Topology and Orchestration Specification for Cloud Applications (TOSCA) Standard

TOSCA Interoperability Demonstration

Participating Companies:

- FUJITSU
- HP
- HUAWEI
- IBM
- SAP
- Vnomic
- Zenoss

Join the TOSCA Technical Committee
www.oasis-open.org, join@oasis-open.org
Complete cloud application modeling and orchestration

Enable **portability** and **semi-automatic management** of cloud applications across clouds regardless of provider platform or infrastructure thus expanding customer **choice**, improving **reliability**, and **reducing cost** and time-to-value.

The TOSCA standard...

- **provides the Interoperable Description of:**
 - **Applications**, their component **Services** and **Artifacts**
 - **Platform** and **Infrastructure** services
 - **Relationships** between these services
 - **Management** and **Operational** behavior of these services

- **facilitates higher levels of Solution Portability:**
 - **Portable deployment** to any cloud that can orchestrate TOSCA service templates
 - **Simplify migration** of existing customer apps. to cloud
 - **Dynamic, flexible scaling** and bursting of multi-cloud applications

- **Enables Software Defined Environments (SDEs)**
 - Template contents provide the means to **optimize the underlying cloud infrastructure**

Contributing Members

- HP
- cloudsoft
- NetApp
- Fujitsu
- Huawei
- Red Hat
- Vnomic
- ActiveState
- SAP
- IBM
- CA Technologies
- 3M
- Nokia Siemens Networks
- axway
- software AG
- WSO2
- Cisco
- VCE
- The Virtual Computing Environment Company
- EMC2
- Google
- Zenoss
- CenturyLink
- Primeton
Business Value

Open Ecosystem for Cloud Services
- Vendor-independent definitions of complex Cloud services provide new marketing channel for solutions in the Cloud
- Decoupling of Cloud infrastructure and Cloud content helps focus on key aspects: Cloud Provider or Cloud Service Provider
- Ability to deploy services in any standards-compliant environment avoids vendor lock-in and eases migration

Interoperability and Composition
- Goes beyond VMs in describing the cloud application’s components and their dependencies
- Composition of services defined independently by their domain experts into a higher-value service
- Key enabler for open hybrid Clouds

Easy Adoption of new Cloud Services
- Model-driven creation of Cloud Services
- Standardized deployment into various kinds of environments
 – from test to production, from cloud A to cloud B
- Process-driven Cloud Service Lifecycle Management
Demonstrating: different cloud orchestration tools from different vendors all interpreting and seamlessly running the same TOSCA service templates in the same way.

Benefits: Using TOSCA service templates, enterprise customers can easily move their applications from one cloud to another and orchestrate them using the expert knowledge the application developers have built into them.
Enabling choice for cloud customers...

Wide Range of Open Source & Commercial Tooling
- Architects and Developers can choose from many open source and commercial tools to create, compose, manage and monitor TOSCA Cloud Application & services.

Reusable, Composable TOSCA Service Templates
- Companies & Software Providers can share TOSCA service templates which have encapsulated their expert knowledge using “marketplaces” for others to reuse and extend.

Orchestration of TOSCA Apps in any TOSCA enabled cloud
- Customers can seamlessly deploy, run and manage any TOSCA applications in any TOSCA enabled cloud.

Cloud Customers
- Design
- Deploy
- Develop
- Publish
- Reuse
- Manage

Service Template Marketplaces

Cloud Providers
- Cloud A
- Cloud B
- Cloud C
TOSCA Application Modeling
- Tooling Interop. – Standardized modeling of cloud application services and relationships
 Optionally, tools can directly deploy to clouds for testing or production

Publish TOSCA Service Template to a sample cloud marketplace
- Using the TOSCA Cloud Service Archive (CSAR) file format

Share / Reuse TOSCA Templates
- Customers can rapidly discover and compose cloud solutions from “ready made” templates

Deployment to Cloud Provider of Choice
- Runtime Interop. – seamless deployment to TOSCA-enabled clouds

Monitor TOSCA Cloud Applications
- Tooling Interop. – granular monitoring of application services described by TOSCA

* Many of the participating companies have products that apply to all parts of the ecosystem
Architects and Developers can choose from many open source and commercial tools to create, compose, update and manage TOSCA Cloud Applications.

Demonstration shows a representative modeling tool able to quickly compose and publish the TOSCA SugarCRM sample application.

The 2-Tiers of the sample TOSCA SugarCRM app:

1. **Web Application Tier**
 - Linux, Apache, PHP, SugarCRM

2. **Database Tier**
 - Linux, MySQL

Demonstration shows an export of the TOSCA SugarCRM sample application to a representative cloud marketplace within a TOSCA CSAR package.
Companies & Software Providers can share TOSCA service templates which have encapsulated their expert knowledge using public or private “marketplaces” for others to **reuse and extend**.

Demonstration shows a representative public cloud marketplace showing the newly published TOSCA SugarCRM sample application (i.e. a TOSCA Service Template, CSAR file)

- Publish TOSCA Cloud Service Archives (CSAR) on your choice of public or private application marketplaces.
- Benefit by **reusing and customizing** existing application templates which have expert architect and developer knowledge encapsulated.
Demonstration shows choice of Cloud Providers, each able to seamlessly Import (from the marketplace), deploy and run the same TOSCA Service Template.

- Choose which participating company’s cloud you wish to see a TOSCA service template imported and deployed in.

Customers can choose to deploy and manage their TOSCA apps with many cloud providers that support the TOSCA standard.
Demonstration shows successful login to the SugarCRM application running at the chosen Cloud Provider

... using the address, user ID and password provided within the TOSCA SugarCRM application

Customers benefit from seamless TOSCA Run-time portability
Monitoring of TOSCA Service Instances

Demonstration shows service level, service impact and the granular monitoring of application services described by TOSCA Service Templates

“TOSCA-aware” tooling can enable monitoring of TOSCA service instances running in the cloud.

Customers can manage lifecycle and make adjustments to TOSCA defined services
The following slides provide details on each participant’s interoperability demonstrations
Demo import and deployment of SugarCRM and SAP CRM to a private cloud using a TOSCA Service Template

FlexFrame® Orchestrator
- **interprets** the TOSCA Service Template,
- **orchestrates** the environment for an application instance and
- **deploys** it into a private cloud
Import and deploy a TOSCA SugarCRM model as well as show how to deploy a TOSCA SAP model.

HP’s comprehensive management solution for heterogeneous clouds provides you with all the management and governance capabilities you need to automate service delivery for a successful hybrid cloud.
Deploy the SugarCRM Based on Tosca CSAR Package

Step 1: Login

Step 2: Upload

Step 3: Deploying

Step 4: Deployment Successful
Demo TOSCA Service Templates import and deployment using IBM SmartCloud Orchestrator

- Integrated tooling for TOSCA template creation and editing
- Import and export of TOSCA v1.0 compliant service templates
- Deploy-time composition of service templates based on policies
- Integrated monitoring and scaling of deployed services

Import of the SugarCRM or SAP TOSCA applications into our integrated application builder tool.

SugarCRM or SAP CRM services offered in a service catalog

Deployed instances of SugarCRM or SAP services with public IP addresses
Demo designing, publishing and deploying SugarCRM and SAP CRM TOSCA Service Templates with Vnomic Suite

Vnomic Service Designer

Create TOSCA Service Templates using modeled Components and Artifacts

Vnomic Suite: Declarative Desired State Service Delivery and Governance for the most complex applications and infrastructures

Publish to Marketplaces

Import and Compose new Services

Compose Services from existing deployments and component libraries

Deploy from Marketplaces

Create TOSCA Service Templates using modeled Components and Artifacts

Orchestrate TOSCA Service Templates across diverse clouds and infrastructures

Model existing deployments

Cloud X
Service Model Monitoring via TOSCA

- SAP service deployed with TOSCA orchestration
- Realized deployment is instrumented for *monitoring* using TOSCA template along with deployment information
- Results in deployment and *operational* support of services based on IT policies
TOSCA Resources - Learn More & Participate!

TOSCA Technical Committee – Public Website

TOSCA Specification, Version 1.0, Candidate Spec. 01, June 11, 2013
- http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.pdf

TOSCA Primer, Version 1.0, Committee Note Draft 01, 31 January 31, 2013
- http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.pdf

TOSCA Interop. Demo, SugarCRM Scenario Sample CSAR, August, 2013
More on TOSCA Modeling...
Modeling Topologies with TOSCA

Service Topologies are described using the TOSCA Meta-model:

Nodes
- Represent Components of an application or service and their Properties. Example nodes include:
 - Infrastructure: Compute, Network, Storage, etc.
 - Platform: OS, VM, DB, Web Server, etc.
 - Granular: functional Libraries, Modules, etc.
- Include Operations which are the management functions for the node
 - e.g. deploy(), start(), stop(), connect(), etc.
- Export their dependencies on other nodes as Requirement and Capabilities

Relationships
- Represent the logical Relationships between nodes
 - e.g. “hostedOn”, “connectsTo”, etc.
- Describes the valid Source and Target nodes they are designed to couple
 - e.g. source “web application” node is designed to connect to a target “database” node
- Have their own Properties and Constraints

Artifacts
- Describe Installables and Executables required to instantiate and manage a service. Currently, they include:
 - Implementation Artifacts:
 - Executables or Plans that implement a Node’s or Relationship’s Operations (e.g. a Bash script)
 - Deployment Artifacts:
 - Installables of the components (e.g. a TAR file)

Service Templates
- Group the nodes and relationships that make up a service’s topology
 - Allowing modeling of sub-topologies
- Service Templates look like nodes enabling:
 - Composition of applications from one or more service templates
 - Substitution of abstract Node types with available service templates of the same type

A service’s Topology Model is included in a TOSCA Service Template which is packaged and shared, along with all dependent artifacts, as a TOSCA Cloud Service Archive (CSAR)
TOSCA service templates can model any cloud application or infrastructure pattern

Value: enables rapid and continuous delivery of diverse set of workloads with agility and optimization on programmable heterogeneous infrastructure leveraging reusable building blocks
TOSCA Service Templates support ...

Complete Topology Modeling
Allow developers to describe the topology of their applications and *encapsulate their expert knowledge*, including service configurations, policies and dependencies.

Full Lifecycle Orchestration
Go beyond simple deployment; services can provide instructions for any lifecycle operations enabling precise orchestration and control of application management tasks.

Service Composability
Supports the ability to substitute logical parts of applications through *composable service templates* providing choice in both service vendor and implementation.
TOSCA supports **Containment** via the “HostedOn” relationship

Nodes can **host** or contain other Nodes of specified types

- **Nodes can export the types of nodes they are capable of hosting,**
- **These are matched to other nodes that export their specific host container requirements**

In this example:

- A MySQL Database node is “**hostedOn**” a MySQL Database Management System (DMBS) node
- The MySQL DBMS node, in turn, is “**hostedOn**” a Linux Operating System, and so on…

Tier is a topological concept used to describe sets of nodes (or sub-topologies) that can be deployed and managed as a single group.

Containment Component Containment Relationship Type is called “**hostedOn**”
TOSCA expresses Connectivity relationships between service nodes

Nodes can **connect** to other specified node types

- Nodes export the types of nodes they **require** connectivity to
- These are matched to nodes that export they are **capable** of accepting specific connections

In this example:

- The SugarCRM Application node **connectsTo** a database node in another tier
- Note that the “DB Tier” components are packaged into a separate service template permitting **substitution**

Network Connectivity Relationship Type is named “connectsTo”

Components grouped into composable service templates.
“Tier” Node Types convey scalability

- The “Web Application Tier” is declared **scalable** with upper bounds ‘n’ instances
 - Note: the database tier remains a single instance
- A Load Balancer node is added to the previous template to route requests among “Web Application Tier” instances
- Both tiers are packaged into their own service templates permitting **substitution** of either

TOSCA Supports Scalability via the “Tier” Grouping Node

Components grouped into composable service templates.