
UBL NDR
Position

Papers

First Public Release
16 March 2002

This version:

http://oasis-open.org/committees/ubl/200203/ndrsc/review/draft-ndr-20020316.pdf

Previous version:

none

Intended audience:

EDI experts, business experts, and XML experts interested in the development of an
international standard for basic XML business schemas.

Status:

This is the first public-review distribution of position papers produced by the OASIS UBL
Naming and Design Rules Subcommittee. You can find additional NDR SC materials at the
NDR portal:

 http://www.oasis-open.org/committees/ubl/ndrsc/

These papers are approaching completion, but they are in different stages of development.
We have been working with the people in the Library Content SC, particularly those generating
the schemas, to test out the recommendations in these papers. More testing will follow, and
we would be grateful for additional review.

Please send any comments to ubl-comment@lists.oasis-open.org.

This draft is the collective work of the UBL Naming and Design Rules Subcommittee and is
protected as a work in progress by applicable copyright law.

UBL

UBL NDR SC Draft 16 March 2002

Position Paper: Definition of Elements, Attributes, and Types Page 1 of 9

Position Paper: Definition of
Elements, Attributes, and Types
Authors: Mark Crawford (mcrawford@lmi.org), Arofan Gregory
(arofan.gregory@commerceone.com), Eve Maler (eve.maler@sun.com)

Date: 16 March 2002

Filename: draft-arofan-tagspec-03.doc

Status: Unreviewed by the Naming and Design Rules SC in its V03 form but
deemed ready for external review regardless.

Position Paper: Definition of Elements, Attributes, and Types .. 1

1 Definition of Elements, Attributes, and Types ... 2

1.1 Relation of XML Constructs to ISO 11179 and ebXML Core Components...... 2

1.2 UBL Documentation... 2

1.2.1 Naming Rules for Dictionary Full Names .. 3

1.2.2 Contents of Dictionary Entries ... 3

1.2.3 Contents of Other UBL Documentation ... 3

1.3 XML Constructs in UBL .. 3

1.3.1 General Naming Rules for XML Constructs .. 4

1.3.2 Naming and Definition of Top-Level Elements ... 5

1.3.3 Naming and Definition of Lower-Level Elements 5

1.3.4 Naming and Definition of Attributes .. 7

1.3.5 Naming and Definition of Types .. 7

UBL NDR SC Draft 16 March 2002

Position Paper: Definition of Elements, Attributes, and Types Page 2 of 9

1 Definition of Elements, Attributes, and
Types

In W3C XML Schema (known as XSD), elements are defined in terms of complex or
simple types and attributes are defined in terms of simple types. The rules in this section
govern the consistent naming and structuring of these constructs and the manner of
unambiguously and thoroughly documenting them.

1.1 Relation of XML Constructs to ISO 11179 and ebXML Core
Components

These rules refer to the following concepts taken from ISO 11179 and used subsequently
in the ebXML Core Components work: (TBD: need formal references)

• Object Class

• Property Term

• Qualifier

• Representation Term (RT)

• Core Component Type (CCT)

In XSD, elements are declared to have types, and most types (those complex types that
are defined to have “complex contents”) are defined as a pattern of subelements and
attributes. Thus, XSD has an indirect nesting structure of elements and types (where, for
example, Type 1 below is the parent type of Element A and where Type 2 is the parent
type of Element B and the type bound to Element A):

• Type 1

o Element A

§ Type 2

• Element B…

In UBL, types are all named and therefore “top-level”, whereas most elements are
declared locally inside complex types and are therefore “lower-level”. In terms of
ebXML Core Components, UBL complex types are Object Classes, subelements declared
within them are Properties of those Object Classes, and the types bound to those
subelements are themselves Object Classes which have their own Properties.

Rules are given below on documenting XML constructs to indicate the unambiguous
relationship of each construct to its corresponding Core Component-based semantic
representation.

1.2 UBL Documentation
The primary component of the UBL documentation is its dictionary. The entries in the
dictionary fully define the pieces of information available to be used in UBL business
messages. Each dictionary entry has a full name that ties the information to its

UBL NDR SC Draft 16 March 2002

Position Paper: Definition of Elements, Attributes, and Types Page 3 of 9

standardized semantics, while the name of the corresponding XML element or attribute is
only a shorthand for this full name. The rules for element and attribute naming and
dictionary entry naming are different.

Each dictionary entry defines one fully qualified path (FQP) for an element or attribute.
The fully qualified path anchors the use of that construct to a particular location in a
business message. The dictionary definition identifies any semantic dependencies that the
FQP has on other elements and attributes within the UBL library that are not otherwise
enforced or made explicit in its structural definition. The dictionary serves as a traditional
data dictionary, and also serves some of the functions of traditional implementation
guides in this way.

Additional components of the UBL documentation include definitions of:

• XSD complex and simple types in the UBL library, including whether and how
that type maps to a core component type

• The top-level elements in UBL that contain whole UBL messages

• Global attributes

• (TBD: possibly others, including summaries of code lists, UBL-specific core
component types, and UBL-specific representation terms; for RTs, we’re
supposed to start with the official CC list and liaise with UN/CEFACT in
proposing new ones that we need to add for our own purposes)

The UBL documentation should be automatically generated to the extent possible, using
embedded documentation fields in the structural definitions.

(Note: Throughout this paper, the rules for using the xsd:documentation element’s
source attribute are incorrect; it is supposed to be a URI, not a keyword. This will be
corrected in the next version.)

1.2.1 Naming Rules for Dictionary Full Names

The fully qualified path for an element or attribute is constructed as follows:

(TBD)

1.2.2 Contents of Dictionary Entries

(TBD)

1.2.3 Contents of Other UBL Documentation

(TBD)

1.3 XML Constructs in UBL
These rules distinguish the following constructs within the structural definitions of
messages and their component parts. Note that some of these distinctions are specific to
UBL and are not part of the formal definition of XML or XSD.

• Elements:

UBL NDR SC Draft 16 March 2002

Position Paper: Definition of Elements, Attributes, and Types Page 4 of 9

o Top-level elements: Globally declared root elements, functioning at the
level of a whole business message.

o Lower-level elements: Locally declared elements that appear inside a
business message.

§ Intermediate elements: Elements not at the top level that are of a
complex type, only containing other elements and attributes.

§ Leaf elements: Elements containing only character data (though
they may also have attributes). Note that, because of the XSD
mechanisms involved, elements that contain only character data
but also have attributes must be declared with complex types, but
such elements with no attributes may be declared with simple types
or complex types.

§ Mixed-content elements: Elements that allow both element
content and data in their content models, and which may have
attributes.

§ Empty elements: Elements that contain nothing (though they may
have attributes).

• Attributes:

o Global attributes: Attributes that have common semantics on the multiple
elements on which they appear. These might be fixed attributes expressing
an XML architectural form, attributes for assigning a unique element
identifier, or attributes containing natural-language information (such as
xml:lang).

o Local attributes: Attributes that are specific to the element on which they
appear. Most attributes are local.

• Types: Complex or simple XSD types. Note that UBL has no anonymous types;
all types are assigned a name in their definition. In the UBL structural definitions,
all complex type definitions should be grouped together, and all simple types
similarly grouped together, for ease of reference.

The following sections define the naming and usage rules of these constructs.

1.3.1 General Naming Rules for XML Constructs

Following are the naming rules that apply to all names of XML constructs in UBL:

1. Names MUST use Oxford English.

2. (TBD: Tentative; needs more Library Content SC input) Names of XML constructs
MUST NOT use non-alphabetic delimiters.

3. Names MUST NOT use acronyms, abbreviations, or other word truncations, with the
following exceptions:

• The Representation Term Identifier MUST be represented in XML names as ID.

UBL NDR SC Draft 16 March 2002

Position Paper: Definition of Elements, Attributes, and Types Page 5 of 9

• (More TBD)

4. Names MUST NOT contain non-letter characters unless required by language rules.
(More TBD)

5. Names MUST be in singular form unless the concept itself is plural (example:
Goods).

6. Names for XML constructs MUST use “camel-case” capitalization, such that each
internal word in the name begins with an initial capital followed by lowercase letters
(example: AmountContentType). As noted below, all XML constructs other than
attributes use “upper camel-case”, with the first word initial-capitalized, while
attributes use “lower camel-case”, with the first word all in lowercase. Exceptions are
as follows:

• DUNS for Dun & Bradstreet numbers

• (More TBD; should these be enumerated, or can a more general rule be stated or
referred to?)

1.3.2 Naming and Definition of Top-Level Elements

Each UBL business message has a single root element that is a UBL top-level element.
This element MUST be globally declared in a UBL root schema (which MAY contain
definitions of additional root elements for other related messages in a functional area; see
the Modularity, Namespaces, and Versioning paper) with a reference to a named type
definition. Only top-level elements are declared globally.

Top-level elements are named according to the portion of the business process that they
initiate. (Note: This rule is proposed, but has not yet been decided as a recommendation
of the Naming and Design Rules SC.)

Example: Order, AdvanceShipNotice.

1.3.3 Naming and Definition of Lower-Level Elements

Lower-level elements (as well as attributes) are considered Properties of the Object Class
represented by their parent type. Lower-level elements MUST be locally declared as
namespace-unqualified elements by reference to a named type, whether complex or
simple, and be accompanied by documentation in the form of an xsd:annotation element
with an xsd:documentation element that has a source attribute value of “Use”. The
documentation specifies the use of the element within its parent type.

There are several kinds of lower-level elements, each with distinct naming rules. (TBD:
Our future work on role models may end up modifying these rules. E.g., right now we
assume implicitly that the type bound to the element is used somehow in the property
term name, but this need not be the case.)

The names of intermediate elements MUST contain the Property Term describing the
element and MAY be preceded by an appropriate Qualifier term as necessary to create
semantic clarity at that level. The Object Class MAY be used as a qualifier.

[Qualifier] + PropertyTerm

UBL NDR SC Draft 16 March 2002

Position Paper: Definition of Elements, Attributes, and Types Page 6 of 9

Example: (TBD).

Leaf elements are named as follows:

[Qualifier] + PropertyTerm + RepresentationTerm

The naming of leaf elements follows these exceptions:

• The Representation Term Text is always removed.

• Leaf elements with substantially similar Property Terms and Representation
Terms MUST remove the Property Term.

• (More TBD)

Examples: If the Object Class is Goods, the Property Term is DeliveryDate, and the
Representation Term is Date, the element name is truncated to
GoodsDeliveryDate; the element name for an identifier of a party
PartyIdentificationIdentifier is truncated to PartyIdentifier – and then to PartyID
because of the truncation rule.

Mixed-content elements are considered to be leaf elements with a Representation Term of
Prose. (Note: This rule is proposed, but has not yet been decided as a recommendation of
the Naming and Design Rules SC.)

Empty elements are named as follows:

(TBD)

Example: (TBD).

 (TBD: Rules governing elements of the same name and their respective types.)

The following extended example shows a complex type that locally declares two lower-
level elements:

<xsd:complexType name=”…”>
 <xsd:sequence>
 <xsd:element name=”Name” type=”NameType”
 minOccurs=”1” maxOccurs=”1”>
 <xsd:annotation>
 <xsd:documentation source=”Use”>
The name information for an entity.
 <xsd:documentation>
 </xsd:element>
 <xsd:element name=”Address” type=”AddressType”
 minOccurs=”0” maxOccurs=”1”>
 <xsd:annotation>
 <xsd:documentation source=”Use”>
The address information for an entity.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

Following is another extended example of the documentation fields for the locally
declared elements within their parent type:

<xsd:complexType name=”…”>

UBL NDR SC Draft 16 March 2002

Position Paper: Definition of Elements, Attributes, and Types Page 7 of 9

 <xsd:sequence>
 <xsd:element name=”PartyID” type=”IdentifierType”
 minOccurs=”1” maxOccurs=”1”>
 <xsd:annotation>
 <xsd:documentation source=”Use”>
A standard identification of an entity doing business as assigned
By a standards agency.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name=”MDFBusiness” type=”xsd:Boolean”
 minOccurs=”1” maxOccurs=”1”>
 <xsd:annotation>
 <xsd:documentation source=”Use”>
An indicator of whether the party is a minority, disadvantaged,
or female owned business.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 …
 </xsd:sequence>
</xsd:complexType>

1.3.4 Naming and Definition of Attributes

Attributes, like lower-level elements, are Properties of the Object Class represented by
their parent type. They are named identically to leaf elements, except that they use lower
camel-case rather than upper camel-case.

Example: amountCurrencyIDCode. (TBD: Is this a good example?)

(TBD: Do global attributes have any differences in naming or declaration from regular
local attributes?)

1.3.5 Naming and Definition of Types

Complex XSD types in UBL declare (usually) a set of local elements and (possibly) some
attributes. These types correspond to Object Classes, with the local elements and the
attributes corresponding to Properties of that Object Class. (TBD: There may be a few
exceptions for complex types that serve merely as convenient XML “containers” and do
not correspond in a semantically significant way to Object Classes. We have not
identified any of these yet.)

All types MUST have names (that is, they are not anonymous) and MUST appear as top-
level constructs in UBL schema modules (that is, they are not embedded within element
or attribute declarations). The type name is the Object Class name, with “Type” appended
and with a Qualifier optionally prepended:

[Qualifier] + ObjectClass + “Type”

Example: CodeNameType.

(TBD: How should the naming of simple types, and complex types that contain
simpleContent, differ from regular complex types? For example, are Representation
Terms used?)

UBL NDR SC Draft 16 March 2002

Position Paper: Definition of Elements, Attributes, and Types Page 8 of 9

The definition MUST contain a structured set of XSD annotations in an xsd:annotation
element with xsd:documentation elements that have source attribute values indicating
the names of the documentation fields below:

[TBD: We need to specify which sets of values are used for Contexts (reference to the
official UBL list), and we also need to present the controlled lists of Representation
Terms. Finally, we need to reference an official version of the Core Components Library,
if possible, so that the UIDs can be resolved.]

• UBL UID: The unique identifier assigned to the type in the UBL library.

• UBL Name: The complete name (not the tag name) of the type per the UBL
library.

• Object Class: The Object Class represented by the type.

• Property Term: The Property Term of the type. (TBD: Won’t this always be
NA?)

• Representation Term: The representation term of the type.

• Core Component Type: The CCT per the UBL list.

• UBL Definition: Documentation of how the type is to be used, written such that it
addresses the type’s function as a reusable component.

• Code Lists/Standards: A list of potential standard code lists or other relevant
standards that could provide definition of possible values not formally expressed
in the UBL structural definitions.

• Core Component UID: The UID of the Core Component on which the Type is
based.

• Business Process Context: A valid value describing the Business Process
contexts for which this construct has been designed. Default is “In All Contexts”.

• Geopolitical/Region Context: A valid value describing the Geopolitical/Region
contexts for which this construct has been designed. Default is “In All Contexts”.

• Official Constraints Context: A valid value describing the Official Constraints
contexts for which this construct has been designed. Default is “None”.

• Product Context: A valid value describing the Product contexts for which this
construct has been designed. Default is “In All Contexts”.

• Industry Context: A valid value describing the Industry contexts for which this
construct has been designed. Default is “In All Contexts”.

• Role Context: A valid value describing the Role contexts for which this construct
has been designed. Default is “In All Contexts”.

• Supporting Role Context: A valid value describing the Supporting Role contexts
for which this construct has been designed. Default is “In All Contexts”.

• System Capabilities Context: A valid value describing the Systems Capabilities
contexts for which this construct has been designed. Default is “In All Contexts”.

UBL NDR SC Draft 16 March 2002

Position Paper: Definition of Elements, Attributes, and Types Page 9 of 9

Following is an extended example of the documentation fields for the type:
<xsd:complexType name=”PartyType”>
 <xsd:annotation>
 <xsd:documentation source=”UBL UID” xml:lang=”en”>PS1
 </xsd:documentation>
 <xsd:documentation source=”xCBL Name” xml:lang=”en”>Party
 </xsd:documentation>
 <xsd:documentation source=”Object Class” xml:lang=”en”>Party
 </xsd:documentation>
 <xsd:documentation source=”Property Term” xml:lang=”en”>NA
 </xsd:documentation>
 <xsd:documentation source=”Representation Term”
 xml:lang=”en”>Details
 </xsd:documentation>
 <xsd:documentation source=”Core Component Type”
 xml:lang=”en”>NA
 </xsd:documentation>
 <xsd:documentation source=”UBL Definition”
 xml:lang=”en”>
 </xsd:documentation>
 <xsd:documentation source=”Code Lists/Standards”
 xml:lang=”en”>NA
 </xsd:documentation>
 <xsd:documentation source=”Core Component UID”
 xml:lang=”en”>[None]
 </xsd:documentation>
 <xsd:documentation source=”Business Process Context”
 xml:lang=”en”>NA
 </xsd:documentation>
 <xsd:documentation source=”Geopolitical/Region Context”
 xml:lang=”en”>NA
 </xsd:documentation>
 <xsd:documentation source=”Official Constraints Context”
 xml:lang=”en”>NA
 </xsd:documentation>
 <xsd:documentation source=”Product Context”
 xml:lang=”en”>NA
 </xsd:documentation>
 <xsd:documentation source=”Industry Context”
 xml:lang=”en”>NA
 </xsd:documentation>
 <xsd:documentation source=”Supporting Role Context”
 xml:lang=”en”>NA
 </xsd:documentation>
 <xsd:documentation source=”System Capabilities Context”
 xml:lang=”en”>NA
 </xsd:documentation>
 </xsd:annotation>
 …
</xsd:complexType>

UBL NDR SC Draft 16 March 2002

Position Paper: Code Lists Page 1 of 6

Position Paper: Code Lists
Author: Eve Maler (eve.maler@sun.com)

Date: 27 February 2002

Filename: draft-maler-codelists-04.doc

Position Paper: Code Lists .. 1

1 Code Lists ... 2

1.1 Design Principles .. 2

1.2 Criteria for Choosing and Defining Code Lists .. 3

1.3 Documenting UBL Use of External Code Lists ... 3

1.4 Code List Schema Framework.. 4

1.5 Creating and Using Code List Extensions and Subsets 5

UBL NDR SC Draft 16 March 2002

Position Paper: Code Lists Page 2 of 6

1 Code Lists
As defined in the Core Components specification, V1.8, a code is:

“A character string (letters, figures or symbols) that for brevity and/or
language independence may be used to represent or replace a definitive
value or text of an attribute. Codes usually are maintained in code lists per
attribute type (e.g. colour).”

It has the core component type Code. Type; however, this type assignment does not
require it to be handled in any particular way in syntax bindings, such as in XSD by an
enumeration of strings.

A code list, for our purposes, is a closed set of codes (possibly with a provision for
indicating custom codes) that is defined and maintained by an organization along with
documentation of the meaning of each code.

An external code list, for our purposes, is a code list that is maintained by an
organization other than the UBL SC and incorporated into UBL by reference. An
internal code list, for our purposes, is a code list that is defined in the body of the UBL
set of specifications. Thus, a code list that is considered internal from the perspective of
ANSI X12 might be considered external from the perspective of UBL.

On 13 February 2002, the NDR SC agreed to the following proposal:

“We should use external code lists as much as possible, and in those cases leave
validation and subsetting up to the application (except perhaps for pattern matching). We
should create our own validatable code lists sparingly. This is a short-term solution. In
the long term, we would have the option to use validatable forms of the external code
lists provided by external organizations.”

This position paper proposes a specific formulation of this solution that is designed to be
suitable for use in the NDR document.

Note: All naming and markup design in examples in this paper is ad hoc and does
not necessarily adhere to the NDR rules developed to date.

1.1 Design Principles
The definition and management of code lists in UBL adheres to the following design
principles:

• Semantic clarity

It must be possible to interpret the meaning of any non-custom code (and also,
ideally, any custom code as well) accurately and consistently. Thus, it must be
possible to uniquely identify the relevant code list for each UBL markup construct
that contains a code, and as a corollary, it must be possible to distinguish between
different versions of the “same” code list in case of backwards-incompatible
changes. We should encourage documentation of custom codes to the extent
possible.

• Management of code list maintenance costs

UBL NDR SC Draft 16 March 2002

Position Paper: Code Lists Page 3 of 6

It is expensive to maintain internal versions of code lists that already exist
externally. Also, it is expensive to develop new code lists. UBL should try to
leverage existing work where possible.

• Validation

It should be possible to validate that a legitimate code from a code list is being
used, but some or all of this validation may happen at run time, using application-
specific means.

• Subsetting

It should be possible to restrict the legitimate codes available.

• Extension

It should be possible to add to the universe of possible codes that can be used in a
UBL construct, but the new codes should be given semantic clarity.

1.2 Criteria for Choosing and Defining Code Lists
Where possible, external code lists should be used in preference to internal code lists in
the design of UBL. Potential reasons for designing an internal code list include the need
to combine multiple existing external code lists, or the lack of any suitable external code
list. The lack of “easy-to-read” or “easy-to-understand” codes in an otherwise suitable
code list is not sufficient reason to define an internal code list.

1.3 Documenting UBL Use of External Code Lists
UBL must document the following items related to code lists:

• For a specific version of each internal and external code list used by UBL: A URI
reference (in the style of XML namespace names) that UBL will use to refer to
that list

Since most external standards bodies have not defined such a URI reference for
the code lists under their purview, in these cases UBL must define its own URI
references to stand for these lists.

• The requirements that UBL extensions must follow in documenting code lists of
their own invention

• For each UBL element or attribute containing a code: An indication (by mention
of the corresponding URI references) of the one or more code lists that must be
minimally supported when the construct is used, and, if necessary, the specific
version of the code list associated with this version of UBL

If an external code list is updated without a corresponding update to UBL and
new codes have been added to the list, these new codes may legitimately be used
in UBL documents (with an expectation that document recipients may not be
configured to handle them). However, existing codes are to be interpreted strictly
as in the version of the code list identified in the UBL documentation. If any

UBL NDR SC Draft 16 March 2002

Position Paper: Code Lists Page 4 of 6

codes change in a backwards-incompatible fashion, it is an error to interpret a
code in the sense defined by the new version until UBL itself is updated.

1.4 Code List Namespaces

Issue: Do we need to recommend a basic style of URI reference for external code
lists? Example URIs are used below, but they are not normative. Who invents
these? Who maintains the list? Where does the list appear in the documentation?

1.5 Code List Schema Framework
The mechanism for handling all appearances of codes in UBL markup is the same,
whether the code is internal or external. The code is an XML qualified name, or
“QName”, consisting of a namespace prefix and a local part separated by a colon.
Following is an example of a QName, where “baskin” is the namespace prefix and
“Chocolate” is the local part:

baskin:Chocolate

QNames are defined by the built-in XSD simple type called QName. The schema
definition of UBL must make reference to a UBL type based on QName wherever a code is
allowed to appear, rather than enumerating a closed set of value options. For example:

<xsd:simpleType name=”UBLCodeType”>
 <xsd:restriction base=”xsd:QName”/>
</xsd:simpleType>
…
<xsd:element name=”IceCream”>
 <xsd:attribute
 name=”IceCreamFlavorCode” type=”UBLCodeType” use=”required”/>
</xsd:element>

The intent is for the namespace prefix in the QName to be mapped, through the use of the
xmlns attribute as part of the normal XML Namespace mechanism, to a URI reference
that stands for the code list from which the code comes. The local part identifies the
actual code in the list that is desired. Following is an example of a mapping of the
“baskin” prefix to Version 1.0 of a Baskins-Robbins ice cream flavor namespace,
assuming that UBL has had to define its own URI reference for this namespace:

<IceCream
 xmlns:baskin=”http://www.oasis-open.org/committees/ubl/codelists/BR31-V1.0”
 IceCreamFlavorCode=”baskin:Chocolate”/>

As noted in Section 1.3, the documentation for the IceCreamFlavorCode attribute must
indicate the minimum code lists that are expected to be used in this attribute. However,
the attribute is allowed to contain codes from additional code lists, as long as they are in
the form of a QName.

Applications that produce and consume UBL documents are responsible for validating
and interpreting the codes contained in the documents.

UBL NDR SC Draft 16 March 2002

Position Paper: Code Lists Page 5 of 6

1.6 Creating and Using Code List Extensions and
Subsets

If it is desired to supply a code that is not in any of the code lists identified as being
minimally supported for a particular field, but the desired code is in a code list that is
already defined with a namespace, the creator of the UBL document need only supply the
corresponding QName. For example:

<IceCream
 xmlns:un=”http://www.oasis-open.org/committees/ubl/codelists/UN-icecream”
 IceCreamFlavorCode=”un:ChocolateChocolateChip”/>

If it is desired to supply a code that is neither in the minimally supported code lists for the
field nor in any other code lists already defined, an extension designer must create a new
external code list in a new namespace. For example:

<IceCream
 xmlns:my=http://www.example.com/codes/icecream/V1.3”
 IceCreamFlavorCode=”my:DragonflyRipple”/>

There is no need for this usage to be associated with XSD code. It is not necessary to use
the context methodology to indicate where such custom code lists are expected to be
used.

Issue: Should we recommend/require the use of the context methodology for doing
this? Even if not, there is an issue of how it would accommodate such a thing even
on a volunteer basis.

As noted in Section 1.3, it is intended that the extension namespace (code list) be
documented sufficiently by the extension designer to provide semantic clarity when the
codes from this list are used.

If it is desired to define an explicit subset of an existing code list, rather than building an
implicit understanding of subsets into applications, a subset designer may create a new
external code list in a new namespace that contains the desired subset. In this case, it is
critical that the documentation of the namespace (code list) include a mapping back to the
codes on which it is based.

1.7 Code List Validation Futures
The QName solution is considered short-term. In the future, if any of the organizations
that maintain UBL-referenced code lists choose to offer a schema-based representation of
the code lists that can be incorporated into UBL for greater validation, UBL may consider
incorporating them.

However, for maximum flexibility with maximum semantic clarity in the long term, the
ideal solution might be for QNames to be able to be validated according to, respectively,
the namespace URI and the local part, not the namespace prefix and the local part. The
reason for this is that the prefix is merely an indirection mechanism to get to the URI
reference, and is insignificant – and potentially variable – all by itself.

UBL NDR SC Draft 16 March 2002

Position Paper: Code Lists Page 6 of 6

Thus, until such time as this type of validation becomes an option in XSD validation,
schema modules that are non-QName-based (for example, enumerated lists of non-
prefixed codes or codes with hard-wired namespace prefixes) may not be very helpful to
any version of UBL that uses the QName solution. And unfortunately, schema modules
that are QName-based offer just as little “early validation” as the solution proposed here.

UBL NDR SC Draft 16 March 2002

Position Paper: Elements versus Attributes Page 1 of 17

Elements versus Attributes

18. March 2002
Gunther Stuhec
Verteiler: UBL-Group

1 Introduction
A common cause of confusion, or at least uncertainty, in the design of a schemas is the choice
between specifying parts of the document as elements or attributes. Elements and Attributes
are both containers for information. Many times the choice between an Element and an
Attribute seems very arbitrary, almost matter of style.

There is some information that could go either way. For example, Country could be an
Attribute or an Element. Neither way is right or wrong, it is just a choice. While the choice
may indeed be arbitrary in some cases, the 'typical' roles of Elements and Attributes and the
different types of content models and constraints of these two containers will be explained in
this document very shortly.

2 Characteristics
The fundamental difference between Elements and Attributes in XML 1.0 is to be define the
limits of what the two containers can be used for. It means that elements can contain child
elements as well as content and attributes can only hold content only. The distinction between
attribute and content element then becomes the distinction between an attribute and a
containment relationship with another object.

The following table shows the elementary differences of Elements and Attributes:

Elements Attributes

Can have child Elements nested within them Can't have nested Elements or Attributes; can
contain only strings, or lists of strings

Typically used for structured data items but can
be and are used for simple data items as well Typically used for "atomic" items of data

Elements must appear in the order specified in
the schema, but may appear several times.

Each Attribute of a particular Element can
only be specified once, but more than one
Attribute inside of one Element can be
specified in any order

Elements usually represent the natural, core
content, which would generally appear in every

Attributes represent data of secondary
importance; often metadata?

UBL NDR SC Draft 16 March 2002

Position Paper: Elements versus Attributes Page 2 of 17

printout/display?
(Sub-)Elements usually represent parts of an
Element

Attributes usually represent properties of an
Element

2.1 Elements
Elements are logical units of information in a schema. They represent information objects.
Elements either contain information (text), or have a structure of subelements. Therefore
elements are good for representing structurally significant information.

Elements are more extensible than attributes in an evolving standard because elements can
contain other elements or substructures directly while attributes cannot. If a concept is defined
as an attribute initially, and then needs to be expanded to hold fine-grained information, it
must be changed to an element to be modeled correctly.

Elements can have attributes attached to them as metadata, while attributes cannot. Elements
are repeatable within the same container structure, but attributes can only appear once in the
attribute list of an element. In addition, if order of occurrence is significant, elements are the
only option because attributes do not have order.

2.2 Attributes
Attributes are atomic, referentially transparant characteristics of an object that have no
identity of their own. Generally this corresponds to primitive data types (e.g., Strings, Date,
etc.). Taking a more logical view, an attribute names some characteristic of an object that
models part of its internal state, and is not considered an object in its own right. That is, no
other objects have relationships to an attribute of an object, but rather to the object itself.

Attributes can be divided into the following types:

• The type of attribute that relating to element identification (ID and IDREF type
attributes, and those attributes of type CDATA that have application-specific
identification rules, such as the name attribute of the A element in HTML)

• Those containing tokens that identify one or more contexts in which the element
applies, or which identify one or more options to be used during processing of the
element (entity names, notation names, name tokens or values from a predefined set of
tokens)

• Those tokens that carry data to be used as part of the application (typically CDATA
type attributes).

• Attributes can also be describing the characteristics of information: a property of an
information object. For example, notation attributes clearly define the coding of the
data within the element, and so clearly control the processing of the contents.
Similarly entity attributes clearly identify external, unparsed, entities that will need to
be processed according to the rules applicable to the notation defined in the entity
declaration.

The general characteristics of attributes are:

• Attribute values can have no substructure

UBL NDR SC Draft 16 March 2002

Position Paper: Elements versus Attributes Page 3 of 17

• Attributes are unordered, so there is no standard way to specify that one attribute's
value should precede the other's (there is no guarantee that an API will give you the
attributes in the same order that you specified them)

• Attributes can only contain multiple values if they are tokens (e.g., NMTOKEN) or
references to other elements (e.g., IDREFS)

• Attributes can only describe structures by using for example “xsi:type” and they can
link to them (IDREF or ENTITY) but they cannot contain subelements directly in
markup.

3 Advantages and Disadvantages of Attributes
It is much more easier to describe any general rule for using attributes esspecially, if the
advantages and disadvantages are putted into the opposite before.

The advantages of using Attributes are:

• In XML 1.0, and in the XML Schema, only attributes may have default values
assigned to them by the schema.

• Attributes can have names that indicate the role the value plays in the element.
Element contents have content names, but there can be by Attributes only to say what
role the content plays in any particular element that contains it.

• Attributes have (minimal) data types.
• Attributes take up less space as there is no need for an end tag. Using attributes for

data points results in a drastically smaller document representing the same
information.

• Attributes are easier to access in DOM.
• Attributes can be built in are unordered.
• Attributes can be used for data points disambiguates structure and information. Code

is much cleaner when using attributes for data points – attributes always contain data
points, and elements always contain structure.

• When extracting information from an XML document to store to an RDBMS, or vice-
versa, using attributes for data points forms a very clean mapping between the systems
- attributes always correspond to columns, while elements always correspond to
tables. This makes code to import and export data between RDBMS systems and
XML documents easy to write and very flexible.

• Attributes can be constrained against a predefined list of enumerated values.
• Attributes can have default values.
• Attributes are concise and easier to parse than elements.

The disadvantages of using Attributes are:

• Attributes aren't as convenient for long text, large values, or binary entities.
• Attributes can't contain other elements. Therefore, there can't contain nested info.
• Attribute values are harder to search for in search engines
• Attribute values often don't appear on the screen in editing tools (you have to open a

special dialog or popup to see them)
• Attribute values can be slightly more awkward to access in processing APIs

UBL NDR SC Draft 16 March 2002

Position Paper: Elements versus Attributes Page 4 of 17

• Attributes are ambiguity and not expandable for future changes. Each attribute is
either there or not. There is no way to indicate that if you provide this one, you can't
provide that one, or if these two are present, then you can't have that one, or if this one
is present, then that one has to also be present, and so on

• Whitespace can't be ignored in an attribute value.
• Attributes can only contain multiple values by using tokens.
• Attributes can describe structures in a difficult form by using “xsi:type” only. There is

no way to describe a srtucture by using like child elements.
• Attributes are more difficult to manipulate by program code

4 Guidelines
Attributes can actually be used to display of the information what would otherwise be
displayed withing the child elements. How can be done a decision when a piece of
information is an child-element or an attribute? Tim Bray has written to this proplem:
"...when the property has a simple value like a string, we put that in the content of the
element; when the property's value is another object, we put a pointer to it in an attribute
value and leave the element decribing the property empty."

That solution is one way but a efficient choice for definition depents not on values only. It
must be done additionally a consideration of the limitations and special properties of
Elements and Attributes which are depending on the disadvantages and advantages of each
too.The following considertions may be helpful for using of Elements or Attributes:

• The definition of an Element is advantangeous if the document property relate to the
structure of the document.

• An Element should be used to represent a piece of information that can be considered
an indpendent object.

• An Element should be used when the information is related via a parent/child
relationship to another piece of information. In this case, the element is also a
subelement of the element to which it is related.

• An Attribute should be used to represent any information "left over" after defining the
objects that have relationships to other objects (and should thus be elements and
subelements).

• An Attribute should be used to represent any information that describes other
information, such as a status or id.

• An Elemente must be used, if an item needs to occur multiple times, because attributes
can have only occur once in an element.

• An Attribut is very useful, if it necessary to limit values to a predefined list, since it is
possible to specify a valid list of values for an element.

• Attributes are a better choice, to minimize the file size of target documents.

The following diagram illustrates a way to find out how want to be an Element or an
Attributes necessary to be define it. This definition process depends by considering the
limitation and special propertiers which are in the following diagram included.

UBL NDR SC Draft 16 March 2002

Position Paper: Elements versus Attributes Page 5 of 17

flat

unordered

hierachical

program

free-form

ordered

yes

yes

no meta-data

human

Create an
Element

undesired to be
spell-checked

to be spell-checked

enumeration

Are multiple information
flat or hierarchical?

Break information down
into flat structure.

Does a
specific value

represent information about
content of same hierachy,

or is the information
content itself?

Are the unordered
information existing of

two values only?

Are multiple
information unordered

or ordered?

Are the ordered
information existing of

two values only?

Create an
Attribute with

Enumeration-List

Does the value have
one of an enumeration

of values or is the value
of free-form?

Is each information
to be specified, manipulated,
organized, consumed by a

program or by
a human?

Is the content to be
spell-checked?

Create an
Attribute

Create an
Groupelement

higher
hierachies

5 Recommendation
In the Core Components Technical Specification a Core Component Type will be used for the
creation of Core Components. It consists of one Content Component for the value and one ore
more Suplementary Components for giving an essential extra definition to the Core
Component itself. The Core Component Type will be used for creation of Basic Core
Component (BBC) or Aggregate Core Components (ACC) respectively, which are necessary
for building of Basic Business Information Entities (BBIEs) or Aggregate Business
Information Entities.

UBL NDR SC Draft 16 March 2002

Position Paper: Elements versus Attributes Page 6 of 17

Since this BBIEs are a derivation of BCCs and must have a human-readable business
semantic definition, the BCCs itself has to be defined as Elements. The content of each
Component Content are to be spell-checked in the most of situations. Therefore the
Component Content will be represented as an Element-Value.

The Supplementary Components will be represented as Attributes. Since, as the most of the
information of each Supplementary Components are restricting attributes, will be used by
programs and represented can be represented in a unordered form. Furthermore, the
Supplementary Components could be including information as enumerations.

All Aggregate Components (ACCs and ABIEs) are nodes in an hierachical order and nodes
inside of hierachies will be defined as Groupelements. The following figure describes the
relationship between the Core Components and the Business Information Entities and type of
representation in XML-syntax of each component.

Core
Component

Type

Basic
Core Component

Basic Business
Information

Entity

Aggregate
Core

Component

Aggregate
Business Information

Entity

Message /
Document

CORE BUSINESS

Repository

Core Component Library

defines in
context

defines in
context

containscontains

contains

contains

is of type

Content
Component

Supplementary
Component

1

1..*

Element-Value

Attribute
+Attributevalue

Elements + Attributes
(if Attributes for
Supplementary
Compoenents
necessary)

Elements + Attributes
(if Attributes for
Supplementary
Compoenents
necessary)

Elements + Attributes
(if Attributes for
Supplementary
Compoenents

necessary)

Groupelement

Groupelement
Groupelement

Data Dictionary

UBL NDR SC Draft 16 March 2002

Position Paper: Elements versus Attributes Page 7 of 17

6 Proposal
I would like to do the following proposal for using attributes:

1. Attributes must be used for representation of the Global Unique Identifier by using ID
within all components like BCC, ACC, BBIE and ABIE.

2. Attributes should be used for defining the relationship between components. The
relationships in XML can also be represented with ID-IDREF(S) attributes. Using
these attributes, an element may refer to one or more other elements (by including the
value of those elements' ID fields in the pointing element's own IDREF or IDREFS
field). While this may seem to be directly analogous to a relational database's key
mechanisms, there's one important difference: Most parsers treat these pointers as
unidirectional. In other words, given an IDREF or IDREFS field, it's possible to
quickly find the element or elements with the associated ID or IDs, but not the other
way around. As you'll see when I discuss modeling solutions, this turns out to be a real
impediment to design.

3. An attribute should be be used, if the tagname of each CC or BIE will be represented
in another language as the Oxford English language. The language Oxford English
will be used as default.

4. Attributes should be used only inside of Core Component Types which are used for
defining of the Basic Core Components (Leaf Elements).

5. Attributes should be used only for defining of supplementary components only. The
supplementary components are fixed defined inside of the ebXML Core Component
Specification and must not expanded normally.

6. The content component should be defined only as an element content of each leaf
element.

7. An attribute should be not necessary, if it exists a default value for the specific
supplementary component.

As the following diagram shows, it will be two types of attributes are necessary:

Leaf ElementsGroups

Common Attributes
-uid (ID)
-uidRef (IDREF)
-uidRefs (IDREFS)
-Language (xml:lang)

ABIEsACCs BBIEs BCCs

Attributes for
Supplementary Components
e.c.
-(cct)*Identifier
-(cct)*AgencyIdentifier
-(cct)VersionIdentifier
-(cct)Name
-Language

*(cct) is a placeholder for the
specific core component type

UBL NDR SC Draft 16 March 2002

Position Paper: Elements versus Attributes Page 8 of 17

The summary of the properties and the advantages of the proposed way is:

• For each Basic Core Component (BCC) is only one leaf-element necessary. We don’t
need a element group, which includes a bunch of child elements for the content
components as well as for the supplementary components.

• This definition is well structured and easy to read / easy to understand by a user.
• On the other hand the context-dependent BIEs can be easily used in the OO-design

and in the implementing coding.
• The information about supplementary components contained in the attribute value

only. This attribute values can be omitted in the instances, if the default value is
defined.

6.1 Empty Elements
All of the following type of empty elements are not necessary for building Basic Core
Components (BCCs) are Basic Business Information Entities (BBIEs) respectively:

 <ElementName/>

 <ElementName></ElementName>

 <ElementName attributeName=”Value”/>

 <ElementName attributeName=”Value”></ElementName>

Every BBIE derived from a BCC includes a content which is expressed by the element value
of a leaf element. Otherwise, it is a content not needed, the specific BBIE must not to be
expressed.

6.2 Common Attributes
For the definition of the common attributes (ID, IDREF, IDREFs and language) which will be
used within every Core Component and Business Information Entity respectively, there is a
attributegroup (the choosen name of that attribute group is “UidAttributeGroup” yet) defined.
This attribute group includes the following attributes:

• uid – The attribute “uid” identify each CC or BIE uniquely by expressing the GUID
(Global Unique Identifier). The “uid” based on the built-in datatype “ID”. The ID
must be represented in every CC and BIE.ID represents the ID attribute type from
[XML 1.0 (Second Edition)].

• uidRef – The attribute “uidRef” use a single IDREF relationship to point the relating
element back to the element it needs to reference. IDREF represents the IDREF
attribute type from [XML 1.0 (Second Edition)].

• uidRefs – The attribute “uidRefs” based on the built-in datatype IDREFS. IDREFS
can habve serveral targets (IDs). IDREFS represents the IDREFS attribute type from
[XML 1.0 (Second Edition)].

• xs:language – The Attribute “language” may be inserted in documents to specify the
language used for the tagnames for BIEs and CCs. The attribute represents natural

UBL NDR SC Draft 16 March 2002

Position Paper: Elements versus Attributes Page 9 of 17

language identifiers as defined by [RFC 1766]. It will be used, if the tagname of each
CC or BIE will be not in the Oxford English language. The language Oxford English
will be used as default.

namespace CoreComponentTypes.xsd

used by complexTypes AmountType CodeType DateTimeType IdentifierType MeasureType NumericType QuantityType
TextType

attributes Name Type Use Default Fixed Annotation
uid xs:ID required
uidRef xs:IDREF optional
uidRefs xs:IDREFS optional
language language optional en

source <attributeGroup name="UidAttributeGroup">
 <attribute name="uid" type="xs:ID" use="required"/>
 <attribute name="uidRef" type="xs:IDREF" use="optional"/>
 <attribute name="uidRefs" type="xs:IDREFS" use="optional"/>
 <attribute name="lang" type="language" use="optional" default="en"/>
</attributeGroup>

6.3 Attributes for Supplementary Components
Attributes are useful for supplementary components especially. This will show the first
example:

<complexType name="AmountType" id="000105">

 <annotation>

 <documentation source="CCTS V1.7" xml:lang="en">
 A number of monetary units specified in a currency where the unit of currency is explicit or implied.
 </documentation>

 </annotation>

 <simpleContent>

 <extension base="cct:AmountContentType">

 <attribute name="amountCurrencyIdentificationCode" type="cct:AmountCurrencyIdentificationCodeType"/>

 <attributeGroup ref="cct:UidAttributeGroup"/>

 </extension>

 </simpleContent>

</complexType>

The first example represents the core component type "AmountType". The AmountType is
derived by the content component "AmountContentType". Therefore it is possible, that the
value of AmountType will represent in the derived Core Component directly and not by an
additional child element. And the "AmountType" includes on supplementary component
"AmountCurrencyIdentificationCode". This supplementary component is derived by
"AmountCurrencyIdentificationCodeType" and is represented as an attribute. The XML
instance of this "AmountType" is represented as is follows:

<Amount amountCurrencyIdentificationCode="EUR" uid="ID000000" uidRef="ID000000" uidRefs="ID000000 ID000001"
language="en">3.14</Amount>

The next example shows the "AmountType" without any attribute:

 <xs:complexType name="AmountType_0p2">

 <xs:sequence>

UBL NDR SC Draft 16 March 2002

Position Paper: Elements versus Attributes Page 10 of 17

 <xs:element name="AmountContent" type="cct:AmountContentType"/>

 <xs:element name="AmountCurrencyIdentificationCode" type="cct:AmountCurrencyIdentificationCodeType"/>

 </xs:sequence>

 </xs:complexType>

It will be more complicated for the parser as well as the user, if the content will be
represented in an additional childelement inside the complexType "AmountType". Therefore
it is necessary to create two childelements inside of "AmountType". The XML instance will
be then shown as the following example:

 <Amount_0p2>

 <AmountContent>33.34</AmountContent>

 <AmountCurrencyIdentificationCode>EUR</AmountCurrencyIdentificationCode>

 </Amount_0p2>

It will be much more data necessary for building an instance of "AmountType". This will be
influenced the parsing of big documents especially. As well as that example is not better
readable as the first example. The new version of DOM as well as the SAX parser parsing all
attributes in a very fast and elegant way, faster as a lot of additional childelements.

The following example shows the creation of date-time elements in two different ways:

The first example shows the definition of the dateTime format with a built-in simpleType:

 <element name="DateTime_0p3" type="dateTime"/>

It is although possible to create the Date Time format in a special format, based on ISO 8601:

 <complexType name="DateTimeType_0p1">

 <simpleContent>

 <extension base="cct:DateTimeContentType">

 <attribute name="dateTimeFormat" type="cct:DateTimeFormatType"/>

 </extension>

 </simpleContent>

 </complexType>

The attribute “dateTimeFormat” gives the information about the representation of the special
format:

 <DateTime_0p1 dateTimeFormat="YY-MM-DD">02-02-05</DateTime_0p1>

This XML instance represented the content in the same element. Therefore, there is no
changing of the representation. That will be not so, if the description of the format will be
done by an additional child element:

 <DateTime_0p2>

 <DateTimeContent>02-02-05</DateTimeContent>

 <DateTimeFormat>YY-MM-DD</DateTimeFormat>

 </DateTime_0p2>

UBL NDR SC Draft 16 March 2002

Position Paper: Elements versus Attributes Page 11 of 17

There are two child elements necessary. One for the content and the other for the format
description. That makes much more data and is not so easy understandable as the example
before.

There are might be a problem by using more than one supplementary components for one
Core Component Type. For example "codeType". Since as the values of each supplementary
components do represent some processable data or codes respectively.

There are some examples:

A.)
 <Code_0p1 codeListIdentifier="1B" codeListAgencyIdentifier="28" codeListVersionIdentifier="1" codeName="Special Code"
languageCode="en">ABCX</Code_0p1>

In the first example (A) are all supplementary components represented as attributes. The
problem is that will happen no direct relationship between codeName and languageCode. This
must be necessary, because the languageCode is related to the codeName.

B.)
<Code_0p2 CodeListAgencyIdentifier="1B" CodeListIdentifier="28" CodeListVersionIdentfier="1">

 <CodeContent>ABCX</CodeContent>

 <CodeName languageCode="en">Special Code</CodeName>

 </Code_0p2>

In the second example (B) are the supplementary components shared in attributes and child
elements. Supplementary components would like represented as attributes, if the data could be
processably or coded information respectively. Supplementary components which represents
user readable information represented as child elements. The content component is
represented as child element, too. One expection have the attribute "languageCode" due to
related to the readable name of the code it will be placed inside of the child element
"CodeName".

C.)
<Code_0p3>

 <CodeContent>ABCX</CodeContent>

 <CodeListAgencyIdentifier>1B</CodeListAgencyIdentifier>

 <CodeListIdentifier>28</CodeListIdentifier>

 <CodeListVersionIdentifier>1</CodeListVersionIdentifier>

 <CodeName>Special Code</CodeName>

 <LanguageCode>us</LanguageCode>

 </Code_0p3>

The last example the CodeType without any attributes. There are much more data and there is
no relationship between CodeName and LanguageCode, too.

The attributes doesn't make the readability much more complicated. It help us, to build
relationship in a very short and easy matter. The XML instances are much shorter and there

UBL NDR SC Draft 16 March 2002

Position Paper: Elements versus Attributes Page 12 of 17

are not so much hierachies for representing that data. That helps that the parsing of that
structure is much more faster. And is helpful to map elements in an internal workflow or
database respectively.

6.4 Attributes within the Core Component Types
The following subchapters shows the different core component types with the use of attributes
as examples.

6.4.1 complexType AmountType

diagram

namespace CoreComponentTypes.xsd

type extension of cct:AmountContentType

facets totalDigits 10
fractionDigits 2

attributes Name Type Use Default Fixed Annotation
amountCurrency
IdentificationCod
e

cct:AmountCurr
encyIdentificatio
nCodeType

uid xs:ID required
uidRef xs:IDREF optional
uidRefs xs:IDREFS optional
language language optional en

annotation documentation A number of monetary units specified in a currency where the unit of currency is explicit or implied.

source <complexType name="AmountType" id="000105">
 <annotation>
 <documentation source="CCTS V1.7" xml:lang="en">A number of monetary units specified in a currency where the unit of
currency is explicit or implied.</documentation>
 </annotation>
 <simpleContent>
 <extension base="cct:AmountContentType">
 <attribute name="amountCurrencyIdentificationCode" type="cct:AmountCurrencyIdentificationCodeType"/>
 <attributeGroup ref="cct:UidAttributeGroup"/>
 </extension>
 </simpleContent>
</complexType>

example <Amount amountCurrencyIdentificationCode="EUR" uid="ID000000" uidRef="ID000000" uidRefs="ID000000
ID000001" language="en">3.14</Amount>

UBL NDR SC Draft 16 March 2002

Position Paper: Elements versus Attributes Page 13 of 17

6.4.2 complexType CodeType

diagram

namespace CoreComponentTypes.xsd

type extension of cct:CodeContentType

attributes Name Type Use Default Fixed Annotation
codeListIdentifie
r

cct:CodeListIden
tifierType

codeListAgencyI
dentifier

cct:CodeListAge
ncyIdentifierTyp
e

codeListVersionI
dentifier

cct:CodeListVer
sionIdentifierTyp
e

codeName cct:CodeNameT
ype

languageCode cct:LanguageCo
deType

uid xs:ID required
uidRef xs:IDREF optional
uidRefs xs:IDREFS optional
language language optional en

annotation documentation A character string (letters, figures or symbols) that for brevity and/or language independence may be
used to represent or replace a definitive value or text of an attribute together with relevant
supplementary information.

source <complexType name="CodeType" id="000089">
 <annotation>
 <documentation source="CCTS V1.7" xml:lang="en">A character string (letters, figures or symbols) that for brevity and/or
language independence may be used to represent or replace a definitive value or text of an attribute together with relevant
supplementary information.</documentation>
 </annotation>
 <simpleContent>
 <extension base="cct:CodeContentType">
 <attribute name="codeListIdentifier" type="cct:CodeListIdentifierType"/>
 <attribute name="codeListAgencyIdentifier" type="cct:CodeListAgencyIdentifierType"/>
 <attribute name="codeListVersionIdentifier" type="cct:CodeListVersionIdentifierType"/>
 <attribute name="codeName" type="cct:CodeNameType"/>
 <attribute name="languageCode" type="cct:LanguageCodeType"/>
 <attributeGroup ref="cct:UidAttributeGroup"/>
 </extension>
 </simpleContent>
</complexType>

example <Code codeListIdentifier="CODEID01" codeListAgencyIdentifier="CodeAgency" codeListVersionIdentifier="V01"
codeName="CodeName" languageCode="en-us" uid="ID000001" uidRef="ID000001" uidRefs="ID000000 ID000001"
language="en">COD</Code>

UBL NDR SC Draft 16 March 2002

Position Paper: Elements versus Attributes Page 14 of 17

6.4.3 complexType DateTimeType

diagram

namespace CoreComponentTypes.xsd

type extension of cct:DateTimeContentType

attributes Name Type Use Default Fixed Annotation
dateTimeFormat
Text

cct:DateTimeFor
matTextType

uid xs:ID required
uidRef xs:IDREF optional
uidRefs xs:IDREFS optional
language language optional en

annotation documentation A particular point in the progression of time together with relevant supplementary information.
Can be used for a date and/or time.

source <complexType name="DateTimeType" id="000066">
 <annotation>
 <documentation source="CCTS V1.7" xml:lang="en">A particular point in the progression of time together with relevant
supplementary information.
Can be used for a date and/or time.
</documentation>
 </annotation>
 <simpleContent>
 <extension base="cct:DateTimeContentType">
 <attribute name="dateTimeFormatText" type="cct:DateTimeFormatTextType"/>
 <attributeGroup ref="cct:UidAttributeGroup"/>
 </extension>
 </simpleContent>
</complexType>

example <DateTime dateTimeFormatText="YYYY-MM-DD" uid="ID000002" uidRef="ID000002" uidRefs="ID000001
ID000002" language="en">2002-03-05</DateTime>

6.4.4 complexType IdentifierType

diagram

namespace CoreComponentTypes.xsd

type extension of cct:IdentifierContentType

attributes Name Type Use Default Fixed Annotation
identificationSch
emeName

cct:Identification
SchemeNameTy
pe

iIdentificationSc
hemeAgencyNa
me

cct:Identification
SchemeAgency
NameType

languageCode cct:LanguageCo

UBL NDR SC Draft 16 March 2002

Position Paper: Elements versus Attributes Page 15 of 17

deType
uid xs:ID required
uidRef xs:IDREF optional
uidRefs xs:IDREFS optional
language language optional en

annotation documentation A character string to identify and distinguish uniquely, one instance of an object in an identification
scheme from all other objects within the same scheme together with relevant supplementary
information.

source <complexType name="IdentifierType" id="000101">
 <annotation>
 <documentation source="CCTS V1.7" xml:lang="en">A character string to identify and distinguish uniquely, one instance
of an object in an identification scheme from all other objects within the same scheme together with relevant supplementary
information. </documentation>
 </annotation>
 <simpleContent>
 <extension base="cct:IdentifierContentType">
 <attribute name="identificationSchemeName" type="cct:IdentificationSchemeNameType"/>
 <attribute name="iIdentificationSchemeAgencyName" type="cct:IdentificationSchemeAgencyNameType"/>
 <attribute name="languageCode" type="cct:LanguageCodeType"/>
 <attributeGroup ref="cct:UidAttributeGroup"/>
 </extension>
 </simpleContent>
</complexType>

example <Identifier identificationSchemeName="IDNAME01" iIdentificationSchemeAgencyName="IdAgency"
languageCode="en-us" uid="ID000003" uidRef="ID000003" uidRefs="ID000002 ID000003" language="en">ID01022-
XX</Identifier>

6.4.5 complexType MeasureType

diagram

namespace CoreComponentTypes.xsd

type extension of cct:MeasureContentType

attributes Name Type Use Default Fixed Annotation
measureUnitCo
de

cct:MeasureUnit
CodeType

uid xs:ID required
uidRef xs:IDREF optional
uidRefs xs:IDREFS optional
language language optional en

annotation documentation The size, volume, mass, amount or scope derived by performing a physical measure together with
relevant supplementary information.

source <complexType name="MeasureType" id="000152">
 <annotation>
 <documentation source="CCTS V1.7" xml:lang="en">The size, volume, mass, amount or scope derived by performing a
physical measure together with relevant supplementary information.</documentation>
 </annotation>
 <simpleContent>
 <extension base="cct:MeasureContentType">
 <attribute name="measureUnitCode" type="cct:MeasureUnitCodeType"/>
 <attributeGroup ref="cct:UidAttributeGroup"/>
 </extension>
 </simpleContent>
</complexType>

example <Measure measureUnitCode="KGM" uid="ID000004" uidRef="ID000004" uidRefs="ID000003 ID000004"
language="en">3.14</Measure>

UBL NDR SC Draft 16 March 2002

Position Paper: Elements versus Attributes Page 16 of 17

6.4.6 complexType NumericType

diagram

namespace CoreComponentTypes.xsd

type extension of cct:NumericContentType

attributes Name Type Use Default Fixed Annotation
numericFormatT
extType

cct:NumericFor
matTextType

uid xs:ID required
uidRef xs:IDREF optional
uidRefs xs:IDREFS optional
language language optional en

annotation documentation A representation of a number. May or may not be decimal

source <complexType name="NumericType" id="000182">
 <annotation>
 <documentation source="CCTS V1.7" xml:lang="en">A representation of a number. May or may not be
decimal</documentation>
 </annotation>
 <simpleContent>
 <extension base="cct:NumericContentType">
 <attribute name="numericFormatTextType" type="cct:NumericFormatTextType"/>
 <attributeGroup ref="cct:UidAttributeGroup"/>
 </extension>
 </simpleContent>
</complexType>

example <Numeric numericFormatTextType="nnnnnn" uid="ID000005" uidRef="ID000005" uidRefs="ID000004 ID000005"
language="en">123324</Numeric>

6.4.7 complexType QuantityType

diagram

namespace CoreComponentTypes.xsd

type extension of cct:QuantityContentType

attributes Name Type Use Default Fixed Annotation
quantityUnitCod
e

cct:QuantityUnit
CodeListAgency
IdentifierType

quantityUnitCod
eListIdentifier

cct:QuantityUnit
CodeListIdentifie
rType

quantityUnitCod
eListAgencyIden
tifer

cct:QuantityUnit
CodeListAgency
IdentifierType

uid xs:ID required
uidRef xs:IDREF optional
uidRefs xs:IDREFS optional
language language optional en

annotation documentation A number of non-monetary units together with relevant supplementary information.

UBL NDR SC Draft 16 March 2002

Position Paper: Elements versus Attributes Page 17 of 17

source <complexType name="QuantityType" id="000108">
 <annotation>
 <documentation source="CCTS V1.7" xml:lang="en">A number of non-monetary units together with relevant
supplementary information.</documentation>
 </annotation>
 <simpleContent>
 <extension base="cct:QuantityContentType">
 <attribute name="quantityUnitCode" type="cct:QuantityUnitCodeListAgencyIdentifierType"/>
 <attribute name="quantityUnitCodeListIdentifier" type="cct:QuantityUnitCodeListIdentifierType"/>
 <attribute name="quantityUnitCodeListAgencyIdentifer" type="cct:QuantityUnitCodeListAgencyIdentifierType"/>
 <attributeGroup ref="cct:UidAttributeGroup"/>
 </extension>
 </simpleContent>
</complexType>

example <Quantity quantityUnitCode="token" quantityUnitCodeListIdentifier="token"
quantityUnitCodeListAgencyIdentifer="token" uid="ID000006" uidRef="ID000006" uidRefs="ID000005 ID000006"
language="en">10</Quantity>

6.4.8 complexType TextType

diagram

namespace CoreComponentTypes.xsd

type extension of cct:TextContentType

attributes Name Type Use Default Fixed Annotation
languageCode cct:LanguageCo

deType

uid xs:ID required
uidRef xs:IDREF optional
uidRefs xs:IDREFS optional
language language optional en
language xs:language optional

annotation documentation A character string with or without a specified language.

source <complexType name="TextType" id="000090">
 <annotation>
 <documentation source="CCTS V1.7" xml:lang="en">A character string with or without a specified
language.</documentation>
 </annotation>
 <simpleContent>
 <extension base="cct:TextContentType">
 <attribute name="languageCode" type="cct:LanguageCodeType"/>
 <attributeGroup ref="cct:UidAttributeGroup"/>
 <attribute name="language" type="xs:language" use="optional"/>
 </extension>
 </simpleContent>
</complexType>

example <Text languageCode="en-us" uid="ID000007" uidRef="ID000007" uidRefs="ID000006 ID000007" language="en"
lang="en-us">Hello World</Text>

Position Paper: Modularity,
Namespaces and Versioning
Author: Bill Burcham (bill_burcham@stercomm.com)

Date: 3/15/02

Filename: draft-burcham-modnamver-03.doc

1 Summary ... 3

2 Problem Description ... 3

3 Assumptions.. 3

3.1 Problem Size ... 3

3.2 Optimal Component Size.. 4

4 Options: XML Namespace Identification... 4

4.1 Option 1: Namespace Name = Namespace Location ... 5

4.2 Option 2: Namespace Name is OASIS URN namespace 5

5 Recommendation: Namespace Identification ... 5

6 Recommendation: Schema Location .. 5

7 Options: Namespace Structure.. 5

7.1 Option 1: One Big Namespace ... 6

7.2 Option 2: One Namespace Per Type... 6

7.3 Option 3: Core Plus “Functional” Namespaces .. 6

7.4 Option 4: Core Plus “Functional” Namespaces Plus Internal Structure as
Needed .. 6

8 Recommendation: Namespace Structure .. 6

8.1 Into What Namespace Do Extensions Go... 7

9 Options: Module Structure.. 7

10 Recommendation: Module Structure .. 7

10.1 Recursive Composition... 8

10.2 Instance Root Types.. 8

10.3 Number of Instance Roots .. 8

11 Options: Versioning.. 8

11.1 Option XF-1: Change the (internal) schema “version” attribute 9

11.2 Option XF-2: Create a “schemaVersion” attribute on the root element 9

11.2.1 Usage A: Conformance enforced by validator.. 9

11.2.2 Usage B: Conformance enforced by an extra processing pass 9

11.3 Option XF-3: Change the schema’s target namespace 9

11.4 Option XF-4: Change the name/location of the schema..................................... 9

11.5 Option 5: Schema Version as Context Classifier.. 9

12 Recommendations: Versioning... 9

13 Definitions... 10

14 References... 11

 2

1 Summary
There are many possible mappings of XML schema constructs to namespaces and to
operating system files. This paper explores some of those alternatives and sets forth
some rules governing that mapping in UBL.

2 Problem Description
Namespaces are a syntactic convenience supporting the association of a “context” with
either a lexical scope (default namespace), or a shorthand identifier (namespace
qualifier). This context, applied either implicitly (in a lexical scope) or explicitly (via
qualified names) supports compression of what would otherwise be long identifiers. In
the absence of namespaces, identifier names are all long.

It is common for an instance document to carry namespace declarations, so that it might
be validated. Processing logic (such as a stylesheet) typically carries namespace
declarations pertaining to the language in which it is specified in (XSLT) as well as the
namespaces on which it operates. The latter must match namespaces in the instance
document under translation in order for useful work to be carried out.

In practice, namespaces are often given names denoting a hierarchy. XML processing
tools may or may not use this hierarchy information. This sort of hierarchical naming
though can be useful for the human reader.

As with other significant software artifacts, schemas can become large. In addition to the
logical taming of complexity that namespaces provide, we might like to also divide the
physical realization of that schema into multiple operating system files.

Schemas change over time. UBL will be no exception. What sort of version information
(if any) will a schema carry? How shall that information be carried so as to conveniently
support the needs of users operating on document instances with XML processing tools.

This position paper will address these three topics related to namespaces:

1. Namespace Structure: What shall be the mapping between namespaces and
XML Schema constructs (e.g. type definitions)?

2. Module Structure: What shall be the mapping between namespaces and XML
Schema constructs and operating system files?

3. Versioning: What support for versioning of schema shall be provided?

In subsequent sections, we’ll examine each topic in turn, presenting first the options, then
a recommendation.

3 Assumptions
Much of this discussion will be based on the expected complexity of the UBL
vocabulary. We structure systems into components in order to manage complexity.

3.1 Problem Size
How big will UBL be? How interconnected?

 3

One source for complexity estimation is xCBL. TBD: how many type definitions,
element declarations, “instance roots” in xCBL?

Another source for estimation is X12 that according to [NDR-MSG-88] has:
a bit over 1,000 data elements (…) a smaller number of segments, and
300 or so transaction sets

Also from [NDR-MSG-88] we have EDIFACT:

� There are just under 650 data elements which are

� used in approx 200 composite structures (sort of equivalent to low level
Aggregate Core Components (ACCs)).

� These elements and composites are reused within just over 150 segment
structures (sort of equivalent to higher level ACCs).

� Combinations of all the above make up just under 200 messages (doc
types).

So an estimate of 1000 types and 250 message types seems reasonable for UBL.

3.2 Optimal Component Size
We don’t want to define 1000 types all in one XML namespace, nor would we want to
define them all in one file. Such an approach would lack structure necessary for
understanding both by maintainer and users. Additionally, performance would be far
from optimal for instance documents that needed only a subset of the UBL types.

For these reasons we presume that we need to structure and divide UBL into a hierarchy
of components. We will strive to balance coupling and cohesion between the
components in order to:

� Manage the complexity of each component while not creating too many
components1

� Provide for useful subsetting of components

We envision that many useful instance documents (messages) will be possible that
require only a fraction of the overall UBL schema. In those cases it should be possible to
avoid processing of the unneeded parts.

4 Options: XML Namespace Identification
This section presents some options for the form that UBL namespace names might take.

1 The “seven plus or minus two” rule [] is a good, general rule of thumb.
It’s especially useful when you don’t have any other rule. It says that if you want people
to be able to keep a set of concepts in mind, then you are limited to about seven concepts.
Implications for XML for example might be: a type would define no more than seven (or
so) elements, a namespace would define no more than about seven types, etc.

SEVEN-TWO

 4

4.1 Option 1: Namespace Name = Namespace Location
There is certainly precedent for this approach. See for example the ebXML Message
Service schema http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd.

4.2 Option 2: Namespace Name is OASIS URN
namespace

This option exemplifies the current best practice within OASIS. See RFC 3121 [OASIS-
URN-NS] for details. See Namespaces in XML for background [NAMESPACE].

Under this option, the namespace names for UBL namespaces would have the following
form while the schemas are at draft status:
urn:oasis:names:tc:ubl:schema{:subtype}?:{document-id}

When they move to specification status the form will change to:
urn:oasis:names:specification:ubl:schema{:subtype}?:{document-id}

Where the form of {document-id} is TBD but should match the schema module name
(see section 6, Recommendation: Schema Location).

5 Recommendation: Namespace
Identification

We pick Option 2: Namespace Name is OASIS URN namespace.

This recommendation probably needs more justification.

Will document-id include versioning information or will versioning be handled outside
this identifier? See section 12, Recommendations: Versioning.

6 Recommendation: Schema Location
A question related to Namespace identification is schemaLocation. Schema location
includes the complete URI which is used to identify schema modules.

In the fashion of other OASIS specifications, UBL schema modules will be located under
the UBL committee directory:
http://www.oasis-open.org/committees/ubl/schema/<schema-mod-name>.xsd

TBD does this recommendation need more justification?

Where <schema-mod-name> is the name of the schema module file. The form of that
name is TBD.

7 Options: Namespace Structure
In this section we’ll explore some mappings between XML Schema structures and
namespaces.

 5

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd
http://www.oasis-open.org/committees/ubl/schema/<schema-mod-name>.xsd

7.1 Option 1: One Big Namespace
We could have one big namespace for UBL. On the plus side, it would be fairly easy to
remember. The downside is that we would forfeit the opportunity to use hierarchical
namespaces to communicate the structure of the vocabulary.

7.2 Option 2: One Namespace Per Type
This approach represents the other end of the spectrum. If you’ve got a namespace per
type then why not just use the type name. The namespace fails to be shorthand for
anything. It fails to be memorable, or to group related types together.

7.3 Option 3: Core Plus “Functional” Namespaces
This option represents a space between 7.1 and 7.2. There would be one namespace for
“core” types and there would be namespaces for each of the TBD functional areas e.g.
Order, Invoice.

Purpose Namespace name

UN Core Component
Types

urn:oasis:names:tc:ubl:cc:CoreComponentTypes

UBL Core urn:oasis:names:tc:ubl:Core

Order Domain urn:oasis:names:tc:ubl:Order

Invoice Domain urn:oasis:names:tc:ubl:Invoice

TBD TBD

This represents a top-level decomposition of the vocabulary into multiple vertical
(functional) slices and a single (horizontal) slice – the so-called core namespace.

The downside of this approach is that with s ven or so functional namespaces, they are
going to get awfully “crowded” (on the orde of one hundred types per namespace).

7.4 Option 4: Core Plus “Fu
Internal Structure as Ne

A refinement on 7.3 this option frees each o
their own hierarchy as necessary in order to

8 Recommendation: N
 Pro

Option 1: one big namespace Easy to rememb

Option 2: namespace per type Total compartm

 6
e
r

nctional” Namespaces Plus
eded
f the functional and core namespaces to have
 further manage complexity.

amespace Structure
Con

er namespace When anything in UBL changes,
all processing code must be
changed (at a minimum to use
new namespace name)

entalization Why use namespaces at all?
With this option the namespace

ceases to provide useful
contextualization.

Option 3: core plus “functional”
namespaces

Allows parts of UBL to change
independently. When a
functional area changes,
processing code depending on
core needn’t change.

Doesn’t allow for intermediate
structure. What if the functional
namespaces may require further
subdivision?

Option 4: core plus “functional”
namespaces plus internal
structure as needed

(same as Option 3) By allowing intermediate
namespaces, they will certainly
flourish. Design rules must be
developed to avoid regressing
toward Option 2 over time.

Option 3 is recommended. We reserve the right to revisit this decision when we are
further along in the process of defining types. If we find that we need more structure, we
can move to option 4.

8.1 Into What Namespace Do Extensions Go
Extensions (by users) go into user-defined namespaces outside of UBL.

9 Options: Module Structure
TBD: what are some other options?

10 Recommendation: Module Structure
The UBL vocabulary consists of a set of instance roots and root schemas. The instance
roots comprise a ready-to-use set of business document types. The instance roots import
type definitions from root schemas.

Each root schema defines a BIE. If a
root schema is large, it may be broken
up into multiple schema modules. The
schema modules are imported in a root
schema.

Here is a depiction of the component
structure:

 7

«SchemaModule»
InstanceRoot

«SchemaModule»
RootSchema

0..*

-imported 1

«SchemaModule»
SchemaModule

1

-included

0..*0..*

0..*
Namespace

1 1

InstanceDocument

-imported1

-conforms0..*

10.1 Recursive Composition
A schema module, or by extension, a root schema, may depend upon other root schemas
for its definition.

Order Invoice

10.2 Inst
If preferring t
the extreme [N
global type (n

10.3 Num
In some cases
document stru
be identical. H
rather than les
the part of dev
decide to opti

11 Opt
[XFRNT-VER
versioning as
really disjoint
document, yo

 8
core

A

invoicing

X

Order
mgmt

Schema
module

Root
schema

Instance
root

ance Root Types
ype definitions over global element definitions is good, why not take it to

DR-MSG-70]. The type of the root element in an instance root is a
ot an anonymous type).

ber of Instance Roots
, various actions in the protocol (create vs. delete) will have totally different
cture requirements. But in some cases (create vs. update), the content might
owever, we still think we should design in favor of more document types
s, e.g. one for each transmission (a la RosettaNet). It avoids confusion on
elopers to have a separate document type for each thing. We might then

mize some of them by merging them together.

ions: Versioning
] does a great job of laying out the problem and solution space for schema

it is traditionally practiced. The options presented in that document are not
 rather they are building blocks. If you look at the recommendations in that
u will see that the options are used in concert.

11.1 Option XF-1: Change the (internal) schema
“version” attribute

11.2 Option XF-2: Create a “schemaVersion” attribute
on the root element

11.2.1 Usage A: Conformance enforced by validator

11.2.2 Usage B: Conformance enforced by an extra processing
pass

11.3 Option XF-3: Change the schema’s target
namespace

11.4 Option XF-4: Change the name/location of the
schema

11.5 Option 5: Schema Version as Context Classifier
In [NDR-MSG-13] the point was made that schema version might just be another context
classifier.

12 Recommendations: Versioning
Each namespace should have a version. Other things shouldn’t (e.g. schema modules
shouldn’t).

Each of core and functional areas will have a version. How shall we communicate
compatibility/incompatibility?

One approach is to follow a convention whereby a schema’s version identifier consists of
two parts: a major number and a minor number. The major number changes when a
backward-incompatible change is made:

� changing a default value (legal issue)

� adding a new required element

� removing a required or optional element

The minor number changes when a backward-compatible change is made:

� adding an optional element

How do we communicate version compatibility between core and functional areas:

� between core and f/a’s

� between f/a’s

 9

TBD: Include input from SAML versioning paper (to be released 1-10-02)

The following table summarizes the tradeoffs between the options.

 Pro Con

Option XF-1: Change the
(internal) schema “version”
attribute

 Not enforced by validator

Option XF-2-A: Create a
“schemaVersion” attribute
on the root element --
Conformance enforced by
validator

 Conformance requires exact
match on version string

Option XF-2-B: Create a
“schemaVersion” attribute
on the root element --
Conformance enforced by
an extra processing pass

 Extra processing step.

Option XF-3: Change the
schema’s target namespace

 With this approach, instance
documents will not validate
until they are changed to
designate the new
targetNamepsace. However,
one does not want to force
all instance documents to
change, even if the change
to the schema is really
minor and would not impact
an instance.

+Include problems.

Option XF-4: Change the
name/location of the
schema

 Ugh!

Option 5: Schema Version
as Context Classifier

Leverages the context
machinery

Requires the context
machinery

13 Definitions
Backward compatibility – TBD.

BIE – Business Information Entity. A description of a business concept. Represented as an XML schema
by a root schema.

 10

extension a.k.a. customization – specification of new BIE’s with well-defined, enforced relationships to old
BIE’s. Relationship types include: restriction, extension. In some cases processing logic will need to treat
the base and the extension as the same, in other cases it will need to distinguish between them.

Forward compatibility – TBD

instance root, a.k.a. doctype -- This is still mushy. The transitive closure of all the declarations imported
from whatever namespaces are necessary. A doctype may have several namespaces used within it.

Namespace – a name that scopes a related group of XML type definitions.

processing logic – software logic that operates on BIE instances to achieve some business function

root schema – A schema module that directly, or via inclusion of other schema modules, defines all types
for a particular namespace. This is the XML Schema representation of a BIE. (Compare that definition,
with the one we came up with last week in Menlo Park: A schema document corresponding to a single
namespace, which is likely to pull in (by including or importing) schema modules. Issue: Should a root
schema always pull in the "meat" of the definitions for that namespace, regardless of how small it is?)
schema document – as defined by the XSD specification – per that specification, a schema document
defines types into exactly one namespace, the target namespace.

schema module – A schema document. A schema module need not define all types in a
particular namespace. Contrast with root schema. (Compare that definition, with last
week’s: A "schema document" (as defined by the XSD spec) that is intended to be taken
in combination with other such schema documents to be used.)

versioning – reification of revisions to BIE’s in order to support coexistence in a system,
of two or more revisions of a BIE.

14 References
NAMESPACE Namespaces in XML http://www.w3.org/TR/REC-

xml-names/

NDR-MSG-13 schema version as context classifier,
Burcham, Bill; Maler, Eve; a post to
the UBL-NDR mailing list.

http://lists.oasis-
open.org/archives/ubl-
ndrsc/200111/msg00013.html

NDR-MSG-70 Fwd: Straw Man on Namespaces,
Schema Module Architecture,etc.,
Rawlins, Mike; a post to the UBL-
NDR mailing list.

http://lists.oasis-
open.org/archives/ubl-
ndrsc/200111/msg00070.html

NDR-MSG-88 Fwd: Straw Man on
Namespaces,Schema Module
Architecture, etc., Probert, Sue;
Maler, Eve.; a post to the UBL-NDR
mailing list.

http://lists.oasis-
open.org/archives/ubl-
ndrsc/200111/msg00088.html

OASIS-URN-NS IETF RFC 3121 A URN Namespace
for OASIS

http://www.faqs.org/rfcs/rfc31
21.html

SCHEMA-PRIM XML Schema Part 0: Primer http://www.w3.org/TR/xmlsch
ema-0/

 11

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00013.html
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00013.html
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00013.html
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00070.html
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00070.html
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00070.html
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00088.html
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00088.html
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00088.html
http://www.faqs.org/rfcs/rfc3121.html
http://www.faqs.org/rfcs/rfc3121.html
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

 12

SEVEN-TWO The Magical Number Seven, Plus or
Minus Two: Some Limits on our
Capacity for Processing Information,
George A. Miller, Psychological
Review, 63, 81-97.

http://psychclassics.yorku.ca/
Miller/

XFRNT-VER XML Schema Versioning, MITRE
Corporation and xml-dev list group
members.

http://www.xfront.com/Versio
ning.pdf

XML-URI-LIST XML-URI List at w3.org http://lists.w3.org/Archives/Pu
blic/xml-uri/

http://psychclassics.yorku.ca/Miller/
http://psychclassics.yorku.ca/Miller/
http://www.xfront.com/Versioning.pdf
http://www.xfront.com/Versioning.pdf
http://lists.w3.org/Archives/Public/xml-uri/
http://lists.w3.org/Archives/Public/xml-uri/

	draft-burcham-modnamver-03.pdf
	Summary
	Problem Description
	Assumptions
	Problem Size
	Optimal Component Size

	Options: XML Namespace Identification
	Option 1: Namespace Name = Namespace Location
	Option 2: Namespace Name is OASIS URN namespace

	Recommendation: Namespace Identification
	Recommendation: Schema Location
	Options: Namespace Structure
	Option 1: One Big Namespace
	Option 2: One Namespace Per Type
	Option 3: Core Plus “Functional” Namespaces
	Option 4: Core Plus “Functional” Namespaces Plus

	Recommendation: Namespace Structure
	Into What Namespace Do Extensions Go

	Options: Module Structure
	Recommendation: Module Structure
	Recursive Composition
	Instance Root Types
	Number of Instance Roots

	Options: Versioning
	Option XF-1: Change the \(internal\) schema “v�
	Option XF-2: Create a “schemaVersion” attribute
	Usage A: Conformance enforced by validator
	Usage B: Conformance enforced by an extra processing pass

	Option XF-3: Change the schema’s target namespace
	Option XF-4: Change the name/location of the schema
	Option 5: Schema Version as Context Classifier

	Recommendations: Versioning
	Definitions
	References

