
UNCLASSIFIED

Open Command and Control (OpenC2)

Profile for Firewall Functions

Version pre-release 0.1

24 April 2017

UNCLASSIFIED

UNCLASSIFIED

TABLE OF CONTENTS

1 INTRODUCTION 3

1.1 PURPOSE 3

1.2 SCOPE 3

2 OPENC2 LANGUAGE BINDING 5

2.1 ACTIONS 5

2.2 RESPONSES AND ALERTS 5

2.3 DATA MODELING 6

2.3.1 Target and Target Specifier Data Model 6

2.3.2 Firewall Specifier Data Model 7

2.3.3 Modifier Data Model 8

3 SAMPLE OPENC2 COMMANDS 9

3.1 DENY AND ALLOW 9

3.2 SET 11

3.3 UPDATE 12

UNCLASSIFIED

UNCLASSIFIED

List of Tables

TABLE 2.1-1: FIREWALL ACTIONS 5
TABLE 2.2-1: RESPONSE CODES APPLICABLE TO ALL ACTIONS 6
TABLE 2.3-1: TARGET DATA MODEL APPLICABLE TO FIREWALLS 6
TABLE 2.3-2: FIREWALL SPECIFIERS 7
TABLE 2.3-3: FIREWALL MODIFIERS 8

UNCLASSIFIED

UNCLASSIFIED

1 INTRODUCTION

Firewalls use rules to control incoming and outgoing traffic. Essentially all networks will have one or

more firewalls integrated within their cyber defense. First generation (also known as packet filter)

firewalls may operate at line speed and are often deployed at the perimeter. Second generation

(stateful) firewalls maintain a table of valid connections and reject packets that are not a part of a valid

connection (typically TCP). Third generation (application layer) firewalls perform some level of

inspection within packets/flows to determine if the payload is in fact consistent with expected content

for a given application. Firewall functionality may be provided by single purpose devices or may be

provided as a function for a multi-purpose device or a system.

This paper outlines the set of actions, targets, specifiers and modifiers that integrates first generation

firewall functionality with the Open Command and Control (OpenC2) command set. Through this

command set, cyber security orchestrators may gain visibility and provide control into the firewall

functionality in a manner that is independent of the vendor or generation of the firewall. In the context

of this document, ‘firewall’ refers to the first generation packet filter firewalls. Next generation firewall

products that provide additional functionality are referred to other actuator profiles. ​NEED TO DEFINE

1.1 Purpose

The purpose of this document is to:

● Identify the OpenC2 ACTIONS that are applicable to the actuators with firewall functionality.

● Identify the TARGETS and TARGET specifiers that are applicable to the firewall class of actuators.

● Identify SPECIFIERS and MODIFIERS that are applicable and/or unique to the firewall class of

actuators

● Provide sample OpenC2 commands to a firewall

All components, devices and systems that provide firewall functionality will implement the ACTIONS,

TARGETS, SPECIFIERS and MODIFIERS identified as minimum to implement (MTI) in this document.

Actions that are applicable, but not necessarily required for firewalls will be identified as optional.

1.2 Scope

Figure 1 presents a notional OpenC2 implementation which illustrates cases were a firewall profile may

be required and the components within the network that may interact with or be affected by OpenC2.

● OpenC2 message fabric: The transport mechanism for passing OpenC2 commands between

OpenC2 compliant entities within the network.

● Orchestrator: Products that send commands, receives responses, and manages the execution of

a course of action involving one or more actuators. The orchestrator needs a priori knowledge

of which commands the actuator can process and execute therefore must implement the

UNCLASSIFIED

UNCLASSIFIED

profiles for any device that it intends to command.

● OpenC2 Proxy: An abstraction of the firewall functionality that maps (or translates) OpenC2

commands to an appropriate API (i.e. a mitigation manager or vendor API).

● Device Manager: Interfaces with one or more physical or virtual firewalls. A device manager is a

means to provide mitigation system management, which includes participation in OpenC2

workflow processing, transforming actions into a format suitable for a given device, set of

devices or capability within a device that provides the firewall functionality. A proxy between

the OpenC2 message fabric and the device manager may implement the firewall profile and map

the commands to the device manager’s API or the device manager itself may natively support

OpenC2 at its API (thus removing the need for the proxy).

● Proxy to Physical or virtual firewalls. An OpenC2 proxy must implement the firewall profile and

map the commands to the vendor API.

● Native OpenC2 support: In the future, there may be devices that natively support OpenC2, and

will be required to implement the firewall profile.

● Other Actuators: A product may provide multiple cyber defense mechanisms including firewall

functionality as a subset of its capabilities thus the firewall profile is (in addition to other

profiles) needed.

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

2 OPENC2 LANGUAGE BINDING

The OpenC2 Language Specification (​OpenC2 Forum, 2016​) describes a vocabulary by which network

elements may be commanded and controlled. By design, the language is intended to convey high level

actions so that the desired effects of a command can be communicated despite a lack of detailed

knowledge of the cyber defense components. As additional information is made available, the language

is extensible with context specific modifiers and specifiers which permits additional granularity of the

command. In this section the minimum to implement (MTI) and Optional Actions, Targets, Specifiers

and Modifiers that are appropriate for the firewall class of actuators are identified.

2.1 Actions

All OpenC2 commands require an Action. Table 2-2 summarizes the set of actions that are meaningful in

the context of firewalls. Eight OpenC2 actions are identified as MTI that must be implemented for

actuators that provide firewall functionality. Four OpenC2 actions are meaningful in the context of

firewalls but are considered optional. Section 3 provides examples for each action in the context of a

target and its specifiers. Sample use cases are provided at ​(need url for wherever we store use cases)

OpenC2 actions are persistent in firewalls unless they are explicitly identified as running or temporary

through the use of modifiers.

Table 2.1-1: Firewall Actions

query
The ​query​ action initiates a single request for information. Used to determine
the state or settings of the firewall.

MTI

deny
The ​deny​ action is used to prevent a traffic from reaching a destination or
preventing access.

MTI

allow The ​allow​ action permits traffic or access. MTI

set
The ​set​ action changes a value within a configuration, a setting or some other
value

MTI

notify
The ​notify​ action is used to direct an entity to send alerts to another entity. Notify
is not used for normal operations, but is required for the use case where you need
to rapidly direct the firewall to send alerts.

MTI

update
The ​update​ action instructs the component to retrieve and process a software
update, reconfiguration, or some other update.

MTI

delete Removes data, files and or entries. MTI

save Commits data or state to memory. MTI

start The ​start​ action initiates a process, application, system or some other activity. Optional

stop The ​stop​ action halts a system or ends an activity. Optional

restart The ​restart​ action conducts a ​stop​ of a system or an activity followed by a ​start​. Optional

redirect
In the context of a firewall, redirect is used to forward the packet, traffic or flow
to another actuator or honey net and not necessarily to induce an alternate path
to the destination.

Optional

UNCLASSIFIED

UNCLASSIFIED

2.2 Responses and Alerts

Response and Alerts messages originate from the actuator and are informative rather than a command

or request that the recipient execute some task(s).

Alert is used to signal the occurrence of an event and are unsolicited. Response is used to provide any

data requested as a result of an action such as acknowledgement, providing the status, or additional

information related to the requested action. The recipient of the response can be the original requester

of the action or to another recipient(s) designated in the modifier of the action.

Status codes apply to all actions and are presented in table 2.2. The formats and what is expected in the

response and alerts for specific actions will be captured when the specifiers for the various actions are

defined in section 2.3 and examples will be provided in section 3. Responses and Alerts associated with

MTI actions MUST be implemented. Implementations that include optional actions MUST implement

the Responses associated with the implemented action.

Table 2.2-1: Response codes applicable to all actions

Status Code Status Text MTI

102 Processing. Command received but action not necessarily complete MTI

200 OK MTI

301

Cannot execute, redirect to another entity. In this response code, a

specifier that indicates a suggested entity MUST be included in the data

field.

Optional

400 Unable to process command, parsing error MTI

401 Authentication or authorization failure MTI

403 Forbidden MTI

500 Server Error MTI

501 Not implemented MTI

2.3 Data Modeling

Applications that support OpenC2 MUST produce and accept messages that are valid according to the

schema shown in Appendix A. Such applications MAY support additional messages not defined in the

schema.

2.3.1 Target and Target Specifier Data Model

The TARGET is the object of the ACTION (or alternatively, the ACTION is performed on the TARGET). This

document will use the OpenC2 schema which was derived from the STIX data model for cyber

UNCLASSIFIED

UNCLASSIFIED

observables. Table 2.3.1 lists the TARGET namespace that are applicable to firewall functionality.

Table 2.3-1: Target data model applicable to Firewalls

Target Description/ Notes
Applicable

Actions
MTI

domain-name

Fully qualified domain name. Supported by some
firewalls. The actual rule within the firewall will be an IP
address so the DNS resolution must take place. Most
firewall implementations utilize tools that are optimized
for DNS resolution.

deny, allow

Opt

Five-tuple

Consists of the address (source and destination), port
number (source and destination) and protocol identifier.

An ‘incomplete’ five-tuple may be sent to the firewall and
it is left to the implementer’s discretion with respect to
the default value of the unspecified fields and/or if the
unspecified fields make sense in the context of the device.

deny, allow

MTI

CIDR

In the interest of generating a more concise command, the
use of the classless inter-domain routing notation to
specific multiple addresses within the five-tuple is
permitted.

deny, allow

Opt

Hostname
Supported by some firewalls. The actual rule within the
firewall is an IP address so the hostname resolution must
take place.

deny, allow

Opt

File
Typically supported by device managers but may be
supported by some firewalls. The file object includes the
path and name specifiers

Update

Opt

x-config

The x-config.fw object identifies configurable attributes of
the firewall. The attributes include:

● x-config.fw.logging (Boolean)
●

Set

Opt

2.3.2 Firewall Specifier Data Model

An ACTUATOR is the entity that provides the functionality and performs the action. The ACTUATOR

executes the ACTION on the TARGET. In the context of this profile, the actuator is the firewall and the

presence of one or more specifiers further refine which actuator(s) shall execute the action.

The ACTUATOR is optional in an OpenC2 command. If absent, then any entity that can execute the

action should execute the command. If the ACTUATOR field is specified, then only the entities identified

to the degree specified in the actuator field act upon the command.

Whether or not an actuator specifier is meaningful in the context of a firewall is strongly dependent on

the individual product, therefore are optional.

UNCLASSIFIED

UNCLASSIFIED

Table 2.3.2 identifies the specifiers that are applicable to the firewall actuator. Section 3 provides

sample commands with the use of specifiers.

Table 2.3-2: Firewall Specifiers

Firewall Specifier Description

Network All network layer devices that implement the firewall profile

Perimeter

Perimeter; Firewalls with connections to the network and
to external networks that maintain external routing tables

Internal
Internal; Firewalls that are not directly connected to devices
external to the network.

Host Hostname for a particular w/ firewall functionality

Ip-addr Ip address for a particular w/ firewall functionality

Swid
Further specifies the Software ID for a particular device w/
firewall functionality

Named Group User defined collection of devices with firewall functionality

There are firewall specifiers that only apply to a subset of firewall actions. These specifiers provide
detail on how the action is executed.

Table 2.3-3: Action Specific Firewall Specifiers

Specifier Type Description
Applicabl
e Actions

MTI

Drop Boolean
Stop processing and do not send a notification to the
source of the packet.

Deny MTI

Reject Boolean
Stop processing and send a notification to the source of
the packet.

Deny MTI

Complete Boolean
Stop processing and send a false acknowledgment to the
source that the processing was completed.

Deny Optiona
l

Running Boolean

Any changes to a device are to be implemented as
persistent changes. Setting the running modifier to TRUE
results in a command that is not persistent in the event of
a reboot or restart. The running modifier can be
overridden by issuing a subsequent ​save ​action

Set,
update,

Optiona
l

2.3.3 Modifier Data Model

Modifiers provide additional information about the action such as time, periodicity, duration, location

etc. Modifiers can denote the when, where, and how aspects of an action. Modifiers can be used to

indicate whether the actuator should explicitly acknowledge receipt of the command, respond upon

completion of the execution of the command, or provide some other status information. OpenC2

actions are persistent (or permanent) in their implementations. Running, non-persistent or temporary

UNCLASSIFIED

UNCLASSIFIED

commands can be achieved through the use of modifiers.

There are three sets of Modifiers:

● Universal; Applicable to all actions for all actuators. The universal modifiers are documented in

the Language Description document and by definition apply actuators that provide firewall

function.

● Action Specific; Applicable to specific actions for all actuators.

● Actuator Specific; Are only meaningful in the context of a particular actuator function.

Table 2.3.3 summarizes the Modifiers as they relate to firewall functionality.

Table 2.3-3: Firewall Modifiers

Modifier Type Description
Applicable

Actions
MTI

id string The unique identifier for the action. Universal MTI

response string Indicate the type of response required for the action. Universal MTI

start-time datetime The specific date/time to initiate the action. Universal MTI

end-time datetime The specific date/time to end the action. Universal MTI

destination String
Identifies where to send an acknowledgement or other
response.

Universal MTI

3 SAMPLE OPENC2 COMMANDS

This section will summarize and provide examples of OpenC2 commands as they pertain to firewalls.

The sample commands will be encoded in verbose JSON, however other encodings are possible provided

the command is validated against the schema presented in Appendix A. Examples of corresponding

responses and/or alerts will be provided where appropriate.

The samples provided in this section are for illustrative purposes only and are not to be interpreted as

operational examples for actual systems. Within the scope of this document, a # character indicates a

comment, however it should be noted that OpenC2 itself does not support comments within a

command.

3.1 Deny and Allow

Deny and allow are mandatory to implement and can be treated as mathematical complements of each

other. Unless otherwise stated, the example targets, specifiers, modifiers and corresponding responses

are applicable to both actions.

Block a particular connection within the domain and do not send a host unreachable

{"action": "deny",

"target": {

UNCLASSIFIED

UNCLASSIFIED

 "type": “openc2:five-tuple",

"specifiers": {

"Layer4Protocol": "UDP",

"ip-address-src”: 1.2.3.4

"ip-address-dst”: 1.2.3.5

"src-port": 10996

“dst-port”:443

 }

}

 "actuator": {

"type": "openc2:firewall",

"specifiers": {internal}

},

 "modifiers": {

{“id”:”UUID=123e4567-e89b-12d3-a456-426655440000”}

{“openc2: drop”}

}

Block all ftp data transfers from hosts and request ack. Note that the five-tuple is incomplete

{"action": "deny",

"target": {

 "type": “openc2:five-tuple",

"specifiers": {

"Layer4Protocol": "TCP",

"src-port": 21

}

}

 "actuator": {

"type": "openc2:firewall",

"specifiers": {endpoint},

“options”:{ openc2: drop}

},

UNCLASSIFIED

UNCLASSIFIED

 "modifiers": {

{“id”:”UUID=123e4567-e89b-12d3-a456-426655440000”}

{response=TRUE}

}

Note that the response was requested and all endpoints that can execute the command should.

In this case, one of the endpoints successfully issued the deny but the endpoint located at 1.2.3.8 failed

{response

{Source: openc2:ip-addr=1.2.3.4}

{cmdref=123e4567-e89b-12d3-a456-426655440000 }

{statuscode=200}

}

{response

{Source: openc2:ip-addr=1.2.3.8}

{cmdref=123e4567-e89b-12d3-a456-426655440000 }

{statuscode=400}

}

Allow ftp data transfers to a particular ip address from any host. Note that the five-tuple is incomplete

{"action": "allow",

"target": {

 "type": “openc2:five-tuple",

"specifiers": {

"Layer4Protocol": "TCP",

"ip-address-dst”: 1.2.3.5

"src-port": 21

}

}

 "actuator": {

"type": "openc2:firewall",

 "modifiers": {

{“id”:”UUID=123e4567-e89b-12d3-a456-426655440000”}

UNCLASSIFIED

UNCLASSIFIED

{response=TRUE}

{response

{Source: openc2:ip-addr=1.2.3.4}

{cmdref=123e4567-e89b-12d3-a456-426655440000 }

{statuscode=200}

}

3.2 Set

Set ​is mandatory to implement and is intended for toggling of values or enabling capabilities or

functions. This action is distinct from ​update ​in that ​set​ needs to select from the allowed values of

target (artifact, file, process, user-account, windows-registry-key) and the allowed actuator types. ​Set​ is

intended for more atomic modifications rather than a full replacement of a configuration. In the context

of firewalls, ​set​ is intended to modify data that impacts the firewall itself and it is inappropriate to use

set to modify the ACL. Modifications of the ACL should utilize the ​deny ​and ​allow ​actions.

Turn the logging on for all of the network layer firewalls

{"action": "set",

 "target": {

 "x-config”: {“firewall.logging": true}},

 "actuator": {

 "type": "openc2:firewall": {

 "named-group”: “network"}},

3.3 Update

Update ​is mandatory to implement and is intended for the device to process new configuration files,

software updates, patches, policy updates etc. The ​update ​action is a compound action in that all of the

steps required for a successful update (such as download the new file, install the file, reboot etc.) are

implied. In the context of configuration updates, ​update ​is distinct from ​set ​in that a ​set ​command will

provide the new value within the command itself while an ​update ​command may provide the location of

the new files which are retrieved out of band.

instructs the firewalls to acquire a new configuration file. Note that all network based firewalls will

install the new update because no particular firewall was identified. Host based firewalls will not act on

this because network firewalls were identified as the actuator

{ "action": "update",

 "target": {

UNCLASSIFIED

UNCLASSIFIED

 "file": {

 "parent_directory": {

"path":"\\\\someshared-drive\\somedirectory\\configurations"},

 "name": "firewallconfiguration.txt"}},

 "actuator": {

 "openc2:firewall": {

“named-group”:”network”

}

 }}

Instructs any firewall running a particular software load to install a software upgrade

{ "action": "update",

 "target": {

 "file": {

 "parent_directory": {

 "path": "\\\\someshared-drive\\somedirectory\\so"},

 "name": " version2.2offirewallsoftware.exe"}},

 "actuator": {

 "openc2:firewall": {

 "x-tagID": "firewallcompanyversion2.1"}

 }}

UNCLASSIFIED

