likely to pull in (by including or importing) schema
modules.

Naming Convention The set of rules that together comprise how the
dictionary entry name for Core Components and
Business Information Entities are constructed.

(XML) Schema An XML Schema consists of components such as type
definitions and element declarations. These can be used
to assess the validity of well-formed element and
attribute information items (as defined in [XML-
Infoset]), and furthermore may specify augmentations
to those items and their descendants.

Schema module A collection of XML constructs that together constitute
an XSD conformant schema. Schema modules are
intended to be used in combination with other XSD
conformant schema.

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#ref-xmlinfo#ref-xmlinfo
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#ref-xmlinfo#ref-xmlinfo

cd-UBL-NDR-2.0.DRAFT 97 12 May 2006

Schema Processing Schema validation checking plus provision of default
values and provision of new infoset properties.

Schema Validation Adherence to an XSD schema.

semantic Relating to meaning in language; relating to the
connotations of words.

Top-level element An element that encloses a whole UBL business
message. Note that UBL business messages might be
carried by messaging transport protocols that
themselves have higher-level XML structure. Thus, a
UBL top-level element is not necessarily the root
element of the XML document that carries it.

type Description of a set of entities that share common
characteristics, relations, attributes, and semantics.

A stereotype of class that is used to specify an area of
instances (objects) together with the operations
applicable to the objects. A type may not contain any
methods. See class, instance. Contrast interface.

cd-UBL-NDR-2.0.DRAFT 98 12 May 2006

Appendix C. References 1757

1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772

[CCTS] ISO 15000-5 ebXML Core Components Technical Specification
[ISONaming] ISO/IEC 11179, Final committee draft, Parts 1-6.
(RFC) 2119 S. Bradner, Key words for use in RFCs to Indicate Requirement

Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March
1997.

[UBLChart] UBL TC Charter, http://oasis-
open.org/committees/ubl/charter/ubl.htm

[XML] Extensible Markup Language (XML) 1.0 (Second Edition), W3C
Recommendation, October 6, 2000

(XSD) XML Schema, W3C Recommendations Parts 0, 1, and 2. 2 May
2001.

(XHTML) XHTML™ Basic, W3C Recommendation 19 December 2000:

http://www.w3.org/TR/2000/REC-xhtml-basic-20001219

http://www.ietf.org/rfc/rfc2119.txt
http://oasis-open.org/committees/ubl/charter/ubl.htm
http://oasis-open.org/committees/ubl/charter/ubl.htm
http://www.w3.org/TR/2000/REC-xhtml-basic-20001219

cd-UBL-NDR-2.0.DRAFT 99 12 May 2006

Appendix D. Notices 1773

1774
1775
1776
1777
1778
1779
1780
1781
1782
1783

1784
1785
1786
1787

1788
1789

1790
1791
1792
1793
1794
1795
1796
1797
1798
1799

1800
1801

1802
1803
1804
1805
1806
1807

1808

OASIS takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the
technology described in this document or the extent to which any license under such
rights might or might not be available; neither does it represent that it has made any effort
to identify any such rights. Information on OASIS's procedures with respect to rights in
OASIS specifications can be found at the OASIS website. Copies of claims of rights
made available for publication and any assurances of licenses to be made available, or the
result of an attempt made to obtain a general license or permission for the use of such
proprietary rights by implementors or users of this specification, can be obtained from the
OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or
patent applications, or other proprietary rights which may cover technology that may be
required to implement this specification. Please address the information to the OASIS
Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards
[OASIS] 2006. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself does not
be modified in any way, such as by removing the copyright notice or references to
OASIS, except as needed for the purpose of developing OASIS specifications, in which
case the procedures for copyrights defined in the OASIS Intellectual Property Rights
document must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by OASIS
or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and
OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

	Introduction
	1.1 Audiences
	1.2 Scope
	1.3 Terminology and Notation
	1.4 Guiding Principles
	1.4.1 Adherence to General UBL Guiding Principles
	1.4.2 Design for Extensibility
	1.4.3 Relationship to Tools
	1.4.4 Choice of Schema Language

	2 Relationship to ebXML Core Components
	2.1 Mapping Business Information Entities to XSD

	3 General XML Constructs
	3.1 Overall Schema Structure
	3.1.1 Element declarations within document schemas
	3.1.1.1 Root Element

	3.2 Naming and Modeling Constraints
	3.2.1 Naming Constraints
	3.2.2 Modeling Constraints
	3.2.2.2 Defining Classes
	3.2.2.3 Core Component Types
	3.2.2.4 Mixed Content

	3.3 Reusability Scheme
	3.3.1.5 Reusable Elements

	3.4 Extension Scheme
	3.5 Namespace Scheme
	3.5.1 Declaring Namespaces
	3.5.2 Namespace Uniform Resource Identifiers
	3.5.3 Schema Location
	3.5.4 Persistence

	3.6 Versioning Scheme
	3.7 Modularity Strategy
	3.7.1 UBL Modularity Model
	3.7.1.6 Limitations on Import

	3.7.2 Internal and External Schema Modules
	3.7.3 Internal Schema Modules
	3.7.4 External Schema Modules
	3.7.4.7 UBL Common Aggregate Components Schema Module
	3.7.4.7.1 UBL CommonAggregateComponents Schema Module Namespace

	3.7.4.8 UBL CommonBasicComponents Schema Module
	3.7.4.8.1 UBL CommonBasicComponents Schema Module Namespace

	3.7.4.9 CCTS CoreComponentType Schema Module
	3.7.4.9.1 CCTS Unqualified Datatypes Schema Module
	3.7.4.9.2 UBL Qualified Datatypes Schema Module
	3.7.4.9.3 UBL Qualified Datatypes Schema Module Namespace

	3.8 Annotation and Documentation Requirements
	3.8.1 Schema Annotation
	3.8.2 Embedded documentation

	4 Naming Rules
	4.1 General Naming Rules
	4.2 Type Naming Rules
	4.2.1 Complex Type Names for CCTS Aggregate Business Information Entities (ABIEs)
	4.2.2 Complex Type Names for CCTS Basic Business Information Entity (BBIE) Properties

	4.3 Element Naming Rules
	4.3.1 Element Names for CCTS Aggregate Business Information Entities (ABIEs)
	4.3.2 Element Names for CCTS Basic Business Information Entity (BBIE) Properties
	4.3.3 Element Names for CCTS Association Business Information Entities (ASBIEs)

	4.4 Attributes in UBL

	5 Declarations and Definitions
	5.1 Type Definitions
	5.1.1 General Type Definitions
	5.1.2 Simple Types
	5.1.3 Complex Types
	5.1.3.10 Aggregate Business Information Entities (ABIEs)
	5.1.3.11 Basic Business Information Entities (BBIEs)
	5.1.3.12 Datatypes
	5.1.3.12.1 Qualified Datatypes

	5.1.3.13 Core Component Types

	5.2 Element Declarations
	5.2.1 Elements Bound to Complex Types
	5.2.2 Elements Representing ASBIEs
	5.2.3 Code List Import
	5.2.4 Empty Elements

	6 Code Lists
	7 Miscellaneous XSD Rules
	7.1 xsd:simpleType
	7.2 Namespace Declaration
	7.3 xsd:substitutionGroup
	7.4 xsd:final
	7.5 xsd: notation
	7.6 xsd:all
	7.7 xsd:choice
	7.8 xsd:include
	7.9 xsd:union
	7.10 xsd:appinfo
	7.11 xsd:schemaLocation
	7.12 xsd:nillable
	7.13 xsd:anyAttribute
	7.14 Extension and Restriction

	8 Instance Documents
	A.1 Attribute Declaration rules
	A.2 Code List rules
	A.3 ComplexType Definition rules
	A.4 Complex Type Naming rules
	A.5 Documentation rules
	A.6 Element Declaration rules
	A.7 Element Naming rules
	A.8 General Naming rules
	A.9 General Type Definition Rules
	A.10 General XML Schema Rules
	A.11 Modelling constraint rules
	A.12 Naming constraint rules
	A.13 Namespace Rules
	A.14 Root element declaration rules
	A.15 Schema structure modularity rules
	A.16 Standards Adherence rules
	A.17 Versioning rules

