
OASIS CAM v1.1 and W3C Schema v1.1 Insights

Page - 1

White Paper on

OASIS CAM v1.1 and W3C Schema v1.1 Insights

August, 2008

Author

David RR Webber

Chair OASIS CAM
Technical Committee

OASIS CAM v1.1 and W3C Schema v1.1 Insights

Page - 2

Table of Contents

Introduction... 3

Background ... 3

Meeting the needs of XML business exchange users ... 4

Extending the semantic manipulation options .. 5

An interoperability tool suite .. 6

W3C XSD Schema Syntax Considerations .. 8

XSD Schema V1.1 enhancements and CAM ... 11

CAM context mechanism techniques ... 12

Library-based core components and structures... 13

Semantic Extensions Work ... 15

Summary ... 16

Resources .. 17

OASIS CAM v1.1 and W3C Schema v1.1 Insights

Page - 3

Introduction

This paper introduces the work of technical committees within the OASIS standards

development community that is focused on enhancing interoperability of business information

exchanges. Particularly the OASIS Content Assembly Mechanism (CAM) work and comparing

and contrasting that with the W3C XSD schema work. The CAM approach emphasizes simple

lighter weight syntax for consistent optimized and interoperable XML transaction exchanges. In

addition the work of OASIS technical committees focused on semantic tools and technologies is

discussed and related to the CAM techniques including templates and context mechanisms.

Background

In 1998 when XML version 1.0 was made a formal W3C recommendation the vision was of

simplicity of mark-up technology and particularly that the level of effort needed to create

software tooling to manipulate and process the XML composed documents would be minimized.

There however was a complication in this picture. XML evolved from SGML and in that they

shared a common piece of technology called a DTD. A DTD is provided to define the valid

structural combinations and content model for a given XML document. This is referred to as a

document schema. Due to the circumstances of the evolution of XML itself the DTD turned out

to be a work in progress. The DTD syntax used a direct character-based notation to provide a

quasi visual representation of the structure composition of the associated XML document. There

are limitations to this DTD approach as specified for the original XML V1.0. Carry-over syntax

components retained from SGML also added further contradictions.

The W3C then decided to design a new schema language replacement for DTD and hence XSD

was created. The XSD syntax however is completely different in design and approach. Whereas

DTD syntax is minimalist and uses character designators to group together hierarchical structure

components the XSD approach uses XML syntax itself. However the most important difference

comes in terms of focus. Whereas DTD schema can be hand composed in a text editor and

directly interpreted the XSD syntax is designed to require software tooling to interpret and

validate the schema and display the structural results.

Another important aspect is the focus and audience. The XSD syntax is based on supporting

information modeling theory and object oriented inheritance techniques and as such provides an

array of tools for supporting complex relationships and inheritance methods found in developing

those information models. Also XSD syntax is focused substantially on document-centric

mechanisms designed to support sophisticated page layout and information publishing and

rendering techniques. This sets up a natural discontinuity with the other major use of XML

content that of business information exchanges.

Business information exchanges are different from document composition and rendering

applications in important ways that XSD schema does not fully support. In business exchanges a

minimalistic paradigm is preferred combined with interoperability as a paramount objective.

These transactions are highly predictable and iterative in their content models and intended for

machine processing as for example in a purchase order with one or more line items.

OASIS CAM v1.1 and W3C Schema v1.1 Insights

Page - 4

On the other hand publication documents tend to reflect a human use model so they are much

less deterministic and can be recursive and include documents within documents. Conversely of

particular importance to business documents is the need for context mechanisms to match

variations in content to specific business process scenarios and partner relationships and roles.

Documents on the other hand have an open use model based on direct interpretation by the user

of the content.

Even before XML 1.0 was completed there was identified a requirement for schemas to address

the needs of business exchanges. Microsoft and others submitted to the W3C a proposal to

extend DTD syntax for business exchanges; their XML-Data standard provided a large set of

data types more appropriate to database and application interchanges. For example W3C XSD

schema uses date and time representations that are not compatible with traditional database and

electronic data information (EDI) exchanges.

This difference between business exchange use and document-centric preparation led to the

development of supplemental technologies in addition to W3C schema. The W3C itself

developed a XML scripting and manipulation technology called XSLT while a range of other

specifications have also been developed by ISO and OASIS particularly and we will consider

those next.

Meeting the needs of XML business exchange users

From the business information exchange perspective the W3C schema syntax is missing several

important components and characteristics to support interoperability between partners systems.

To address the business exchange area specifically the OASIS Content Assembly Mechanism

(CAM) work developed
1
. Five years ago when this work first started much of the efforts on

Service Orientated Architecture (SOA) based systems and core component based exchanges

were only in their infancy. Most of this core component work occurring outside the W3C orbit

within UN/CEFACT Core Components and ebXML (electronic business XML) initiatives

specifically. Now today we are seeing that communities of business users particularly

understand how these core component and transaction assembly concepts are relevant to their

emerging needs. A simple schema may suffice for limited interchanges between a handful of

partners or for defining an internal interface where both ends are managed by the in-house

development staff. However interoperability directly affects the ability to manage extended

interactions and business processes across diverse partners’ systems including scaling out to

across industry collaborative community or global context. Therefore for industry communities

particularly the need is to define what those interoperable exchanges are. This includes

expressing the exchange transactions themselves in a succinct way as templates that can be

readily adapted by their members for their own business context. Allied with this is assembling

the transactions from a set of industry standard information core components to ensure

uniformity of definition and understanding. Then being able to use context to control how those

core components behave for a given business process scenario and role.

For XSD schema which has no context mechanisms this is problematic and so the precise

interchange implementation detail is instead left open ended and non-deterministic. This leads to

the situation where each participant in an exchange interprets aspects of the schema use slightly

differently and creates different and incompatible XML as a consequence. This is compounded

by XSD syntax nuances such as namespaces, null (empty) constructs and lack of cross field edits

1
 OASIS CAM V1.1 standard - http://wiki.oasis-open.org/cam

OASIS CAM v1.1 and W3C Schema v1.1 Insights

Page - 5

(where entries in one part of the schema specifically restrict content that can occur elsewhere).

Additionally in business exchanges heavy use of code list values predominate and again the use

of context and related versioning mechanisms are needed to determine exact allowed sets of

values for partner’s exchanges.

These costly issues arise during the most critical time of an implementation rollout of the

standard, sometimes months after the XSD schema has past scrutiny of levels of sign-off and

agreements. A process which uses CAM addresses these issues upfront and when change is least

costly; thus is an essential risk mitigation tool for business integrators as well as those involved

in the document standardization process. OASIS team work reviewing XSD schemas over the

past six months has shown that using the CAM technology and techniques have detected schema

issues that in some cases have been dormant and undetected for years. Utilizing CAM is an

emerging best practice that has already demonstrated significant cost savings and reduced project

delivery timelines. How does CAM achieve this compared to the W3C XSD schema approach?

The CAM approach is to provide a structure instance directly as a template so that implementers

can see unequivocally what is expected for an exchange, and then a declarative rules section to

augment this with XPath rules that explicitly determine the content use patterns. In addition

CAM templates are context aware so that dynamically the template can be adjusted to match

specific patterns required by a business process. Context can be supplied externally by

parameters passed into the template process, or derived by rules within the template, or

computed at runtime from content found in the XML instance.

Summarizing this support of interoperability OASIS CAM templates add:

• Lightweight template structure representation that can be directly visually inspected

• Context mechanisms at template, structure and content levels

• Set of structure manipulation functions that are XPath driven and declarative

• Content assembly using domain specific core components patterns (want lists and libraries)

• Flexible content model visual data masks for specifying date, time, and number formats

• Support for direct versioning techniques for content values and structure components

This emphasis on simple lighter weight syntax is now paying off as tools are developed to

exploit the capabilities that CAM templates open up and provide more consistent optimized and

interoperable XML transaction exchanges. This later aspect we will now explore in more detail

next.

Extending the semantic manipulation options

Having simple light weight syntax has other dramatic consequences beyond the obvious ones of

making the exchange model more accessible to human inspection. It also makes the syntax

much easier to program using W3C XSLT transformations. Ironically there is a dearth of XSLT

tools that manipulate and exploit the semantic information contained in W3C XSD schema

simply because of the extended complexity of the XSD schema specification and local variations

in how people actually use it to represent different information model scenarios.

After 4 months of concerted programming development work our team has built XSLT tools that

are able to ingest a W3C XSD schema and automatically create the equivalent OASIS CAM

template from that. Complete with structure example, XPath rules and information content

validations that replicate what the original XSD schema is doing. Quite apart from the simple

OASIS CAM v1.1 and W3C Schema v1.1 Insights

Page - 6

software achievement this then opens up the whole semantic information model previously

buried inside the XSD syntax to further XSLT processing, this time using the simpler CAM

template syntax as the input to the XSLT.

This base CAM template syntax consists of three succinct template sections for header, structure

and rules definitions. This provides very clear delineation of the purpose of each section. Unlike

with the XSD schema approach where the entire definition consists of collections of structure

fragments interwoven with content and type definitions that are linked together using type,

reference or base attribute key names and namespaces as complex and simple types that must be

traversed by software to infer the resulting structure.

What would previously have taken weeks to program in XSLT against the schema syntax can be

achieved in a matter of a few days or less using the equivalent CAM template format rendering.

We were thus able to then rapidly develop a complete suite of XSLT tools that can parse the

CAM template format and provide crucial new capabilities in support of interoperability.

An interoperability tool suite

While commercial schema editor tools provide a selection of tools for software developers these

are closed solutions that do not offer the flexibility that XSLT scripting enables. Also since XSD

syntax has no context mechanism it is an “all or nothing” situation for implementers particularly

when dealing with complex schemas. With using XSLT in tandem with CAM templates this

situation is transformed. Developers can use the CAM XSLT tool
2
 suite to easily select and

restrict the structure template to only the specific content they desire for their business solution.

Then they can create rich example XML test case instances with actual content values either

directly provided via a data hinting mechanism or automatically generated based on type

definitions. Plus the tools allow generation of both valid and invalid examples – essential for

interoperability test suites between partners.

They can then also generate a matching XSD schema sub-set exported from the CAM template

that restricts the exchange model to only what they require. This is essential for particular large

industry standard XSD schemas (these schemas are often so large that software development

tooling or WSDL web service tools cannot reliably process them).

Then various styles of familiar tabular documentation are supported that are more suited to

review by business analysts to confirm the content and rules being applied to the XML

exchanges.

Of course this can also be done theoretically using XSD schema but the fact this is not readily

available already speaks to the complexity, challenges and level of effort needed for doing this

using XSD syntax.

A further example of such challenges is shown by the interoperability validation reporting

provided for CAM templates, shown in Figure 1 here. While this provides useful statistics about

your business exchange document it also reports on potential interoperability issues.

2
 The CAM XSLT toolkit is available via the tool option menus in the Eclipse jCAM editor tool available from

http://www.jcam.org.uk or standalone from http://wiki.oasis-open.org/cam tools page links.

OASIS CAM v1.1 and W3C Schema v1.1 Insights

Page - 7

The information is grouped into header information for the statistics, then warnings and errors

relating to the CAM template syntax itself followed by the analysis of the associated XSD

Schema Generation and possible interoperability issues that occur from that.

Figure 1 – CAM template validation and interoperability reporting

The report is created by an XSLT script that parses the CAM template and looks for specific

conditions. As shown here Nillable, SetLength and SetLimit conditions are all tested for (each

check can be optionally ignored if preferred) and in the example here use of nillable was detected

in the schema. The error message offers guidance on resolving this be replacing an

indeterminate use of a nillable assertion by a concrete attribute with specific values that indicate

the exact reason for the use pattern occurring (e.g. instead of nillable, use enumerations for

‘unknown’, ‘not provided’, ‘not available’, ‘incomplete data’, ‘pending’ and so on). The error

message will identify the exact locations in the structure that this applies to.

With XSD schema many of these conditions and potential issues remain hidden inside the XSD

syntax and only emerge later, often only after interfaces have been developed and thus causing

expensive re-work and software changes. Also because these validations are implemented as an

XSLT script developers can choose to extend these rules and crosschecks themselves to enforce

their own standards for exchange development. Next we consider specific some examples of

business use challenges with current XSD schema syntax.

OASIS CAM v1.1 and W3C Schema v1.1 Insights

Page - 8

W3C XSD Schema Syntax Considerations

In this section we highlight just a couple of examples of existing challenges with W3C syntax

and then compare that to the equivalent logic expressed in OASIS CAM template syntax.

First consider the challenge of a fairly common business information pattern where there is a

choice needed between two child items within a parent structure node, and then a rule validation

that requires that if one child item is present then the other is optional.

To achieve this in W3C schema syntax requires the following syntax fragment (Figure 2) here.

Figure 2 – choice of two items with optional item – XSD syntax fragment and its visual representation

Notice that the one element item “Name” definition of type “PersonNameStructure” is repeated

even though it only in fact occurs once in an XML document built from this definition. Quite

apart from the obvious potentially confusing aspect of this, it requires that schema developers

know about the particularly syntax nuance. Finding and distilling this syntax knowledge from the

actual W3C specification is definitely non-trivial. To understand what is really going on here,

we need to see the actual XML structure instance that matches the schema structure definition.

This is the approach that CAM templates employ.

OASIS CAM v1.1 and W3C Schema v1.1 Insights

Page - 9

The equivalent structure syntax definition in CAM template notation is shown here (Figures 3a,

3b, 3c).

Figure 3a – choice of two items with optional item – CAM template excerpt structure definition

It is clear from this that Name and Responsibility are singular children of the ResponsibleOfficer

element. Notice also the use of content hinting via the %value% notation that simply allows

documenting of typical values and types throughout the structure.

The associated choice rule to indicate that the Responsibility and Name are linked as a paired

choice is shown in Figure 3b along with the data type rules for each of the structure elements

here.

Figure 3b – choice of two items with optional item – CAM template excerpt of rules

Visually this can then be simply displayed in a hierarchically tree structure viewer as:

Figure 3c – tree structure – visual representation

Of particular note is the ability here to quickly make context rule driven changes by using

constraint rule statements in the CAM model that are difficult and complex in the XSD approach.

Each constraint rule can have an optional condition assertion (Figure 3d) that controls when the

associated action occurs.

Figure 3d – context rule example controlling structure use pattern

OASIS CAM v1.1 and W3C Schema v1.1 Insights

Page - 10

Next we consider the need to express content models such as for a decimal number. In XSD

syntax shown in Figure 4 again we see that XSD has mechanisms that make versioning and

context changes problematic because structure and definition usage are mixed in together.

Figure 4 – decimal item with value range – XSD syntax excerpt

This also makes it difficult for XSLT parsing of the XSD syntax itself since XSLT works

recursively stepping through the XML content whereas XSD syntax requires multiple passes to

interpret how all the various pieces of markup relate structurally to each other, e.g. in Figure 4

we would need to know where the element “Rate” is to being referenced from and how the base

type namespace “xs:” of decimal is declared.

The equivalent CAM template syntax is shown in Figure 5 where the rules are entirely separate

but reference back to the overall structure using an XPath reference expression. The content

model is defined using a visual data mask (#4.##) for specifying the number format.

Figure 5 – decimal item with value range – CAM template excerpt

Because CAM allows you to also use context driven mechanisms you can then easily extend this

as shown in Figure 6 to select different data mask patterns based on business partner exchange

details.

Figure 6 – decimal item with context – CAM template excerpt

These two examples have been chosen to illustrate the differences between the XSD approach

and the CAM template methods. This is not intended to be a tutorial in either nor to supplement

the actual base specification details. Next we consider the intersections between XSD schema

syntax and CAM templates.

OASIS CAM v1.1 and W3C Schema v1.1 Insights

Page - 11

XSD Schema V1.1 enhancements and CAM

The question arises of how compatible XSD syntax is with CAM syntax? Are there things in

XSD that CAM does not support and vice versa? With the new release of XSD the W3C is

introducing two new major features that provide better round trip compatibility between the two

technologies. The most significant is the use of XPath syntax and assertions. The W3C has

learned from both the work on CAM and also Schematron that use of XPath provides significant

advantages. By providing XPath assertion support the W3C has reduced the gap that previously

existed in this area. So now XPath assertions that were only possible before in CAM can also be

exported to XSD schema, and of course the reverse mechanism applies. However the way that

schema implements support for XPath is different to the CAM method and so completely

automatic ingestion from XSD and the reverse generation to subset schema may still require

manual determinations in some circumstances. Of particular concern is that the XPath approach

in W3C schema may well be a double edged sword in that it solves some issues but creates

others especially relating to interoperability of business exchanges and the predictability of how

partner systems will handle and apply such XPath rules. This may well lead implementers to

adopt guidelines that exclude certain techniques with the W3C approach and by having CAM

templates as the interoperability intermediary agent one can avoid such potential risks.

XSD assert syntax

CAM rule

Figure 7 – Example of XSD XPath mechanism compared to the CAM approach

The other important distinction you can see in Figure 7 is that the CAM syntax references the

structure context directly, while the W3C XSD approach is implied when the complexType

definition is referenced. The largest gap however is that in the CAM XPath you may reference

parameters and values that are not part of the XML instance, such as global variables passed into

the CAM template processor and defined in the template header section. This allows contextual

control over the processing not related to explicit values in the XML transaction instance.

The second change in XSD V1.1 is that the W3C is also implementing conditional type

assignment. Again this was previously something that only CAM supported, so now you can

implement this is both syntaxes. The most obvious place this is needed is in different handling

of date formats and numeric values or in things like telephone number formats. Figure 6 above

already shows an example using CAM assertions to control the content typing. Again context

can be externally supplied (such as versioning) whereas in the W3C approach this has to be part

of the actual XML instance referenced. Context mechanisms are discussed further in the next

section.

OASIS CAM v1.1 and W3C Schema v1.1 Insights

Page - 12

It has never been a design goal of CAM however to be 100% compatible with all aspects of XSD

schema. The two technologies have different audiences and hence there are features in XSD that

business exchanges either will never need or should never use because of interoperability

concerns. That said there is a high level of equivalence, probably exceeding 95%, between the

two syntaxes. Where they diverge is in the level of modeling information theory support and for

abstract concepts and inheritance. It should be noted that CAM is focused on the direct rendering

of the actual XML instances permitted and their interoperability rather than the schema

metadata and model semantics associated with them.

From the perspective of round trip syntax manipulation from XSD schema into CAM template

and back to XSD schema this could be accomplished by retaining XSD schema syntax fragments

as node annotations within the CAM template and then having specialized logic to re-constitute

the original XSD syntax. This has not been implemented currently however in the

interoperability tool suite. Instead the XSD sub-set generation from CAM is designed to create

simple direct XSD schema syntax constructs. This is deliberately minimalistic and intended to

support the use of software tooling that requires such sparser use of schema syntax in order to

optimize exchange handling performance.

There remains however the significant ability in CAM to use context mechanisms and the related

capability to directly exclude or insert structure members and components that do not have exact

equivalents in XSD schema. This also impacts on the whole area of versioning of structure

components and their definitions. The context mechanisms are discussed next.

CAM context mechanism techniques

As shown in Figure 6 above using the CAM context apparatus allows for matching of business

process scenarios to precise information exchange patterns and/or code values. This is

particularly important in today’s business process automations where explicit behaviour and

versions are needed depending on the applications role and use patterns.

Context mechanisms in CAM allow control over not only the content model but also the

structure items and their associated choices. This is essential for interoperability in being able to

capture and understand the specific details of partners information exchange needs.

In addition to XPath driven context conditional techniques CAM also provides for the

declaration of global parameter values in the template header section. This allows context to be

set externally and passed into the template which is particularly important for aligning exchange

behaviour to specific business processing handling scenarios. This agility and deterministic

control is how the use of CAM templates augments the base structural definitions possible with

XSD schema syntax alone. In classic EDI terms the CAM template is allowing you to express

the implementation convention (IC) for partner exchanges. However unlike the EDI IC which is

static documentation only, the CAM template is dynamic and able to be applied at runtime as

scripting technology programmatically.

In addition as previously noted in the interoperability tool suite section the CAM template syntax

supports the creation of realistic sample test data by using XSLT scripting. Extending this is

straightforward through the flexibility of the open source XSLT scripting approach that allows

for direct tailoring to support specific project needs. Whereas the non-deterministic nature of

XSD schema means that tools that output XML instance examples from XSD syntax cannot

OASIS CAM v1.1 and W3C Schema v1.1 Insights

Page - 13

discern exact use patterns and hence can only produce random and less useful examples

automatically.

The next section looks at the support for the SOA concepts of core components and content

assembly along with versioning.

Library-based core components and structures

Of particular importance in the OASIS CAM approach is the support for the concept of a library

of industry domain core components that provide a common information model and practice that

can be used to assemble business transactions from pre-existing standard components. The W3C

XSD schema approach eschews this in favor of a localized model where all aspects are directly

defined within the XSD only
3
. In addition this localized model lacks direct versioning support

within XSD relying instead on indirect namespace mechanisms. Also versioning really requires

mechanisms that can operate at all levels including down to the attribute level within elements

and on code list values (XSD enumerations) as well.

As an illustration of the use of library concepts and content assembly with CAM templates

consider the US government National Information Exchange Model (NIEM) work

(http://www.NIEM.gov). Here a vocabulary of common components is provided that are then

used to assemble together XSD schema definitions. In the CAM approach the assembly avoids

the complexity associated with XSD schema syntax and the need for manual creation of subset,

constraint, exchange and extension schema definitions as shown in Figure 8.

Figure 8 – NIEM assembly approach using XSD schema syntax

3
 XLink was developed partly in response to this but offers very different usage and creates complications of its own

for implementers.

OASIS CAM v1.1 and W3C Schema v1.1 Insights

Page - 14

Instead the CAM template method allows a natural approach where logical blocks of

components
4
, or individual components as needed, are inserted directly into the structure

hierarchy. Then the associated constraint and content model facet details can be referenced

automatically from the library definitions and inserted into the accompanying template rules

section. The lightweight nature of CAM template syntax makes this cut and paste approach

possible.

For code list values CAM templates provide the lookup() function that can reference external

include files and named code lists. Therefore implementers can apply context selection rules to

determine the precise set of values based on business process, exchange content details and

partner context.

Once the desired structure is complete the associated XSLT scripts can be applied to the CAM

template to automatically generate equivalent static XSD schema syntax structure definitions

(keying off namespace prefixes to determine and create schema imports and global definitions).

This is particularly useful for web service exchange definitions where they require a XSD

schema be associated with a particular action. Often using the complete industry defined

standard XSD schema is too non-deterministic (everything is marked as optional content) to

allow consistent interoperable exchange patterns to be deduced, or the industry schema is simply

too large for the software tools to work with. What is required is a “want list” selection from the

original main schema of only the parts needed for the particular web service application. The

CAM template XSLT tools provide all these capabilities to allow sets of XSD schema to be

derived from a master template definition.

This then leads into the use of context to implement versioning needs. By declaring a global

parameter then referencing this from XPath rules you can directly control structure and content.

The CAM syntax includes excludeTree(), excludeElement() and excludeAttribute() functions

that allow direct pruning of the structure template. Conversely you can select or add elements

and choice items. This provides rule driven control over the structure and allows dynamic

modification of both the structure and the associated information content model. In addition the

CAM template allows named structures to be defined. Therefore a template may contain more

than one structure and contextually select the one required.

Using these techniques implementers may tailor by version and by partner the explicit

interchange patterns needed. The CAM template allows you to derive from this, by applying a

XSLT script, one or more XSD schema definitions based on your business process and partner

requirements.

4
 In core component parlance Business Information Entities (BIE) pre-defined sets of related parts such as address or

order line item.

OASIS CAM v1.1 and W3C Schema v1.1 Insights

Page - 15

Semantic Extensions Work

Recently the OASIS Semantic Support for Electronic Business Document Interoperability
technical committee (OASIS SET TC) has started work on specifying semantic mechanisms for

interoperability among core component based electronic business document standards. The

CAM template approach has been identified as one such component that can contribute to this

new work. As we saw in the section of library definitions the CAM template approach provides

a very natural assembly from core components into a complete structure.

Additional semantic support can make this task more automated by finding matching core

components more easily. For example simple key word searches into a library may return

dozens of matches and present challenges for modelers to know which one to then select for their

specific needs. The hope is that OASIS SET work will facilitate the selection of the correct core

components when doing such initial transaction assembly.

As an illustration of the capabilities here an automated matching between schemas and the NIEM

library definitions has been built using XSLT tools and CAM templates. The NIEM library

definitions are exported from the Access database containing them into a simple XML structure.

The XSLT tool then steps through the CAM template definitions and produces a report of those

matches found into a XML output file. That file can then be opened directly as a spreadsheet

and shared accordingly to document the correspondence between the original schema and the

library definitions. These tools and examples are available from the CAM wiki site –

http://wiki.oasis-open.org/cam as open source.

As industry groups adopt sets of core components from complimentary work (such as the OASIS

CIQ TC work on defining address, name and organization definitions) it becomes more

important to be able to align use patterns correctly across implementations.

Another such example is the OASIS Genericode TC work that provides semantic definitions for

code list values. Many standard ISO and UN/CEFACT codes are available in Genericode

semantic formats (http://docs.oasis-open.org/ubl). These can be quickly converted to the

compact CAM lookup function format by applying a XSLT script (available from the CAM wiki

resource site and as menu option in the jCAM editor implementation – http://www.jcam.org.uk).

OASIS CAM v1.1 and W3C Schema v1.1 Insights

Page - 16

Summary

XML document usage consists of traditional publication uses for manual visual information

purposes such as magazines, books, manuals, news feeds, multimedia and other online web

content and then also machine generated XML business information exchange documents

intended for automated processing by software. From the business information exchange

perspective the W3C schema syntax was missing several important components and

characteristics to support interoperability between partners systems. To address the business

exchange area specifically the OASIS Content Assembly Mechanism (CAM) work developed.

Now today we are seeing that communities of business users particularly understand how this is

relevant to their emerging needs and particularly for SOA applications with extended use

patterns across multiple participants systems. A simple schema may suffice for limited

interchanges between a handful of partners or for defining an internal interface where both ends

are managed by the in-house development staff. With today’s expanding global needs the risk is

that each participant in an exchange interprets aspects of the schema use slightly differently and

creates different and incompatible XML exchanges as a consequence.

Such interoperability challenges directly affect the ability to manage extended interactions and

business processes across diverse partners systems especially when scaling out to a national or

global context. Therefore for industry communities particularly the need is to define what those

interoperable exchanges are assembled from a set of industry standard information core

components and then express those templates in a succinct way that can be readily adapted by

their members for their own business context.

For XSD schema which has no context mechanisms this is problematic and so the precise

interchange implementation detail is left open ended and non-deterministic.

We have covered the details of the techniques and capabilities that using CAM templates provide

in solving these challenges and particularly how developers can take advantage of the XSLT tool

suite that is available to work from existing XSD schemas and rapidly develop better

interoperable business information exchanges between exchange partners systems using CAM

templates.

The XSLT tools are able to naturally exploit the semantic power and simplicity of the CAM

template approach in ways that are not possible when attempting to apply XSLT to XSD schema

syntax. These XSLT tools provide:

• want list driven selections from existing XSD schemas

• building context aware structure templates and use patterns from the original XSD schema

• interoperability validations and crosschecks

• automatically generating XSD schema subsets for use with web service interfaces

• creating a test suite of realistic XML instances with both pass and fail conditions

• tabular documentation formats of structure and rules usage for business user verification

• automated cross-referencing to libraries of core components

OASIS CAM v1.1 and W3C Schema v1.1 Insights

Page - 17

The CAM template work is part of a range of technical committees within the OASIS standards

community that is providing additional semantics tools and technologies to extend and augment

what is possible with W3C XSD schema for better interoperability between business information

exchanges.

Implementers can now explore all these options with their own work by reviewing the tutorial

materials and downloading the open source tools available from both the OASIS CAM wiki site

and the jCAM Java tool SourceForge implementation site. These are all listed in the resources

section below.

Resources

OASIS CAM specification – http://docs.oasis-open.org/cam

OASIS CAM wiki developers site – http://wiki.oasis-open.org/cam

OASIS CAM developers support list – cam-dev@lists.oasis-open.org

SourceForge camprocessor implementation site – http://www.jcam.org.uk

Tutorial on using camprocessor tool with XSD schema –

http://www.drrw.net/CAM/XSD%20and%20jCAM%20tutorial.pdf

NIEM resource site – http://www.niem.gov

W3C XSD specification work – http://www.w3c.org

Michael Kay – Saxonica – Discussion of XSD Schema V1.1 new features

http://assets.expectnation.com/15/event/3/Will%20XML%20Schema%201_1%20solve%20the%

20problem_%20Presentation%201.pdf

Acknowledgements

Appreciation and thanks to the following for providing review comments and feedback:

Bruce Peat, Stephen Green, Alan Kotok, and Martin Roberts.

