How TOSCA Adds Value in the NFV world
Agenda - How TOSCA Adds Value in the NFV world

I. TOSCA Overview
 - What is TOSCA?
 - TOSCA Key Modeling Concepts
 - Topology, Composition, Lifecycle (management), Portability
 - Interesting Features
 - Containers, Portability, Network modeling

II. A Way Forward
 - TOSCA Modeling Applied to NFV
 - Topology & Composition Concepts applied to NFV (NSD, VNF, VNFFG, NFP)
 - Open Source Implementations
 - Openstack (Heat-Translator, Tacker, Senlin), alien4cloud, Cloudify, etc.
 - Backup slides
 - Layering, Lifecycle sequencing, Policy model
TOSCA
Overview
Key Modeling Concepts & Features
Agenda - How TOSCA Adds Value in the NFV world

I. TOSCA Overview
 - What is TOSCA?
 - TOSCA Key Modeling Concepts
 - Topology, Composition, Lifecycle (management), Portability
 - Interesting Features
 - Containers, Portability, Network modeling

II. A Way Forward
 - TOSCA Modeling Applied to NFV
 - Topology & Composition Concepts applied to NFV (NSD, VNF, VNFFG, NFP)
 - Open Source Implementations
 - Openstack (*Heat-Translator*, *Tacker*, *Senlin*), alien4cloud, Cloudify, etc.
 - Backup slides
 - Layering, Lifecycle sequencing, Policy model
What is TOSCA?

TOSCA is an important **new open cloud standard**, that is enabling a unique eco-system, supported by a large and growing number of international industry leaders...

- **TOSCA Version 1.0 Specification approved as an OASIS Standard (published Nov 2013)**
- **TOSCA Simple Profile v1.0 Specification (YAML) final public review draft, Aug 2014**
- **Government and Corporate Awareness:**
 - **OASIS:** 600+ participant organizations. 5000+ participants spanning 65+ countries
 - **TOSCA Committee:** 170+ people 45+ companies/orgs
 - **International Standards & Research:** ETSI NFV liaison, EU FP7, etc.
 - **Industry Analysts:** Forrester names TOSCA as a top four cloud open standard (Mar 2014)
- **Multi-company Interoperability Demonstrated:**
 - OSCON 2015, Open Data Center Alliance 2014, EuroCloud 2013
Agenda - How TOSCA Adds Value in the NFV world

I. TOSCA Overview
 - What is TOSCA?
 - TOSCA Key Modeling Concepts
 - Topology, Composition, Lifecycle (management), Portability
 - Interesting Features
 - Containers, Portability, Network modeling

II. A Way Forward
 - TOSCA Modeling Applied to NFV
 - Topology & Composition Concepts applied to NFV (NSD, VNF, VNFFG, NFP)
 - Open Source Implementations
 - Openstack (Heat-Translator, Tacker, Senlin), alien4cloud, Cloudify, etc.
 - Backup slides
 - Layering, Lifecycle sequencing, Policy model
Topology

Primarily, TOSCA is mainly used to describe the topology of the deployment view for cloud applications

- Defining **Node templates** to describe components in the topology structure
- Defining **Relationship templates** to describe connections, dependencies, deployment ordering

TOSCA can be used to describe the topology of a Network service or VNF as defined by ETSI NFV.

A new virtualLinksTo relationship type can be defined to connect VNF and VL.
Using the TOSCA substitution feature, NFV information model can be described by using multiple TOSCA service templates.
Lifecycle

TOSCA models have a consistent view of state-based lifecycle

- **Operations** (implementations) that can be sequenced against state of any dependent resources
- Fits into any **Management Framework** or **Access Control System**

Standardize Resource Lifecycle

```plaintext
my_resource_name
My_Resource_Type
Lifecycle.Standard
create
configure
start
stop
delete
```

Standardize Relationship Lifecycle

```plaintext
source_resource
Type_A
A
my_relationship
ConnectsTo
target_resource
Type_B
B
```

Lifecycle Customization

Lifecycle.Configure.NFV

- **create**
- **configure**
- **start**
- **stop**
- **delete**
- **nfv_pre_config**
- **nfv_pre_delete**

Create new NFV Lifecycles or Augment existing (via subclassing)

- **Parameters** and **Policies** can be supplied to operations to affect resource behavior (state)
- **Workflow** - TOSCA is developing workflow to allow handling complex state changes, configurations, etc.

TOSCA Lifecycle can be customized for NFV Resources and Relationships
By expressing application **Requirements** independently from cloud **Capabilities** and implementation, TOSCA provides:

- Robust set of **Normative Types** for different domains (including NFV)
- **NFV Profile and Types applied to TOSCA enable our Way Forward.**
- Multi VIM Support
- Portability of services across clouds
- Declarative model spanning infrastructure and service
- Manipulate the orchestration declaratively instead of dealing with disparate cloud APIs (leave to the TOSCA Orchestrator)

TOSCA enables NFV applications flexible movement between different cloud infrastructures.
Agenda - *How TOSCA Adds Value in the NFV world*

I. TOSCA Overview
 - What is TOSCA?
 - TOSCA Key Modeling Concepts
 - Topology, Composition, Lifecycle (management), Portability
 - Interesting Features
 - Containers, Portability, Network modeling

II. A Way Forward
 - TOSCA Modeling Applied to NFV
 - Topology & Composition Concepts applied to NFV (NSD, VNF, VNFFG, NFP)
 - Open Source Implementations
 - Openstack (*Heat-Translator*, *Tacker*, *Senlin*), alien4cloud, Cloudify, etc.
 - Backup slides
 - Layering, Lifecycle sequencing, Policy model
TOSCA Model for Containers leveraging Repositories

PaaS Modeling

- Provider chooses to expose or hide underlying runtime topology & implementation

PaaS Subsystem (hidden)

- my_PaaS_platform
 - Container.Runtime
 - Capabilities
 - Container
 - Runtime.Docker
 - Runtime.Nodejs
 - ...
 - Runtime.J2EE

Container Application Modeling

- Agnostic of PaaS Cloud Provider
 - PaaS on OpenStack, Cloud Foundry, Azure, etc.

- docker_mysql
 - Container.App.Docker
 - artifacts:
 - my_docker_image:
 - type: Image.Docker
 - URI: mysql
 - repository: docker

Layer Separation

PaaS Layer exposes “runtimes” as TOSCA Capabilities
- Docker, Nodejs, JSP, J2EE, etc.

Orchestrators could automatically retrieve and deploy a Docker image from a declared Repository

- TOSCA Templates can model repositories
- Orchestrators could dynamically “pull” from multiple repositories
TOSCA Model for Logical Public & Private Cloud Networks

• Application Model separate from Network Model

Layer separation allows developers to model JUST the application & bind later to existing tenant networks (Layer 4)
TOSCA Direction to model Policies

TOSCA defines policies using an **Event-Condition-Action model**

- Operational policy focus: **Placement** (Affinity), **Scaling** and **Performance**
 - with **Rules** that are evaluated to execute Automatic and Imperative **Triggers**

Policies modeled as **Requirements** using **Capability Types that can be attached to**

1. **Interfaces** for specific **Operations**
2. **Nodes** and
3. **Groups** of Nodes
How TOSCA Adds Value in the NFV world

End Part 1
TOSCA Overview
TOSCA
The Way forward
TOSCA Concepts Applied to NFV
Agenda - How TOSCA Adds Value in the NFV world

I. TOSCA Overview
 ▪ What is TOSCA?
 ▪ TOSCA Key Modeling Concepts
 – Topology, Composition, Lifecycle (management), Portability
 ▪ Interesting Features
 – Containers, Portability, Network modeling

II. A Way Forward
 ▪ TOSCA Modeling Applied to NFV
 – Topology & Composition Concepts applied to NFV (NSD, VNF, VNFFG, NFP)
 ▪ Open Source Implementations
 – Openstack (Heat-Translator, Tacker, Senlin), alien4cloud, Cloudify, etc.
 ▪ Backup slides
 – Layering, Lifecycle sequencing, Policy model
I. TOSCA Overview
 - What is TOSCA?
 - TOSCA Key Modeling Concepts
 - Topology, Composition, Lifecycle (management), Portability
 - Interesting Features
 - Containers, Portability, Network modeling

II. A Way Forward
 - TOSCA Modeling Applied to NFV
 - Topology & Composition Concepts applied to NFV (NSD, VNF, VNFFG, NFP)
 - Open Source Implementations
 - Openstack (Heat-Translator, Tacker, Senlin), alien4cloud, Cloudify, etc.
 - Backup slides
 - Layering, Lifecycle sequencing, Policy model
Topology

Primarily, TOSCA is mainly used to describe the topology of the deployment view for cloud applications

- Defining **Node templates** to describe components in the topology structure
- Defining **Relationship templates** to describe connections, dependencies, deployment ordering

TOSCA can be used to describe the topology of a Network service or VNF as defined by ETSI NFV.

VNF, VL can be defined as node templates in TOSCA. A new virtualLinksTo relationship type can be defined to connect VNF and VL.
tosca_definitions_version: toscapolicyprofile

tosca_default_namespace: # Optional. default namespace (schema, types version)

template_name: # Optional name of this service template

template_author: # Optional author of this service template

import: # List of import statements for importing other definitions files

topology_template:

inputs:

 flavor ID:

VNF1:

type: tosca.nodes.nfv.VNF.VNF1-

properties:

 Scaling methodology:
 Flavour ID:
 Threshold:
 Auto-scale policy value:
 Constraints:

requirements:

 virtualLink: VL1

VNF2:

type: tosca.nodes.nfv.VNF.VNF2-

properties:

 Scaling methodology:
 Flavour ID:
 Threshold:
 Auto-scale policy value:
 Constraints:

requirements:

 virtualLink: VL2

VNF3:

type: tosca.nodes.nfv.VNF.VNF3-

properties:

 Scaling methodology:
 Flavour ID:
 Threshold:
 Auto-scale policy value:
 Constraints:

requirements:

 virtualLink: VL2

 virtualLink: VL3

CP01:

type: tosca.nodes.nfv.CP

properties:

requirements:

 virtualLink: VLI

CP02:

type: tosca.nodes.nfv.CP

properties:

requirements:

 virtualLink: VLI

VL1:

type: tosca.nodes.nfv.VL.Eline-

properties:

 # omitted here for brevity

 virtualLinkable:

 occurrences: 2

VL2:

type: tosca.nodes.nfv.VL.Eline-

properties:

 # omitted here for brevity

 virtualLinkable:

 occurrences: 5

VL3:

type: tosca.nodes.nfv.VL.Eline-

properties:

 # omitted here for brevity

 virtualLinkable:

 occurrences: 2

VL4:

type: tosca.nodes.nfv.VL.Eline-

properties:

 # omitted here for brevity

 virtualLinkable:

 occurrences: 2
Composition

Any node in a TOSCA topology can be an abstraction of another layer or sub-topology.

NFV information model has such a layered structure:

- NSDs are composed of VNFDs, VLDs, PNFDs, etc.
- VNFDs are composed of VDUs, VLDs, etc.

Using the TOSCA substitution feature, NFV information model can be described by using multiple TOSCA service templates.
VNFD example

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

tosca_default_namespace: # Optional. default namespace (schema, types version)
template_name: # Optional name of this service template
 template_author: # Optional author of this service template
 template_version: # Optional version of this service template
description: example for VNFD service properties:
 ID: # ID of this VNFD
 vendor: # Provider or vendor of the VNFD
 version: # Version of VNFD software, described by the
 descriptor under consideration
imports:
 - tosca_base_types_definition.yaml
 # list of import definition files
topology_template:
 inputs:
 # realization
substitution_mappings:
 node_type: tosca.nodes.nfv.VNF
 VNFC
 VNFD
 virtual_link:
virtualizable: [CP21, virtualizable]
Network forwarding path as defined by **ETSI NFV** is an order list of connection points forming a chain of network functions (VNFs or PNFs). A new “Forwarder” requirement is defined in this specification to model the network forwarding path by using ordered list of multiple “Forwarder” requirements. Each “Forwarder” requirement points to a single connection point.
Using TOSCA **Group** element to describe forwarding graphs

```yaml
Groups:
  VNFFG1:
    type: tosca.groups.nfv.vnffg
    description: forwarding graph 1
    properties:
      vendor:
      version:
      v1: [VL1,VL2,VL4]
      vnf: [VNF1,VNF2,VNF3]
    targets: [Forwarding path1, Forwarding path2]

VNFFG2:
  type: tosca.groups.nfv.vnffg
  description: forwarding graph 2
  properties:
    vendor:
    version:
    v1: [VL1,VL3,VL4]
    vnf: [VNF1,VNF2]
  targets: [Forwarding path3]
```
Agenda - How TOSCA Adds Value in the NFV world

I. TOSCA Overview
 - What is TOSCA?
 - TOSCA Key Modeling Concepts
 - Topology, Composition, Lifecycle (management), Portability
 - Interesting Features
 - Containers, Portability, Network modeling

II. A Way Forward
 - TOSCA Modeling Applied to NFV
 - Topology & Composition Concepts applied to NFV (NSD, VNF, VNFFG, NFP)
 - Open Source Implementations
 - Openstack (Heat-Translator, Tacker, Senlin), alien4cloud, Cloudify, etc.
 - Backup slides
 - Layering, Lifecycle sequencing, Policy model
TOSCA in Open Source

TOSCA Template Translation to other Domain Specific Languages (DSLs)
https://wiki.openstack.org/wiki/Heat-Translator

Senlin
Clustering + Placement & Scaling Policies
https://wiki.openstack.org/wiki/Senlin

Tacker
NFV MANO
https://wiki.openstack.org/wiki/Tacker

Cloudify
Service Orchestration & Management
http://getcloudify.org/

alien4cloud
Topology, Type & LCM Design
http://alien4cloud.github.io/

Seaclouds
Open, Multi-Cloud Management
www.seaclouds-project.eu/media.html

CERN Indigo-DataCloud
Data/computing platform targeted at scientific communities
http://information-technology.web.cern.ch/about/projects/eu/indigo-datacloud

OPNFV Parser
Deployment Template Translation
TOSCA-Parse and Heat-Translator are part of the OpenStack Heat orchestration project
- Latest TOSCA features integrated: Networking, Block & Object Storage...
- Availability to use on command line & user input param support

New features in Liberty release and plans for Mitaka
- **Tacker** NFV MANO integration using TOSCA NFV Profile
- **Murano** (Application catalog integration) with OpenStack client
- TOSCA parser available as independent **Python library** (pypi)
- TOSCA **Policy** schema and **Group** schema
- **Plug-ins**: HOT Generator now supports additional plug-ins to allow translation to other DSLs besides HOT, such as **Kubernetes**
OpenSource related to ETSI NFV and OASIS TOSCA

- **Openstack Senlin**
- **OPNFV Parser**
- **ETSI NFV**
 - NFVO / VNFM / Catalog
- **ETSI NFV Descriptor**
 - NSD
 - VNFD
 - VNFFGD

- **OASIS TOSCA**
- **OASIS Policy**
- **Data modeling**

- **OpenStack Tacker**

- **TOSCA parser**
- **OpenStack Heat Translator**
 - heat-translator

- **OpenStack Dashboard**
 - Compute
 - Networking
 - Storage
TOSCA Resources – Learn More

- **TOSCA Technical Committee Public Page** *(latest documents, updates, and more)*

- **OASIS YouTube Channel, TOSCA Playlist**
 - https://www.youtube.com/user/OASISopen, http://bit.ly/1BQGGHm

- **TOSCA Simple Profile in YAML v1.0** *(latest committee approved draft)*
 - http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf

- **TOSCA Simple Profile for NFV v1.0** *(latest committee approved draft)*
 - http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/csd02/tosca-nfv-v1.0-csd02.pdf

- **Contact the Technical Committee Co-Chairs:**
 - Paul Lipton, paul.lipton@ca.com; Simon Moser, smoser@de.ibm.com

- **Today’s Presenters from the TOSCA TC:**
 - Shitao Li, lishitao@huawei.com
 - Matt Rutkowski, mrutkows@us.ibm.com
 - Chris Lauwers, lauwers@ubicity.com
 - Sridhar Ramaswamy, sramasw@Brocade.com
 - Sivan Barzily, sivan@gigaspaces.com
How TOSCA Adds Value in the NFV world

End Part 2
A Way Forward
TOSCA
Backup Slides
TOSCA's Simple Profile Specification (YAML) Primary Goal was to
- Simplify Application-Centric modeling, but also supports modeling of
- DevOps & Workflow: Groups, Policies, Repositories, Artifacts, Configurations
TOSCA Orchestrators - Standardized Lifecycle Sequencing

Deploy Sequencing

- **TOSCA Orchestrator**
- **TOSCA Lifecycle Operation**
- **TOSCA Node State**

 - `create()` → initial → creating → created → configuring → configured → starting → started

Undeploy Sequencing

- **TOSCA Orchestrator**
- **TOSCA Lifecycle Operation**
- **TOSCA Node State**

 - `stop()` → available → stopping → configured → deleting

Source-Target Sequencing

- **TOSCA Orchestrator**
- **TOSCA Lifecycle Operation**
- **TOSCA Node State**

 - `create()` → initial → creating → created → configuring → configured → starting → started

 - `configure()` → pre_configure_source() → configured → post_configure_source() → started

 - `start()` → add_target() → add_source() → remove_target() → target_changed

Combined Sequencing

- **Node A (source)**
 - Operations: create, configure, start

- **Node B (target)**
 - Operations: create, configure, start

- **Relationship A:B**
 - Operations: pre_configure_source, post_configure_source, pre_configure_target, post_configure_target, add_target, remove_target, target_changed
TOSCA Policies Sample: Event-Condition-Action

Event

• Name of a normative TOSCA Event Type
• That describes an event based upon a Resource “state” change.
• Or a change in one or more of the resources attribute value.

Condition

Identifies:
• the resource (Node) in the TOSCA model to monitor.
• Optionally, identify a Capability of the identified node.
• Describe the attribute (state) of the resource to evaluate (condition)

Action

Describes:
• An Operation (name) to invoke when the condition is met
• within the declared Implementation
• Optionally, pass in Input parameters to the operation along with any well-defined strategy values.

– Allows Triggers to be declared based upon an Event, Condition, Action model