Extensible Resource Identifier (XRI)
Version 3.0

Working Draft 01

20 May 2009

Specification URIs:
This Version:
http://docs.oasis-open.org/xri/xri/v3.0/WD01/xri-syntax-3.0-wd01.html
http://docs.oasis-open.org/xri/xri/v3.0/WD01/xri-syntax-3.0-wd01.doc
http://docs.oasis-open.org/xri/xri/v3.0/WD01/xri-syntax-3.0-wd01.pdf

Previous Version:
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .html
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .doc

Latest Version:
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .html
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .doc

Technical Committee:
OASIS Extensible Resource Identifier (XRI) TC

Chair(s):
Peter Davis, NeuStar
Drummond Reed, Cordance

Editor(s):
Drummond Reed, Cordance
[Editor name]

Related work:
This specification replaces or supersedes:
• [specifications replaced by this standard]
• [specifications replaced by this standard]

This specification is related to:
• XRI http: and https: Bindings 1.0
• XRI info: Binding 1.0
• XRD 1.0
• XRI Resolution 3.0

Declared XML Namespace(s):
[list namespaces here]
[list namespaces here]

Abstract:
This document is the normative technical specification for XRI generic syntax and normalization rules.
Status:

This document was last revised or approved by the [TC name | membership of OASIS] on the above date. The level of approval is also listed above. Check the “Latest Version” or “Latest Approved Version” location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis-open.org/committees/xri/.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/committees/xri/ipr.php).

The non-normative errata page for this specification is located at http://www.oasis-open.org/committees/xri/.
Notices

Copyright © OASIS® 2008. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The names "OASIS", [insert specific trademarked names and abbreviations here] are trademarks of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.
Table of Contents

1. Introduction ... 6
 1.1 Motivations .. 6
 1.2 Related Work ... 6
 1.2.1 URN (Uniform Resource Name) ... 6
 1.2.2 Handle and DOI (Digital Object Identifier) ... 6
 1.2.3 XRD (Extensible Resource Descriptor) ... 6
 1.2.4 XRI Resolution .. 6
 1.2.5 XDI (XRI Data Interchange) ... 6
 1.3 Previous Versions ... 6
 1.3.1 XRI 1.0 .. 7
 1.3.2 XRI 2.0 .. 7
 1.4 Terminology .. 7
 1.5 Syntax Notation .. 7
 1.6 Normative References ... 7
 1.7 Non-Normative References ... 8

2. XRI-to-URI/IRI Bindings ... 9

3. XRI Syntax .. 10
 3.1 ABNF ... 10
 3.1.1 XRI 3.0 .. 10
 3.1.2 IRI (RFC 3987) .. 11
 3.2 Hierarchical Structure .. 13
 3.2.1 Authority ... 13
 3.2.2 Path ... 13
 3.2.3 Query .. 13
 3.2.4 Fragment ... 14
 3.3 Segment Structure ... 14
 3.3.1 Subsegments ... 14
 3.3.2 Global Context Symbols ... 14
 3.3.3 Local Context Symbols ... 14
 3.3.4 Cross-References ... 14
 3.3.5 Literals ... 14
 3.4 Characters ... 15
 3.4.1 Path Characters .. 15
 3.4.2 Reserved Characters ... 15
 3.4.3 General Delimiters ... 15
 3.4.4 Sub Delimiters ... 15

4. Relative XRI References ... 16

5. XRI Forms and Transformations .. 17
 5.1 Forms ... 17
 5.1.1 Native Form ... 17
 5.1.2 XRI Normal Form ... 17
 5.1.3 IRI Normal Form ... 17
 5.1.4 URI Normal Form ... 17
5.2 Transformations..17
 5.2.1 Native To/From XRI Normal Form...17
 5.2.2 XRI Normal Form To/From IRI Normal Form..17
 5.2.3 IRI Normal Form To/From URI Normal Form..17
6 Normalization and Comparison...18
7 Security and Data Protection Considerations ..19
8 Conformance..20
 A. Acknowledgements ..21
 B. Glossary ...22
 C. Revision History..23
1 Introduction

XRI (Extensible Resource Identifier) provides a common language for structured identifiers that can be used to share semantics across protocols, domains, systems, and applications. XRI builds directly on the structure and capabilities of URI (Uniform Resource Identifier) and IRI (Internationalized Resource Identifier). XRI is a profile of URI and IRI syntax and normalization rules that produces URIs or IRIs that contain additional structure and semantics beyond those specified by URI or IRI.

1.1 Motivations

There are as many reasons for needing a common language for structured identifiers (XRI) as there are for needing a common language for structured data (XML). Some of the most commonly cited motivations are:

- To unambiguously assert that the same resource is being identified across different protocols, e.g., HTTP, HTTPS, FTP, SMTP, XMPP.
- To unambiguously identify the same resource in different contexts, i.e., within different domains, systems, applications, namespaces, etc.
- To assign, resolve, and determine the equivalence of different synonymous identifiers for the same resource, e.g., persistent vs. reassignable synonyms, human-readable vs. machine-friendly synonyms, localized vs. non-localized synonyms.
- To identify different versions of the same resource in a manner that is consistent across multiple domains, systems, and applications.
- To create structured identifiers to address, navigate, and share structured data, such as RDF graphs.

1.2 Related Work

1.2.1 URN (Uniform Resource Name)

TODO

1.2.2 Handle and DOI (Digital Object Identifier)

TODO

1.2.3 XRD (Extensible Resource Descriptor)

TODO

1.2.4 XRI Resolution

TODO

1.2.5 XDI (XRI Data Interchange)

XDI is a separate Technical Committee at OASIS. The purpose of XDI is to define a structured data sharing format and protocol based on the RDF graph model, using XRIs to address and describe the graph.

[MORE]

1.3 Previous Versions

This section explains the relationship of this specification to the previous XRI specifications.
1.3.1 XRI 1.0
TODO

1.3.2 XRI 2.0
TODO

1.4 Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

1.5 Syntax Notation
This specification uses the syntax notation employed in [IRI]: Augmented Backus-Naur Form (ABNF),
defined in [RFC2234]. Although the ABNF defines syntax in terms of the US-ASCII character encoding,
XRI syntax should be interpreted in terms of the character that the ASCII-encoded octet represents,
rather than the octet encoding itself, as explained in [URI]. As with URLs, the precise bit-and-byte
representation of an XRI reference on the wire or in a document is dependent upon the character
encoding of the protocol used to transport it, or the character set of the document that contains it.
The following core ABNF productions are used by this specification as defined by section 6.1 of
[RFC2234]: ALPHA, CR, CTL, DIGIT, DQUOTE, HEXDIG, LF, OCTET and SP. The complete XRI ABNF
syntax is collected in section 3.1.
To simplify comparison between generic XRI syntax and generic IRI syntax, the ABNF productions that
are unique to XRIs are shown with light green shading, while those inherited from [IRI] are shown with
light yellow shading.

This is an example of ABNF specific to XRI.

This is an example of ABNF inherited from IRI.

1.6 Normative References

[IRI] M. Dürst, M. Suignard, Internationalized Resource Identifiers (IRIs),

[RFC1737] K. Sollins, L. Masinter, Functional Requirements for Uniform Resource Names,

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,

1997.

[RFC2732] R. Hinden, B. Carpenter, L. Masinter, Format for Literal IPv6 Addresses in URL’s,
1.7 Non-Normative References

NOTE: The proper format for a citation to an OASIS Technical Committee's work (whether Normative or Non-Normative) is:

OASIS
Stage (Committee Draft 01, Committee Draft 02, Committee Specification 01, etc. or Standard)
Title (italicized or in quotation marks)
Approval Date (Month YYYY)
URI of the actual Authoritative Specification (namespace is not acceptable as the content changes over time)

For example:

EDXL-HAVE
http://docs.oasis-open.org/emergency/edxl-have/os/emergency_edxl_have-1.0-spec-os.doc
2 XRI-to-URI/IRI Bindings

XRIs are called abstract identifiers (see the Glossary in Appendix B) because, by themselves, they do not directly resolve to resources on the Internet or other digital networks. Rather an XRI must be bound to a specific resolution context before it can be resolved. This binding is achieved by appending the XRI to a URI or IRI to form another syntactically valid URI/IRI. The result is called a bound XRI.

Different types of bound XRIs are referred to by the scheme name of the URI/IRI to which the XRI is bound, e.g., http: XRI, https: XRI, xmpp: XRI, etc. The URI/IRI to which the XRI is bound is referred to as the base URI/IRI. The process of parsing out and removing the original XRI from the bound XRI is called unbinding, and, when necessary to prevent ambiguity, the resulting XRI is referred to as an unbound XRI.

An XRI MAY be bound to any valid URI/IRI provided the binding produces a syntactically valid URI/IRI. However the resulting URI/IRI may not be recognizable as a bound XRI, either by humans or machines or both, unless that binding conforms to a formal specification.

Following are the requirements of an XRI binding specification:

- The specification SHOULD be named by the URI/IRI scheme name (or names, if the specification defines more than one binding), e.g., XRI http: Binding Specification.
- The specification SHOULD explain the motivations for this binding, and the circumstances under which this binding may be recommended or preferred over other bindings.
- The specification MUST specify the ABNF rules for the binding.
- The specification MUST declare the normal form into which XRIs must be transformed prior to the binding. See section 5, XRI Forms and Transformations.
- The specification MUST define any other encoding rules that apply to XRIs prior to binding.
- The specification MAY include or reference a resolution specification that defines the resolution of XRIs bound according to the specification.

XRI 3.0 includes the following binding specifications:

- XRI http: and https: Binding 1.0.
- XRI info: Binding 1.0.
3 XRI Syntax

3.1 ABNF

The ABNF for XRI 3.0 builds on the ABNF for IRI as defined in [IRI]. The complete ABNF trees for both are included in this section for ease of reference.

3.1.1 XRI 3.0

Following is the normative ABNF syntax for XRI 3.0. Sections 3.2 through 3.4 explain this structure in more detail.

```
xri-reference = xri
   / relative-xri-ref
xri = xri-hier-part [ '?' iquery ] [ '#' ifragment ]
relative-xri-ref = relative-xri-part [ '?' iquery ] [ '#' ifragment ]
relative-xri-part = xri-path-abs
   / xri-path-noscheme
   / ipath-empty
xri-hier-part = xri-authority xri-path-abempty
xri-authority = global-subseg *subseg
xri-path = xri-path-abempty
   / xri-path-abs
   / xri-path-noscheme
   / ipath-empty
xri-path-abempty = * ( '/' xri-segment )
xri-path-abs = '/' [ xri-segment-nz * ( '/' xri-segment ) ]
xri-path-noscheme = xri-segment-nc * ( '/' xri-segment )
xri-segment = [ literal ] *subseg
xri-segment-nz = ( literal / subseg ) *subseg
xri-segment-nc = ( literal-nc / subseg ) *subseg
subseg = global-subseg
   / local-subseg
   / xref
```
global-subseg = gcs-char [local-subseg / xref / literal]
local-subseg = lcs-char [xref / literal]
gcs-char = "=" / "@" / "+" / "$"
lcs-char = "*" / "!"

xref = "(" [xref-value] ")"
xref-value = xri-reference
 / iri

literal = 1*xri-pchar
literal-nc = 1*xri-pchar-nc

xri-pchar = iunreserved / pct-encoded / xri-sub-delims / ":;"
xri-pchar-nc = iunreserved / pct-encoded / xri-sub-delims
xri-reserved = xri-gen-delims / xri-sub-delims
xri-gen-delims = ":;" / "/" / ":;" / "+" / ":;" / ":;" / ":;" / ":;"
 / gcs-char / lcs-char
xri-sub-delims = ":;" / ":;" / ":;" / ":;"

3.1.2 IRI (RFC 3987)
The following ABNF from [IRI] is included here for reference only.

IRI = scheme ":" ihier-part ["?" iquery]
 [":;" ifragment]
scheme = ALPHA *(ALPHA / DIGIT / "+" / "+" / ".")

ihier-part = "/" iauthority ipath-abempty
 / ipath-abs
 / ipath-rootless
 / ipath-empty

iauthority = [iuserinfo ":;"] ihost [":;" port]
iuserinfo = *(iunreserved / pct-encoded / sub-delims / ":;")
ihost = IP-literal / IPv4address / ireg-name

IP-literal = "[" (IPv6address / IPvFuture) "]"
IPvFuture = "v" 1*HEXDIG ":;" 1*(unreserved / sub-delims / ":;")
IPv6address = 6(h16 "::") ls32
/ "::" 5(h16 "::") ls32
/ [h16] "::" 4(h16 "::") ls32
/ [*1(h16 "::") h16] "::" 3(h16 "::") ls32
/ [*2(h16 "::") h16] "::" 2(h16 "::") ls32
/ [*3(h16 "::") h16] "::" 1(h16 "::") ls32
/ [*4(h16 "::") h16] "::" 1(h16 "::") ls32
/ [*5(h16 "::") h16] "::" h16
/ [*6(h16 "::") h16] "::"
ls32 = (h16 "::" h16) / IPv4address
h16 = 1*4HEXDIG
IPv4address = dec-octet "." dec-octet "." dec-octet "." dec-octet
dec-octet = DIGIT ; 0-9
/ %x31-39 DIGIT ; 10-99
/ "1" 2DIGIT ; 100-199
/ "2" %x30-34 DIGIT ; 200-249
/ "25" %x30-35 ; 250-255
ireg-name = *(iunreserved / pct-encoded / sub-delims)
port = *DIGIT
ipath-abempty = *("/" isegment)
ipath-abs = "/" [isegment-nz *("/" isegment)]
ipath-rootless = isegment-nz *("/" isegment)
ipath-empty = 0<ipchar>
isegment = *ipchar
isegment-nz = 1*ipchar
iquery = *(ipchar / iprivate / "/" / "?")
iprivate = %xE000-F8FF / %xF0000-FFFFD / %x100000-10FFFD
ifragment = *(ipchar / "/" / "?")
ipchar = iunreserved / pct-encoded / sub-delims / ":" / ":" @
iunreserved = ALPHA / DIGIT / ":" / ":" / ":" / ":" / ":" / ":" / ":" / ucschar
pct-encoded = "%" HEXDIG HEXDIG
ucschar = %xA0-D7FF / %x9F00-FC7F / %x80000-FFFFD
/ %x10000-1FFFD / %x20000-2FFFD / %x30000-3FFFD
/ %x40000-4FFFD / %x50000-5FFFD / %x60000-6FFFD
/ %x70000-7FFFD / %x80000-8FFFD / %x90000-9FFFD
/ %xA0000-AFFFD / %xB0000-BFFFD / %xC0000-CFFFD
/ %xD0000-DFFFD / %xE1000-EFFFD
reserved = gen-delims / sub-delims
gen-delims = ":" / "/" / ":" / ":" / ":" / ":" / ":" / ":" / ":" / ":" / ":" / ":" / ucschar
3.2 Hierarchical Structure

xri-reference = xri
 / relative-xri-ref
xri = xri-hier-part ["?" iquery] ["#" ifragment]
relative-xri-ref = relative-xri-part ["?" iquery] ["#" ifragment]
relative-xri-part = xri-path-abs
 / xri-path-noscheme
 / ipath-empty
xri-hier-part = xri-authority xri-path-abempty

3.2.1 Authority

xri-authority = global-subseg *subseg

3.2.2 Path

xri-path = xri-path-abempty
 / xri-path-abs
 / xri-path-noscheme
 / ipath-empty
xri-path-abempty = *("/" xri-segment)
xri-path-abs = "/" [xri-segment-nz *("/" xri-segment)]
xri-path-noscheme = xri-segment-nc *("/" xri-segment)

ipath-empty = 0<ipchar>

3.2.3 Query

iquery = *(ipchar / iprivate / "/" / "?")
3.2.4 Fragment
ifragment = *(ipchar / "/" / "?")

3.3 Segment Structure
xri-segment = [literal] *subseg
xri-segment-nz = (literal / subseg) *subseg
xri-segment-nc = (literal-nc / subseg) *subseg

3.3.1 Subsegments
subseg = global-subseg
 / local-subseg
 / xref
global-subseg = gcs-char [local-subseg / xref / literal]
local-subseg = lcs-char [xref / literal]

3.3.2 Global Context Symbols
gcs-char = "=" / "@" / "+" / "$"

3.3.3 Local Context Symbols
lcs-char = "*" / "!"

3.3.4 Cross-References
xref = "(" [xref-value] ")"
xref-value = xri-reference
 / iri

3.3.5 Literals
literal = 1*xri-pchar
3.4 Characters

Text

3.4.1 Path Characters

```
xri-pchar       = iunreserved / pct-encoded / xri-sub-delims / "":"n
```

```
xri-pchar-nc    = iunreserved / pct-encoded / xri-sub-delims
```

3.4.2 Reserved Characters

```
xri-reserved    = xri-gen-delims / xri-sub-delims
```

3.4.3 General Delimiters

```
xri-gen-delims  = ":" / "/" / ":" / ":" / "#" / "[" / "]" / ":" / ":"
```

```
/ gcs-char / lcs-char
```

3.4.4 Sub Delimiters

```
xri-sub-delims  = ":" / ":" / ":" / ":" / ":"
```


4 Relative XRI References

TODO
5 XRI Forms and Transformations

5.1 Forms

5.1.1 Native Form

5.1.2 XRI Normal Form

5.1.3 IRI Normal Form

5.1.4 URI Normal Form

5.2 Transformations

5.2.1 Native To/From XRI Normal Form

5.2.2 XRI Normal Form To/From IRI Normal Form

5.2.3 IRI Normal Form To/From URI Normal Form
6 Normalization and Comparison

TODO
7 Security and Data Protection Considerations

TODO
8 Conformance

The last numbered section in the specification must be the Conformance section. Conformance Statements/Clauses go here.
A. Acknowledgements

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants:

- [Participant Name, Affiliation | Individual Member]
- [Participant Name, Affiliation | Individual Member]
B. Glossary

TODO [This will be largely inherited from XRI Syntax 2.0]
C. Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Editor</th>
<th>Changes Made</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Rev number]</td>
<td>[Rev Date]</td>
<td>[Modified By]</td>
<td>[Summary of Changes]</td>
</tr>
</tbody>
</table>