SAML V2.0 Condition for Delegation
Restriction

Committee Draft 01, 10 March 2009

Specification URIs:

This Version:
- http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-delegation-cd-01.html
- http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-delegation-cd-01.odt

Previous Version:
None

Latest Version:
- http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-delegation.html
- http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-delegation.odt
- http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-delegation.pdf

Latest Approved Version:
- http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-delegation-cd-01.html
- http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-delegation-cd-01.odt

Technical Committee:
- OASIS Security Services TC

Chair(s):
- Hal Lockhart, BEA Systems, Inc.
- Brian Campbell, Ping Identity Corporation

Editors:
- Scott Cantor, Internet2

Abstract:
This document defines a <saml:Condition> type for expressing a chain of intermediaries acting on behalf of the subject of an assertion, requiring relying parties to distinguish between direct and indirect access.

Status
This document was last revised or approved by the SSTC on the above date. The level of approval is also listed above. Check the current location noted above for possible later revisions of this document. This document is updated periodically on no particular schedule.
TC members should send comments on this specification to the TC's email list. Others should send comments to the TC by using the “Send A Comment” button on the TC’s web page at http://www.oasis-open.org/committees/security.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the IPR section of the TC web page (http://www.oasis-open.org/committees/security/ipr.php).

The non-normative errata page for this specification is located at http://www.oasis-open.org/committees/security.
Copyright © OASIS Open 2009. All Rights Reserved.

 four capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be
followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to
notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such
patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced
this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any
patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it represent
that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to
rights in any document or deliverable produced by an OASIS Technical Committee can be found on the
OASIS website. Copies of claims of rights made available for publication and any assurances of licenses
to be made available, or the result of an attempt made to obtain a general license or permission for the
use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS
Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any
information or list of intellectual property rights will at any time be complete, or that any claims in such list
are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
Table of Contents

1 Introduction...5
1.1 Notation..5
1.2 Normative References..6
1.3 Non-Normative References..6
1.4 Conformance..6
 1.4.1 SAML V2.0 Condition for Delegation Restriction...6
2 SAML V2.0 Condition for Delegation Restriction..7
 2.1 Required Information..7
 2.2 Overview..7
 2.3 Element <Delegate>..7
 2.4 Complex Type DelegationRestrictionType...8
 2.5 Use of Identifiers Within <saml:SubjectConfirmation>...8
 2.6 Security Considerations..8
Appendix A. Acknowledgements...9
Appendix B. Revision History..10
1 Introduction

Some advanced SAML use cases involve a single logical transaction that spans one or more intermediate clients or servers. An example includes a web site acting on behalf of a logged-in user while accessing a third service. Generalizing this example, a number of intermediaries might be transited before the final point of access. If a SAML assertion is used as a security token to authenticate and authorize such access, it is important that the identity and order of intermediaries, if any, be expressed within the token in some fashion.

Existing mechanisms designed for this purpose, such as the `<saml:SubjectConfirmation>` element definition in the SAML V2.0 core specification [SAML2Core], or the extended syntax found in the Liberty ID-WSF Security Mechanisms specification [LibSecMech20], suffer from the drawback that they have advisory semantics for a relying party and are likely to be ignored by delegation-unaware SAML processing. While backward compatibility can be an advantage, ignoring security-relevant details that might impact upon a relying party's policy is unacceptable in some scenarios.

This specification provides for the expression of delegation information with normative SAML processing semantics through the use of a `<saml:Condition>` extension type.

1.1 Notation

This specification uses normative text.

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as described in [RFC2119]:

…they MUST only be used where it is actually required for interoperation or to limit behavior which has potential for causing harm (e.g., limiting retransmissions)…

These keywords are thus capitalized when used to unambiguously specify requirements over protocol and application features and behavior that affect the interoperability and security of implementations. When these words are not capitalized, they are meant in their natural-language sense.

Listings of XML schemas appear like this.

Example code listings appear like this.

Conventional XML namespace prefixes are used throughout the listings in this specification to stand for their respective namespaces as follows, whether or not a namespace declaration is present in the example:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>XML Namespace</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>saml:</td>
<td>urn:oasis:names:tc:SAML:2.0:assertion</td>
<td>This is the SAML V2.0 assertion namespace defined in the SAML V2.0 core specification [SAML2Core].</td>
</tr>
<tr>
<td>del:</td>
<td>urn:oasis:names:tc:SAML:2.0:conditions:delegation</td>
<td>This is the namespace defined by this specification.</td>
</tr>
<tr>
<td>xsd:</td>
<td>http://www.w3.org/2001/XMLSchema</td>
<td>This namespace is defined in the W3C XML Schema specification [Schema1]. In schema listings, this is the default namespace and no prefix is shown.</td>
</tr>
<tr>
<td>xsi:</td>
<td>http://www.w3.org/2001/XMLSchema-instance</td>
<td>This is the XML Schema namespace for schema-related markup that appears in XML instances [Schema1].</td>
</tr>
</tbody>
</table>
This specification uses the following typographical conventions in text: `<SAMLElement>`, `<ns:ForeignElement>`, Attribute, Datatype, OtherCode.

1.2 Normative References

1.3 Non-Normative References

1.4 Conformance

1.4.1 SAML V2.0 Condition for Delegation Restriction

An assertion issuer conforms to this specification if it can generate assertions containing a `<saml:Condition>` of type `DelegationRestrictionType`, per section 2.

A relying party conforms to this specification if it can successfully process assertions containing a `<saml:Condition>` of type `DelegationRestrictionType`, per section 2.
2 SAML V2.0 Condition for Delegation Restriction

2.1 Required Information

Identification: urn:oasis:names:tc:SAML:2.0:conditions:delegation

Contact information: security-services-comment@lists.oasis-open.org

Description: Given below.

Updates: None.

2.2 Overview

The SAML V2.0 core specification [SAML2Core] defines the saml:ConditionAbstractType complex type as a basis for extensions with mandatory processing semantics for relying parties. This specification defines such an extension as a supplement for the presence of an identifier within the <saml:SubjectConfirmation> element.

Rather than an advisory mechanism for identifying a single delegate, the extension provides for a normative mechanism that identifies an ordered sequence of delegates, along with optional detail about the acts of delegation.

2.3 Element <Delegate>

The <Delegate> element is a container for a single intermediary/delegate represented by the assertion. It contains the following elements and attributes:

DelegationInstant [Optional]

A timestamp indicating the approximate time at which the act of delegation occurred, if known.

ConfirmationMethod [Optional]

Identifies the subject confirmation method used, if the delegate presented a SAML assertion to authenticate itself to the issuing authority.

<saml:BaseID>,<saml:NameID>,<saml:EncryptedID> [Required]

Identifies the delegate.

The delegate is identified by a required child element in the usual SAML fashion. The optional attributes, if present, supply additional information about the act of delegation.

The following schema fragment defines the <Delegate> element and its DelegateType complex type:

```xml
<element name="Delegate" type="del:DelegateType"/>
<complexType name="DelegateType">
    <choice>
        <element ref="saml:BaseID"/>
        <element ref="saml:NameID"/>
        <element ref="saml:EncryptedID"/>
    </choice>
    <attribute name="DelegationInstant" type="dateTime" use="optional"/>
    <attribute name="ConfirmationMethod" type="anyURI" use="optional"/>
</complexType>
```
2.4 Complex Type DelegationRestrictionType

The DelegationRestrictionType complex type defines a subtype of saml:ConditionType representing one or more acts of delegation that are represented by the containing assertion. It contains the following elements:

<Delegate> [One or more]

An element identifying a delegate of the subject of the containing assertion. The delegates MUST be ordered from least to most recent; thus the earliest element is the farthest removed from the immediate use of the assertion.

A relying party MUST evaluate the list of delegates, and SHOULD NOT accept the assertion unless it wishes to permit each delegate to act on behalf of the subject of the containing assertion.

A SAML authority MUST NOT include more than one <saml:Condition> element of this type within a <saml:Conditions> element of an assertion.

For the purposes of determining the validity of the <saml:Conditions> element, this condition type is always considered to be valid. That is, this condition type does not affect assertion validity, but is a condition on use.

The following schema fragment defines the DelegationRestrictionType complex type:

```
<complexType name="DelegationRestrictionType">
  <complexContent>
    <extension base="saml:ConditionAbstractType">
      <sequence>
        <element ref="del:Delegate" maxOccurs="unbounded"/>
      </sequence>
    </extension>
  </complexContent>
</complexType>
```

2.5 Use of Identifiers Within <saml:SubjectConfirmation>

For consistency with the existing SAML-defined syntax, it is RECOMMENDED that the identifier of the most recent delegate (within the last element in the condition, per section 2.4) be duplicated within the relevant <saml:SubjectConfirmation> elements in the containing assertion.

2.6 Security Considerations

The content of this condition type is directly impacted by the security semantics of the flow of activity that leads to the issuance of the containing assertion. This specification does not define the exchanges that must take place, and relies on composition with other profiles that logically represent acts of delegation that require representation in an assertion.

Relying parties are not required to apply any particular policies with regard to the information represented by this condition type. Rather, it is expected that such information will naturally be significant in the enforcement of existing policies, and that the presence of delegation is significant enough to warrant the disruption of existing services designed to consume SAML assertions until those policies reflect a willingness to accept more indirect forms of access.
Appendix A. Acknowledgements

The editors would like to acknowledge the contributions of the OASIS Security Services Technical Committee, whose voting members at the time of publication were:

- Rob Philpott, EMC Corporation
- John Bradley, Individual
- Jeff Hodges, Individual
- Scott Cantor, Internet2
- Nate Klingenstein, Internet2
- Bob Morgan, Internet2
- Joni Brennan, Liberty Alliance Project
- Tom Scavo, National Center for Supercomputing Applications (NCSA)
- Frederick Hirsch, Nokia Corporation
- Ari Kermaier, Oracle Corporation
- Hal Lockhart, Oracle Corporation
- Brian Campbell, Ping Identity Corporation
- Anil Saldhana, Red Hat
- Kent Spaulding, Skyworth TTG Holdings Limited
- Emily Xu, Sun Microsystems
- Duane DeCouteau, Veterans Health Administration
- David Staggs, Veterans Health Administration
Appendix B. Revision History

- Draft 01
- Committee Draft 01, CD edits