
 1/420

�����������
	���
��

UDDI Version 3.0.2
UDDI Spec Technical Committee Draft, Dated
20041019

Document identifier:
uddi_v3

Current version:
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm

Latest version:
http://uddi.org/pubs/uddi_v3.htm

Previous version:
http://uddi.org/pubs/uddi-v3.0.1-20031014.htm

Editors:
Luc Clement, Systinet
Andrew Hately, IBM
Claus von Riegen, SAP AG
Tony Rogers, Computer Associates

Contributors:
Tom Bellwood, IBM
Steve Capell
Luc Clement, Systinet
John Colgrave, IBM
Matthew J. Dovey
Daniel Feygin, UnitSpace
Andrew Hately, IBM
Rob Kochman, Microsoft
Paul Macias, LMI
Mirek Novotny, Systinet
Massimo Paolucci
Claus von Riegen, SAP AG
Tony Rogers, Computer Associates
Katia Sycara
Pete Wenzel, SeeBeyond Technology
Zhe Wu, Oracle

Abstract:
The UDDI Version 3.0.2 Specification describes the Web services, data structures and
behaviors of all instances of a UDDI registry.

Status:
This specification has attained the status of Committee Draft. This document is updated
periodically on no particular schedule.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 2/420

Committee members should send comments on this Committee Specification to the uddi-
spec@lists.oasis-open.org list. Others should subscribe to and send comments to the
uddi-spec-comment@lists.oasis-open.org list. To subscribe, send an email message to
uddi-spec-comment-request@lists.oasis-open.org with the word "subscribe" as the body
of the message.

For information on whether any intellectual property claims have been disclosed that may
be essential to implementing this Committee Specification, and any offers of licensing
terms, please refer to the Intellectual Property Rights section of the UDDI Spec TC web
page (http://www.oasis-open.org/committees/uddi-spec/ipr.php).

Copyrights:
Copyright © 2001-2002 by Accenture, Ariba, Inc., Commerce One, Inc., Fujitsu Limited,
Hewlett-Packard Company, i2 Technologies, Inc., Intel Corporation, International
Business Machines Corporation, Microsoft Corporation, Oracle Corporation, SAP AG,
Sun Microsystems, Inc., and VeriSign, Inc. All Rights Reserved.

Copyright © OASIS Open 2002-2004. All Rights Reserved.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 3/420

Content
1 Introduction... 15

1.1 About this specification...15
1.2 Language & Terms...15
1.3 Diagrams Used in this document ..16

1.3.1 Attributes and elements ...16
1.3.2 Element structure..16
1.3.3 Cardinality..16

1.4 Related Documents..17
1.4.1 Translations of the UDDI Specification...17
1.4.2 Best Practices and Technical Notes...17

1.5 Base UDDI Architecture...17
1.5.1 UDDI Data...17
1.5.2 UDDI Services and API Sets...18
1.5.3 UDDI Nodes..18
1.5.4 UDDI Registries ..19
1.5.5 Affiliations of Registries ..19
1.5.6 Person, Publisher and Owner ...19
1.5.7 Transfer of ownership ..19
1.5.8 Data Custody ..19

1.6 Representing Information within UDDI ...20
1.6.1 Representing Businesses and Providers with "businessEntity" ..20
1.6.2 Representing Services with "businessService"...21
1.6.3 Representing Web services with "bindingTemplate"..21
1.6.4 Technical Models (tModels) ..21
1.6.5 Taxonomic Classification of the UDDI entities...22

1.7 Introduction to Security...23
1.8 Introduction to Internationalization...23

1.8.1 Multi-regional businesses ..23
1.8.2 XML and Unicode Character Set..24
1.8.3 Standardized Postal Address..24
1.8.4 Use of Multi-languages and Multi-scripts ...24
1.8.5 Adding Language-specific Sort Orders ..24
1.8.6 Consistent Internationalized Search...25

2 UDDI Schemas.. 26
2.1 Schema versioning ...28
2.2 Schema Extensibility...29
2.3 Element and attribute types and lengths..29

2.3.1 Data structure, publication API, inquiry API and security API..29
2.3.2 Subscription API ...30

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 4/420

2.3.3 Replication API..30
3 UDDI Registry Data Structures.. 31

3.1 Data structure overview..31
3.2 Design Principles ..31

3.2.1 Keys as unique identifiers..32
3.2.2 Containment and references...32
3.2.3 Collections ...32
3.2.4 Optional attributes...32

3.3 businessEntity Structure...33
3.3.1 Structure diagram...33
3.3.2 Documentation..33

3.4 businessService Structure ...40
3.4.1 Structure Diagram ..41
3.4.2 Documentation..41

3.5 bindingTemplate Structure...42
3.5.1 Structure Diagram ..43
3.5.2 Documentation..43

3.6 tModel Structure..47
3.6.1 Common tModel uses..47
3.6.2 Structure diagram...49
3.6.3 Documentation..49

3.7 publisherAssertion Structure..50
3.7.1 Structure Diagram ..50
3.7.2 Documentation..50

3.8 operationalInfo Structure..51
3.8.1 Structure diagram...51
3.8.2 Documentation..51

4 Using UDDI APIs... 53
4.1 SOAP Usage...53

4.1.1 Support for SOAPAction..53
4.1.2 Support for SOAP Actor...54
4.1.3 Support for SOAP encoding..54
4.1.4 Support for SOAP Headers...54
4.1.5 Support for SOAP Fault ...54
4.1.6 XML prefix conventions – default namespace support ..55

4.2 XML Encoding Requirements ...55
4.3 Support for Unicode: Byte Order Mark ...55
4.4 About uddiKeys ...56

4.4.1 Key Syntax ..56
4.4.2 Examples of keys ...57

4.5 Data insertion and document order...58
4.5.1 Inserting Data in Entities During save_xx Operations ..58

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 5/420

4.5.2 Inserting Elements in Existing Entities..58
4.5.3 Preservation of Document Order..58

4.6 XML Normalization and Canonicalization ..58
4.6.1 Behavior of UDDI nodes..58
4.6.2 Client Behavior..59

4.7 About Access Control and the authInfo Element ..59
4.8 Success and Error Reporting ..61

4.8.1 dispositionReport element ...61
4.8.2 Error reporting using the dispositionReport element ..62

5 UDDI Programmers APIs ... 64
5.1 Inquiry API Set...64

5.1.1 The browse pattern ..64
5.1.2 The drill-down pattern...64
5.1.3 The invocation pattern..65
5.1.4 Find Qualifiers ...65
5.1.5 Use of listDescription..73
5.1.6 About wildcards...74
5.1.7 Matching Rules for keyedReferences and keyedReferenceGroups ..74
5.1.8 Inquiry API functions...74
5.1.9 find_binding ...75
5.1.10 find_business ..78
5.1.11 find_relatedBusinesses..82
5.1.12 find_service...87
5.1.13 find_tModel..90
5.1.14 get_bindingDetail..93
5.1.15 get_businessDetail ...94
5.1.16 get_operationalInfo...95
5.1.17 get_serviceDetail ..96
5.1.18 get_tModelDetail...97

5.2 Publication API Set ...99
5.2.1 Publishing entities with node assigned keys..99
5.2.2 Publishing entities with publisher-assigned keys ..99
5.2.3 Special considerations for validated value sets.. 103
5.2.4 Special considerations for the xml:lang attribute.. 104
5.2.5 Publisher API summary .. 104
5.2.6 add_publisherAssertions .. 105
5.2.7 delete_binding.. 107
5.2.8 delete_business... 108
5.2.9 delete_publisherAssertions .. 110
5.2.10 delete_service.. 111
5.2.11 delete_tModel .. 112
5.2.12 get_assertionStatusReport... 114

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 6/420

5.2.13 get_publisherAssertions ... 117
5.2.14 get_registeredInfo.. 118
5.2.15 save_binding.. 119
5.2.16 save_business... 122
5.2.17 save_service.. 126
5.2.18 save_tModel... 129
5.2.19 set_publisherAssertions.. 133

5.3 Security Policy API Set.. 135
5.3.1 discard_authToken.. 135
5.3.2 get_authToken... 136

5.4 Custody and Ownership Transfer API Set.. 138
5.4.1 Overview... 138
5.4.2 Custody Transfer Considerations .. 139
5.4.3 Transfer Execution .. 140
5.4.4 discard_transferToken .. 142
5.4.5 get_transferToken ... 143
5.4.6 transfer_entities.. 145
5.4.7 transfer_custody .. 147
5.4.8 Security Configuration for transfer_custody.. 148

5.5 Subscription API Set.. 149
5.5.1 About UDDI Subscription API functions.. 149
5.5.2 Specifying Durations ... 150
5.5.3 Specifying Points in Time.. 150
5.5.4 Subscription Coverage Period ... 151
5.5.5 Chunking of Returned Subscription Data ... 151
5.5.6 Use of keyBag in Subscription ... 151
5.5.7 Subscription API functions.. 152
5.5.8 save_subscription.. 153
5.5.9 delete_subscription.. 156
5.5.10 get_subscriptions... 157
5.5.11 get_subscriptionResults.. 158
5.5.12 notify_subscriptionListener ... 161

5.6 Value Set API Set .. 163
5.6.1 Value Set Programming Interfaces.. 163
5.6.2 validate_values .. 164
5.6.3 get_allValidValues ... 166

6 Node Operation... 169
6.1 Managing Node Contents... 169

6.1.1 XML Requirements ... 169
6.1.2 Key Generation and Maintenance... 170
6.1.3 Updates and Deletions.. 170

6.2 Considerations When Instantiating a Node... 170

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 7/420

6.2.1 Canonical tModel Bootstrapping.. 170
6.2.2 Self-Registration of Node Business Entity .. 170

6.3 User Credential Requirements... 171
6.3.1 Establishing User Credentials .. 171
6.3.2 Changing Entity Ownership.. 171

6.4 Checked Value Set Validation.. 172
6.4.1 Normative behavior during saves .. 172

6.5 HTTP GET Services for UDDI Data Structures.. 172
7 Inter-Node Operation.. 174

7.1 Inter-Node Policy Assertions .. 174
7.1.1 Data Custody ... 174

7.2 Concepts and Definitions .. 175
7.2.1 Update Sequence Number... 175
7.2.2 Change Records.. 176
7.2.3 Change Record Journal.. 177
7.2.4 High Water Mark Vector ... 177
7.2.5 Replication Messages... 177
7.2.6 Replication Processing.. 178

7.3 Change Record Structures ... 179
7.3.1 changeRecordNull... 180
7.3.2 changeRecordNewData ... 180
7.3.3 changeRecordHide ... 181
7.3.4 changeRecordDelete .. 181
7.3.5 changeRecordPublisherAssertion... 181
7.3.6 changeRecordDeleteAssertion.. 183
7.3.7 changeRecordAcknowledgment.. 184
7.3.8 changeRecordCorrection.. 184
7.3.9 changeRecordNewDataConditional.. 185
7.3.10 changeRecordConditionFailed .. 189

7.4 Replication API Set.. 190
7.4.1 get_changeRecords Message... 190
7.4.2 notify_changeRecordsAvailable Message ... 192
7.4.3 do_ping Message.. 193
7.4.4 get_highWaterMarks Message.. 194

7.5 Replication Configuration.. 195
7.5.1 Replication Configuration Structure... 195
7.5.2 Configuration of a UDDI Node – operator element.. 196
7.5.3 Replication Communication Graph.. 197
7.5.4 SOAP Configuration.. 198
7.5.5 Security Configuration... 198

7.6 Error Detection and Processing ... 198
7.6.1 UDDI Registry Investigation and Correction... 199

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 8/420

7.7 Validation of Replicated Data ... 203
7.8 Adding a Node to a Registry Using Replication.. 203
7.9 Removing a Node from a Registry Using Replication ... 204

8 Publishing Across Multiple Registries.. 205
8.1 Relationships between Registries.. 206

8.1.1 Root Registries and Affiliate Registries ... 206
8.1.2 A Closer Look at Inter-Registry Communication Models .. 206

8.2 Data Management Policies and Procedures Across Registries... 208
8.2.1 Establishing a Relationship with a Root Registry... 208
8.2.2 Data Sharing .. 209

9 Policy... 211
9.1 Definitions ... 211
9.2 Policy 211
9.3 Representation of Policy ... 211

9.3.1 Policy Schema ... 213
9.3.2 Policy Documents.. 213
9.3.3 Policy Service within UDDI ... 214
9.3.4 Policy Modeling.. 214

9.4 UDDI Registry Policy Abstractions... 214
9.4.1 Registry Policy Delegation.. 215
9.4.2 Registry General Keying Policy.. 215
9.4.3 UDDI keying scheme .. 215
9.4.4 UDDI Information Access Control Policy .. 216
9.4.5 Adding nodes to a registry.. 216
9.4.6 Person, Publisher and Owner .. 216
9.4.7 Transfer of Ownership... 217
9.4.8 Registry Authorization Policy.. 217
9.4.9 Modeling Authorization.. 217
9.4.10 Registry Data Integrity... 218
9.4.11 Registry Approved Certificate Authorities ... 218
9.4.12 Registry Data Confidentiality .. 218
9.4.13 Registry Audit Policy ... 218
9.4.14 Registry Privacy Policy ... 219
9.4.15 Registry Clock Synchronization Policy.. 219
9.4.16 Registry Replication Policy... 219
9.4.17 Support for Custody Transfer... 219
9.4.18 Registry Subscription Policy... 219
9.4.19 Registry Value Set Policies .. 220

9.5 UDDI Node Policy Abstractions.. 221
9.5.1 Node Key Generation ... 221
9.5.2 Node Publisher Generated Key Assertion.. 221
9.5.3 Node Information Policy.. 221

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 9/420

9.5.4 Node Authorization Policy... 221
9.5.5 Node Registration and Authentication... 221
9.5.6 Node Publication Limits... 222
9.5.7 Node Policy for Contesting Entries .. 222
9.5.8 Node Audit Policy .. 222
9.5.9 Node Collation Sequence Policy ... 222
9.5.10 Find Qualifier Policy... 222
9.5.11 Node Approved Certificate Authorities.. 223
9.5.12 Node Subscription API Assertion .. 223
9.5.13 Node Element Limits... 223
9.5.14 Node HTTP GET Services... 223
9.5.15 Node discoveryURL Generation.. 223
9.5.16 Node XML Encoding Policy.. 223

9.6 UDDI Recommended Registry Policies .. 224
9.6.1 Key Generator tModels... 224
9.6.2 Information Model.. 224
9.6.3 Domain key generator tModels.. 225
9.6.4 Replication Policies.. 225
9.6.5 Value sets... 226

9.7 UDDI Policy Summary .. 227
9.7.1 UDDI Registry Policy Abstractions .. 227
9.7.2 UDDI Node Policy Abstractions ... 231

10 Multi-Version Support .. 234
10.1 Entity Key Compatibility with Earlier Versions of UDDI ... 234

10.1.1 Generating Keys From a Version 3 API Call.. 234
10.1.2 Generating Keys from a Version 2 API Call ... 235
10.1.3 Migrating Version 2 keys to a Version 3 Registry .. 236
10.1.4 Mapping v1/v2 Canonical tModel Keys to v3 Evolved Keys .. 236

10.2 Version 2 API Considerations .. 238
10.2.1 Multiple xml:lang attributes of the same language... 238
10.2.2 Error codes... 238
10.2.3 Return of a dispositionReport... 238
10.2.4 Mapping Between URLType and useType attribute on accessPoint.. 238
10.2.5 Supporting External Value Set Providers Across Versions .. 238
10.2.6 Version 3 Schema Assessment .. 239
10.2.7 XML Encoding ... 239
10.2.8 Length Discrepancies ... 239
10.2.9 White Space Handling .. 239

10.3 Version 2 Inquiry API Considerations.. 239
10.3.1 keyedReference data.. 239
10.3.2 keyedReferenceGroup data... 239
10.3.3 Multiple overviewDoc data ... 239

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 10/420

10.3.4 Multiple personName data ... 239
10.3.5 Service Projections.. 240
10.3.6 Sorting and Matching Behavior.. 240

10.4 Version 2 Publish API Considerations... 240
10.4.1 Data update semantics consistent with request namespace... 240
10.4.2 keyedReference data.. 240

10.5 Data Migration and Multi-version Runtime Considerations... 240
10.5.1 Empty Containers – Enforcement of Schema Strictness.. 240
10.5.2 Length Validation During v2/v3 Migration and During Runtime in a v2/v3 Multi-version Registry 241

10.6 Value sets with entity keys as valid values ... 242
11 Utility tModels and Conventions ... 244

11.1 Canonical Category Systems, Identifier Systems and Relationship Systems.. 244
11.1.1 UDDI Types Category System .. 245
11.1.2 General Keyword Category System.. 249
11.1.3 UDDI Nodes Category System.. 252
11.1.4 UDDI Relationships System... 254
11.1.5 UDDI "Owning Business" Category System.. 256
11.1.6 UDDI "Is Replaced By" Identifier System ... 257
11.1.7 UDDI "Validated By" Category System... 260
11.1.8 UDDI "Derived From" Category System... 262
11.1.9 UDDI "Entity Key Values" Category System.. 266

11.2 UDDI Registry API tModels .. 267
11.2.1 UDDI Inquiry API ... 268
11.2.2 UDDI Publication API.. 270
11.2.3 UDDI Security API... 274
11.2.4 UDDI Replication API.. 275
11.2.5 UDDI Custody and Ownership Transfer API.. 277
11.2.6 UDDI Node Custody Transfer API .. 279
11.2.7 UDDI Value Set Caching API... 280
11.2.8 UDDI Value Set Validation API.. 282
11.2.9 UDDI Subscription API ... 283
11.2.10 UDDI Subscription Listener API .. 285

11.3 Transport and Protocol tModels... 287
11.3.1 Secure Sockets Layer Version 3 with Server Authentication ... 287
11.3.2 Secure Sockets Layer Version 3 with Mutual Authentication... 288
11.3.3 UDDI HTTP Transport .. 290
11.3.4 UDDI SMTP Transport ... 292
11.3.5 UDDI FTP Transport ... 293
11.3.6 UDDI Fax Transport.. 294
11.3.7 UDDI Telephone Transport.. 295

11.4 Find Qualifier tModels.. 297
11.4.1 UDDI SQL99 Approximate Match Find Qualifier ... 297

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 11/420

11.4.2 UDDI Exact Match Find Qualifier... 299
11.4.3 UDDI Case Insensitive Match Find Qualifier.. 300
11.4.4 UDDI Case Sensitive Match Find Qualifier... 302
11.4.5 UDDI Diacritics Insensitive Match Find Qualifier.. 304
11.4.6 UDDI Diacritics Sensitive Match Find Qualifier .. 305
11.4.7 UDDI Binary Sort Order Qualifier... 307
11.4.8 UDDI Unicode Technical Standard #10 Sort Order Qualifier ... 308
11.4.9 UDDI Case Insensitive Sort Find Qualifier.. 310
11.4.10 UDDI Case Sensitive Sort Find Qualifier.. 312
11.4.11 UDDI Sort By Name Ascending Find Qualifier .. 314
11.4.12 UDDI Sort By Name Descending Find Qualifier.. 317
11.4.13 UDDI Sort By Date Ascending Find Qualifier... 319
11.4.14 UDDI Sort By Date Descending Find Qualifier .. 321
11.4.15 UDDI And All Keys Find Qualifier.. 322
11.4.16 UDDI Or All Keys Find Qualifier... 324
11.4.17 UDDI Or Like Keys Find Qualifier.. 326
11.4.18 UDDI Combine Category Bags Find Qualifier ... 328
11.4.19 UDDI Service Subset Find Qualifier.. 329
11.4.20 UDDI Binding Subset Find Qualifier.. 331
11.4.21 UDDI Suppress Projected Services Find Qualifier .. 333
11.4.22 UDDI Signature Present Find Qualifier... 335

11.5 Other Canonical tModels .. 337
11.5.1 Domain Key Generator for the UDDI Domain.. 337
11.5.2 Key Generator for UDDI Categorization tModels .. 338
11.5.3 Key Generator for UDDI Sort Order tModels ... 339
11.5.4 Key Generator for UDDI Transport tModels... 340
11.5.5 Key Generator for UDDI Protocol tModels ... 341
11.5.6 UDDI Hosting Redirector Specification... 342
11.5.7 UDDI Policy Description Specification .. 344

12 Error Codes... 346
12.1 Common Error Conditions.. 348

13 Related Standards and Specifications.. 349
13.1 UDDI Specifications and documents... 349
13.2 Standards and other Specifications... 349

A Appendix A: Relationships and Publisher Assertions .. 351
A.1 Example .. 351
A.2 Managing relationship visibility ... 352

B Appendix B: Using and Extending the useType Attribute.. 353
B.1 accessPoint... 353

B.1.1 Using the "endPoint" value.. 353
B.1.2 Using the "wsdlDeployment" value... 354
B.1.3 Using the "bindingTemplate" value .. 354

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 12/420

B.1.4 Using the "hostingRedirector" value... 355
B.2 overviewURL .. 356

B.2.1 Using the "text" value... 357
B.2.2 Using the "wsdlInterface" value .. 357

B.3 discoveryURL ... 358
B.3.1 Using the "businessEntity" value .. 358
B.3.2 Using the "homepage" value... 358

B.4 Contact .. 358
B.5 Address ... 358
B.6 Phone.. 358
B.7 Email.. 358
B.8 Designating a new useType value... 358

C Appendix C: Supporting Subscribers.. 360
C.1 Subscription Scenarios.. 360
C.2 Using Subscription ... 361

C.2.1 Steps for Creating a Subscription... 361
C.2.2 Subscription Examples .. 361

D Appendix D: Internationalization... 366
D.1 Multilingual descriptions, names and addresses.. 366
D.2 Multiple names in the same language... 367
D.3 Internationalized address format .. 367
D.4 Language–dependent collation .. 369

D.4.1 UDDI JIS X 4061 Japanese Sort Order Qualifier ... 369
E Appendix E: Using Identifiers.. 371

E.1 Using identifiers .. 371
F Appendix F: Using Categorization .. 373

F.1 Using simple categories .. 373
F.2 Grouping categories... 375
F.3 Deriving categories .. 377

G Appendix G: Wildcards.. 379
G.1 Find using "starts with" searching... 379
G.2 Find using "starts and ends with" searching.. 379
G.3 Find using escaped literals.. 379
G.4 Find using wildcards with Taxonomies .. 380

H Appendix H: Extensibility... 381
H.1 Using the basic UDDI infrastructure... 381
H.2 Establishing an extension.. 381

H.2.1 Extension designer... 381
H.2.2 Registries that support the extension... 382

H.3 Programmers API and UDDI Clients ... 382
H.3.1 UDDI Clients not prepared to handle the extension... 382
H.3.2 UDDI Clients prepared to handle the extension.. 383

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 13/420

H.4 Error Codes... 383
H.5 Digital signatures.. 383
H.6 Entity promotion.. 383
H.7 Replication .. 383
H.8 Example .. 383

H.8.1 Description .. 384
H.8.2 Data structure (XML schema)... 384
H.8.3 tModel of the extension.. 384
H.8.4 Additional service end points... 387
H.8.5 Programmers API Description of the extension.. 387
H.8.6 Digital signature.. 388
H.8.7 Registry operation: replication... 388
H.8.8 Registry operation: entity promotion.. 388
H.8.9 Non-normative example .. 389

I Appendix I: Support For XML Digital Signatures ... 391
I.1 Generation of a Signature... 391
I.2 Validation of a Signature ... 392

J Appendix J: UDDI Replication Examples.. 393
J.1 Communication Graph .. 393
J.2 Replication Configuration Structure Example... 393
J.3 notify_changeRecordsAvailable Example... 395
J.4 get_ChangeRecords Example ... 396
J.5 Miscellaneous Replication Example .. 397
J.6 Non-normative – Cycle of Cycles Topology.. 399

K Appendix K – Modeling UDDI within UDDI – A Sample ... 400
K.1 The Node’s businessEntity ... 400

K.1.1 XML Fragment.. 400
K.1.2 Explanation ... 400

K.2 The Policy Service ... 400
K.2.1 XML Fragment.. 401
K.2.2 Explanation ... 401

K.3 The Security Service.. 404
K.3.1 XML Fragment.. 404
K.3.2 Explanation ... 404

K.4 The Publish Service – Supporting 3 Versions .. 405
K.4.1 XML Fragment.. 405
K.4.2 Explanation ... 406

K.5 The Inquiry Service – Supporting 3 Versions.. 407
K.5.1 XML Fragment.. 407
K.5.2 Explanation ... 409

L Appendix L: Glossary of Terms... 410
M Appendix M: Acknowledgements ... 418

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 14/420

N Appendix N: Notices... 419

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 15/420

1 Introduction
Web services are meaningful only if potential users may find information sufficient to permit
their execution. The focus of Universal Description Discovery & Integration (UDDI) is the
definition of a set of services supporting the description and discovery of (1) businesses,
organizations, and other Web services providers, (2) the Web services they make available,
and (3) the technical interfaces which may be used to access those services. Based on a
common set of industry standards, including HTTP, XML, XML Schema, and SOAP, UDDI
provides an interoperable, foundational infrastructure for a Web services-based software
environment for both publicly available services and services only exposed internally within an
organization.

1.1 About this specification
This document describes the Web services and behaviors of all instances of a UDDI registry.
Normative material is provided in the numbered chapters of the document and in the XML
schemas which accompany this document. Supplementary non-normative commentary,
explanations, and guidance may be found in the lettered appendices. In particular, first-time
readers of this specification may find Appendix L Glossary of Terms useful.

This specification contains examples of XML data and URIs used in interacting with UDDI. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

The primary audiences for this document are:

• Programmers who want to write software that will directly interact with a UDDI registry.

• Programmers who want to implement a UDDI node

• Programmers who want to implement any of the Web services UDDI Nodes invoke

All implementations of the UDDI specification must provide support for the required Web
services described here as well as the behaviors defined.

1.2 Language & Terms
RFC 2119: The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
document, are to be interpreted as described in RFC 2119 found at
http://www.faqs.org/rfcs/rfc2119.html.

MANDATORY, RECOMMENDED, and OPTIONAL: Beginning with this third version, the
UDDI specification renders explicit which components of the UDDI specification are
MANDATORY and MUST be implemented, which are RECOMMENDED and SHOULD be
implemented, and which are OPTIONAL and MAY be implemented. It is important to note that
OPTIONAL and RECOMMENDED elements of the specification, if they are implemented,
MUST be implemented in the manner documented in this specification.

Separation of operational issues: In this third version of the UDDI Specification the trend
begun in Version 2 to separate normative behavior from UDDI registry and node policy is
completed. For instance, authorization has been called out as a policy decision. A similar
separation of normative behavior and registry content has also been carried out. For example,
the requirement to support specific category systems has been removed from this version of
the specification.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 16/420

1.3 Diagrams Used in this document

1.3.1 Attributes and elements
UDDI uses the XML Schema Language (See http://www.w3.org/TR/xmlschema-0/,
http://www.w3.org/TR/xmlschema-1/ and http://www.w3.org/TR/xmlschema-2/) and its
terminology, such as "sequence" and "choice" to formally describe its data structures. The
diagrams1 used in this specification show the structure and cardinality of the elements used in
these structures. Attributes are not shown in the diagrams, but explained in the corresponding
documentation.

1.3.2 Element structure

1.3.2.1 Sequence

The octagonal symbol with the horizontal "dotted" line indicates "sequence of." This diagram
says the element registeredInfo consists of elements businessInfos and tModelInfos. All three
elements are defined in the namespace whose prefix is "uddi".

The fact that businessInfos and tModelInfos have a box with a "+" in it at their right-hand end
indicates that there is more structure to them than is shown in the diagram.

1.3.2.2 Choice

The switch-like symbol indicates a choice. In this case, a choice between the elements
businessKey, fromKey, and toKey.

None of these has more structure than is given in the diagram (there are no boxes with a "+" in
them at their right-hand ends). That they are adorned with a small series of horizontal lines in
their upper left corners indicates that each is a non-empty element.

1.3.3 Cardinality

1.3.3.1 Optional, one

1 Diagrams provided in this specification were produced by the ©XML Spy editor, Altova GmbH and Altova, Inc.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 17/420

The dashed line indicates that the element listDescription is optional. The fact that it is not
adorned with some other cardinality indicator (see below) says there can be at most one of
them.

1.3.3.2 Mandatory, one

There must be exactly one of the element businessKey.

1.3.3.3 Optional, repeating

The element assertionStatusItem is optional and may appear an indeterminate number of
times. The number of times it may appear is given by the adornment "0..∞", a cardinality
indicator meaning "zero to infinity". Other numbers may appear to indicate different
cardinalities.

1.3.3.4 Mandatory, repeating

The element addressLine must appear at least once and may appear an indeterminate
number of times.

1.4 Related Documents

1.4.1 Translations of the UDDI Specification
Translations of the UDDI Specifications may be produced, by the UDDI specification technical
committee of OASIS, or by others. In all instances the English version of the document is the
official version; in case of discrepancy the English version shall be the definitive source.

1.4.2 Best Practices and Technical Notes
To provide guidance on the use of UDDI registries, the UDDI specification technical committee
of OASIS from time to time publishes "Best Practices" and "Technical Notes". The contents of
these documents are not a part of this specification. See http://www.oasis-
open.org/committees/uddi-spec/doc/bps.htm for further information on Best Practices and
http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm for information on Technical
Notes.

1.5 Base UDDI Architecture

1.5.1 UDDI Data
This specification presents an information model composed of instances of persistent data
structures called entities. Entities are expressed in XML and are persistently stored by UDDI

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 18/420

nodes. Each entity has the type of its outer-most XML element. A UDDI information model is
composed of instances of the following entity types:

• businessEntity: Describes a business or other organization that typically provides Web
services.

• businessService: Describes a collection of related Web services offered by an
organization described by a businessEntity.

• bindingTemplate: Describes the technical information necessary to use a particular
Web service.

• tModel: Describes a "technical model" representing a reusable concept, such as a
Web service type, a protocol used by Web services, or a category system.

• publisherAssertion: Describes, in the view of one businessEntity, the relationship that
the businessEntity has with another businessEntity.2

• subscription: Describes a standing request to keep track of changes to the entities
described by the subscription.

1.5.2 UDDI Services and API Sets
This specification presents APIs that standardize behavior and communication with and
between implementations of UDDI for the purposes of manipulating UDDI data stored within
those implementations. The API’s are grouped into the following API sets.

1.5.2.1 Node API Sets
• UDDI Inquiry

• UDDI Publication

• UDDI Security

• UDDI Custody Transfer

• UDDI Subscription

• UDDI Replication

1.5.2.2 Client API Sets
• UDDI Subscription Listener

• UDDI Value Set

1.5.3 UDDI Nodes
A set of Web services supporting at least one of the Node API sets is referred to as a UDDI
node. A UDDI node has these defining characteristics:

1. A UDDI node supports interaction with UDDI data through one or more UDDI API sets

2. A UDDI node is a member of exactly one UDDI registry.

3. A UDDI node conceptually has access to and manipulates a complete logical copy of
the UDDI data managed by the registry of which it is a part. Moreover, it is this data

2
 If identical publisherAssertions are made from the views of both businessEntities, a "relationship" is formed between them. See

Section 3.7 publisherAssertion.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 19/420

which is manipulated by any query and publish APIs supported by the node. Typically,
UDDI replication occurs between UDDI nodes which reside on different systems in
order to manifest this logical copy in the node.

The physical realization of a UDDI node is not mandated by this specification.

1.5.4 UDDI Registries
One or more UDDI nodes may be combined to form a UDDI Registry. The nodes in a UDDI
registry collectively manage a particular set of UDDI data. This data is distinguished by the
visible behavior associated with the entities contained in it.

A UDDI Registry has these defining characteristics.

1. A registry is comprised of one or more UDDI nodes.

2. The nodes of a registry collectively manage a well-defined set of UDDI data. Typically,
this is supported by the use of UDDI replication between the nodes in the registry
which reside on different systems.

3. A registry MUST make a policy decision for each policy decision point. It MAY choose
to delegate policy decisions to nodes. See Chapter 9 Policy for details.

The physical realization of a UDDI Registry is not mandated by this specification.

1.5.5 Affiliations of Registries
The entities businessEntity, businessService, bindingTemplate, tModel form the core data
structures of UDDI. Within a registry, each instance of the core data structures is uniquely
identified by a UDDI key. By choosing appropriate policies, multiple registries may form a
group, known as an "affiliation", whose purpose is to permit controlled copying of core data
structures among them. A UDDI registry affiliation has these defining characteristics.

1. The registries share a common namespace for entity keys.

2. The registries have compatible policies for assigning keys to entities.

3. The policies of the registries permit publishers to assign keys

1.5.6 Person, Publisher and Owner
When publishing information in a UDDI registry the information becomes part of the published
content of the registry. During publication of an item of UDDI information, a relationship is
established between the publisher, the item published and the node at which the publish
operation takes place. The glossary contains definitions of the terms person, publisher and
owner.

This specification defines a relationship between these three terms and leaves the binding of
these abstract relationships to be determined by the policies of the registry and its nodes at
implementation. It is important to review Chapter 9 on policy to understand how different
implementations can define different policies but remain consistent with the UDDI specification.

1.5.7 Transfer of ownership
As the owner of datum, a person can initiate the transfer of ownership of the datum to another
publisher within the registry. Section 5.4 Custody and Ownership Transfer API describes the
transfer of ownership within UDDI.

1.5.8 Data Custody
Generally speaking, data is replicated between nodes of a UDDI registry using a replication
protocol. Registries that choose to use the replication protocol defined in Section 7.4

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 20/420

Replication API Set MUST enforce the following data custody policy. (Registries which choose
otherwise incur no such requirement.)

Each node has custody of a portion of the aggregate data managed by the registry of which it
is a part. Each datum is by definition in the custody of exactly one such node. A datum in this
context can be a businessEntity, a businessService, a bindingTemplate, a tModel, or a
publisherAssertion. Changes to a datum in the registry MUST originate at the node which is
the custodian of the datum. The registry defines the policy for data custody and, if allowed, the
custodian node for a given datum can be changed; such custody transfer processes are
discussed in Section 5.4 Custody and Ownership Transfer API.

1.6 Representing Information within UDDI
For Web services to be meaningful there is a need to provide information about them beyond
the technical specifications of the service itself. Central to UDDI’s purpose is the
representation of data and metadata about Web services. A UDDI registry, either for use in
the public domain or behind the firewall, offers a standard mechanism to classify, catalog and
manage Web services, so that they can be discovered and consumed. Whether for the
purpose of electronic commerce or alternate purposes, businesses and providers can use
UDDI to represent information about Web services in a standard way such that queries can
then be issued to a UDDI Registry – at design-time or run-time – that address the following
scenarios:

• Find Web services implementations that are based on a common abstract interface
definition.

• Find Web services providers that are classified according to a known classification
scheme or identifier system.

• Determine the security and transport protocols supported by a given Web service.

• Issue a search for services based on a general keyword.

• Cache the technical information about a Web service and then update that information
at run-time.

These scenarios and many more are enabled by the combination of the UDDI information
model and the UDDI API set. Because the information model is extremely normalized, it can
accommodate many different types of models, scenarios and technologies. The specification
has been written to be flexible so that it can absorb a diverse set of services and not be tied to
any one particular technology. While a UDDI Node exposes its information as an XML Web
service, it does not restrict the technologies of the services about which it stores information or
the ways in which that information is decorated with metadata.

1.6.1 Representing Businesses and Providers with "businessEntity"
One top-level data structure within UDDI is the businessEntity structure, used to represent
businesses and providers within UDDI. It contains descriptive information about the business
or provider and about the services it offers. This would include information such as names and
descriptions in multiple languages, contact information and classification information. Service
descriptions and technical information are expressed within a businessEntity by contained
businessService and bindingTemplate structures.

While the name of XML entity itself has the word business embedded in it, the structure can be
used to model more than simply a "business" in its common usage. As the top-level entity,
businessEntity can be used to model any "parent" service provider, such as a department, an
application or even a server. Depending on the context of the data in the entire registry, the
appropriate modeling decisions to represent different service providers can vary.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 21/420

1.6.2 Representing Services with "businessService"
Each businessService structure represents a logical grouping of Web services. At the service
level, there is still no technical information provided about those services; rather, this structure
allows the ability to assemble a set of services under a common rubric. Each businessService
is the logical child of a single businessEntity. Each businessService contains descriptive
information – again, names, descriptions and classification information -- outlining the purpose
of the individual Web services found within it. For example, a businessService structure could
contain a set of Purchase Order Web services (submission, confirmation and notification) that
are provided by a business.

Similar to the businessEntity structure, the term business is embedded within the name
businessService. However, a suite of services need not be tied to a business per se, but can
rather be associated with a provider of services, given a modeling scenario that is not based
on a business use case.

1.6.3 Representing Web services with "bindingTemplate"
Each bindingTemplate structure represents an individual Web service. In contrast with the
businessService and businessEntity structures, which are oriented toward auxiliary information
about providers and services, a bindingTemplate provides the technical information needed by
applications to bind and interact with the Web service being described. It must contain either
the access point for a given service or an indirection mechanism that will lead one to the
access point.

Each binding Template is the child of a single businessService. The containing parents, a
bindingTemplate can be decorated with metadata that enable the discovery of that
bindingTemplate, given a set of parameters and criteria.

1.6.4 Technical Models (tModels)
Technical Models, or tModels for short, are used in UDDI to represent unique concepts or
constructs. They provide a structure that allows re-use and, thus, standardization within a
software framework. The UDDI information model is based on this notion of shared
specifications and uses tModels to engender this behavior. For this reason, tModels exist
outside the parent-child containment relationships between the businessEntity,
businessService and bindingTemplate structures.

Each distinct specification, transport, protocol or namespace is represented by a tModel.
Examples of tModels that enable the interoperability of Web services include those based on
Web Service Description Language (WSDL), XML Schema Definition (XSD), and other
documents that outline and specify the contract and behavior – i.e., the interface – that a Web
Service may choose to comply with. To describe a Web service that conforms to a particular
set of specifications, transports, and protocols, references to the tModels that represent these
concepts are placed in the bindingTemplate. In such a way, tModels can be re-used by
multiple bindingTemplates. The bindingTemplates that refer to precisely the same set of
tModels are said to have the same "technical fingerprint" and are of the same type. In this
way, tModels can be used to promote the interoperability between software systems.

It is important to note that such technical documents and the supporting documentation
necessary to a developer using Web services are not stored within the UDDI registry itself. A
UDDI tModel simply contains the addresses where those documents can be found. A tModel,
however, contains more than just URLs; it also stores metadata about the technical
documents and an entity key that identifies that tModel.

Because tModels can represent any unique concept or construct, they have usage beyond the
software interoperability scenario described above. They can also be used to represent other
concepts within the UDDI information model, such that metadata concepts are reused

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 22/420

throughout the model. For example, tModels are used for the following other purposes within
UDDI:

• Transport and protocol definitions such as HTTP and SMTP. (See below and also
Section 11.1.1 uddi-org:types for a description.)

• Value sets including identifier systems, categorization systems and namespaces.
(See Section 3.3 businessEntity Structure and Appendix F Using Categorization for a
description of how value sets are used in UDDI.)

• Structured categorizations using multiple value sets called "categorization groups."

• Postal address formats. (See Section 3.3.2.7 address and Appendix B
Internationalization for a description.)

• Find qualifiers used to modify the behavior of the UDDI find_xx APIs. (See Section
5.1.4 findQualifiers for a description.)

• Use type attributes that specify the kind of resource being referred to by a URI
reference. (See, for example, Section 3.5.2.1 accessPoint.)

The use of tModels is essential to how UDDI represents data and metadata. The UDDI
specification defines a set of common tModels that can be used canonically to model
information within UDDI. If a concept that is required to model a particular scenario does not
exist in a registry, a user should introduce that concept by saving a tModel containing the URL
of the relevant overview documents.

1.6.5 Taxonomic Classification of the UDDI entities
Data is worthless if it is lost within a mass of other data and cannot be distinguished or
discovered. If a client of UDDI cannot effectively find information within a registry, the purpose
of UDDI is considerably compromised. Providing the structure and modeling tools to address
this problem is at the heart of UDDI’s design. The reification of data within UDDI is core to its
mission of description, discovery and integration. It achieves this by several means.

First, it allows users to define multiple taxonomies that can be used in UDDI. In such a way,
multiple classification schemes can be overlaid on a single UDDI entity. This capability allows
organizations to extend the set of such systems UDDI registries support. One is not tied to a
single system, but can rather employ several different classification systems simultaneously.

Second, UDDI allows such classification systems to be used on every entity within the
information model. It defines a consistent way for a publisher to add any number of
classifications to their registrations. It is important that taxonomies are used when publishing
data into a UDDI registry. Whether standard codes are used (such as the United Nations
Standard Products and Services Code System (UNSPSC)) or a new taxonomy is created and
distributed, it is imperative that UDDI data -- businessEntity, businessService, bindingTemplate
and tModel elements alike – are attributed with metadata.

Third, the UDDI Inquiry API set provides the ability to issue precise searches based on the
different classification schemes. A range of queries that perform different joins across the
UDDI entities can be generated, such that data can be discovered and accessed. Also,
registering information such as industry codes, product codes, geography codes and business
identification codes allows other search services to use this classification information as a
starting point to provide added-value indexing and classification.

Classification and identification systems, taken together, are called "value sets" in UDDI. Value
sets may be "checked" or "unchecked". Both checked and unchecked value sets are used for
categorization and identification. The difference between them is that whenever a checked
value set is used, the use is inspected to see that it conforms to the requirements of the value
set. Unchecked value sets do not have their uses checked.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 23/420

1.7 Introduction to Security
The security model for a UDDI registry can be characterized by the collection of registry and
node policies and the implementation of these policies by a UDDI node. This specification
details a list of policies that MUST be defined by registries and nodes in Chapter 9 Policy. This
specification also describes how policies SHOULD be modeled.

Several optional and extensible mechanisms for implementing nodes, registries and clients
with a particular security model are described in this specification. The principal areas of
security policies and mechanisms in the UDDI specification are related to data management,
user identification, user authentication, user authorization, confidentiality of messages and
integrity of data.

In order to authorize or restrict access to data in a UDDI registry, an implementation of a UDDI
node MAY be integrated with one or more identification systems. An implementation specific
policy MUST identify the identification system(s) used. Integration of UDDI APIs and data with
an identification system MAY be implemented through the authentication and authorization
APIs to provide access control as described in Section 5.3 Security Policy API Set. Other
authentication and authorization mechanisms and policies are represented in UDDI through
use of tModels to describe the Web services of a UDDI node.

UDDI also supports XML Digital Signatures on UDDI data to enable inquirers to verify the
integrity of the data with respect to the publisher.

The security model for a registry and node can be extended beyond the mechanisms
described in this specification and represented by modeling the UDDI Web services and
through node and registry policy documentation.

1.8 Introduction to Internationalization
As part of its aim of providing a registry for universal description, discovery and integration, the
UDDI specification includes support for internationalization features. These features fall into
two broad groups:

• Support for multi-regional businesses, organization, and other Web service providers
to:

o Describe their operations across international or inter-region units

o Specify the timezone of each operation’s contacts

• Support for internationalization of UDDI data and services such as:

o XML and the Unicode Character Set

o Postal address

o Use of multiple languages or multiple scripts of the same language

o Mechanisms to specify additional language-specific sorting order

o Consistent search results independent of language of information being
searched

1.8.1 Multi-regional businesses
The UDDI specification provides features that enable Web service providers to describe the
location of different aspects of the business, e.g. where it offers its products and services,
where it is located, or even where it has stores, warehouses, or other branches.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 24/420

1.8.2 XML and Unicode Character Set
The UDDI specification uses XML and the Unicode Character Set (up to and including version
3.0 of the Unicode Standard). By basing the programming interface on XML, multilingual
handling capability is automatically achieved as XML uses the Universal Character Set (UCS)
defined by both the Unicode Consortium and ISO 10646. The UCS is a character set that
encompasses most of the language scripts used in computing.

1.8.3 Standardized Postal Address
In UDDI, an <address> element consists of a list of <addressLine> elements. While this is
useful for publishing addresses in a UDDI registry or simply printing them on paper, the
address’ logical structure and meaning is not explicit.

Moreover, different geographical regions specify their postal addresses differently

• By having different subelements (e.g. subdivisions, suburbs, lots, building
identifications, floor numbers)

• By grouping/sequencing the subelements.

To overcome the first concern, the UDDI specification exposes an address’ structure and
meaning by the use of attributes within each <addressLine> element to specify that line’s
structure and meaning.

To overcome the second concern, the UDDI Business Registry has specified a canonical
postal address structure with common address subelements (e.g. states, cities). This
canonical address structure describes address data via name/code pairs, enabling each
common address subelement to be identified by name or code3.

1.8.4 Use of Multi-languages and Multi-scripts
Multinational businesses or businesses involved in international trading at times require the
use of possibly several languages or multiple scripts of the same language for describing their
business. The UDDI specification supports this requirement through two means, first by
specifying the use of XML with its underlying Unicode representation, and second by
permitting the use of the xml:lang attribute for various items such as names, addresses, and
document descriptions to designate the language in which they are expressed. Further
information on this may be found in Section 3.3.2.3 name.

1.8.5 Adding Language-specific Sort Orders
The Universal Character Set supported through XML consists of characters of most of the
language scripts of the world. Each character has a distinct collation weight within the
language for use in the collation sequencing process. Handling the sort orders of different
language scripts, i.e. the assignment of collation weight values, can be very different, with the
complexity of handling dependent on whether the script is alphabetic, syllabic, or ideographic.
Some examples of sort order handling issues are:

• Where multiple languages share the same alphabetic script, it is possible for a
common character to have different collation weights when used in the different
languages.

• Ideographic languages have large character repertoires with multiple collation
sequencing possibilities depending on whether phonetic or stroke-order sequencing is
chosen.

3
 See Section 3.3.3.65 address and Appendix D Internationalization.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 25/420

• Where languages are bicameral (having upper and lower cases), collation sequencing
could depend on whether case-sensitive or insensitive sorting is required.
Conversely, specifying case-sensitive sort for non-bicameral languages is
meaningless.

• Where the language inherently has an obvious collation sequence, fastest sorting is
achieved by using binary sort.

The UDDI specification allows the collation sequence of results returned by the APIs to be
specified via qualifiers. The specification also supports a mechanism to specify additional
language-specific collation sequences for collating returned results.

1.8.6 Consistent Internationalized Search
The existence within the Universal Character Set of combining characters and of multiple
representations for what users perceive as the same character results in different (by content
and sometimes by length as well) XML strings that are the same when rendered visually.
These different XML strings, though different in their encoded binary form, should produce
positive match results during any search operation. This requirement makes it necessary to
define a canonical XML string representation. The canonical representation chosen is that of
the Unicode Normalization Form C4. For further details, see Section 4.6.1.1 Normalization and
Canonicalization.

4
 Specified in Unicode Technical Standard, Technical Report #15 available at http://www.unicode.org/unicode/reports/tr15/

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 26/420

2 UDDI Schemas
UDDI uses the XML Schema Language (See http://www.w3.org/TR/xmlschema-0/,
http://www.w3.org/TR/xmlschema-1/ and http://www.w3.org/TR/xmlschema-2/) to formally
describe its data structures. A UDDI node MUST use an XML processor that meets the
definition of a minimally conforming schema aware processor as defined in XML Schema Part
1: Structures. The XML processor must further understand the references to schema
components (see Section 4.2.3 of XML Schema Part 1: Structures) across namespaces which
result from the import statements in the UDDI schemas. The complete definition comprises 9
schema files, as described below.

UDDI API Schema

Schema file http://uddi.org/schema/uddi_v3.xsd

Target namespace urn:uddi-org:api_v3

Referenced/imported
namespaces

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/XML/1998/namespace

Description This is the main UDDI Schema file. It defines all of the common
UDDI data types and elements as well as those used in the
Inquiry, Publishing, and Security API sets.

UDDI Custody Schema

Schema file http://uddi.org/schema/uddi_v3custody.xsd

Target namespace urn:uddi-org:custody_v3

Referenced/imported
namespaces

urn:uddi-org:api_v3
urn:uddi-org:repl_v3
http://www.w3.org/2001/XMLSchema

Description This is the schema for the UDDI Custody and Ownership
Transfer API set.

UDDI Subscription Schema

Schema file http://uddi.org/schema/uddi_v3subscription.xsd

Target namespace urn:uddi-org:sub_v3

Referenced/imported
namespaces

urn:uddi-org:api_v3
http://www.w3.org/2001/XMLSchema

Description This is the schema for the UDDI Subscription API set.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 27/420

UDDI Subscription Listener Schema

Schema file http://uddi.org/schema/uddi_v3subscriptionListener.xsd

Target namespace urn:uddi-org:subr_v3

Referenced/imported
namespaces

urn:uddi-org:api_v3
urn:uddi-org:sub_v3
http://www.w3.org/2001/XMLSchema

Description This is the schema for the UDDI Subscription Listener API set.

UDDI Replication Schema

Schema file http://uddi.org/schema/uddi_v3replication.xsd

Target namespace urn:uddi-org:repl_v3

Referenced/imported
namespaces

urn:uddi-org:api_v3
http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/2001/XMLSchema

Description This is the schema for the UDDI Replication API set.

UDDI Value Set Validation Schema

Schema file http://uddi.org/schema/uddi_v3valueset.xsd

Target namespace urn:uddi-org:vs_v3

Referenced/imported
namespaces

urn:uddi-org:api_v3
http://www.w3.org/2001/XMLSchema

Description This is the schema for the UDDI Value Set Validation API set.

UDDI Value Set Caching

Schema file http://uddi.org/schema/uddi_v3valuesetcaching.xsd

Target namespace urn:uddi-org:vscache_v3

Referenced/imported
namespaces

urn:uddi-org:api_v3
http://www.w3.org/2001/XMLSchema

Description This is the schema for the UDDI Value Set Data API set.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 28/420

UDDI Policy

Schema file http://uddi.org/schema/uddi_v3policy.xsd

Target namespace urn:uddi-org:policy_v3

Referenced/imported
namespaces

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/XML/1998/namespace

Description This is the schema for the UDDI Policy Document for the
Policy Service.

UDDI Policy Instance Parameters

Schema file http://uddi.org/schema/uddi_v3policy_instanceParms.xsd

Target namespace urn:uddi-org:policy_instanceParms_v3

Referenced/imported
namespaces

http://www.w3.org/2001/XMLSchema

Description This is the schema for the instance parameters that are used in
modeling UDDI policies.

2.1 Schema versioning
UDDI follows the commonly encountered convention of changing the target namespace
whenever a specification revision changes the schema in a way that changes the set of
documents that is valid under the schema. In addition, UDDI changes the target namespace
whenever a specification revision changes in a way that changes the behavior a compliant
registry is permitted to display with respect to the schema, even if the set of documents that
are valid under the schema remains unchanged. UDDI does not change the target namespace
for other kinds of changes. For example, the target namespace is not changed for purely
editorial or formatting errata, either to the Specification or to a schema.

The form of the target namespace is (using ABNF notation):

namespace = "urn:uddi-org:" schemaName "_v" versionNumber [":" revisionNumber]
versionNumber = decimalInteger
revisionNumber = decimalInteger
schemaName = "api" / "custody" / "sub" / "subr" / "repl" / "vs" / "vscache" / "policy" /
"policy_instanceParms"
decimalInteger = Unsigned integer with no leading zeroes.

Where versionNumber is the same as the version number of UDDI of which the schema is a
part. E.g., for UDDI v3, versionNumber is 3. The value of revisionsNumber is the number of
the revision to the specification in which the schema is used.

When the specification is first released revisionsNumber is 0. It is incremented by 1 with each
released revision.

So, for example, namespace for the UDDI API Schema corresponding to UDDI v3 in its first
release is "urn:uddi-org:api_v3:0".

In addition, the UDDI schemas use the version attribute of the schema element to mark
changes to the text of the schema in the following manner. The value of the version attribute is
an unsigned decimal integer. When a schema is first created for a given version of UDDI its

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 29/420

version is 0. The value of version is incremented by at least 1 each time the schema is made
publicly available.

2.2 Schema Extensibility
As defined in the UDDI schemas, all UDDI data structures are designed to permit UDDI node
implementers to extend them using the XML Schema derivation-by-extension feature. While
extending the UDDI schemas in this way can be a relatively straightforward process, designing
an extension that includes behavioral modification is likely to be a complex undertaking that
should be done with considerable care. See Appendix H Extensibility for more information on
extending UDDI.

2.3 Element and attribute types and lengths
To ease the replication of data between nodes of a registry and to facilitate sharing data
among the registries of an affiliation, UDDI imposes length restrictions on the types in its
information model. The following tables summarize all the stored elements and attributes in the
UDDI schemas that correspond to XML schema simpleTypes. They provide data types and,
for those whose length is not specified by XML, their allowed lengths. The lengths are the
storage length limits for information that is saved in a UDDI registry, given in Unicode
characters. Since these limits are imposed in the schemas, structures containing data that
exceeds the constraints depicted below are not valid. The lengths specified in the UDDI
schemas are the definitive source for type and length information.

2.3.1 Data structure, publication API, inquiry API and security API
Element/attribute Name Data Type Length

accessPoint string 4096

addressLine string 80

authInfo string 4096

bindingKey anyURI 255

businessKey anyURI 255

deleted boolean

description string 255

discoveryURL anyURI 4096

email string 255

fromKey anyURI 255

instanceParms string 8192

keyName string 255

keyValue string 255

name string 255

operator string 255

overviewURL anyURI 4096

personName string 255

phone string 50

serviceKey anyURI 255

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 30/420

Element/attribute Name Data Type Length

sortCode string 10

tModelKey anyURI 255

toKey anyURI 255

useType string 255

completionStatus NMTOKEN 32

xml:lang string 26

2.3.2 Subscription API
Element/attribute Name Data Type Length

brief boolean

endPoint dateTime

notificationInterval duration

expiresAfter dateTime

startPoint dateTime

maxEntities integer

subscriptionKey anyURI 255

2.3.3 Replication API
Element/attribute Name Data Type Length

acknowledgementRequested boolean

nodeId anyURI 255

notifyingNode anyURI 255

originatingUSN integer

operatorNodeID anyURI 255

requestingNode anyURI 255

responseLimitCount integer

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 31/420

3 UDDI Registry Data Structures

3.1 Data structure overview
This chapter describes the semantics of the data structures that are specified by the UDDI API
Schema. Refinements that are specific to individual APIs are described in Chapter 5 UDDI
Programmers API’s.

As described in Section 1.6 Representing Information within UDDI, the information that makes
up a UDDI registry consists of instances of four core data structure types, the businessEntity,
the businessService, the bindingTemplate and the tModel, together with instances of additional
data structure types defined in the UDDI API Schema.

The four core types and their relationships are shown in a simplified diagram in Figure 1 and
are explained in detail in this chapter.

Figure 1 - UDDI core data structures

The schema also defines a number of request and response structures, each of which contain
the core structures, references to the core structures, or summary versions of them; see
Chapter 5 UDDI Programmers API’s for details.

3.2 Design Principles
Each of the core data structure types is used to express specific types of data, arranged in the
relationship shown in Figure 1. A particular instance of an individual fact or set of related facts
is expressed using XML according to the definition of these core types. For instance, two
separate businesses may publish information in a UDDI registry about Web services they
offer. Information describing each business and its Web services all exists as separate
instances of the core data structures stored within the UDDI registry.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 32/420

3.2.1 Keys as unique identifiers
Instances of many data structures in UDDI, including all of the core data structures are kept
separately, and are accessed individually by way of unique identifiers called keys. An instance
in the registry gets its keys at the time it is first published. Publishers may assign keys; if they
don’t, the UDDI node MUST assign them. See Section 4.4 About uddiKeys.

3.2.2 Containment and references
The core data structures are sensitive to the containment relationships found in the UDDI API
schema and shown in Figure 1. The businessEntity structure contains one or more distinct
businessService structures. Similarly, individual businessService structures contain specific
instances of bindingTemplate structures.

It is important to note that no single instance of an entity is ever "contained" by more than one
containing entity. This means, for example, that only one specific businessEntity structure
(identified by its unique key value) will ever contain a specific instance of a businessService
structure (also identified by its own unique key).

References, on the other hand, operate differently. We can see an example of this in Figure 1
where the bindingTemplate entities refer to instances of tModel entities. References to a given
entity can occur multiple times, as needed.

Determining what is a reference and what is the key for a specific entity is straightforward.
Each kind of keyed entity has an attribute whose type is a corresponding type of key. For
example, businessEntity has a businessKey attribute and a businessService has a serviceKey
attribute. The value of this attribute is the entity’s key. All other keys are references or
containment relationships. Taking the bindingTemplate as an example, the tModelKey that
occurs in its inner structure is a reference and the serviceKey that occurs in the
bindingTemplate is a containment relationship.

3.2.3 Collections
Many elements in the UDDI API Schema may occur multiple times. Those elements that do
not have a complex inner structure, for example, name and description, are provided in a list.
Elements that do have a more complex inner structure are usually grouped in their own
container element. For example, the contacts structure is a container where one or more
contact structures reside.

3.2.4 Optional attributes
In the data structure elements of the UDDI API Schema, there are many optional attributes, for
example, keyName and useType. Most optional attributes have defaults of empty string ("").
During schema assessment, this produces a single representation for an omitted or empty
string in an optional attribute. Consider the following two keyedReferences:

<keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:iso3166"
 keyName=""
 keyValue="US-CA" />
<keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:iso3166"
 keyValue="US-CA" />

Semantically speaking from the perspective of UDDI, omitted attributes are identical to empty
attributes. However, with respect to signing, specifically, canonicalization, omitted attributes are
different from empty attributes. Therefore, the digital signatures of the above two
keyedReferences are different, even though clients would consider the two keyedReferences
be identical.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 33/420

The difference, from a perspective of canonicalization, puts additional burden on clients in
publishing entities. As a result, when applicable, the data structure elements of UDDI API
Schema define default values for optional attributes, so that omitted attributes are treated as
attributes with default value with respect to signing.

The exceptions are xml:lang and keyValue in addressLine. Both prohibit empty string. Hence,
the ambiguity discussed above is not applicable. In the case of xml:lang, empty string is not a
valid language code. In the case of keyValue in addressLine, the definition of keyValue
requires the string to have a minimal length of one.

3.3 businessEntity Structure
Each businessEntity entity contains descriptive information about a business or organization
and, through its contained businessService entities, information about the services that it
offers. From an XML standpoint, the businessEntity is the top-level data structure that holds
descriptive information about the business or organization it describes. Each contained
businessService describes a logical service offered by the business or organization. Similarly,
each bindingTemplate contained within a given businessService provides the technical
description of a Web service that belongs to the logical service that is described by the
businessService.

3.3.1 Structure diagram

Attributes

Name Use

businessKey optional

3.3.2 Documentation
A given instance of the businessEntity structure is uniquely identified by its businessKey.
When a businessEntity is published within a UDDI registry, the businessKey MUST be omitted

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 34/420

if the publisher wants the registry to generate a key. When a businessEntity is retrieved from a
UDDI registry, the businessKey MUST be present.

discoveryURLs is a list of Uniform Resource Locators (URL) that point to alternate, file based
service discovery mechanisms.

Simple textual information about the businessEntity, potentially in multiple languages, is given
by its name, short business description and contacts. The required, non-empty name and
the optional description can occur multiple times. contacts is a simple list of single contact
information.

businessServices is a list of business services provided by the businessEntity.

In addition to the businessKey, that uniquely identifies the businessEntity within the registry,
the identifierBag contains a list of other identifiers, each valid in its own identifier system.
Examples of identifiers are a tax identifier or D-U-N-S® number.

The categoryBag contains a list of business categories that each describes a specific
business aspect of the businessEntity. Examples of categories are industry, product category
or geographic region.

A businessEntity entity MAY be digitally signed using XML digital signatures. When a
businessEntity is signed, each digital signature MUST be provided by its own dsig:Signature
element. Appendix I Support for XML Digital Signatures covers the use of this element in
accordance with the XML-Signature specification.

3.3.2.1 discoveryURLs
The discoveryURLs structure is a simple container of one or more discoveryURL elements.

3.3.2.2 discoveryURL
A discoveryURL is a URL that points to Web addressable (via HTTP GET) discovery
documents. The expected return document is not defined. Rather, a framework for
establishing conventions is provided, and a particular convention is defined within this
specification.

Attributes

Name Use

useType optional

Each individual discoveryURL MAY be adorned with a useType attribute that designates the
name of the convention that the referenced document follows. A reserved convention value is
"businessEntity". It is RECOMMENDED that discoveryURLs qualified with this value point to
XML documents of the type businessEntity, as defined in the UDDI API Schema.

An example of a discoveryURL, generated by a UDDI node that is accessible at
www.example.com and rendered by the publisher of the businessEntity that is identified by the
businessKey "uddi:example.com:registry:sales:53", is:

<discoveryURL useType="businessEntity">
 http://www.example.com?businessKey=uddi:example.com:registry:sales:53
</discoveryURL>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 35/420

Another reserved value for discoveryURL is "homepage". Adorning a discoveryURL with this
value signifies that a business’s homepage can be discovered at that URL.

3.3.2.3 name
A businessEntity MAY contain more than one name. Multiple names are useful, for example,
in order to specify both the legal name and a known abbreviation of a businessEntity, or in
order to support romanization (see Appendix D Internationalization).

Attributes

Name Use

xml:lang optional

When a name is expressed in a specific language (such as the language into which a name
has been romanized), it SHOULD carry the xml:lang attribute to signify this. When a name
does not have an associated language (such as a neologism not associated with a particular
language), the xml:lang attribute SHOULD be omitted.

As is defined in the XML specification, an occurrence of the xml:lang attribute indicates that the
content to which it applies (namely the element on which it is found and to all its children,
unless subsequently overridden) is to be interpreted as being in a certain natural language.
Legal values for such attributes conform to RFC 30665 with one exception: UDDI imposes a
maximum length of 26 characters.

As is the case for RFC 3066, all tags are to be treated as case insensitive; there exist
conventions for capitalization of some of them, but these should not be taken to carry meaning.
For instance, [ISO 3166] recommends that country codes are capitalized (MN Mongolia), while
[ISO 639] recommends that language codes are written in lower case (mn Mongolian).

Examples include: "EN-us", "FR-ca".

3.3.2.4 description
A businessEntity can contain several descriptions, for example, in different languages.

Attributes

Name Use

xml:lang optional

In order to signify the language in which the descriptions are expressed, they MAY carry
xml:lang values. There is no restriction on the number of descriptions or on what xml:lang
value that they may have.

3.3.2.5 contacts
The contacts structure itself is a simple collection of one or more contact structures.

5 Note that the language type in the XML Schema Recommendation does not conform to RFC 3066. It is necessary to use
schema assessment conforming to the errata for XML Schema (see http://www.w3.org/2001/05/xmlschema-errata#e2-25)

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 36/420

3.3.2.6 contact
The contact structure records contact information for a person or a job role within the
businessEntity so that someone who finds the information can make human contact for any
purpose. This information consists of one or more optional elements, along with a person’s
name. Contact information exists by containment relationship alone; the contact structure does
not provide keys for tracking individual contact instances.

Attributes

Name Use

useType optional

The useType attribute is used to describe the type of contact in unstructured text. Suggested
examples include "technical questions", "technical contact", "establish account", "sales
contact", etc.

description is used to describe how the contact information should be used. Publishing
several descriptions, e.g. in different languages, is supported. To signify the language in which
the descriptions are expressed, they MAY carry xml:lang values.

personName is the name of the person or name of the job role supporting the contact.
Publishing several names, e.g. for romanization purposes, is supported.

Attributes

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 37/420

Name Use

xml:lang optional

In order to signify the contextual language (if any) in which a given name is expressed in (such
as the language into which a name has been romanized), it SHOULD carry the xml:lang
attribute See Section 3.3.2.3 name for details on using xml:lang values in name elements.
There is no restriction on the number of personNames or what xml:lang value each may have.
An example for a role might be:

<cont act useType=" Techni cal suppor t " >
 <per sonName>Admi ni st r at or </ per sonName>
 …
</ cont act >

phone is used to hold telephone numbers for the contact. This element MAY be adorned with
an optional useType attribute for descriptive purposes.

email is the email address for the contact. This element MAY be adorned with an optional
useType attribute for descriptive purposes.

address is the postal address for the contact.

3.3.2.7 address
address represents the contact’s postal address, in a form suitable for addressing an
envelope. The address structure is a simple list of address lines.

Attributes

Name Use

xml:lang optional

useType optional

sortCode optional

tModelKey optional

Address structures have four optional attributes.

The xml:lang value describes the language the address is expressed in. There is no
restriction on the number of addresses or what xml:lang value they may have. Publication of
addresses in several languages, e.g. for use in multilingual countries, is supported. See
Appendix D Internationalization for an example.

The useType describes the address’ type in unstructured text. Suggested examples include
"headquarters", "sales office", "billing department", etc.

The sortCode attribute is deprecated because of the guarantee of preserving the document
order (see Section 4.5.3 Preservation of Document Order). In order to achieve this behavior,
the data has just to be published in the desired order.

The tModelKey is a tModel reference that specifies that keyName keyValue pairs given by
subsequent addressLine elements, if addressLine elements are present at all, are to be
interpreted by the address structure associated with the tModel that is referenced. For a
description of how to use tModels in order to give the addressLine list structure and meaning,
see Appendix D Internationalization.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 38/420

3.3.2.8 addressLine
addressLine contains a part of the actual address in text form.

Attributes

Name Use

keyName optional

keyValue optional

Each addressLine element MAY be adorned with two optional descriptive attributes, keyName
and keyValue. Both attributes MUST be present in each address line if a tModelKey is
specified in the address structure. When no tModelKey is provided for the address structure,
the keyName and keyValue attributes have no defined meaning.

3.3.2.9 businessServices
The businessServices structure is used to describe families of Web services. This simple
container holds one or more businessService entities (see Section 3.4 businessService
structure).

3.3.2.10 identifierBag
The optional identifierBag element allows businessEntity structures to be identified according
to published identifier systems, for example, Dun & Bradstreet D-U-N-S� numbers or tax
identifiers.

An identifierBag is a list of one or more keyedReference structures, each representing a
single identification.

For a full description on how to establish an identity, see Appendix E Using Identifiers.

3.3.2.11 keyedReference (in identifierBags)
A keyedReference, when included in an identifierBag, represents an identifier of a specific
identifier system.

Attributes

Name Use

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 39/420

tModelKey required

keyName optional

keyValue required

The keyedReference consists of the three attributes tModelKey, keyName and keyValue.
The required tModelKey refers to the tModel that represents the identifier system, and the
required keyValue contains the actual identifier within this system. The optional keyName MAY
be used to provide a descriptive name for the identifier. Omitted keyNames are treated as
empty keyNames.

For example, identifying SAP AG by its Dun & Bradstreet D-U-N-S® Number, using the
corresponding tModelKey within the UDDI Business Registry, is done as follows:

<identifierBag>
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:identifier:dnb.com:d-u-n-s"
 keyName="SAP AG"
 keyValue="31-626-8655" />
</identifierBag>

3.3.2.12 categoryBag
The optional categoryBag element allows businessEntity structures to be categorized
according to published categorization systems. For example, a businessEntity might contain
UNSPSC product and service categorizations that describe its product and service offering
and ISO 3166 geographical regions that describe the geographical area where these products
and services are offered.

Similar to the identifierBag, a categoryBag contains a simple list of keyedReference
structures, each containing a single categorization. The categoryBag MAY also contain a
simple list of keyedReferenceGroup structures. At least one keyedReference or one
keyedReferenceGroup MUST be provided within the categoryBag.

For a full description of how to establish a categorization, see Appendix F Using
Categorization.

3.3.2.13 keyedReference (in categoryBags)
As within an identifierBag (see Section 3.3.2.13 keyedReference (in identifierBags)), a
keyedReference contains the three attributes tModelKey, keyName and keyValue. The
required tModelKey refers to the tModel that represents the categorization system, and the
required keyValue contains the actual categorization within this system. The optional keyName
can be used to provide a descriptive name of the categorization. Omitted keyNames are
treated as empty keyNames. A keyName MUST be provided in a keyedReference if its

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 40/420

tModelKey refers to the general_keywords category system (see also Section 5.1.7 Matching
Rules for keyedReferences and keyedReferenceGroups).

For example, in order to categorize a businessEntity as offering goods and services in
California, USA, using the corresponding ISO 3166 tModelKey within the UDDI Business
Registry, one would add the following keyedReference to the businessEntity’s categoryBag:

<keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:iso3166"
 keyName="California, USA"
 keyValue="US-CA" />

3.3.2.14 keyedReferenceGroup
A keyedReferenceGroup, by itself, is a simple list of keyedReference structures that logically
belong together.

Attributes

Name Use

tModelKey required

The keyedReferenceGroup MUST contain a tModelKey attribute that specifies the structure
and meaning of the keyedReferences contained in the keyedReferenceGroup. A
keyedReferenceGroup MUST also contain at least one keyedReference when published.

For example, to categorize a businessEntity as being located at the geodetic point that is
specified by the latitude/longitude pair 49.6827/8.2952 using the corresponding World
Geodetic System 1984 (WGS 84) tModelKey within the UDDI Business Registry, one would
add the following keyedReferenceGroup to the businessEntity’s categoryBag:

<keyedReferenceGroup tModelKey="uddi:uddi.org:ubr:categorizationGroup:wgs84" >
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:wgs84:latitude"
 keyName="WGS 84 Latitude"
 keyValue="+49.682700" />
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:wgs84:longitude"
 keyName="WGS 84 Longitude"
 keyValue="+008.295200" />
</keyedReferenceGroup>

3.4 businessService Structure
The businessService structure represents a logical service and contains descriptive
information in business terms. A businessService is the logical child of a single businessEntity,
the provider of this businessService. Technical information about the businessService is found
in the contained bindingTemplate entities.

In some cases, businesses would like to share or reuse services, e.g. when a large enterprise
publishes separate businessEntity structures. This can be done by using the businessService
structure as a projection to a published businessService, as explained below.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 41/420

3.4.1 Structure Diagram

Attributes

Name Use

serviceKey optional

businessKey optional

3.4.2 Documentation
A given businessService entity is uniquely identified by its serviceKey. When a
businessService is published within a UDDI registry, the serviceKey MUST be omitted if the
publisher wants the registry to generate a key. When a businessService is retrieved from a
UDDI registry, the serviceKey MUST be present.

The businessKey attribute uniquely identifies the businessEntity which is the provider of the
businessService. Every businessService is "contained" in exactly one businessEntity.

When a businessService is published within a UDDI registry, the businessKey MAY be omitted
if the businessService is a part of a fully expressed businessEntity element. When a
businessService is retrieved from a UDDI registry, the businessKey MUST be present. This
behavior provides the ability to browse through the containment relationships given any of the
core elements as a starting point.

The businessKey may differ from the publishing businessEntity’s businessKey. This indicates
a service projection. A service projection allows a business or organization to include in its
businessEntity a businessService offered by some other business or organization. A projected
businessService is made a part of a businessEntity by reference as opposed to by
containment. Projections to the same service can be made in any number of business entities.

Simple textual information about the businessService, potentially in multiple languages, is
given by its name and short service description. The non-empty name, required except when
indicating a service projection, and the optional description can occur multiple times. More
information about the structure of the name and description elements can be found in Section
3.3 businessEntity Structure.

bindingTemplates is a list of technical descriptions for the Web services provided.

The categoryBag contains a list of business categories that each describes a specific
business aspect of the businessService (e.g. industry, product category or geographic region)

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 42/420

and is valid in its own category system. More information about the categoryBag element can
be found in Section 3.3 businessEntity Structure.

A businessService entity MAY be digitally signed using XML digital signatures. When a
businessService is signed, each digital signature MUST be provided by its own
dsig:Signature element. Appendix I Support for XML Digital Signature covers the use of this
element in accordance with the XML-Signature specification.

3.4.2.1 bindingTemplates
The bindingTemplates structure holds, for a given businessService, the bindingTemplate
entities that provide the technical descriptions of the Web services that constitute the
businessService.

See Section 3.5 bindingTemplate structure for details on bindingTemplates.

3.5 bindingTemplate Structure
Technical descriptions of Web services are provided by bindingTemplate entities. Each
bindingTemplate describes an instance of a Web service offered at a particular network
address, typically given in the form of a URL. The bindingTemplate also describes the type of
Web service being offered using references to tModels, application-specific parameters, and
settings.

Each bindingTemplate is contained in a businessService.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 43/420

3.5.1 Structure Diagram

Attributes

Name Use

bindingKey optional

serviceKey optional

3.5.2 Documentation
A given bindingTemplate entity is uniquely identified by its bindingKey. When a
bindingTemplate is published within a UDDI registry, the bindingKey MUST be omitted if the
publisher wants the registry to generate a key. When a bindingTemplate is retrieved from a
UDDI registry, the bindingKey MUST be present.

The serviceKey attribute uniquely identifies the businessService that contains the
bindingTemplate. When a bindingTemplate is published within a UDDI registry, the serviceKey
MAY be omitted if the bindingTemplate is a part of a fully expressed businessService element.
When a bindingTemplate is retrieved from a UDDI registry, the serviceKey MUST be present.

Simple textual information about the bindingTemplate, potentially in multiple languages, is
given by its short binding description. It is optional and can occur multiple times. More
information about the structure of the description element can be found in Section 3.3
businessEntity structure.

The accessPoint is a string used to convey the network address suitable for invoking the Web
service being described. This is typically a URL but may be an electronic mail address, or even
a telephone number. No assumptions about the type of data in this field can be made without
first understanding the technical requirements associated with the Web service.

The hostingRedirector is a deprecated element, since its functionality is now covered by the
accessPoint. For backward-compatibility, it can still be used, but it is not recommended. See
the set of UDDI Version 2 Specifications for a description on hostingRedirector.

Either an accessPoint or a hostingRedirector must be provided within a bindingTemplate.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 44/420

The tModelInstanceDetails structure is a list of one or more tModelInstanceInfo elements.
The collection of tModelKey attributes found in the tModelInstanceInfo elements together form
the "technical fingerprint" of a Web service that can be used to identify compatible services.

The categoryBag contains a list of categorizations that each describes a specific aspect of the
bindingTemplate and is valid in its own category system. A categoryBag in a bindingTemplate
can be used, for example, to indicate that the Web service described by the bindingTemplate
has the status "test" or "production". More information about the structure of the categoryBag
element can be found in Section 3.3 businessEntity Structure.

A bindingTemplate entity MAY be digitally signed using XML digital signatures. When a
bindingTemplate is signed, each digital signature MUST be provided by its own
dsig:Signature element. Appendix I Support for XML Digital Signature covers the use of this
element in accordance with the XML-Signature specification.

3.5.2.1 accessPoint
The accessPoint element is an attribute-qualified URI, typically a URL, representing the
network address of the Web service being described. The notion of Web service seen here is
fairly abstract and many types of network addresses are accommodated.

Attributes

Name Use

useType optional

The purpose of the optional attribute useType is to facilitate the description of several types of
accessPoints.

The following useType attributes values are pre-defined by UDDI:

• endPoint: designates that the accessPoint points to the actual service endpoint, i.e.
the network address at which the Web service can be invoked,

• bindingTemplate: designates that the accessPoint contains a bindingKey that points
to a different bindingTemplate entry. The value in providing this facility is seen when a
business or entity wants to expose a service description (e.g. advertise that they have
a service available that suits a specific purpose) that is actually a service that is
described in a separate bindingTemplate record. This might occur when many service
descriptions could benefit from a single service description,

• hostingRedirector: designates that the accessPoint can only be determined by
querying another UDDI registry. This might occur when a service is remotely hosted.

• wsdlDeployment: designates that the accessPoint points to a remotely hosted
WSDL document that already contains the necessary binding information, including
the actual service endpoint.

The useType attribute may contain other values than the four listed above. See Appendix B
Using and Extending the useType Attribute for more information.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 45/420

3.5.2.2 tModelInstanceDetails
This structure is a container for one or more tModelInstanceInfo structures.

When a bindingTemplate is published it SHOULD contain, a tModelInstanceDetails element
that in turn contains in its tModelInstanceInfo structures one or more tModel references. This
arbitrarily ordered collection of references is called the "technical fingerprint" of the Web
service. It indicates that the Web service being described complies with the specific and
identifiable specifications implied by the tModelKey values provided. During an inquiry,
interested parties can use this information to look for bindingTemplate entities that contain a
specific fingerprint or partial fingerprint.

3.5.2.3 tModelInstanceInfo
Each tModelInstanceInfo structure represents bindingTemplate entity-specific details for each
tModel referenced.

Attributes

Name Use

tModelKey required

The required tModelKey attribute references a tModel that represents a specification with
which the Web service represented by the containing bindingTemplate complies.

The description is an optional repeating element. Each description, optionally qualified by an
xml:lang attribute, describes what role the tModel plays in the overall service description.

The optional instanceDetails element can be used when tModel-specific settings or other
descriptive information are required either to describe a tModel specific component of a service
description or to support services that require additional technical data support (e.g. via
settings or other handshake operations).

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 46/420

3.5.2.4 instanceDetails
This structure holds service instance-specific information that is required to either understand
the service implementation details relative to a specific tModel, or to provide further parameter
and settings support.

The description is an optional repeating element. Each description, optionally qualified by an
xml:lang attribute, describes the purpose and/or use of the particular instanceDetails entry.

The overviewDoc is a mandatory repeating element, used to house references to remote
descriptive information or instructions related to the use of a particular tModel and its
instanceParms. Multiple overviewDoc elements are useful, for example, to handle alternative
representations of the documentation.

The instanceParms is an optional element of type string, used to locally contain settings or
parameters related to the proper use of a tModelInstanceInfo. The suggested format is a
namespace-qualified XML document so that the settings or parameters can be found in the
XML documents elements and attributes.

At least one overviewDoc or instanceParms MUST be provided within the instanceDetails.

3.5.2.5 overviewDoc
This structure describes overview information about a particular tModel use within a
bindingTemplate.

The description is a mandatory repeating element. Each description, optionally qualified by
an xml:lang attribute, holds a short descriptive overview of how a particular tModel is to be
used.

The optional overviewURL is to be used to hold a URL that refers to a long form of an
overview document that covers the way a particular tModel is used as a component of an
overall Web service description.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 47/420

At least one description or an overviewURL MUST be provided within the overviewDoc.

3.5.2.6 overviewURL
The RECOMMENDED format for the overviewURL is a URI that is suitable for retrieving the
actual overview document with an HTTP GET operation, for example, via a Web browser.

Attributes

Name Use

useType optional

The optional useType attribute is used to provide information about the type of document at
that URL. One common value used in the useType attribute is "text". Using this value
denotes that the overviewURL contains additional textual information. The content of the
useType attribute may contain other values. See Appendix B Using and Extending the
useType Attribute for more information.

3.6 tModel Structure
Making it easy to describe Web services in ways that are meaningful enough to be useful
during searches is an important goal of UDDI. Another goal is to provide a facility to make
these descriptions complete enough that people and programs can discover how to interact
with Web services they do not know much about. To do this, there needs to be a way to mark
a description with information that designates how it behaves, what conventions it follows, and
what specifications or standards the service complies with.

Providing the ability to describe compliance with specifications, concepts, or even shared
design is one of the roles that the tModel structure fills.

Each tModel instance is a keyed entity in UDDI. In a general sense, the purpose of tModel
entities is to provide a reference system based on abstraction. There are two primary uses for
tModel entities: as sources for determining compatibility of Web services and as keyed
namespace references.

3.6.1 Common tModel uses
There are several places within a businessEntity that can refer to tModels. References to the
same tModel instance can be found in many businessEntity structures. tModel references also
occur in various API calls.

Section 3.6 tModel Structure gives an overview of the different types of tModels.

3.6.1.1 Defining the technical fingerprint
One common use for tModel entities is to represent technical specifications or concepts. For
example, a tModel can be used to represent a specification that defines wire protocols,
interchange formats and interchange sequencing rules. Examples can be seen in the
RosettaNet Partner Interface Processes6 specification, the Open Applications Group
Integration Specification7 and various Electronic Document Interchange (EDI) efforts.

6
 See http://www.rosettanet.org

7
 See http://www.openapplications.org

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 48/420

Software that communicates with other software invariably adheres to some pre-agreed
specifications. In situations where this is true, the designers of the specifications can establish
a unique technical identity within a UDDI registry by publishing information about the
specification in a tModel. While the main reason of registering a tModel with a specific UDDI
registry is to define its identity, the actual specification or set of documents that describes the
concept of a tModel is not a part of the registry and is remotely referenced using the
overviewDoc structure. Publishers SHOULD choose well-known formats and description
languages for the documents that describe the concept each tModel represents.

Once a tModel is published, other parties can express the availability of Web services that are
compliant with a specification the tModel represents by simply including a reference to the
tModel – i.e., its tModelKey – in their technical service descriptions bindingTemplate data.

This approach facilitates searching for registered Web services that are compatible with a
particular specification. Once the proper tModelKey value is known, it is easy to discover that a
particular businessEntity has registered a Web service that references the tModel. In this way,
the tModelKey becomes a technical fingerprint that is unique to a given specification.

3.6.1.2 Defining value sets
The second general use for tModel entities is within the identifierBag, categoryBag, address
and publisherAssertion structures that are used to specify organizational identity and various
categories. Used in this context, a tModel represents the system of values used to identify or
categorize UDDI entities.

For example, to represent the fact that a business described by a businessEntity has a
particular US Tax identifier, a keyedReference is placed into the identifierBag of the
businessEntity. The keyedReference has a keyValue that is the tax ID and refers to the tModel
that means "the system of US Tax code identifiers". Together, the keyValue and the tModel
reference specify a particular value in a particular system of values.

3.6.1.3 Defining a find qualifier
The third general use for tModel entities is to represent find qualifiers. Find qualifiers are values
that modify how the find_xx APIs work. For example, to cause find_business to sort its results
in the order in which they were published, the uddi:uddi.org:findqualifier:sortbydateasc may be
specified. See Section 5.1.4 Find Qualifiers for details.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 49/420

3.6.2 Structure diagram

Attributes

Name Use

tModelKey optional

deleted optional

3.6.3 Documentation
A given tModel entity is uniquely identified by its tModelKey. When a tModel is published
within a UDDI registry, the tModelKey MUST be omitted if the publisher wants the registry to
generate a key. When a tModel is retrieved from a UDDI registry, the tModelKey MUST be
present.

In retrieved tModel data, the deleted attribute, an information-only field, indicates whether the
tModel is logically deleted. The two allowed values for this attribute are "true" and "false".

Simple textual information about the tModel, potentially in multiple languages, is given by its
name and short description. While the tModel has exactly one non-empty name, it can have
zero or more descriptions. The name SHOULD be formatted as a URI and, as a
consequence, the xml:lang attribute of the name element SHOULD NOT be used. More
information about the structure of the name and description elements can be found in Section
3.3 businessEntity structure.

The overviewDoc is an optional repeating element, used to house references to remote
descriptive information or instructions related to the tModel. For more information about the
structure of the overviewDoc v, see Section 3.5 bindingTemplate Structure.

The optional useType attribute contained in the overviewURL of the overviewDoc is used to
provide information about the type of document at that URL. One common value used in the
useType attribute is "text". Using this value denotes that the overviewURL contains additional
textual information. Another common value is "wsdlInterface", which is used to designate that

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 50/420

the overviewURL contains a WSDL interface document that can be re-used by many
implementations. The content of the useType attribute may contain other values. See
Appendix B Using and Extending the useType Attribute for more information.

In addition to the tModelKey that uniquely identifies the tModel within the registry, the
identifierBag contains a list of logical identifiers, each valid in its own identifier system. For
more information about identifierBags, see Section 3.3 businessEntity Structure.

The categoryBag contains a list of categories that describe specific aspects of the tModel
(e.g. its technical type). Each category is valid in its own category system. For more
information about categoryBags, see Section 3.3 businessEntity structure.

A tModel entity MAY be digitally signed using XML digital signatures. When a tModel is signed,
each digital signature MUST be provided by its own dsig:Signature element. Appendix I
Support for XML Digital Signatures covers the use of this element in accordance with the XML-
Signature specification.

3.7 publisherAssertion Structure
Many businesses and organizations are not effectively represented by a single businessEntity,
because their description and discovery are likely to be diverse. Examples include corporations
with a variety of subsidiaries, private exchanges with sets of suppliers and their customers and
industry consortiums with their members. An obvious solution is to publish several
businessEntity structures. Such a set of businessEntity structures represents a more or less
coupled community whose members often would like to make some of their relationships
visible in their UDDI registrations. This may be accomplished by using the publisherAssertion
structure. To eliminate the possibility that one publisher claims a relationship to another that is
not reciprocated, both publishers must publish identical assertions for the relationship to
become visible. More detailed information about relationships and publisher assertions is given
in Appendix A Relationships and Publisher Assertions.

3.7.1 Structure Diagram

3.7.2 Documentation
The two businessEntity instances between which an assertion is made are uniquely identified
by the required fromKey and toKey elements. The keyedReference describes the
relationship between the businessEntity elements identified by fromKey and toKey. Similar to
the general behavior of a keyedReference in a categoryBag (see full description in Section 3.3
businessEntity Structure), the included tModelKey uniquely identifies the relationship type
system and the keyName keyValue pair designate a specific relationship type within this value
set. Omitted keyNames are treated as empty keyNames.

A publisherAssertion entity MAY be digitally signed using XML digital signatures. When a
publisherAssertion is signed, each digital signature MUST be provided by its own

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 51/420

dsig:Signature element. Appendix I Support For XML Digital Signatures covers the use of this
element in accordance with the XML-Signature specification.

3.8 operationalInfo Structure
Information about a publishing operation is captured whenever a UDDI core data structure is
published. This data includes the date and time that the data structure was created and
modified, the identifier of the UDDI node at which the publish operation took place, and the
identity of the publisher. Operational information for a UDDI data structure is made accessible
using the get_operationalInfo inquiry API. See Section 5.1.16 get_operationalInfo.

The operationalInfo structure is used to convey the operational information for the UDDI core
data structures, that is, the businessEntity, businessService, bindingTemplate and tModel
structures.

3.8.1 Structure diagram

Attributes

Name Use

entityKey required

3.8.2 Documentation
The UDDI entity with which the operationalInfo is associated is uniquely identified by the
required entityKey attribute.

The created element indicates the instant in time at which the entity with which the
operationalInfo is associated first appeared in a registry.

The modified element indicates the instant in time at which the entity with which the
operationalInfo is associated was last changed by a save operation that may have updated its
content. This will initially be equivalent to the value of the created element, but will diverge as
changes are made over time.

Some UDDI core data structures are containers of other UDDI core data structures. For
instance, businessService elements are contained by businessEntity elements and
bindingTemplate elements are contained by businessService elements. Independent changes
made to contained entities of such entities (for example, changes to an existing
businessService within a businessEntity by means of a save_service API call) do not affect the
value of the modified element associated with the containing entity. Instead, the
modifiedIncludingChildren element in the containing entity contains the maximum of its own
modified element and the modifiedIncludingChildren elements of each of the entities it contains

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 52/420

(if any). If a contained entity is deleted or moved elsewhere, the modifiedIncludingChildren
element is also updated, since such operations would otherwise not be documented
elsewhere. Changes in a service that is being projected do not affect the
modifiedIncludingChildren element of the businessEntity in which it is projected. The
modifiedIncludingChildren element should not be returned for operationalInfo elements
corresponding to bindingTemplate or tModel elements since there are no contained elements
that can be modified independently.

The degree to which the clocks of each UDDI node used to generate the created, modified,
and modifiedIncludingChildren elements are synchronized is not architecturally specified, but
rather is a matter of registry policy. Likewise, the frequency with which each clock is
incremented (e.g.: 60Hz, 100Hz, etc.) is also a matter of registry policy.

The UDDI node (if any) that has custody of the entity to which an operationalInfo element is
attached is identified by the nodeID element. The nodeID contains a unique key that is used to
identify this node within a UDDI registry. As described in Section 7.5.2 Configuration of a UDDI
Node – operator element for nodes that implement UDDI Replication, this element MUST
match the value specified in the Replication Configuration element associated with the node.

A node may provide an indication of the owner of the data corresponding to the entityKey in
the authorizedName element. The exact contents of this element and how the
authorizedName element should be interpreted depends on the authentication, identification
and privacy policies of the registry and node (see Chapter 9, Policy).

In a registry with multiple nodes, the operationalInfo MUST include the information required so
that inquiry results are consistent across all nodes. The nodeID, authorizedName, modified
and created elements are mandatory in multiple node registries both in responses to
get_operationalInfo calls and in replication changeRecords containing operationalInfo
elements. The modifiedIncludingChildren element MUST also be present in multiple node
registries for operationalInfo elements corresponding to businessEntity and businessService
elements.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 53/420

4 Using UDDI APIs
UDDI specifies a number of API sets that are described in Chapter 5 UDDI Programmer APIs
and Section 7.4 Replication API Set. If a node claims to support a UDDI API it MUST
implement the API in conformance with this specification. Node and registry policy determine
the transport and security mechanisms used for each API set. See Chapter 9 Policy for more
information.

A UDDI registry MUST have at least one node that offers a Web service compliant Inquiry API
set. A UDDI registry SHOULD have at least one node that offers a Web service compliant
with the Publication, Security, and Custody and Ownership Transfer API sets. If a UDDI
registry has multiple nodes, all nodes SHOULD offer Web services that are compliant with the
Replication API set. The Subscription and Value Set API sets are OPTIONAL for all nodes
and all registries.

The API descriptions that follow in Chapter 5 UDDI Programmers APIs designate input
elements as optional or required. Required input elements MUST be provided within the
guidelines described by the UDDI schema and in the API descriptions. Optional input
elements MAY be provided, and when they are, they too must follow the guidelines described
by the UDDI schema and in the API description.

4.1 SOAP Usage
This section describes the SOAP specific conventions and requirements applicable to UDDI.

Any use of SOAP by a UDDI implementation that differs from or extends the behavior
described below should be modeled by publishing a tModel to represent this different use of
SOAP. Any Web services that make use of the different SOAP behavior should reference the
tModel in the tModelInstanceDetails of the Web service’s bindingTemplate. See Section 9.4.4
UDDI Data and Information Model for more information.

4.1.1 Support for SOAPAction
SOAP 1.1 requires the presence of the Hyper Text Transport Protocol (HTTP) header field
named SOAPAction when an HTTP binding is specified. UDDI requires the presence of this
HTTP Header field to be SOAP 1.1 compliant. Different SOAP toolkits treat this HTTP header
field differently. For maximum tool compatibility, the SOAPAction may contain any value,
including an empty string.

Both of the following message styles (among others) are permitted in UDDI.

POST / someVer bHer e HTTP/ 1. 1
Host : www. somenode. or g
Cont ent - Type: t ext / xml ; char set =" ut f - 8"
Cont ent - Lengt h: nnnn
SOAPAct i on: " "

<?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?>
<Envel ope xml ns=" ht t p: / / schemas. xml soap. or g/ soap/ envel ope/ " >
<Body>
 <get _bi ndi ngDet ai l xml ns=" ur n: uddi - or g: api _v3" >
…

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 54/420

and

POST / someVer bHer e HTTP/ 1. 1
Host : www. somenode. or g
Cont ent - Type: t ext / xml ; char set =" ut f - 8"
Cont ent - Lengt h: nnnn
SOAPAct i on: " get _bi ndi ngDet ai l "

<?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?>
<Envel ope xml ns=" ht t p: / / schemas. xml soap. or g/ soap/ envel ope/ " >
<Body>
 <get _bi ndi ngDet ai l xml ns=" ur n: uddi - or g: api _v3" >
…

4.1.2 Support for SOAP Actor
The SOAP Actor feature is not supported by UDDI. UDDI nodes MUST reject any request that
arrives with a SOAP Actor attribute in the SOAP Header element by returning a generic SOAP
fault with no detail element and a "Client" faultcode. The faultstring will clearly indicate the
problem.

4.1.3 Support for SOAP encoding
The SOAP encoding feature (i.e., SOAP 1.1. section 5) is not supported by UDDI. In
messages sent to a UDDI node there must be no claims made about the encoding style of any
element within the "urn:uddi-org:*" namespace. If such claims are made, the node must
respond with a generic SOAP fault with no detail element and a "Client" faultcode. The
faultstring will clearly indicate the problem

4.1.4 Support for SOAP Headers
UDDI registries MAY ignore the contents of SOAP header. SOAP headers that have the
must_understand attribute set to true MUST be rejected with a SOAP fault - MustUnderstand.
UDDI registries MAY ignore other extension headers received.

4.1.5 Support for SOAP Fault
UDDI registries signal a generic SOAP Fault8 when unknown API references are invoked,
validation failures occur, etc. UDDI specific errors MUST be handled via a SOAP Fault
element containing a UDDI dispositionReport element. The following SOAP fault codes are
used:

• VersionMismatch: An invalid namespace reference for the SOAP envelope element
was passed. The valid namespace value is "http://www.xmlsoap.org/soap/envelope/".

• MustUnderstand: A SOAP header element, permitted to be ignored by a UDDI node,
was received with the Must_Understand attribute set to true. In response, a UDDI
node MUST return this response. See Section 4.8 Success and Error Reporting and
Chapter 12 Error Codes.

• Client: A message was incorrectly formed or did not contain enough information to
perform more exhaustive error reporting.

• Server: The Server class of errors indicate that the message could not be processed
for reasons not directly attributable to the contents of the message itself but rather to
the processing of the message. For example, processing could include

8
 See section 4.4.1, "SOAP Fault Codes," in SOAP 1.1 specification for descriptive information.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 55/420

communicating with an upstream processor which did not respond. The message
may succeed at a later point in time.

4.1.6 XML prefix conventions – default namespace support
UDDI nodes are REQUIRED to support the use of the default namespaces (i.e. no XML prefix)
in SOAP request and response documents as shown in the following HTTP example:

POST / someVer bHer e HTTP/ 1. 1
Host : www. exampl e. com
Cont ent - Type: t ext / xml ; char set =" ut f - 8"
Cont ent - Lengt h: nnnn
SOAPAct i on: " "

<?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?>
<Envel ope xml ns=" ht t p: / / schemas. xml soap. or g/ soap/ envel ope/ " >
 <Body>
 <get _bi ndi ngDet ai l xml ns=" ur n: uddi - or g: api _v3" >
…

4.2 XML Encoding Requirements
All messages sent to and received from UDDI nodes MUST be encoded in either UTF-8 or
UTF-16, and MUST specify the Hyper Text Transport Protocol (HTTP) Content-Type header
with a charset parameter of "utf-8" or "utf-16" respectively and a content type of text/xml. Other
encoding name variants, such as UTF8, UTF_8, etc. MAY NOT be used.

All parts of the Content-type header are case insensitive and quotations are optional9. UDDI
nodes MUST reject messages that do not conform to this requirement. For simplification
purposes, all examples in this document use UTF-8.

An example of a valid HTTP Content-Type header specifying UTF-8 encoding of the message
is:

Cont ent - t ype: t ext / xml ; char set =" ut f - 8"

An example of a valid HTTP Content-Type header specifying UTF-16 encoding of the
message is:

Cont ent - t ype: t ext / xml ; char set =" ut f - 16"

4.3 Support for Unicode: Byte Order Mark
Unicode UTF-8 allows data to be transmitted with an OPTIONAL three-byte signature, also
known as Byte Order Mark (BOM), preceding the XML data. This signature does not contain
information that is useful for decoding the contents; but, in the case of UTF-8, tells the
receiving program that the rest of the text is in UTF-8. Its presence makes no difference to the
endianness of the byte stream as UTF-8 always has the same byte order. The BOM is not
part of the textual content therefore UDDI nodes MAY remove the BOM prior to processing
messages received.

UDDI nodes MUST be prepared to accept messages that contain Byte Order Marks, but the
Byte Order Mark is not required to process SOAP messages successfully.

UDDI nodes MUST NOT return a Byte Order Mark with any of the response messages
defined in this specification.

All UDDI nodes MUST support all of the Unicode characters, including all compatibility
characters. See Section 4.6.1.1 XML Normalization and Canonicalization for further

9 See http://www.ietf.org/rfc/rfc2045

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 56/420

information on required behavior with respect to character set normalization and
canonicalization.

4.4 About uddiKeys
UDDI registries MUST use keys that conform to the following grammar. All UDDI keys are
URIs that conform to RFC 2396 but not all URIs are valid UDDI keys. The URIs that are valid
as UDDI keys correspond to a subset of the opaque part alternative of the absoluteURI rule in
RFC 2396. Further, registries MUST use keys from the scheme "uddi" following the syntactic
and semantic rules for that scheme as given in this section, in Section 5.2.2 Publishing Entities
with Publisher Assigned Keys, in Section 8.2 Data Management Policies and Procedures
Across Registries, and Section 9.4.3 Policy Abstractions for the UDDI keying scheme. The
primary motivations for the scheme for uddiKeys is to allow publishers to specify keys for
entities they publish in UDDI registries using "sensible looking" keys and to promote
interoperation among UDDI registries. See Chapter 10 Multi-Version Support for issues
regarding backwards compatibility.

Keys in UDDI are declared as language independent case insensitive and must be case-
folded by nodes as part of processing any API. With the inclusion of the attribute
caseMapKind="fold" from Schema Centric Canonicalization in the schema declaration for
uddiKey type, the normalized form of a uddiKey element is produced using Unicode Case
Folding as defined in the Unicode Technical Report on Case Mappings (see
http://www.unicode.org/unicode/reports/tr21/).

A derivedKey has the form uddiKey ":" KSS, where the key specific string (KSS) is composed
of upper and lowercase characters, numbers, and other symbols permitted in a URI. See
Section 5.2.2.1 Key generator keys and their partitions for a description of derivedKey.

4.4.1 Key Syntax10
uddiScheme = %d117.100.100.105 ; "uddi" in lower case

uddiKey = nonKeyGeneratorKey / keyGeneratorKey

nonKeyGeneratorKey = uuidKey / domainKey / derivedKey

uuidKey = uddiScheme ":" uuid_part

uuid_part = 8HEXDIG "-"
 4HEXDIG "-"
 4HEXDIG "-"
 4HEXDIG "-"
 12HEXDIG

domainKey = uddiScheme ":" hostname

hostname = *(domainlabel ".") toplabel ["."]

domainlabel = alphanum / alphanum *(alphanum / "-") alphanum

toplabel = ALPHA / ALPHA *(alphanum / "-") alphanum

alphanum = ALPHA / DIGIT

derivedKey = nonKeyGeneratorKey ":" KSS (Key Specific String)

keyGeneratorKey = nonKeyGeneratorKey ":" "keygenerator"

KSS = 1*uric ; KSS MUST NOT be "keygenerator"

10

 The notation used here is "Augmented Backus-Naur Form" (ABNF) as defined in RFC 2234.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 57/420

ur i c = r eser ved / unr eser ved / escaped

r eser ved = " ; " / " / " / " ?" / " @" / " &" / " =" / " +" / " $" / " , "

unr eser ved = al phanum / mar k

mar k = " - " / " _" / " . " / " ! " / " ~" / " * " / " ’ " / " (" / ") "

escaped = " %" HEXDI G HEXDI G

There are some extra restrictions on domain names that are not captured in the ABNF syntax
above:

1. The maximum length of a string representation of a hostname is 253
characters/octets.

2. The maximum length of an individual domainlabel is 63 characters/octets.

There is an additional restriction on the Key Specific Sting (KSS) that is not captured in the
ABNF syntax above:

1. KSS MUST NOT be "keygenerator".

The keyword "keygenerator" is case-insensitive.

4.4.2 Examples of keys
The following are examples of legal domainKeys.

uddi:tempuri.com

Here, "tempuri.com" is the domain of this key.

uddi:us.tempuri.com

Here, "us.tempuri.com" is the domain.

The following is an example of a legal uuidKey.

uddi:4CD7E4BC-648B-426D-9936-443EAAC8AE23

"4CD7E4BC-648B-426D-9936-443EAAC8AE23" is the uuid of this key.

The following are examples of legal derivedkeys

uddi:AC104DCC-D623-452F-88A7-F8ACD94D9B2B:xyzzy

This is a derived Key based on the <uuidKey> "uddi:AC104DCC-D623-452F-
88A7-F8ACD94D9B2B". The string "xyzzy" is key’s KSS.

uddi:tempuri.com:fish:buyingservice

This key is based on the derivedKey "uddi:tempuri.com:fish". The string
"buyingService" is the key’s KSS.

The following is an example of a legal key generator key

uddi:tempuri.com:keygenerator

This key is based on the domainKey "uddi:tempuri.com"

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 58/420

4.5 Data insertion and document order

4.5.1 Inserting Data in Entities During save_xx Operations
When saving a businessEntity, businessService, bindingTemplate or tModel, the UDDI node is
required to add or replace certain elements and attributes if they are not present or are
incorrectly specified in the entity passed to the save_xx API. These are: For businessEntity,
businessService, bindingTemplate and tModel structures, the businessKey, serviceKey,
bindingKey, and tModelKey of the structure being saved.

4.5.2 Inserting Elements in Existing Entities
When a new child element is inserted by a publication API, the UDDI node MUST add the new
child as the last of its siblings. For example, the save_service call can be used to add a
businessService to a businessEntity. The added businessService appears as the last one in
the (possibly single item) list of such businessService structures. When inserting a
businessService using save_service or a bindingTemplate using save_binding, any digital
signatures on the containing UDDI data structure may become invalid with the addition of a
new child.

4.5.3 Preservation of Document Order
The UDDI data model requires UDDI nodes to preserve the order of all descendent elements
in the UDDI core data structures. When a UDDI node responds to an inquiry API call, the
descendent elements of the core data structures in the response must have the order specified
by their publishers or by the order of insertion.

Preservation of document order in UDDI implies that all elements in a sequence MUST be
preserved. It is a requirement not to de-duplicate elements of a sequence, other than for keyed
entities as described in sections 5.2.16.4 save_business return section and 5.2.17.4
save_service return section.

4.6 XML Normalization and Canonicalization
UDDI registries provide publishers with the ability to digitally sign and save entities they
publish, and inquirers with the ability to retrieve and validate the digital signatures on published
material. In order for this to be possible, publishers and registries MUST handle "normalization"
and "canonicalization" as described in this section.

Normalization is the process of standardizing the representation of the characters that make
up a document. In Unicode data there is often more than one way to represent a given glyph.
For example, the character "Å" may be represented as one single character "LATIN CAPITAL
LETTER A WITH RING ABOVE" (hexadecimal 00C5), as another single character
"ANGSTROM SIGN" (hexadecimal 212B) or as a composition of "LATIN CAPITAL LETTER
A" (hexadecimal 0041) and "COMBINING RING ABOVE" (hexadecimal 030A). Normalization
chooses one standard representation in every such case.

Canonicalization is the process of generating a standard representation of XML. It deals with
issues such as the representation of tags; attribute ordering; namespace declaration,
expansion and ordering; and whitespace handling.

4.6.1 Behavior of UDDI nodes

4.6.1.1 Normalization and Canonicalization
UDDI registries MUST exhibit certain behavior with respect to the saved vs. retrieved
representations of the entities they handle. Aspects of this behavior REQUIRE attention to the
Schema Centric XML Canonicalization (see

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 59/420

http://uddi.org/pubs/SchemaCentricCanonicalization.htm) for this function. More specifically,
registries MUST exhibit the following behavior with respect to the data they store and retrieve.
Let:

• C(d, S) be the Schema Centric XML Canonicalization transform of document d with
respect to the set of schemas S,

• U be the set of UDDI v3 schemas,

• x and y be UDDI entities,

• R be a UDDI registry.

For all x saved in R, if y is x as retrieved from R, it MUST be the case that C(x, U) = C(y, U) in
a literal bit-by-bit sense.

Stated informally, if you save an entity in a UDDI registry and later retrieve it, the
canonicalization of what you saved will be the same as the canonicalization of what you got
back. However, this is only guaranteed to be true with respect to the Schema Centric
Canonicalization algorithm; in particular such guarantees are not provided with respect to the
Canonical XML algorithm or its Exclusive Canonical XML variation (see
http://www.w3.org/TR/xml-exc-c14n).11

4.6.2 Client Behavior
The behavior of UDDI registries with respect to normalization and canonicalization means that
if an entity, x, is published and later retrieved from a registry as y, y will not, in general, be
precisely the same bits as x; only a canonicalized form of x and y are guaranteed to be bitwise
identical. This behavior means that for digital signatures to work, publishers and inquirers
SHOULD take certain actions.

4.6.2.1 Publishers
Publishers SHOULD prepare entities they wish to sign by including in their XML DSIG
SignedInfo a Transform which canonicalizes them using Schema Centric XML
Canonicalization (see Section 4.6.1.1 Normalization and Canonicalization) before calculating
the signatures. Publishers SHOULD avoid inserting elements into published signed entities as
doing so likely invalidates the signature.

4.6.2.2 Inquirers
To validate signed entities, inquirers SHOULD adhere to the strictures and processes of the
XML DSIG specification. If, as will almost always be the case in UDDI, the Schema Centric
Canonicalization12 algorithm was indicated by the signer, then execution of the algorithm will
be necessary as part of the process of validating the signature.

4.7 About Access Control and the authInfo Element
The Authorization Policy for a Registry defines how/if access control is implemented. See
Chapter 9 for a discussion of Policy issues.

The authInfo element is an OPTIONAL element on every API call of the Publication, Inquiry
and Subscription API sets. Using an optional element allows different UDDI registries and

11

 As a matter of implementation, registries can straightforwardly support this guarantee by doing little more than simply returning
data which is valid against its schema(s). That is, the implementation burden of this requirement is minimal. In particular, registries
need not actually execute the canonicalization algorithm as part of the save or retrieval processes.

12
 http://uddi.org/pubs/SchemaCentricCanonicalization.htm

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 60/420

nodes within the registries to implement access control on whichever sets of operations such
control is desired.

AuthInfo is an opaque element whose content is meaningful only to the node that created it. It
is intended to enable a variety of authentication mechanisms. For example, it may be used
with:

• Id/password based systems in which the authInfo is an authorization token generated
by the authentication operation (i.e. Kerberos Tickets)

• Authorization assertions (i.e., SAML, X509 Attribute Certificates)

When a node uses authInfo elements it MAY offer the get_authToken and discard_authToken
APIs as a means of obtaining and disposing of them. Alternatively, or in addition, it MAY offer
other means for doing this.

The use of authInfo elements is not the only means a node may use for access control. For
example, if a node chooses to implement authentication at the transport level, it may well rely
on the authorization information supplied by the transport.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 61/420

4.8 Success and Error Reporting
The first line of error reporting is governed by the SOAP specification. SOAP fault reporting
and fault codes will be returned for most invalid requests or any request where the intent of the
caller cannot be determined.

If any application level error occurs in processing a request message, a dispositionReport
element will be returned to the caller within a SOAP fault report. Faults that contain disposition
reports contain error information that includes descriptions and the type of key associated with
an entity that can be used to determine the cause of the error. API-specific interpretations of
error codes are provided with each API description.

In a manner consistent with the SOAP processing rules (Section 6.2 of the SOAP 1.1
specification) UDDI follows the semantics of the Hyper Text Transport Protocol (HTTP) Status
codes for communicating status information in HTTP. As is the case for SOAP, success
reporting will use a 200 status code to indicate that the client's request including the SOAP
component was successfully processed.

UDDI application-level errors SHOULD be conveyed using standard HTTP status code where
a 500-level code indicates a server-induced error. In such cases, the UDDI node MUST issue
an HTTP 500 "Internal Server Error" response and return a dispositionReport inside a SOAP
fault report.

Many of the API constructs defined in this specification allow one or more of a given type of
information to be passed. These API calls each conceptually represent a request on the part
of the caller. The general error handling treatment recommended for UDDI nodes is to detect
errors in a request prior to processing the request. Any errors in the request detected will
invalidate the entire request, and cause a dispositionReport to be generated within a SOAP
Fault as described below.

In the case of an API call that involves passing multiples of a given structure, the
dispositionReport will call out only the first detected error, and is not responsible for reporting
multiple errors or reflecting intermediate "good" data. In situations where a specific reference
within a request causes an error to be generated, the corresponding disposition/fault report will
contain a clear indication of the key value that caused the rejection of the rejected request.

In general, UDDI nodes may return any UDDI error code needed to describe an error. The
error codes specified within each API call description are characteristic of the API call, but
other UDDI error codes may be returned in unusual circumstances or when doing so adds
additional descriptive information. See Chapter 12 Error Codes for a summary of UDDI error
codes.

4.8.1 dispositionReport element
Error information is always returned in the dispositionReport. A dispositionReport has the form:

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 62/420

Attributes

Name Use

truncated optional

The dispositionReport is a non-empty list of error conditions, each described in a result
element. The truncated attribute indicates whether error conditions occurred that are not listed
in the dispositionReport.

Attributes

Name Use

keyType optional

errno required

The result element contains an optional keyType and a required errno attribute. The errno
attribute is set to the value described in Chapter 12 Error Codes. The keyType attribute is used
to indicate the type of the uddiKey that is being reported on, e.g. in an E_invalidKeyPassed
error condition. Valid values for keyType are "businessKey", "serviceKey", "bindingKey",
"tModelKey" and "subscriptionKey". Detailed information about the error condition can be
found in the optional errInfo element.

The errInfo element, if necessary, describes the error condition in more detail. It contains a
string that is adorned with an errCode attribute, set to the string described in Chapter 12 Error
Codes.

Like other UDDI data structures, the disposition report includes a namespace that identifies the
UDDI version for which it applies. When a UDDI node receives a message with a namespace
that cannot be used to determine the version, a disposition report is return for the most current
UDDI version that the node supports.

4.8.2 Error reporting using the dispositionReport element
All application errors are communicated via the use of the SOAP FAULT element. The
general form of an error report is:

<?xml version="1.0" encoding="UTF-8" ?>
<Envelope xmlns="http://schemas.xmlsoaporg.org/soap/envelope/">
 <Body>
 <Fault>
 <faultcode>Client</faultcode>
 <faultstring>Client Error</faultstring>
 <detail>
 <dispositionReport xmlns="urn:uddi-org:api_v3">
 <result errno="10500">
 <errInfo errCode="E_fatalError">The findQualifier
 value passed is unrecognized: XYZ</errInfo>
 </result>
 </dispositionReport>
 </detail>
 </Fault>
 </Body>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 63/420

</Envelope>

Multiple result elements may be present within the dispositionReport element, and can be
used to provide very detailed error reports for multiple error conditions. The number of result
elements returned within a disposition report is implementation specific. In general it is
permissible to return an error response as soon as the first error in a request is detected.
References within the API reference sections that describe error text content rules pertain to
the content of the errInfo element.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 64/420

5 UDDI Programmers APIs

This API reference is divided into a number of logical sections, each addressing a particular
programming focus. These sections cover the inquiry API, the publishing API and the
OPTIONAL security, custody transfer, subscription and value set APIs.

In all cases, the XML structures, attributes and element names shown in the API examples are
derived from the UDDI API schemas described in Chapter 2 UDDI Schemas. For a full
understanding of structure contents, refer to this chapter, the UDDI schemas, and Chapter 3
UDDI Registry Data Structures.

Each API set has one or more corresponding tModels that are referenced in bindingTemplate
structures to indicate that a compliant Web service is offered for the API set. See Section
11.1.9 UDDI Registry API tModels.

5.1 Inquiry API Set
The inquiry API set allows one to locate and obtain detail on entries in a UDDI registry. The
Inquiry API provides three forms of query that follow broadly used conventions which match
the needs of software traditionally used with registries. Three distinct patterns of inquiry are
supported.

5.1.1 The browse pattern
Software that allows people to explore and examine large quantities of data requires browse
capabilities. The browse pattern characteristically involves starting with some broad
information, performing a search, finding general result sets and then selecting more specific
information for drill-down.

This specification supports the browse pattern by way of the API calls involving "find"
operations (hereafter referred to as the "find_xx" APIs). These calls form the search
capabilities provided by the API and are matched with summary return structures that return
overview information about the registered information associated with the inquiry API and the
search criteria specified in the inquiry.

A typical browse sequence might involve finding whether a particular business with a particular
name has any information registered. This sequence starts with a call to find_business,
passing the business name (which could involve the use of just a portion of the name together
with a wildcard character by using the approximateMatch findQualifier described below). This
returns a businessList result - overview information (keys, names and descriptions) derived
from the registered businessEntity information, matching on the name. Information in the list
may be used to select among the businesses and then to drill down into the corresponding
businessService information, looking for one which matches a particular technical fingerprint
(i.e., tModel such as for purchasing, shipping, etc) using the find_service API call. UDDI
provides many similar sequences of API calls that let callers start with a broad notion of the
kind of information they wish to retrieve from a registry, retrieve summary information, and then
drill down to get details.

5.1.2 The drill-down pattern
Each instance of the core data structures – businessEntity, businessService, bindingTemplate
and tModel – has a key which is one of the items in the summary information retrieved by

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 65/420

find_xx APIs. Given such a key, it is easy to retrieve the full registered details for the
corresponding instance by passing the key to the relevant get_xx API.

Continuing the example from the previous section on browsing, the businessKey associated
with the business being sought is one of the items in the businessList returned by
find_business. This key can be passed as an argument to get_businessDetail. Upon
success, this API returns a businessDetail containing the full registered information, including
the businessEntity structure for the entity whose key value was passed.

5.1.3 The invocation pattern
To have an application take advantage of a Web service that is registered within a UDDI
registry, that application must be prepared to use the information found in the registry for the
specific Web service being invoked. This type of inter-business service call has traditionally
been a task that is undertaken entirely at development time. The degree to which this
changes with Web services is an application design choice, but the existence of UDDI registry
entries makes it significantly easier to do dynamic binding using the following pattern.

Obtain the bindingTemplate data for the Web service of interest from a UDDI registry, such as
the UDDI Business Registry. Typically this is done using one of the browse-and-drill-down
patterns discussed above. The bindingTemplate contains the specific details about an instance
of a given interface type, including the location at which a program starts interacting with the
Web service. The calling application caches this information and uses it to contact the Web
service at the registered address whenever it needs to communicate with the Web service
instance.

If a call fails using cached information previously obtained from a UDDI registry, the application
SHOULD query the UDDI registry for fresh bindingTemplate information. The proper call is
get_bindingDetail passing the original bindingKey value. If the data returned is different from
the cached information, the application SHOULD retry the invocation using the fresh
information. If the result of this retry is successful, the new information SHOULD replace the
cached information.

By using this pattern with Web services, applications can interact with partners without undue
communication and coordination costs. For example, if a business has activated a disaster
recovery site, most of the calls from partners will fail when they try to invoke Web services at
the failed site. By updating the UDDI information with the new address for the Web service,
partners who use the invocation pattern will automatically locate the new Web service
information and recover without further administrative action. Cached binding information
could alternatively be kept up to date by means of notification or polling.

5.1.4 Find Qualifiers
Each of the find_xx APIs accepts an optional findQualifiers argument, which may contain
multiple findQualifier values. Find qualifiers may be either tModelKeys or may be referenced
by a string containing a "short name". Each of the pre-defined findQualifiers in UDDI can be
referenced using either the appropriate tModelKey, or by its short name. Registries MUST
support both forms, and MUST accept the find qualifiers case-insensitively. The use of
tModelKeys for findQualifiers allows extension to create additional new qualifiers, but registries
are not obligated to support them. Find qualifiers not recognized by a node will return the error
E_unsupported.

Matching behavior for the find_xx APIs when multiple criteria are specified is logical "AND" by
default. Find qualifiers allow the default search behaviors to be overridden. Not all find_xx
APIs support all findQualifier element values. The following table identifies which findQualifiers
apply to each API:

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 66/420

Table 1: Find Qualifiers by API

Find Qualifier Short Name
and tModel Name

find_business find _service find_binding find_tModel find_related

Businesses

"andAllKeys"

(uddi-org:andAllKeys)

YES

default for
categoryBag,
tModelBag,
applicable to
identifierBag

YES

default for
tModelBag &
categoryBag

YES

default for
categoryBag,
tModelBag

YES

default for
categoryBag,
applicable to
identifierBag

NO

"approximateMatch"

(uddi-
org:approximateMatch:SQL99)

YES YES YES YES YES

"binarySort"

(uddi-org:binarySort)

YES YES NO YES YES

"bindingSubset"

(uddi-org:bindingSubset)

YES

applicable to
categoryBag on
bindingTemplate

YES

applicable to
categoryBag on
bindingTemplate

NO NO NO

"caseInsensitiveSort"

(uddi-org:caseInsensitiveSort)

YES YES NO YES YES

"caseInsensitiveMatch"

(uddi-org:caseInsensitiveMatch)

YES YES YES YES YES

"caseSensitiveSort" 13

(uddi-org:caseSensitiveSort)

YES YES NO YES YES

"caseSensitiveMatch" 14

(uddi-org:caseSensitiveMatch)

YES YES YES YES YES

"combineCategoryBags"

(uddi-org:combineCategoryBags)

YES YES NO NO NO

"diacriticInsensitiveMatch" 15

(uddi-
org:diacriticInsensitiveMatch)

YES YES YES YES YES

"diacriticSensitiveMatch" 16

(uddi-
org:diacriticSensitiveMatch)

YES YES YES YES YES

13

 This is the default behavior.

14
 This is the default behavior.

15
 Implementation of this findQualifier by nodes is OPTIONAL.

16
 This is the default behavior.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 67/420

Find Qualifier Short Name
and tModel Name

find_business find _service find_binding find_tModel find_related

Businesses

"exactMatch" 17

(uddi-org:exactMatch)

YES YES YES YES YES

"signaturePresent"

(uddi-org:signaturePresent)

YES YES YES YES YES

"orAllKeys"

(uddi-org:orAllKeys)

YES

default for
identifierBag,
applicable to
tModelBag or
categoryBag

YES

applicable to
categoryBag,
tModelBag

YES

applicable to
categoryBag,
tModelBag

YES

applicable to
categoryBag,
default for
identifierBag

NO

"orLikeKeys"

(uddi-org:orLikeKeys)

YES

applicable to
identifierBag,
categoryBag

YES

applicable to
categoryBag

YES

applicable to
categoryBag

YES

applicable to
categoryBag,
identifierBag

NO

"serviceSubset"

(uddi-org:serviceSubset)

YES NO NO NO NO

"sortByNameAsc" 18

(uddi-org:sortByNameAsc)

YES YES NO YES YES

"sortByNameDesc"

(uddi-org:sortByNameDesc)

YES YES NO YES YES

"sortByDateAsc"

(uddi-org:sortByDateAsc)

YES YES YES

default
behavior

YES YES

"sortByDateDesc"

(uddi-org:sortByDateDesc)

YES YES YES YES YES

"suppressProjectedServices"

(uddi-
org:suppressProjectedServices)

YES YES NO NO NO

"UTS-10" 19

(uddi-org:UTS-10)

YES YES NO YES YES

5.1.4.1 Invalid Find Qualifier Combinations
Using a findQualifier with one of the find_xx APIs to which it does not apply, will generally
result in that qualifier being ignored, but there are a few situations for which certain

17

 This is the default behavior.

18
 This is the default behavior.

19
 Implementation of this findQualifier by nodes is OPTIONAL.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 68/420

findQualifiers elements are mutually exclusive and supplying them together will result in an
E_invalidCombination error. The invalid combinations are:

• andAllKeys, orAllKeys, and orLikeKeys are mutually exclusive

• sortByNameAsc and sortByNameDesc are mutually exclusive

• sortByDateAsc and sortByDateDesc are mutually exclusive

• combineCategoryBags, serviceSubset and bindingSubset are mutually exclusive

• exactMatch and approximateMatch are mutually exclusive

• exactMatch and caseInsensitiveMatch are mutually exclusive

• binarySort and UTS-10 are mutually exclusive, as are all collation algorithm tModels
with each other

• diacriticSensitiveMatch and diacriticInsensitiveMatch are mutually exclusive

• exactMatch and diacriticInsensitiveMatch are mutually exclusive

• caseSensitiveSort and caseInsensitiveSort are mutually exclusive

• caseSensitiveMatch and caseInsensitiveMatch are mutually exclusive

See Chapter 11, Utility tModels and Conventions for further information on find qualifier
tModels.

5.1.4.2 General Form of Find Qualifiers
Find qualifiers are expressed by using a findQualifiers argument. The general form of the
findQualifiers element is:

where a findQualifier can be either a string (with a maximum length of 255), or a tModelKey.

5.1.4.3 Find Qualifier Descriptions
The value passed in each findQualifier element indicates the behavior change desired. This
list defines the set of UDDI defined valid qualifiers. Nodes MUST implement all of these
except as noted.

• andAllKeys: this changes the behavior for identifierBag to AND keys rather than OR
them. This is already the default for categoryBag and tModelBag.

• approximateMatch: signifies that wildcard search behavior is desired. This behavior is
defined by the uddi-org:approximatematch:SQL99 tModel and means "approximate
matching as defined for the character like predicate in ISO/IEC9075-2:1999(E)
Section 8.5 like predicate, where the percent sign (%) indicates any number of
characters and an underscore (_) indicates any single character. The backslash
character (\) is used as an escape character for the percent sign, underscore and
backslash characters. This find qualifier adjusts the matching behavior for name,
keyValue and keyName (where applicable).

• binarySort: this qualifier allows for greater speed in sorting. It causes a binary sort by
name, as represented in Unicode codepoints.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 69/420

• bindingSubset: this is used in the find_business API or the find_service API and is
used only in conjunction with a categoryBag argument. It causes the component of
the search that involves categorization to use only the categoryBag elements from
contained bindingTemplate elements within the registered data and ignores any
entries found in the categoryBag which are not direct descendent elements of
registered businessEntity elements or businessService elements. The resulting
businessList or serviceList return those businesses or services that matched based
on this modified behavior, in conjunction with any other search arguments provided.
Additionally, in the case of the returned businessList from a find_business, the
contained serviceInfos elements will only reflect summary data (in a serviceInfo
element) for those services (contained or referenced) that contained a binding that
matched on one of the supplied categoryBag arguments.

• caseInsensitiveMatch: signifies that the matching behavior for name, keyValue and
keyName (where applicable) should be performed without regard to case.

• caseInsensitiveSort: signifies that the result set should be sorted without regard to
case. This overrides the default case sensitive sorting behavior.

• caseSensitiveMatch: signifies that the matching behavior for name, keyValue and
keyName (where applicable) should be performed with regard to case. This is the
default behavior.

• caseSensitiveSort: signifies that the result set should be sorted with regard to case.
This is the default behavior.

• combineCategoryBags: this may only be used in the find_business and find_service
calls. In the case of find_business, this qualifier makes the categoryBag entries for
the full businessEntity element behave as though all categoryBag elements found at
the businessEntity level and in all contained or referenced businessService elements
and bindingTemplate elements were combined. Searching for a category will yield a
positive match on a registered business if any of the categoryBag elements contained
within the full businessEntity element (including the categoryBag elements within
contained or referenced businessService elements or bindingTemplate elements)
contains the filter criteria. In the case of find_service, this qualifier makes the
categoryBag entries for the full businessService element behave as though all
categoryBag elements found at the businessService level and in all contained or
referenced elements in the bindingTemplate elements were combined. Searching for
a category will yield a positive match on a registered service if any of the categoryBag
elements contained within the full businessService element (including the
categoryBag elements within contained or referenced bindingTemplate elements)
contains the filter criteria. This find qualifier does not cause the keyedReferences in
categoryBags to be combined with the keyedReferences in keyedReferenceGroups in
categoryBags when performing the comparison. The keyedReferences are combined
with each other, and the keyedReferenceGroups are combined with each other.

• diacriticInsensitiveMatch: signifies that matching behavior for name, keyValue and
keyName (where applicable) should be performed without regard to diacritics.
Support for this findQualifier by nodes is OPTIONAL.

• diacriticSensitiveMatch: signifies that the matching behavior for name, keyValue and
keyName (where applicable) should be performed with regard to diacritics. This is the
default behavior.

• exactMatch: signifies that only entries with names, keyValues and keyNames (where
applicable) that exactly match the name argument passed in, after normalization, will
be returned. This qualifier is sensitive to case and diacritics where applicable. This
qualifier represents the default behavior.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 70/420

• orAllKeys: this changes the behavior for tModelBag and categoryBag to OR the keys
within a bag, rather than to AND them. Using this findQualifier with both a
categoryBag and a tModelBag, will cause all of the keys in BOTH the categoryBag
and the tModelBag to be OR’d together rather than AND’d. It is not possible to OR the
categories and retain the default AND behavior of the tModels. The behavior of
keyedReferenceGroups in a categoryBag is analogous to that of individual
keyedReferences, that is, the complete categoryBag is changed to OR the keys.

• orLikeKeys: when a bag container (i.e. categoryBag or identifierBag) contains multiple
keyedReference elements, any keyedReference filters that come from the same
namespace (e.g. have the same tModelKey value) are OR’d together rather than
AND’d. For example "find any of these four values from this namespace, and any of
these two values from this namespace". The behavior of keyedReferenceGroups is
analogous to that of keyedReferences, that is, keyedReferenceGroups that have the
same tModelKey value are OR’d together rather than AND’d.

• serviceSubset: this is used only with the find_business API and is used only in
conjunction with a categoryBag argument. It causes the component of the search that
involves categorization to use only the categoryBag elements from contained or
referenced businessService elements within the registered data and ignores any
entries found in the categoryBag which are not direct descendent elements of
registered businessEntity elements. The resulting businessList structure contains
those businesses that matched based on this modified behavior, in conjunction with
any other search arguments provided. Additionally, the contained serviceInfos
elements will only reflect summary data (in a serviceInfo element) for those services
(contained or referenced) that matched on one of the supplied categoryBag
arguments.

• signaturePresent: this is used with any find_xx API to restrict the result set to entities
which either contain an XML Digital Signature element, or are contained in an entity
which contains one. The Signature element is retrieved using a get_xx API call and
SHOULD be verified by the client. A UDDI node may or may not verify the signature
and therefore use of this find qualifier, or the presence of a Signature element
SHOULD only be for the refinement of the result set from the find_xx API and
SHOULD not be used as a verification mechanism by UDDI clients.

• sortByNameAsc: causes the result set returned by a find_xx or get_xx inquiry APIs to
be sorted on the name field in ascending order. This sort is applied prior to any
truncation of result sets. It is only applicable to queries that return a name element in
the top-most detail level of the result set and if no conflicting sort qualifier is specified,
this is the default sorting direction. This findQualifier takes precedence over
sortByDateAsc and sortByDateDesc qualifiers, but if a sortByDateXxx findQualifier is
used without a sortByNameXxx qualifier, sorting is performed based on date with or
without regard to name.

• sortByNameDesc: causes the result set returned by a find_xx or get_xx inquiry call to
be sorted on the name field in descending order. This sort is applied prior to any
truncation of result sets. It is only applicable to queries that return a name element in
the top-most detail level of the result set. This is the reverse of the default sorting
direction. This findQualifier takes precedence over sortByDateAsc and
sortByDateDesc qualifiers but if a sortByDateXxx findQualifier is used without a
sortByNameXxx qualifier, sorting is performed based on date with or without regard to
name.

• sortByDateAsc: causes the result set returned by a find_xx or get_xx inquiry call to be
sorted based on the most recent date when each entity, or any entities they contain,
were last updated, in ascending chronological order (oldest are returned first). When
names are included in the result set returned, this find qualifier may also be used in

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 71/420

conjunction with either the sortByNameAsc or sortByNameDesc findQualifiers. When
so combined, the date-based sort is secondary to the name-based sort (results are
sorted within name by date, oldest to newest).

• sortByDateDesc: causes the result set returned by a find_xx or get_xx inquiry call to
be sorted based on the most recent date when each entity, or any entities they
contain, were last updated, in descending chronological order (most recently changed
are returned first. When names are included in the result set returned, this find
qualifier may also be used in conjunction with either the sortByNameAsc or
sortByNameDesc find qualifiers. When so combined, the date-based sort is
secondary to the name-based sort (results are sorted within name by date, newest to
oldest).

• suppressProjectedServices: signifies that service projections MUST NOT be returned
by the find_service or find_business APIs with which this findQualifier is associated.
This findQualifier is automatically enabled by default whenever find_service is used
without a businessKey.

• UTS-10: this is used to cause sorting of results based on the Unicode Collation
Algorithm on elements normalized according to Unicode Normalization Form C.
When this qualifier is referenced, a sort is performed according to the Unicode
Collation Element Table in conjunction with the Unicode Collation Algorithm on the
name field, normalized using Unicode Normalization Form C. Support of this
findQualifier by nodes is OPTIONAL.

At this time, these are the only UDDI find qualifiers defined. UDDI registries and individual
nodes may define more find qualifier values than these – but all nodes and fully compatible
software MUST support the above qualifiers, except where indicated otherwise.

5.1.4.4 Sorting Details
Sorting behavior of results returned as part of a UDDI inquiry is controlled by the following sort
order find qualifiers: sortByDateAsc, sortByDateDesc, sortByNameAsc, sortByNameDesc,
caseInsensitiveSort, binarySort and UTS-10. These find qualifiers specify four aspects of
sorting behavior as shown in Table 2: Find Qualifier Sorting Behaviors below. For information
on which find qualifiers are mutually exclusive, see Section 5.1.4.1 Invalid Find Qualifier
Combinations. Not all aspects of sorting are controlled through use of a single sort order find
qualifier. In order to control any combination of aspects of sorting behavior, multiple sort order
find qualifiers can be specified. For example, specifying sortByNameDesc and UTS-10
causes sorting of the result set on the name element according to the Unicode Technical
Standard (UTS) #10 Collation Sequence, but in descending order.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 72/420

Table 2: Find Qualifier Sorting Behaviors

Find Qualifier Field being
sorted

Direction
of sort

Indicates
Collation
sequence

Controls
Case
Sensitivity

sortByNameAsc Name Asc

sortByNameDesc Name Desc

caseInsensitiveSort
�

caseSensitiveSort
�

binarySort
�

UTS-10
�

sortByDateAsc Date Asc

sortByDateDesc Date Desc

The default sort order aspects are to perform a case sensitive sort on the primary name
element (where present), or the last change date (when a name is not present), in ascending
order, using the collation sequence as determined by node policy. Nodes MAY choose to
perform a secondary date or name-based sort of duplicate entries in each of these cases. If a
name-based findQualifier is specified without a date-based sort, then nodes MAY perform a
secondary date-based sort of duplicate entries. Similarly, when a date-based sort findQualifier
is specified without a name-based sort, nodes MAY perform a secondary name-based sort of
duplicate entries (where applicable).

Comparison and sorting is performed based on a canonicalized representation. Specifying an
unsupported sort order will result in the error E_unsupported. For more on canonicalization,
refer to Section 0 XML Normalization and Canonicalization.

Different sorting behavior can be obtained through the use of different sort orders, which are
represented by their corresponding tModels. The use of alternative collation sequences is
achieved by referencing the corresponding tModelKey as the findQualifier argument supplied
in the search. Support for sorting based tModels describing any collation sequences other
than binary by a node is OPTIONAL.

When a result set is being sorted by name only, then by default the first name stored for the
businessEntity is the one against which sorting is performed. Nodes that offer language-
specific sort collation sequences MAY sort based the name element associated with the
collation language.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 73/420

5.1.5 Use of listDescription
Several of the inquiry APIs cause a list of results to be returned. In such cases, an element
called listDescription MAY also be returned:

Where:

• includeCount: is the number of list items returned for the particular response

• actualCount: is the number of all available matches at the time this particular query
was made

• listHead: is an index (with origin of 1) which indicates the index position within all
available matches of the first element of the returned result set after any sorting has
been applied.

When a listDescription is returned as part of the result set, it includes a listHead value that
indicates the index position of the first result in the set relative to the beginning of the list of all
matches for the query. The query can specify that the result set returned should start with a
particular element in the list of all matches for the query by including a listHead attribute on the
query (find_xx API). The maximum number of results included in response to a query may be
determined by the maxRows attribute of the query (find_xx API) or by the node’s policy. The
listDescription on the response is useful when the node determines that the size of the
resultant list is too large to be returned or when the maxRows and listHead values specified by
the client do not allow all of the results to be returned in response to a single query.

For example, a query with a maxRows attribute set to 10 could be issued to a node where 18
results match the query. The response to this query should contain items 1 through 10 and
the listDescription would have an actualCount value of 18, a listHead value of 1 and an
includeCount value of 10. If the data matching the query does not change and the query is
sent again to the node with a listHead attribute value of 11, the result set should contain items
11-18 and the listDescription would have an actualCount value of 18, a listHead value of 11
and an includeCount value of 8. If the listHead value is less than 1, a value of 1 will be used to
produce the result. If the listHead value exceeds the total number of results provided, an
empty result set will be returned.

listDescription is not a true "cursoring" feature. Since both the registry content and the
associated result set can change between queries, supplying a particular value for listHead on
subsequent queries may result in either duplicate reporting of an element which was returned
as part of the original query, or a failure to report on an element.

The results of using a find_xx API will include a listDescription only if the resultant list is greater
than what a node implementation can return in a single group. For example, if the result set
contains 20 items and all 20 are returned at once, then the listDescription element is allowable,
but not required. If the result set is 1000 and only 500 items can be returned at once, then a
listDescription is required (if the truncated attribute is not used).

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 74/420

5.1.6 About wildcards
The default behavior of UDDI with respect to matching is "exact match". No wildcard behavior
is assumed. Many UDDI inquiry APIs take the arguments "name," "keyName," and
"keyValue" whose values are of type string. All such arguments may be specified using a
wildcard character to obtain an "approximate match". In order to obtain wildcard searching
behavior, the findQualifier tModel uddi-org:approximateMatch:SQL99 (whose tModelKey is
uddi:uddi.org:findqualifier:approximatematch), or its short name "approximateMatch" MUST be
specified.

Wildcards, when they are allowed, may occur at any position in the string of characters that
constitutes the argument value and may occur more than once. Wildcards are denoted with a
percent sign (%) to indicate any value for any number of characters and an underscore (_) to
indicate any value for a single character. The backslash character (\) is used as an escape
character for the percent sign, underscore and backslash characters. Use of the "exactMatch"
findQualifier will cause wildcard characters to be interpreted literally, and as such should not
also be combined with the escape character. Detailed rules for interpretation are defined by
the above tModel for approximate matching. Examples of the use of wildcards may be found
in Appendix G Wildcards.

5.1.7 Matching Rules for keyedReferences and
keyedReferenceGroups
When determining matching behavior in searches involving keyedReferences in categoryBags
and identifierBags, a match occurs if and only if:

1. The tModelKeys refer to the same tModel. This key MUST be specified and MUST
NOT be empty.

2. The keyValues match (an exact match is the default, but the matching behavior is
modified appropriately if the caseInsensitiveMatch, diacriticInsensitiveMatch or
approximateMatch findQualifiers are used); and

3. If the tModelKey involved is "uddi:uddi-org:general_keywords", the keyName must
match (wildcard matching rules apply if the approximateMatch findQualifier is used).
Omitted keyNames are treated as empty keyNames. Otherwise, keyNames are not
significant unless so indicated in the individual API sections below.

A given keyedReferenceGroup "X" (e.g., within a given categoryBag) matches a
keyedReferenceGroup "Y" in the registry if and only if the tModelKey assigned to the
keyedReferenceGroup X matches the tModelKey assigned to the keyedReferenceGroup Y
and the set of keyedReferences in "X" are a subset of the set of keyedReferences in "Y." The
order of individual keyedReferences within a keyedReferenceGroup is not important. Matching
rules for the individual contained keyedReference elements are the same as above.

For additional information and examples, refer to Appendix E Using Identifiers and Appendix F
Using Categorization.

5.1.8 Inquiry API functions
The APIs in this section represent inquiries that can be used to retrieve data from a UDDI
registry. These calls all behave synchronously and are suitable for being exposed via HTTP-
POST. The calls constituting the UDDI inquiry API are:

• find_binding: Used to locate bindings within or across one or more registered
businessServices. Returns a bindingDetail structure. See Section 5.1.9 find_binding.

• find_business: Used to locate information about one or more businesses. Returns a
businessList structure. See Section 5.1.10 find_business.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 75/420

• find_relatedBusinesses: Used to locate information about businessEntity registrations
that are related to a specific business entity whose key is passed in the inquiry. See
Section 5.1.11 find_relatedBusinesses.

• find_service: Used to locate specific services within registered business entities.
Returns a serviceList structure. See Section 5.1.12 find_service.

• find_tModel: Used to locate one or more tModel information structures. Returns a
tModelList structure. See Section 5.1.13 find_tModel.

• get_bindingDetail: Used to get bindingTemplate information suitable for making
service requests. Returns a bindingDetail structure. See Section 5.1.14
get_bindingDetail.

• get_businessDetail: Used to get the businessEntity information for one or more
businesses or organizations. Returns a businessDetail structure. See Section 5.1.15
get_businessDetail.

• get_operationalInfo: Used to retrieve operational information pertaining to one or
more entities in the registry. Returns an operationalInfos structure. See Section
5.1.16 get_operationalInfo.

• get_serviceDetail: Used to get full details for a given set of registered businessService
data. Returns a serviceDetail structure. See Section 5.1.16 get_serviceDetail.

• get_tModelDetail: Used to get full details for a given set of registered tModel data.
Returns a tModelDetail structure. See Section 5.1.18 get_tModelDetail.

Several of the find_xx APIs (find_binding, find_business and find_service) support nested
queries, where one or more of the arguments to these APIs can itself be another (inner) query,
the results of which are used to filter the overall results of the primary (outer) query along with
the other criterions supplied. Any findQualifier arguments used only apply directly to the part of
the query (outer or inner) for which they are supplied. They do not propagate inward or
outward.

5.1.9 find_binding
The find_binding API is used to find UDDI bindingTemplate elements. The find_binding API
call returns a bindingDetail that contains zero or more bindingTemplate structures matching
the criteria specified in the argument list.

5.1.9.1 Syntax:

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 76/420

Attributes

Name Use

maxRows optional

serviceKey optional

listHead optional

5.1.9.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Registries that wish to restrict who can perform an inquiry typically require authInfo for
this call.

• categoryBag: This optional argument is a list of category references in the form of
keyedReference elements and keyedReferenceGroup structures. When used, the
returned bindingDetail for this API will contain elements matching all of the categories
passed (logical AND by default). Specifying the appropriate findQualifiers can
override this behavior. Matching rules for each can be found in Section 5.1.7
Matching Rules for keyedReferences and keyedReferenceGroups.

• findQualifiers: This optional collection of findQualifier elements can be used to alter
the default behavior of search functionality. See Section 5.1.4 Find Qualifiers, for
more information.

• find_tModel: This argument provides an alternative or additional way of specifying
tModelKeys that are to be used to find the bindingTemplate elements. When
specified, the find_tModel argument is treated as an embedded inquiry that is
performed prior to searching for bindingTemplate elements. The tModelKeys found
are those whose tModels match the criteria contained within the find_tModel element.
The tModelKeys found are added to the (possibly empty) collection specified by the
tModelBag prior to finding qualified bindingTemplates. Note that the authInfo
argument to this embedded find_tModel argument is always ignored. Large result set
behavior involving the return of a listDescription does not apply within an embedded
argument. If the intermediate result set produced is too large, then the overall query
will return E_resultSetTooLarge with an indication that the embedded query returned
too many results. If an E_unsupported error occurs as part of processing this
embedded argument, it is propagated up to the containing (calling) API.

• listHead: This optional integer value is used to indicate which item SHOULD be
returned as the head of the list. The client may request a subset of the matching data
by indicating which item in the resultant set constitutes the beginning of the returned
data. The use of the listDescription element is mutually exclusive to the use of the
truncated attribute that simply indicates a truncated result list in the Inquiry APIs. See
Section 5.1.5 Use of listDescription, for a detailed description of the listHead
argument.

• maxRows: This optional integer value allows the requesting program to limit the
number of results returned. This argument can be used in conjunction with the
listHead argument.

• serviceKey: This optional uddi_key is used to specify a particular instance of a
businessService element in the registered data. Only bindings in the specific
businessService data identified by the serviceKey passed are searched. When it is
either omitted or specified as empty (i.e., serviceKey=""), this indicates that all

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 77/420

businessServices are to be searched for bindings that meet the other criteria supplied
without regard to the service that provides them, and "projected" services are
suppressed.

• tModelBag: This collection of tModelKey elements represent in part or in whole the
technical fingerprint of the bindingTemplate structures for which the search is being
performed. At least one of either a tModelBag or a find_tModel argument SHOULD be
supplied, unless a categoryBag based search is being used.

If a find_tModel argument is specified (see above), it is treated as an embedded
inquiry. The tModelKeys returned as a result of this embedded find_tModel argument
are used as if they had been supplied in a tModelBag argument. Changing the order
of the keys in the collection or specifying the same tModelKey more than once does
not change the behavior of the find.

By default, only bindingTemplates that have a technical fingerprint containing all of the
supplied tModelKeys match (logical AND). Specifying appropriate findQualifiers can
override this behavior so that bindingTemplates with a technical fingerprint containing
any of the specified tModelKeys are returned (logical OR).

5.1.9.3 Returns:
This API call returns a bindingDetail upon success:

Attributes

Name Use

truncated optional

In the event that no matches were located for the specified criteria, the bindingDetail structure
returned is empty (i.e., it contains no bindingTemplate data). This signifies a zero match result.
If no arguments are passed, a zero-match result set will be returned.

If the number of matches exceeds the value of the maxRows attribute, the result set MAY be
truncated. If this occurs, the response contains the attribute "truncated " with the value "true".

As an alternative to the truncated attribute, a registry MAY return a listDescription element.
See Section 5.1.5 Use of listDescription, for additional information.

5.1.9.4 Caveats:
If an error occurs in processing this API, a dispositionReport element is returned to the caller
within a SOAP Fault. In addition to the errors common to all APIs, the following error
information is relevant here:

• E_invalidCombination: signifies that conflicting findQualifiers have been specified.
The error text clearly identifies the findQualifiers that caused the problem.

• E_invalidKeyPassed: signifies that the uddi_key value passed did not match with
any known serviceKey or tModelKey values. The error structure signifies the
condition that occurred and the error text clearly calls out the offending key.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 78/420

• E_resultSetTooLarge: signifies that the particular node queried has deemed that the
entire result set is too large to manage. Therefore, the result set is not available.
Search criteria must be adjusted to obtain a result.

• E_unsupported: signifies that one of the findQualifier values passed was invalid.
The invalid qualifier will be indicated clearly in text.

5.1.10 find_business
The find_business API is used to find UDDI businessEntity elements. The find_business API
call returns a businessList that matches the criteria specified in the arguments.

5.1.10.1 Syntax:

Attributes

Name Use

maxRows optional

listHead optional

5.1.10.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Registries that wish to restrict who can perform an inquiry in them typically require
authInfo for this call.

• categoryBag: This is a list of category references in the form of keyedReference
elements and keyedReferenceGroup structures. The returned businessList contains
businessInfo elements matching all of the categories passed (logical AND by default).
Specifying the appropriate findQualifiers can override this behavior. Matching rules
for each can be found in Section 5.1.7 Matching Rules for keyedReferences and
keyedReferenceGroups.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 79/420

• discoveryURLs: This is a list of discoveryURL structures to be matched against the
discoveryURL data associated with registered businessEntity information. To search
for URL without regard to useType attribute values, omit the useType attribute or pass
it as an empty attribute. If useType values are included, the match occurs only on
registered information that matches both the useType and URL value. The returned
businessList contains businessInfo structures matching any of the URL's passed
(logical OR).

• identifierBag: This is a list of business identifier references in the form of
keyedReference elements. The returned businessList contains businessInfo
structures matching any of the identifiers passed (logical OR by default). Specifying
the appropriate findQualifiers can override this behavior. Matching rules can be found
in Section 5.1.7 Matching Rules for keyedReferences and keyedReferenceGroups.

• findQualifiers: This collection of findQualifier elements can be used to alter the
default behavior of search functionality. See the Section 5.1.4 Find Qualifiers, for
more information.

• find_relatedBusinesses: This argument is an embedded inquiry and limits the
search results to those businesses that are related to a specified business in a
specified way. The result is comprised of an intersection of the businesses located
with this embedded inquiry and the businesses discovered using the remaining inquiry
criteria. The standard syntax and arguments for find_relatedBusinesses apply here.
Note that the authInfo argument to this embedded find_relatedBusinesses argument
is always ignored. Large result set behavior involving the return of a listDescription
does not apply within an embedded argument. If the intermediate result set produced
is too large, then the overall query will return E_resultSetTooLarge with an indication
that the embedded query returned too many results. If an E_unsupported error
occurs as part of processing this embedded argument, it is propagated up to the
containing (calling) API. See Section 5.1.11 find_relatedBusinesses, for further
information.

• find_tModel: This argument provides an alternative or additional way of specifying
tModelKeys that are used to find businesses which have service bindings with specific
technical fingerprints as described above for the tModelBag element. When specified,
the find_tModel argument is treated as an embedded inquiry that is performed prior to
searching for businesses. The tModelKeys found are those whose tModels match the
criteria contained within the find_tModel element. The tModelKeys found are added to
the (possibly empty) collection specified by the tModelBag prior to finding qualified
businesses. Note that the authInfo argument to this embedded find_tModel argument
is always ignored. Large result set behavior involving the return of a listDescription
does not apply within an embedded argument. If the intermediate result set produced
is too large, then the overall query will return E_resultSetTooLarge with an indication
that the embedded query returned too many results. If an E_unsupported error
occurs as part of processing this embedded argument, it is propagated up to the
containing (calling) API.

• listHead: This optional integer value is used to indicate which item SHOULD be
returned as the head of the list. The client may request a subset of the matching data
by indicating which item in the resultant set constitutes the beginning of the returned
data. The use of the listDescription element is mutually exclusive to the use of the
truncated attribute that simply indicates a truncated result list in the Inquiry APIs. See
Section 5.1.5 Use of listDescription, for a detailed description of the listHead
argument.

• maxRows: This optional integer value allows the requesting program to limit the
number of results returned. This argument can be used in conjunction with the
listHead argument.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 80/420

• name: This optional collection of string values represents one or more names
potentially qualified with xml:lang attributes. Since "exactMatch" is the default
behavior, the value supplied for the name argument must be an exact match. If the
"approximateMatch" findQualifier is used together with an appropriate wildcard
character in the name, then any businessEntity matching this name with wildcards
and the other criteria will be referenced in the results. For more on wildcard matching,
see Section 5.1.6 About Wildcards. The businessList returned contains businessInfo
structures for businesses whose name matches the value(s) passed (lexical-order
match – i.e., leftmost in left-to-right languages). If multiple name values are passed,
the match occurs on a logical OR basis. Each name MAY be marked with an xml:lang
adornment. If a language markup is specified, the search results report a match only
on those entries that match both the name value and language criteria. The match on
language is a leftmost case-insensitive comparison of the characters supplied. This
allows one to find all businesses whose name begins with an "A" and are expressed
in any dialect of French, for example. Values which can be passed in the language
criteria adornment MUST obey the rules governing the xml:lang data type as defined
in Section 3.3.2.3 name.

• tModelBag: Every Web service instance exposed by a registered businessEntity is
represented in UDDI by a bindingTemplate contained within the businessEntity. Each
bindingTemplate contains a collection of tModel references called its "technical
fingerprint" that specifies its type. The tModelBag argument is a collection of
tModelKey elements specifying that the search results are to be limited to businesses
that expose Web services with technical fingerprints that match.

If a find_tModel argument is specified (see above), it is treated as an embedded
inquiry. The tModelKeys returned as a result of this embedded find_tModel argument
are used as if they had been supplied in a tModelBag argument. Changing the order
of the keys in the collection or specifying the same tModelKey more than once does
not change the behavior of the find.

By default, only bindingTemplates that contain all of the tModelKeys in the technical
fingerprint match (logical AND). Specifying appropriate findQualifiers can override this
behavior so that bindingTemplates containing any of the specified tModelKeys match
(logical OR).

5.1.10.3 Returns:
This API call returns a businessList on success. This structure contains information about
each matching business, including summaries of its businessServices:

Attributes

Name Use

truncated optional

The businessList’s businessInfos structure and its businessInfo structures contain:

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 81/420

Attributes

Name Use

businessKey required

If a tModelBag or find_tModel was used in the search, the resulting serviceInfos structure
reflects data only for the businessServices that actually contained a matching
bindingTemplate. For more information on serviceInfos, see Section 5.1.12.3 [find_service]
Returns.

Projected services are treated exactly the same as services that are naturally a part of
businessEntities unless the suppressProjectedServices findQualifier is specified, in which case
they are omitted from the serviceInfos structure returned and are not considered when
determining which businesses match the inquiry criteria. In the event that no matches are
found for the specified criteria, a businessList structure containing no businessInfos structure is
returned.

In the event that no matches were located for the specified criteria, the businessList structure
returned is empty (i.e., it contains no businessInfos data). This signifies a zero match result. If
no arguments are passed, a zero-match result set will be returned.

In the event of a large number of matches, (as determined by the UDDI node), or if the number
of matches exceeds the value of the maxRows attribute, the UDDI node MAY truncate the
result set. If this occurs, the businessList will contain the attribute "truncated" with the value
"true".

Second level elements (serviceInfos) within the returned businessList will be sorted in the
order in which they were saved.

As an alternative to the truncated attribute, a registry MAY return a listDescription element.
See Section 5.1.5 Use of listDescription, for additional information.

5.1.10.4 Caveats:
If any error occurs in processing this API call, a dispositionReport structure is returned to the
caller in a SOAP Fault. In addition to the errors common to all APIs, the following error
information is relevant here:

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 82/420

• E_invalidCombination: signifies that conflicting findQualifiers have been specified.
The error text clearly identifies the findQualifiers that caused the problem.

• E_unsupported: signifies that one of the findQualifier values passed was invalid.
The findQualifier value that was not recognized will be clearly indicated in the error
text.

• E_invalidKeyPassed: signifies that a uddi_key or tModelKey value passed did not
match with any known businessKey key or tModelKey values. The error structure
signifies the condition that occurred and the error text clearly calls out the offending
key.

• E_resultSetTooLarge: signifies that the node deems that a result set from an inquiry
is too large and does not honor requests to obtain the results for this inquiry, even
using subsets. The inquiry that triggered this error SHOULD be refined and re-issued.

5.1.11 find_relatedBusinesses
The find_relatedBusinesses API is used to find businessEntity elements, which have a
completed relationship with the specified businessEntity that matches the criteria supplied.
The find_relatedBusinesses API call returns a relatedBusinessesList structure containing
results that match the criteria specified in the arguments. For additional information on the use
of find_relatedBusinesses, refer to Appendix A: Relationships and Publisher Assertions, for
more information on business relationships.

5.1.11.1 Syntax:

Attributes

Name Use

maxRows optional

listHead optional

5.1.11.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Registries that wish to restrict who can perform an inquiry in them typically require
authInfo for this call.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 83/420

• businessKey: This uddi_key is used to specify a particular businessEntity instance
to use as the focal point of the search. It MUST NOT be used in conjunction with the
fromKey or toKey arguments. It MUST refer to the businessKey of an existing
businessEntity in the registry. The result set reports businesses that are related in
some way to the businessEntity whose key is specified.

• findQualifiers: This collection of findQualifier elements can be used to alter the
default behavior of search functionality. See Section 5.1.4 Find Qualifiers, for more
information.

• fromKey: This uddi_key is used to specify a particular businessEntity instance which
corresponds to the fromKey of a completed businessRelationship, for use as the focal
point of the search. It MUST NOT be used in conjunction with the businessKey or
toKey arguments. The result set reports businesses for which a relationship whose
fromKey matches the key specified exists.

• keyedReference: This is a single, optional keyedReference element that is used to
specify a relationship type, such that only businesses that are related to the focal point
in a specific way are included in the results. Specifying a keyedReference only affects
whether a business is selected for inclusion in the results. If a business is selected,
the results include the full set of completed relationships between it and the focal
point. See Appendix A: Relationships and Publisher Assertions, for more information
on specifying relationships. Matching rules for the use of keyedReferences are
described in Section 5.1.7 Matching Rules for keyedReferences and
keyedReferenceGroups, with the exception that keyNames MUST also match if they
are non-empty in the search criteria for this API. Omitted keyNames are treated as
empty keyNames.

• listHead: This optional integer value is used to indicate which item SHOULD be
returned as the head of the list. The client may request a subset of the matching data
by indicating which item in the resultant set constitutes the beginning of the returned
data. The use of the listDescription element is mutually exclusive to the use of the
truncated attribute that simply indicates a truncated result list in the Inquiry APIs. See
Section 5.1.5 Use of listDescription, for a detailed description of the listHead
argument.

• maxRows: This optional integer value allows the requesting program to limit the
number of results returned. This argument can be used in conjunction with the
listHead argument.

• toKey: This uddi_key is used to specify a particular businessEntity instance which
corresponds to the toKey of an existing businessRelationship, for use as the focal
point of the search. It MUST NOT be used in conjunction with the businessKey or
fromKey arguments. The result set reports businesses for which a relationship whose
toKey matches the key specified exists.

5.1.11.3 Returns:
This API call returns a relatedBusinessesList on success:

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 84/420

Attributes

Name Use

truncated optional

Here, the businessKey returned with relatedBusinessesList is the same one provided with the
find_relatedBusinesses API call. The relatedBusinessInfos structure and the
relatedBusinessInfo structures it contains each have this syntax:

The businessKey returned in each relatedBusinessInfo structure pertains to a business, which
matched the search criteria supplied in the find_relatedBusinesses API call. The
sharedRelationships structures then have this syntax:

Attributes

Name Use

direction required

The value of the direction attribute is determined based on the focal business provided in the
query. The focal business is the represented by the key provided as a parameter to the
find_relatedBusinesses, specified in the "fromKey", "toKey", or "businessKey" argument.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 85/420

Only the publisher assertions from completed relationships including the focal business
contribute to the results of find_relatedBusinesses. If the focal business is specified in the
query as the "fromKey" then only those assertions where the focal business is the "fromKey"
will contribute to the results. Conversely, if the focal business is specified in the query as the
"toKey" then only those assertions where the focal business is the "toKey" will be contribute to
the results. And if the focal business is specified as the "businessKey" then assertions where
the focal business is either the "toKey" and "fromKey" will contribute to the results.

The direction attribute is either expressed as "fromKey" or "toKey" depending on the
relationship of the business to those returned by the call.

If the focal business is specified as the fromKey in the find_relatedBusinesses query, the
sharedRelationships elements returned will have the direction attribute of fromKey.

If the focal business is specified as the toKey in the find_relatedBusinesses query, the
sharedRelationships elements returned will have the direction attribute of toKey.

If the focal business is specified as the businessKey in the find_relatedBusinesses query then
there may be one or two sharedRelationships, one marked with the fromKey and one marked
with the toKey. Publisher assertions specifying the focal business as the "fromKey" will
contribute to the sharedRelationships element with a direction of "fromKey". Correspondingly,
publisher assertions specifying the focal business as the "toKey" will contribute to the
sharedRelationships element with a direction of "toKey".

The example below depicts that Matt's Garage is related to the focal business (i.e. whose
business key is uddi:ws-o-rama-cars.com:be47 and which appeared in the
find_relatedBusinesses) by exactly one relationship -- the "subsidiary" parent-child relationship
-- and that Matt's Garage is a subsidiary of the focal business. In such cases, the direction
attribute is set to "fromKey".

Given the completed relationship resulting from the following publisher assertion:

<publ i sher Asser t i on>
 <! - - Speci f y ws- o- r ama- car s. com: be47 busi nessKey as f r omKey- - >
 <f r omKey>
 uddi : ws- o- r ama- car s. com: be47
 </ f r omKey>
 <! - - Speci f y ws- o- r ama- car s. com: mat t sgar age: be3' s busi nessKey as t oKey- - >
 <t oKey>
 uddi : ws- o- r ama- car s. com: mat t sgar age: be3
 </ t oKey>
 <! - - Speci f y a subsi di ar y r el at i onshi p usi ng uddi - or g: r el at i onshi ps - - >
 <keyedRef er ence keyName=" Subsi di ar y"
 keyVal ue=" par ent - chi l d"
 t Model Key=" uddi : uddi . or g: r el at i onshi ps" / >
</ publ i sher Asser t i on>

and the following find_relatedBusinesses query:

<f i nd_r el at edBusi nesses xml ns=" ur n: uddi - or g: api _v3" >
<busi nessKey>uddi : ws- o- r ama- car s. com: be47</ busi nessKey>
</ f i nd_r el at edBusi nesses>

the following relatedBusinessList will be returned:

<r el at edBusi nessesLi st oper at or =" uddi . someoper at or " t r uncat ed=" f al se"
xml ns=" ur n: uddi - or g: api _v3" >
<busi nessKey>uddi : ws- o- r ama- car s. com: be47</ busi nessKey>
 <r el at edBusi nessI nf os>
 <r el at edBusi nessI nf o>
 <busi nessKey>uddi : ws- o- r ama- car s. com: mat t sgar age: be3</ busi nessKey>
 <name>Mat t ' s Gar age</ name>
 <descr i pt i on>Car ser vi ces i n …</ descr i pt i on>
 <shar edRel at i onshi ps di r ect i on=" f r omKey" >
 <keyedRef er ence t Model Key=" uddi : uddi . or g: r el at i onshi ps"

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 86/420

 keyName=" Subsi di ar y"
 keyVal ue=" par ent - chi l d" >
 …]
 […]

In a relatedBusinessInfo with two sharedRelationships elements the sharedRelationships
element with direction attribute value of "fromKey" precedes the one with the value of "toKey".
The keyedReference elements in the sharedRelationships element will be sorted by last date
change of the corresponding publisher assertion in ascending order.

A publisherAssertion structure is only returned if it contains a signature and it has the following
syntax:

In the event that no matches were located for the specified criteria, the relatedBusinessesList
structure returned does not contain a relatedBusinessInfos element. This signifies zero
matches.

In the event of a large number of matches (as determined by the node), or if the number of
matches exceeds the value of the maxRows attribute, the node MAY truncate the result set.
When this occurs, the relatedBusinessesList contains the attribute "truncated" with the value of
this attribute set to "true".

As an alternative to use of the truncated attribute, a registry MAY return a listDescription
element. See Section 5.1.5 Use of listDescription, for additional information.

5.1.11.4 Caveats:
If any error occurs in processing this API call, a dispositionReport structure is returned to the
caller in a SOAP Fault. In addition to the errors common to all APIs, the following error
information is relevant here:

• E_invalidCombination: signifies that conflicting findQualifiers have been specified.
The error text clearly identifies the findQualifiers that caused the problem.

• E_invalidKeyPassed: signifies that an uddi_key or tModelKey value passed did not
match with any known businessKey key or tModelKey values. The error structure
signifies that the condition occurred and the error text clearly calls out the offending
key.

• E_unsupported: signifies that one of the findQualifier values passed was invalid.
The findQualifier value that was not recognized will be clearly indicated in the error
text.

• E_resultSetTooLarge: signifies that the node deems that a result set from an inquiry
is too large and does not honor requests to obtain the results for this inquiry, even
using subsets. The inquiry that triggered this error SHOULD be refined and re-issued.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 87/420

5.1.12 find_service
The find_service API is used to find UDDI businessService elements. The find_service API call
returns a serviceList structure that matches the conditions specified in the arguments.

5.1.12.1 Syntax:

Attributes

Name Use

maxRows optional

businessKey optional

listHead optional

5.1.12.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Registries that wish to restrict who can perform an inquiry in them typically require
authInfo for this call.

• businessKey: This optional uddi_key is used to specify a particular businessEntity
instance to search. When supplied, this argument is used to specify an existing
businessEntity within which services should be found. Projected services are
included unless the "suppressProjectedServices" findQualifier is used. If businessKey
it is either omitted or specified as empty (i.e., businessKey=""), this indicates that all
businessEntities are to be searched for services that meet the other criteria supplied
without regard to the business that provides them and service projections does not
apply.

• categoryBag: This is a list of category references. The returned serviceList contains
serviceInfo structures matching all of the categories passed (logical AND by default).
Specifying the appropriate findQualifiers can override this behavior. Matching rules
for the use of keyedReferences and keyedReferenceGroups are described in Section
5.1.7 Matching Rules for keyedReferences and keyedReferenceGroups.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 88/420

• findQualifiers: This optional collection of findQualifier elements can be used to alter
the default behavior of search functionality. See Section 5.1.4 Find Qualifiers, for
more information.

• find_tModel: This argument provides an alternative or additional way of specifying
tModelKeys that are used to find services which have service bindings with specific
technical fingerprints, as described above for the tModelBag element. When
specified, the find_tModel argument is treated as an embedded inquiry that is
performed prior to searching for services. The tModelKeys found are those whose
tModels match the criteria contained within the find_tModel element. The tModelKeys
found are added to the (possibly empty) collection specified by the tModelBag prior to
finding qualified services. Note that the authInfo argument to this embedded
find_tModel argument is always ignored. Large result set behavior involving the
return of a listDescription does not apply within an embedded argument. If an
E_unsupported error occurs as part of processing this embedded argument, it is
propagated up to the containing (calling) API.

• listHead: This optional integer value is used to indicate which item SHOULD be
returned as the head of the list. The client may request a subset of the matching data
by indicating which item in the resultant set constitutes the beginning of the returned
data. The use of the listDescription element is mutually exclusive to the use of the
truncated attribute that simply indicates a truncated result list in the Inquiry APIs. See
Section 5.1.5 Use of listDescription, for a detailed description of the listHead
argument.

• maxRows: This optional integer value allows the requesting program to limit the
number of results returned. This argument can be used in conjunction with the
listHead argument.

• name: This optional collection of string values represents one or more names
potentially qualified with xml:lang attributes. Since "exactMatch" is the default
behavior, the value supplied for the name argument must be an exact match. If the
"approximateMatch" findQualifier is used together with an appropriate wildcard
character in the name, then any businessService data contained in the specified
businessEntity (or across all businesses if the businessKey is omitted or specified as
empty) with matching name value will be returned. Matching occurs using wildcard
matching rules. See Section 5.1.6 About Wildcards. If multiple name values are
passed, the match occurs on a logical OR basis within any names supplied. Each
name MAY be marked with an xml:lang adornment. If a language markup is
specified, the search results report a match only on those entries that match both the
name value and language criteria. The match on language is a leftmost case-
insensitive comparison of the characters supplied. This allows one to find all services
whose name begins with an "A" and are expressed in any dialect of French, for
example. Values which can be passed in the language criteria adornment MUST
obey the rules governing the xml:lang data type as defined in Section 3.3.2.3 name.

• tModelBag: Every Web service instance is represented in UDDI by a
bindingTemplate contained within some businessService. A bindingTemplate contains
a collection of tModel references called its "technical fingerprint" that specifies its type.
The tModelBag argument is a collection of tModelKey values specifying that the
search results are to be limited to businessServices containing bindingTemplates with
technical fingerprints that match.

If a find_tModel argument is specified (see below), it is treated as an embedded
inquiry. The tModelKeys returned as a result of this embedded find_tModel argument
are used as if they had been supplied in a tModelBag argument. Changing the order
of the keys in the collection or specifying the same tModelKey more than once does
not change the behavior of the find.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 89/420

By default, only bindingTemplates that contain all of the tModelKeys in the technical
fingerprint match (logical AND). Specifying appropriate findQualifiers can override this
behavior so that bindingTemplates containing any of the specified tModelKeys match
(logical OR).

5.1.12.3 Returns:
This API call returns a serviceList on success:

Attributes

Name Use

truncated optional

The serviceInfos and contained serviceInfo structures have the syntax:

Attributes

Name Use

serviceKey required

businessKey required

In the event that no matches were located for the specified criteria, the serviceList structure
returned does not contain a serviceInfos element. This signifies zero matches. If no search
arguments (including businessKey) are passed, a zero-match result set is returned. If only the
businessKey search argument is passed, the entire set of services for the business is returned.
The named arguments are all optional, and with the exception of name, may appear at most
once. When more than one distinct named argument is passed, matching services are those
which match on all of the criteria.

When a businessKey is supplied, the resulting serviceList contains only services that are
associated with the designated business. Service projections are included in this list unless
explicitly excluded using the suppressProjectedServices find Qualifier. When the businessKey
is omitted or specified as empty (i.e., businessKey=""), all services that meet the other criteria
are returned in the serviceList, without regard to the business which own them. Service

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 90/420

projections are not returned when a businessKey is omitted or left empty because they are
exact duplicates of the services being projected upon.

Since a serviceInfo structure can represent a projection to a deleted businessService, the
name element within the serviceInfo structure is optional (see Section 5.2.16 save_business
on deleting projected services).

In the event of a large number of matches (as determined by the node), or if the number of
matches exceeds the value of the maxRows attribute, the result set MAY be truncated. When
this occurs, the serviceList contains the attribute "truncated" with the value of this attribute set
to "true".

As an alternative to the truncated attribute, a registry MAY return a listDescription element.
See Section 5.1.5 Use of listDescription for additional information.

5.1.12.4 Caveats:
If any error occurs in processing this API call, a dispositionReport structure is returned to the
caller in a SOAP Fault. In addition to the errors common to all APIs, the following error
information is relevant here:

• E_invalidCombination: signifies that conflicting findQualifiers have been specified.
The error text clearly identifies the findQualifiers that caused the problem.

• E_invalidKeyPassed: signifies that the uddi_key value passed did not match with
any known businessKey key or tModelKey values. The error structure signifies the
condition that occurred and the error text clearly calls out the offending key.

• E_unsupported: signifies that one of the findQualifier values passed was invalid.
The findQualifier value that was not recognized will be clearly indicated in the error
text.

• E_resultSetTooLarge: signifies that the node deems that a result set from an inquiry
is too large and does not honor requests to obtain the results for this inquiry, even
using subsets. The inquiry that triggered this error SHOULD be refined and re-issued.

5.1.13 find_tModel
The find_tModel API is used to find UDDI tModel elements. The find_tModel API call returns a
list of tModel entries that match a set of specific criteria. The response consists of summary
information about registered tModel data returned in a tModelList structure.

5.1.13.1 Syntax:

Attributes

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 91/420

Name Use

maxRows optional

listHead optional

5.1.13.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Registries that wish to restrict who can perform an inquiry in them typically require
authInfo for this call.

• categoryBag: This is a list of category references. The returned tModelList contains
tModelInfo elements whose associated tModels match all of the categories passed
(logical AND by default). Specifying the appropriate findQualifiers can override this
behavior. Matching rules for the use of keyedReferences and
keyedReferenceGroups are described in Section 5.1.7 Matching Rules for
keyedReferences and keyedReferenceGroups.

• findQualifiers: This collection of findQualifier elements is used to alter the default
behavior of search functionality. See Section 5.1.4 Find Qualifiers for more
information.

• identifierBag This is a list of identifier references in the form of keyedReference
elements. The returned tModelList contains tModelInfo elements whose associated
tModels match any of the identifiers passed (logical OR by default). Specifying the
appropriate findQualifiers can override this behavior. Matching rules are described in
Section 5.1.7 Matching Rules for keyedReferences and keyedReferenceGroups.

• listHead: This optional integer value is used to indicate which item SHOULD be
returned as the head of the list. The client may request a subset of the matching data
by indicating which item in the resultant set constitutes the beginning of the returned
data. The use of the listDescription element is mutually exclusive to the use of the
truncated attribute that simply indicates a truncated result list in the Inquiry APIs. See
Section 5.1.5 Use of listDescription, for a detailed description of the listHead
argument.

• maxRows: This optional integer value allows the requesting program to limit the
number of results returned. This argument can be used in conjunction with the
listHead argument.

• name: This string value represents the name of the tModel elements to be found.
Since tModel data only has a single name, only a single name may be passed. The
argument must match exactly since "exactMatch" is the default behavior, but if the
"approximateMatch" findQualifier is used together with the appropriate wildcard
character, then matching is done according to wildcard rules. See Section 5.1.6 About
Wildcards for additional information. The name MAY be marked with an xml:lang
adornment. If a language markup is specified, the search results report a match only
on those entries that match both the name value and language criteria. The match on
language is a leftmost case-insensitive comparison of the characters supplied. This
allows one to find all tModels whose name begins with an "A" and are expressed in
any dialect of French, for example. Values which can be passed in the language
criteria adornment MUST obey the rules governing the xml:lang data type as defined
in Section 3.3.2.3 name.

5.1.13.3 Returns:
This API call returns a tModelList structure on success:

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 92/420

Attributes

Name Use

truncated optional

The tModelInfos and contained tModelInfo structures have the syntax:

Attributes

Name Use

tModelKey required

In the event that no matches were located for the specified criteria, the tModelList returned will
not contain a tModelInfos element. This signifies zero matches. If no arguments are passed,
a zero-match result is returned.

In the event of a large number of matches (as determined by the node), or if the number of
matches exceeds the value of the maxRows attribute, the result set MAY be truncated. When
this occurs, the tModelList contains the attribute "truncated" with the value "true".

As an alternative to the truncated attribute, a registry MAY return a listDescription element.
See Section 5.1.5 Use of listDescription for additional information.

5.1.13.4 Caveats:
If any error occurs in processing this API call, a dispositionReport element is returned to the
caller within a SOAP Fault. In addition to the errors common to all APIs, the following error
information is relevant here:

• E_invalidCombination: signifies that conflicting findQualifiers have been specified.
The error text clearly identifies the findQualifiers that caused the problem.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 93/420

• E_invalidKeyPassed: signifies that the uddi_key value passed did not match with
any known tModelKey values. The error structure signifies the condition that
occurred and the error text clearly calls out the offending key.

• E_unsupported: signifies that one of the findQualifier values passed was invalid.
The invalid qualifier is clearly indicated in the error text.

• E_resultSetTooLarge: signifies that the node deems that a result set from an inquiry
is too large and does not honor requests to obtain the results for this inquiry, even
using subsets. The inquiry that triggered this error SHOULD be refined and re-issued.

5.1.14 get_bindingDetail
The get_bindingDetail API call returns the bindingTemplate structure corresponding to each of
the bindingKey values specified.

5.1.14.1 Syntax:

5.1.14.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Registries that wish to restrict who can perform an inquiry in them typically require
authInfo for this call.

• bindingKey: One or more uddi_key values that represent the UDDI assigned keys for
specific instances of registered bindingTemplate data.

5.1.14.3 Returns:
This API call returns a bindingDetail on successful match of the specified bindingKey values.
See Section 5.1.9.3 [find_binding] Returns for information on this structure. If multiple
bindingKey values were passed, the results are returned in the same order as the keys
passed.

If a large number of keys are passed, the node MAY truncate the result set. When this occurs,
the bindingDetail result contains the attribute "truncated" with the value "true".

A node MUST NOT return a listDescription element as part of the bindingDetail in response to
this API call.

5.1.14.4 Caveats:
If any error occurs in processing this API call, a dispositionReport structure is returned to the
caller in a SOAP Fault. In addition to the errors common to all APIs, the following error
information is relevant here:

• E_invalidKeyPassed: signifies that one of the uddi_key values passed did not match
with any known bindingKey key values. No partial results are returned – if any
bindingKey values passed are not valid bindingKey values, this error is returned. The
error text clearly calls out the offending key.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 94/420

5.1.15 get_businessDetail
The get_businessDetail API call returns the businessEntity structure corresponding to each of
the businessKey values specified.

5.1.15.1 Syntax:

5.1.15.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Registries that wish to restrict who can perform an inquiry in them typically require
authInfo for this call.

• businessKey: One or more uddi_key values that represent specific instances of
known businessEntity data.

5.1.15.3 Returns:
This API call returns a businessDetail on successful match of the specified businessKey
values:

Attributes

Name Use

truncated optional

If multiple businessKey values were passed, the results MUST be returned in the same order
as the keys passed.

If a large number of keys are passed, a node MAY truncate the result set. When this occurs,
the businessDetail response contains the attribute "truncated " with the value "true".

businessEntity elements retrieved with get_businessDetail can contain service projections.
Such projected services appear in full in the businessEntity in which they occur. Projected
services can be distinguished from the services that are naturally contained in the
businessEntity in which they appear by their businessKey. Services naturally contained in the
businessEntity have the businessKey of the businessEntity in which they appear. Projected
services have the businessKey of the businessEntity of which they are a natural part.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 95/420

5.1.15.4 Caveats:
If any error occurs in processing this API call, a dispositionReport element is returned to the
caller within a SOAP Fault. In addition to the errors common to all APIs, the following error
information is relevant here:

• E_invalidKeyPassed: signifies that one of the uddi_key values passed did not match
with any known businessKey values. No partial results are returned – if any
businessKey values passed are not valid, this error is returned. The error text clearly
calls out the offending key.

5.1.16 get_operationalInfo
The get_operationalnfo API call is used to retrieve entity level operational information (such as
the date and time that the data structure was created and last modified, the identifier of the
UDDI node at which the entity was published and the identity of the publisher) pertaining to
one or more entities. The get_operationalInfo API call returns an operationalInfos structure
corresponding to each of the entityKey values specified.

5.1.16.1 Syntax:

5.1.16.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Registries that wish to restrict who can perform an inquiry in them typically require
authInfo for this call.

• entityKey: One or more uddi_key values that represent businessEntity,
businessService, bindingTemplate or tModelKeys.

5.1.16.3 Returns:
This API returns an operationalInfos structure that contains an operationalInfo element for
each entity requested by the inquirer.

The operationalInfos structure has the form:

Attributes

Name Use

truncated optional

For information on the operationalInfo structure, see Section 3.8, operationalInfo Structure.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 96/420

5.1.16.4 Caveats:
If any error occurs in processing this API call, a dispositionReport element is returned to the
caller within a SOAP Fault. In addition to the errors common to all APIs, the following error
information is relevant here:

• E_invalidKeyPassed: signifies that one of the uddi_key values passed did not match
with any known entityKey values. No partial results are returned – if any entityKey
values passed are not valid, this error is returned. The error text clearly calls out the
offending key(s).

5.1.17 get_serviceDetail
The get_serviceDetail API call returns the businessService structure corresponding to each of
the serviceKey values specified.

5.1.17.1 Syntax:

5.1.17.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Registries that wish to restrict who can perform an inquiry in them typically require
authInfo for this call.

• serviceKey: One or more uddi_key values that represent UDDI assigned serviceKey
values of specific instances of known businessService data.

5.1.17.3 Returns:
This API call returns a serviceDetail on successful match of the specified serviceKey values.

Attributes

Name Use

truncated optional

If multiple serviceKey values were passed, the results will be returned in the same order as the
keys passed.

If a large number of keys are passed, a node MAY truncate the result set. When this occurs,
the response contains the attribute "truncated" with the value "true".

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 97/420

5.1.17.4 Caveats:
If any error occurs in processing this API call, a dispositionReport element is returned to the
caller within a SOAP Fault. In addition to the errors common to all APIs, the following error
information is relevant here:

• E_invalidKeyPassed: signifies that one of the uddi_key values passed did not match
with any known serviceKey values. No partial results are returned – if any serviceKey
values passed are not valid, this error is returned. The error text clearly calls out the
offending key.

5.1.18 get_tModelDetail
The get_tModelDetail API call returns the tModel structure, corresponding to each of the
tModelKey values specified.

5.1.18.1 Syntax:

5.1.18.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Registries that wish to restrict who can perform an inquiry in them typically require
authInfo for this call.

• tModelKey: One or more uddi_key values that represent UDDI assigned tModelKey
values of specific instances of known tModel data.

5.1.18.3 Returns:
This API call returns a tModelDetail on successful match of the specified tModelKey values.

Attributes

Name Use

truncated optional

If multiple tModelKey values were passed, the results are returned in the same order as the
keys passed.

If a large number of keys are passed, a node MAY truncate the result set. When this occurs,
the response contains the attribute "truncated" with the value of "true".

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 98/420

5.1.18.4 Caveats:
If any error occurs in processing this API call, a dispositionReport structure is returned to the
caller in a SOAP Fault. In addition to the errors common to all APIs, the following error
information is relevant here:

• E_invalidKeyPassed: signifies that one of the uddi_key values passed did not match
with any known tModelKey values. No partial results are returned – if any tModelKey
values passed are not valid, this error is returned. The error text clearly calls out the
offending key.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 99/420

5.2 Publication API Set
The API calls in this section are used to publish and update information contained in a UDDI
registry. According to the policy of the UDDI registry, a publisher selects a UDDI node where it
will publish the information.

API calls in this section MUST all be implemented as synchronous and "atomic" from the point
of view of the caller. That is, each call MUST either succeed completely or fail completely.
Partial results MUST NOT be returned.

5.2.1 Publishing entities with node assigned keys
When a publisher does not provide keys for new entities, the UDDI node will assign keys in
accordance with registry policy. Node-assigned keys MUST use keys that conform to the
grammar in Section 4.4 About uddiKeys.

5.2.2 Publishing entities with publisher-assigned keys
The registry keying policy MAY allow an entity’s key to be proposed by the publisher. If the
publisher does not propose a key for an entity, the registry MUST assign one.

Since entity keys MUST be unique in a registry without regard to the type of entity and since
registries MUST define to impose policies concerning which publishers may publish which
keys, publisher-assigned keys are subject to rules that UDDI registries enforce. Behavior that
ensures uniqueness across entity types (businessEntity, businessService, bindingTemplate,
tModel and subscription) is REQUIRED for all registries. In this section we discuss the
behavior of registries that use the recommended "uddi:" key structure. This behavior provides
uniqueness and promotes interoperability among registries, while allowing various registry-
specific policies to be built. Practical guidance for the use of this facility may be found in
Section 9.4.2 General Keying Policy and Section 9.4.3 Policy Abstractions for the UDDI keying
scheme.

5.2.2.1 Key generator keys and their partitions
To ensure that publisher-generated keys do not conflict with one another, registries assign the
authority to generate keys to publishers in the following manner:

1. The conceptual space of uddiKeys is divided into non-overlapping, hierarchically
arranged partitions, each of which can be associated with a publisher.

2. Only the publisher associated with a particular partition is given the authority to assign
keys within the partition.

3. The publisher with authority for a given partition may designate any publisher it
chooses for any partition directly below the partition it manages, provided it has not
already designated a publisher to that partition.

4. The publisher with authority for a partition may transfer its authority to another
publisher.

5. Initially, the registry itself has authority for the root partition of the hierarchy.

The specific mechanisms that enforce these rules are explained below.

Each node of a registry is a generator of keys. This is required to enable the node to generate
keys not provided by publishers. In addition, the policies of a registry MAY allow individual
publishers to obtain the authority to be generators of keys for specific partitions within the
space of uddiKeys. Publishers obtain this authority by owning a particular tModel called a key

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 100/420

generator tModel. The key generator tModel contains a key generator key, and it specifies the
partition for which the publisher may assign keys.

The subset of derivedKeys called key generator keys consists of all the keys of the form:

keyGeneratorKey = uddiKey ":keygenerator"

As described in Section 4.4.1, a derivedKey is one that is formed from another key by
appending a non-empty, colon-prefixed string to another uddiKey. A derivedKey is said to be
"based on" this uddiKey. With this in mind, the complete partition of a given keyGeneratorKey
is the set of keys consisting of:

1. The set of derivedKeys based on the same uddiKey that the keyGeneratorKey is
based upon.

2. The set of keyGeneratorKeys based on a key that is in the partition.

3. The domainKey, if the keyGeneratorKey is based upon that domainKey.

Note that the partition's keyGeneratorKey itself is exluded from the partition.

A rootKeyGeneratorKey is a keyGeneratorKey that is not based on a derivedKey. That is:

rootKeyGeneratorKey = (uuidKey / domainKey) ":keygenerator"

5.2.2.1.1 Examples
Based on the rules above, it is possible to construct the keyGeneratorKey for any key by
manipulating the string representation of the key. To illustrate, suppose the key is x, then the
following pseudo-code will determine the keyGeneratoryKey:

I f x i s a keyGener at or Key, and y i s t hat key mi nus t he " : keygener at or " suf f i x,
t hen i f y i s a domai nKey
 t hen x i s a t op- l evel keyGener at or , and has no keyGener at or Key (1. a)
 el se y i s a der i vedKey, based on z,
 and x’ s keyGener at or Key i s z: keyGener at or (1. b)
el se

I f x i s a domai nKey
t hen x’ s keyGener at or key i s x: keyGener at or (2)
el se x i s based on a key y, and x’ s keyGener at or i s y: keyGener at or (3)

Using this pseudo-code illustration, the following table provides examples of legal URI’s and
their associated key generators for each of the four cases noted:

Key keyGeneratorKey Case in pseudo-code

uddi:tempuri.com uddi:tempuri.com:keygenerator 2

uddi:tempuri.com:keygenerator <none> 1.a

uddi:tempuri.com:xxx:keygenerator uddi:tempuri.com:keygenerator 1.b

uddi:tempuri.com:xxx uddi:tempuri.com:keygenerator 3

uddi:tempuri.com:xxx:yyy uddi:tempuri.com:xxx:keygenerator 3

The following keys do NOT belong to the partition of the key generator key
"uddi:tempuri.com:keygenerator".

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 101/420

 "uddi:tempuri.com:keygenerator" The keyGeneratorKey does not belong to the
partition it designates.

"uddi:tempuri.com:xxx:yyy" This key belongs to the partition of the
keyGeneratorKey
"uddi:tempuri.com:xxx:keygenerator", not this one.

"uddi:tempuri.com:keygenerator:zzz" This key does not belong in any partition – it is an
invalid key.

5.2.2.2 Behavior of publishers
To successfully publish a new entity with a proposed key, the publisher needs to own the key
generator tModel for the partition in which the key lies. Typically, a publisher gets ownership by
publishing the tModel in question, but publishers can also get ownership in other ways, for
example by having another publisher transfer ownership.

Once a publisher owns a key generator tModel that publisher MAY publish new entities20 and
assign them keys within the key generator tModel’s partition. New keys can only be generated
from keyGenerator tModels that are not hidden. Publishers are responsible for managing the
uniqueness of the keys in the partition they own. If a publisher fails to do so, and generates an
already used key, a publish operation could inadvertently replace an entity previously
published by that publisher.

If a publisher owns key generator tModels with the same key in multiple registries – for
example one in the publisher’s private test registry and one in the UDDI Business Registry –
that publisher MAY publish the entities with identical keys in those registries. This enables
many interesting capabilities. For example, publishers may choose to develop their UDDI
entities by publishing them into test registries and then, at appropriate times, "promote" them to
the UDDI Business Registry.

5.2.2.3 Behavior of UDDI nodes
To ensure that publisher-assigned keys work correctly all UDDI implementations behave as
follows.

5.2.2.3.1 "New" and "existing" entities defined
During a publish operation, the entity or entities being published are either "new" or "existing".
An existing entity is one that has a key that matches the key of an entity already in the registry.
A new entity is one that does not. If a new entity has a key, this key is the key proposed for that
entity by its publisher.

5.2.2.3.2 Behavior with respect to entities for which no key is proposed.
A UDDI node MUST generate and assign a key to each entity for which the publisher
proposes no key. It may generate uuidKeys for use as the keys of new entities for which no
key is proposed or it may generate keys in the partition of a key generator tModel it owns.

A registry whose nodes assign uddiKeys to new entities is called a root registry. The UDDI
Business Registry is a root registry. A registry whose nodes gain ownership of their key

20

 Assuming, of course, the publisher is otherwise authorized to publish the entities in question. Some registries, for example,
impose limits on the numbers of entities a publisher may publish.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 102/420

generator tModels by publishing them in the UDDI Business Registry are affiliates of the UDDI
Business Registry. See Section 1.5.5 Affiliations of Registries.

5.2.2.3.3 Behavior with respect to uuidKeys
A UDDI node SHOULD accept a uuidKey as the key for a new entity during a publish
operation if the publisher is a trusted publisher of such keys, according to the policies of the
registry. UDDI nodes MUST NOT allow other publishers to generate uuidKeys.

5.2.2.3.4 Behavior with respect to key generator keys
A UDDI node MUST NOT publish any non-tModel entity whose proposed key is a key
generator key. A tModel whose proposed key is a key generator key MUST include a
category bag with a keyed reference with the tModelKey set to
"uddi:uddi.org:categorization:types" and the keyValue set to "keyGenerator".

5.2.2.3.5 Behavior with respect to root key generator keys
During a publish operation a UDDI node SHOULD accept a root key generator key as the key
for a new tModel if it is proposed by a publisher authorized to publish the key, according to the
policies of the registry. The policy MUST prevent more than one publisher from publishing
tModels with the same root key generator key.

An appropriate policy for root and for affiliated registries is given in Chapter 9 Policy.

5.2.2.3.6 Behavior with respect to other proposed keys
A UDDI node SHOULD accept keys proposed for new entities during publishing operations if
they meet both of the following criteria.

• The proposed key lies in the partition of the key of an existing key generator tModel
and the key generator tModel is not hidden.

• The same publisher who is proposing the new key owns the key generator tModel
referred to in the previous bullet. 21

21

The rules given in section 5.2.2.3 are safe for the following reasons. From a technical point of view the base requirement is that
the keys for each entity be unique within the registry in which it is published. Because UDDI can be a replicated data store, the
uniqueness requirement means that each trusted source of keys must be able to assert that the keys it publishes will not conflict
with the keys published by any other trusted source. The sources in a given registry must trust one another not to generate
duplicate keys, just as they do in V1 and V2. In V1 and V2 the only sources of keys are the nodes themselves.

The rootKeyGeneratorKeys come from two sources, those based on uuidKeys and those based on domainKeys. Since no domain
is also a UUID, the two sources never overlap and can be considered separately.

Those rootKeyGenerators based on uuidKey>s are safe because they are generated by the nodes in the same way that
<uuidKey>s are, except that the nodes append a ":keygenerator" onto the end. The <rootKeyGeneratorKey>s based on
<domainKey>s are safe because they are checked for uniqueness before publishing using the UDDI registry’s policy, which is
required to check for uniqueness.

All the other keys are generated based on a key generator tModel. At any given time each key generator tModel is owned by a
publisher and only this publisher is allowed to generate keys based on it. Further, publication may take place only on the node that
has custody of the key generator tModel in question. Taken together, this means that each node can ensure for the registry as a
whole that only the owner uses a given tModel to generate new keys. These features allow the nodes to apply whatever
political/legal policies they wish to apply to the generation of such keys.

As for registry-wide uniqueness, any node at which a publish operation takes place can determine whether a key based on a key
generator tModel is new or already existing by looking only at local information. This is obviously true for keys based on tModels
that have been in the custody of the same node since their creation since all previous key creations based on the tModel in
question must have been done at the custodial node. But it is also true for key generator tModels whose custody has been
transferred from one node to another. This is so because any key created using the tModel must have been created prior to the
custody transfer. This means that all entities with keys based on a transferred key generator tModel will precede the transfer of
custody in the replication stream and thus be available at the local node.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 103/420

5.2.2.4 Affiliations of registries
A set of registries may cooperate in managing a single multi-registry key space by designating
one of the registries in the group to be the "root registry" and assigning it to be the authority for
the root partition. Other registries in the set are said to be affiliate registries. See Section 1.5.5
Affiliations of Registries for more information

The UDDI Business Registry is a root registry. Its policies and procedures are designed to
make it simple for any UDDI registry to be affiliated with it.

Designating new authorities is done by publishing key generator tModels in the root registry, in
one or more of the registries affiliated with the root registry or both. The owner of a key
generator tModel is the naming authority for the partition the tModel represents.

5.2.3 Special considerations for validated value sets
Several of the APIs defined in this section allow publishers to save category and identifier
information in support of searches that use category and identifier system references. The
save_business, save_service, save_binding and save_tModel APIs allow designation of these
value set references. Categorization is specified using the element named categoryBag,
which contains namespace-qualified references to categories and descriptions. categoryBags
can also contain groups of these references to categories and descriptions. Identifiers are
specified using the identifierBag element, which contains namespace-qualified references to
identifiers and descriptions.

Similarly, the add_publisherAssertions and set_publisherAssertions APIs allow
publisherAssertion elements to be saved. These publisherAssertion elements contain a
characterization of the relationship being established using a keyedReference element that
refers to a relationship type system.

Identifier, category and relationship type systems taken together are referred to as "value
sets." UDDI allows value sets to be checked or unchecked. References to checked value
sets that are registered in UDDI can be checked internally by the UDDI nodes where
publishing takes place, or externally by a provider of a validation Web service. The UDDI node
can also choose to not support some or all checked value sets.

When a UDDI node encounters a reference to a checked value set in a keyedReference it will
either ensure the reference is validated or fail the save. Such references to supported
checked value sets are verified for validity according to the validation algorithm defined for the
value set and described by its tModel. When all checks succeed, the save is permitted. An
E_unvalidatable error indicates the checked value set is supported but its validation algorithm
is not available. An E_unsupported indicates the checked value set is not supported by the
node. E_invalidValue or E_valueNotAllowed indicate one or more references failed validation.
When the checked value set is not supported, the value set’s validation algorithm is
unavailable, or any of the references fail validation, the save operation MUST fail.

When the UDDI node supports a checked value set it may check the references itself, or
consult a validation Web service. For cached checked value sets, the UDDI node verifies that
referenced keyValues are in the set of valid values for the value set. The selection of an
algorithm for verifying a checked value set is a matter of registry policy as detailed in Chapter 9
Policy.

A category group system is portrayed by a keyedRefererenceGroup element. Each
keyedReferenceGroup has a tModelKey that references the category group system, and a set
of contained keyedReference elements that make up the actual group of categories. Similar to
references to checked value sets, validation is carried out for a keyedReferenceGroup if the
referenced category group system is checked. Such validation entails verification that the
keyedReferenceGroup is valid according to the validation algorithm described by the tModel
for the category group system. Validation for a keyedReferenceGroup that references a
cached checked category group system involves verification that the tModels referenced by

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 104/420

the contained keyedReference elements are valid for the category group system. The set of
valid values for such a cacheable checked category group system is defined by the
tModelKeys for the set of tModels that can participate in the group.

No validation is performed on references to unchecked value sets

5.2.4 Special considerations for the xml:lang attribute
During save_xx API calls, the name, description, address, and personName UDDI elements
MAY be adorned with the xml:lang attribute to indicate the language in which their content is
expressed. (See Chapter 3 UDDI Registry Data Structures.) When an optional xml:lang
attribute is omitted from an element, no xml:lang attribute will be saved for that element.

Name elements in UDDI core data structures are frequently the main targets for sorts during
UDDI inquiries. When a UDDI data structure has multiple names, sorting occurs on the first
name. Care should be taken to list the primary name first when the entity is saved to ensure
the proper placement of the entity in a sorted result set.

Values which can be passed in the language supplied in a save_xx API call MUST obey the
recommended rules and syntax governing the xml:lang data type as defined in Section 3.3.2.3
name.

5.2.5 Publisher API summary
The publishing API calls are:

• add_publisherAssertions: Used to add relationship assertions to the existing set of
assertions. See Appendix A Relationships and Publisher Assertions.

• delete_binding: Used to remove an existing bindingTemplate from the registry.

• delete_business: Used to delete existing businessEntity information from the
registry.

• delete_publisherAssertions: Used to delete specific publisher assertions from the
assertion collection controlled by a particular publisher. Deleting assertions from the
assertion collection affects the visibility of business relationships. Deleting an
assertion causes any relationships based on that assertion to become incomplete.

• delete_service: Used to delete an existing businessService from the registry.

• delete_tModel: Used to hide existing information about a tModel. Any tModel hidden
in this way is still usable for reference purposes and accessible via the
get_tModelDetail API, but is hidden from find_tModel result sets. There is no
specified way to delete a tModel.

• get_assertionStatusReport: Used to get a status report containing publisher
assertions and status information. This report is useful to help an administrator
manage publisher assertions. Returns an assertionStatusReport that includes the
status of all assertions made involving any businessEntity controlled by the requesting
publisher.

• get_publisherAssertions: Used to get a list of publisher assertions that are
controlled by an individual publisher. Returns a publisherAssertions structure
containing all publisher assertions associated with a specific publisher.

• get_registeredInfo: Used to request an abbreviated list of businesses and tModels
currently managed by a given publisher.

• save_binding: Used to register new bindingTemplate information or to update
existing bindingTemplate information. Use this to control information about technical
capabilities exposed by a registered business.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 105/420

• save_business: Used to register new businessEntity information or update existing
businessEntity information. Use this to control the full set of information about the
entire business, including its businessService and bindingTemplate structures. This
API has the broadest effect of all of the save_xx APIs.

• save_service: Used to register or update complete information about a
businessService.

• save_tModel: Used to register or update information about a tModel.

• set_publisherAssertions: Used to save the complete set of publisher assertions for
an individual publisher. Replaces any existing assertions, and causes any old
assertions that are not reasserted to be removed from the registry.

5.2.6 add_publisherAssertions
The add_publisherAssertions API call causes one or more publisherAssertions to be added to
an individual publisher’s assertion collection. See Appendix A Relationships and Publisher
Assertions describing relationships and the API get_publisherAssertions for more information
on this collection.

5.2.6.1 Syntax:

5.2.6.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Authentication tokens are obtained using the get_authToken API call or through some
other method external to this specification. Registries that serve multiple publishers
and registries that restrict who can publish in them typically require authInfo for this
call.

• publisherAssertion: This required repeating element holds the relationship
assertions that are being added. Relationship assertions consist of a reference to two
businessEntity key values as designated by the fromKey and toKey elements, as well
as a REQUIRED expression of directional relationship within the contained
keyedReference element. See Appendix A Relationships and PublisherAssertions on
managing relationships. The fromKey, the toKey, and all three parts of the
keyedReference – the tModelKey, the keyName, and the keyValue MUST be
specified or the call will fail with the error E_fatalError. Empty (zero length) keyNames
and keyValues are permitted.

5.2.6.3 Behavior:
The publisher must own the businessEntity referenced in the fromKey, the toKey, or both. If
both of the businessKey values passed within an assertion are owned by the publisher, then
the assertion is automatically complete and the relationship described in the assertion is visible
via the find_relatedBusinesses API. To form a relationship when the publisher only owns one

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 106/420

of the two keys passed, the assertion MUST be matched exactly by an assertion made by the
publisher who owns the other business referenced. Assertions exactly match if and only if they:

1. refer to the same businessEntity in their fromKeys;

2. refer to the same businessEntity in their toKeys;

3. refer to the same tModel in their tModelKeys;

4. have identical keyNames; and

5. have identical keyValues.

When a publisherAssertion being added references a checked relationship system using the
tModelKey in the contained keyedReference, the reference MUST be checked for validity prior
to completion of the add, or the node must return E_unsupported, indicating it does not support
the referenced checked relationship system. Validation of a relationship system reference
entails verification that the reference is valid according to the validation algorithm defined for
the relationship system and described by its tModel. For cached checked relationship
systems, the validation algorithm verifies that referenced keyValues are in the set of valid
values for the relationship system.

For registries supporting the subscription APIs at any node, it is necessary to track a modified
date for publisherAssertion elements so that nodes have the necessary information for
responding to subscription requests involving find_relatedBusinesses and
get_assertionStatusReport filters.

5.2.6.4 Returns:
Upon successful completion, an empty message is returned. See section 4.8 Success and
Error Reporting.

5.2.6.5 Caveats:
If an error occurs in processing this API call, a dispositionReport structure MUST be returned
to the caller in a SOAP Fault. See Section 4.8 Success and Error Reporting. In addition to the
errors common to all APIs, the following error information is relevant here:

• E_invalidKeyPassed: signifies that one of the uddiKey values passed did not match
with any known businessKey or tModelKey values. The key and element or attribute
that caused the problem SHOULD be clearly indicated in the error text.

• E_userMismatch: signifies that neither of the businessKey values passed in the
embedded fromKey and toKey elements is owned by the publisher associated with
the authentication token. The error text SHOULD clearly indicate which assertion
caused the error.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 107/420

5.2.7 delete_binding
The delete_binding API call causes one or more instances of bindingTemplate data to be
deleted from the UDDI registry.

5.2.7.1 Syntax:

5.2.7.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Authentication tokens are obtained using the get_authToken API call or through some
other method external to this specification. Registries that serve multiple publishers
and registries that restrict who can publish in them typically require authInfo for this
call.

• bindingKey: One or more required uddiKey values that represent specific instances
of known bindingTemplate data.

5.2.7.3 Returns:
Upon successful completion, an empty message is returned. See section 4.8 Success and
Error Reporting.

5.2.7.4 Caveats:
If an error occurs in processing this API call, a dispositionReport structure MUST be returned
to the caller in a SOAP Fault. See Section 4.8 Success and Error Reporting. In addition to the
errors common to all APIs, the following error information is relevant here:

• E_invalidKeyPassed: Signifies that one of the uddiKey values passed did not match
with any known bindingKey values or multiple instances of the same bindingKey
values were passed. No partial results are returned – if any bindingKey values
passed are not valid, this error is returned. The key that caused the problem
SHOULD clearly be indicated in the error text.

• E_userMismatch: Signifies that one or more of the bindingKey values passed refers
to a bindingTemplate that is not owned by the individual publisher associated with the
authentication token.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 108/420

5.2.8 delete_business
The delete_business API call is used to remove one or more business registrations and all
elements that correspond to the natural content of the corresponding businessEntity elements
from a UDDI registry.

5.2.8.1 Syntax:

5.2.8.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Authentication tokens are obtained using the get_authToken API call or through some
other means external to this specification. Registries that serve multiple publishers
and registries that restrict who can publish in them typically require authInfo for this
call.

• businessKey: One or more required uddiKey values that represent specific instances
of known businessEntity data.

5.2.8.3 Behavior:
The UDDI registry MUST permanently remove all of the natural contents22 of the passed
businessEntity elements, including any currently nested businessService and bindingTemplate
data, from the UDDI registry.

If there are service projections23 that reference businessService elements deleted in this way,
they are left untouched. Such "broken" service projections appear in their businessEntity as
businessService elements containing the businessKey and serviceKey attributes as their only
content. For this reason, it is a best practice to coordinate references to businessService data
published under another businessEntity with the party who manages that data.

All publisher assertions that reference the businessKey of the businessEntity being deleted in
either the fromKey or toKey of the publisherAssertion MUST be automatically deleted. A
deleted business MUST not be returned in the find_relatedBusinesses API.

Any transferToken referring to the business entity being deleted becomes invalid and can no
longer be used to transfer any entities.

22

 When a business registration is first saved, all of the contained data found in the registered businessEntity element is referred to
as the natural contents. UDDI defines several types of referencing mechanisms – and referenced elements are not considered to
be natural contents of registered businessEntity data. Natural contents can be recognized by matching businessKey values
between businessService and businessEntity data.

23
 UDDI allows save_business API calls to be processed that contain businessService data references that are the natural children

of a different business registration. Doing this creates a businessService projection that results in the data associated with the
referenced businessService to be projected as though it were contained in the referencing businessEntity. These are called
service projections.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 109/420

5.2.8.4 Returns:
Upon successful completion, an empty message is returned. See section 4.8 Success and
Error Reporting.

5.2.8.5 Caveats:
If an error occurs in processing this API call, a dispositionReport element MUST be returned to
the caller within a SOAP Fault. See Section 4.8 Success and Error Reporting. In addition to
the errors common to all APIs, the following error information is relevant here:

• E_invalidKeyPassed: Signifies that one of the uddiKey values passed did not match
with any known businessKey values or multiple instances of the same businessKey
values were passed. The key that caused the error SHOULD be clearly indicated in
the error text.

• E_userMismatch: Signifies that one or more of the businessKey values passed
refers to data that is not owned by the individual publisher who is represented by the
authentication token.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 110/420

5.2.9 delete_publisherAssertions
The delete_publisherAssertions API call causes one or more publisherAssertion elements to
be removed from a publisher’s assertion collection. See Appendix A Relationships and
Publisher Assertions and the API get_publisherAssertions for more information on this
collection.

5.2.9.1 Syntax:

5.2.9.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Authentication tokens are obtained using the get_authToken API call or through some
other means external to this specification. Registries that serve multiple publishers
and registries that restrict who can publish in them typically require authInfo for this
call.

• publisherAssertion: One or more required publisher assertion structures exactly
matching an existing assertion in the publisher’s assertion collection.

5.2.9.3 Behavior:
The UDDI registry scans the assertion collection associated with the publisher, and removes
any assertions that exactly match all parts of each publisherAssertion passed. Any assertions
described that cannot be located result in an error. The removal of assertions in this API
causes the corresponding relationships to no longer be visible via the find_relatedBusinesses
API.

For registries supporting the subscription APIs at any node, it is necessary to track a modified
date for publisherAssertion elements so that nodes have the necessary information for
responding to subscription requests involving find_relatedBusinesses and
get_assertionStatusReport filters.

5.2.9.4 Returns:
Upon successful completion, an empty message is returned. See section 4.8 Success and
Error Reporting.

5.2.9.5 Caveats:
If an error occurs in processing this API call, a dispositionReport structure MUST be returned
to the caller in a SOAP Fault. See Section 4.8 Success and Error Reporting. In addition to the
errors common to all APIs, the following error information is relevant here:

• E_assertionNotFound: Signifies that one of the assertion structures passed does not
have any corresponding match in the publisher’s assertion collection or multiple
instances of the same publisherAssertions elements were passed. The assertion that
caused the problem SHOULD be clearly indicated in the error text.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 111/420

5.2.10 delete_service
The delete_service API call is used to remove one or more businessService elements from the
UDDI registry and from its containing businessEntity parent.

5.2.10.1 Syntax:

5.2.10.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Authentication tokens are obtained using the get_authToken API call or through some
other means external to this specification. Registries that serve multiple publishers
and registries that restrict who can publish in them typically require authInfo for this
call.

• serviceKey: One or more required uddiKey values that represent specific instances
of known businessService data.

5.2.10.3 Behavior:
All contained bindingTemplate data MUST also be removed from the registry as a result of this
call.

If a business service being deleted is the target of a business service projection associated
with another businessEntity, the referencing businessService elements are left untouched.
Such "broken" service projections appear in their businessEntity and businessService
elements containing the businessKey and serviceKey attributes as their only content. For this
reason, it is recommended that references to businessService data published under another
businessEntity be coordinated with the party that manages that data.

5.2.10.4 Returns:
Upon successful completion, an empty message is returned. See section 4.8 Success and
Error Reporting.

5.2.10.5 Caveats:
If an error occurs in processing this API call, a dispositionReport structure MUST be returned
to the caller in a SOAP Fault. See Section 4.8 Success and Error Reporting. In addition to the
errors common to all APIs, the following error information is relevant here:

• E_invalidKeyPassed: Signifies that one of the uddiKey values passed did not match
with any known serviceKey values or multiple instances of the same serviceKey
values were passed. The key causing the error SHOULD be clearly indicated in the
error text.

• E_userMismatch: Signifies that one or more of the serviceKey values passed refers
to data that is not owned by the individual publisher who is represented by the
authentication token.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 112/420

5.2.11 delete_tModel
The delete_tModel API call is used to logically delete one or more tModel structures. Logical
deletion hides the deleted tModels from find_tModel result sets but does not physically delete
them. New references to deleted (hidden) tModels can be established by publishers that know
their keys. Deleting an already deleted tModel has no effect.

5.2.11.1 Syntax:

5.2.11.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Authentication tokens are obtained using the get_authToken API call or through some
other means external to this specification. Registries that serve multiple publishers
and registries that restrict who can publish in them typically require authInfo for this
call.

• tModelKey: One or more required uddiKey values that represent specific instances of
known tModel data.

5.2.11.3 Behavior:
If a tModel is hidden in this way it MUST not be physically deleted as a result of this call. Any
tModels hidden in this way are still accessible, via the get_registeredInfo and get_tModelDetail
APIs, but are omitted from any results returned by calls to find_tModel. All other inquiry APIs
may include references to tModelKeys of deleted tModelKeys, and UDDI data structures that
reference these tModels are found and retrieved.

The purpose of the delete_tModel behavior is to ensure that the details associated with a
hidden tModel are still available to anyone currently using the tModel. A hidden tModel can be
restored and made visible to search results by invoking the save_tModel API at a later time,
passing the original data and the tModelKey value of the hidden tModel.

It is not an error to transfer a hidden tModel (i.e. deleted attribute set to TRUE).

5.2.11.4 Returns:
Upon successful completion, an empty message is returned. See section 4.8 Success and
Error Reporting.

5.2.11.5 Caveats:
If an error occurs in processing this API call, a dispositionReport element MUST be returned to
the caller within a SOAP Fault. See Section 4.8 Success and Error Reporting. In addition to
the errors common to all APIs, the following error information is relevant here:

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 113/420

• E_invalidKeyPassed: Signifies that one of the uddiKey values passed did not match
with any known tModelKey values or multiple instances of the same tModelKey
values were passed. The invalid key references SHOULD be clearly indicated in the
error text.

• E_userMismatch: Signifies that one or more of the tModelKey values passed refers
to data that is not owned by the individual publisher who is represented by the
authentication token.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 114/420

5.2.12 get_assertionStatusReport
The get_assertionStatusReport API call provides administrative support for determining the
status of current and outstanding publisher assertions that involve any of the business
registrations managed by the individual publisher. Using this API, a publisher can see the
status of assertions that they have made, as well as see assertions that others have made that
involve businessEntity structures controlled by the requesting publisher. See Appendix A
Relationships and Publisher Assertions for more information.

5.2.12.1 Syntax:

5.2.12.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Authentication tokens are obtained using the get_authToken API call or through some
other means external to this specification. Registries that serve multiple publishers
and registries that restrict who can publish in them typically require authInfo for this
call.

• completionStatus: This optional argument lets the publisher restrict the result set to
only those relationships that have the specified status value. Assertion status is a
calculated result based on the sum total of assertions made by the individuals that
control specific business registrations. When no completionStatus element is
provided, all assertions involving the businesses that the publisher owns are retrieved,
without regard to the completeness of the relationship. completionStatus MUST
contain one of the following values

o status:complete: Passing this value causes only the publisher assertions
that are complete to be returned. Each businessEntity listed in assertions
that are complete has a visible relationship that directly reflects the data in a
complete assertion (as described in the find_relatedBusinesses API).

o status:toKey_incomplete: Passing this value causes only those publisher
assertions where the party who controls the businessEntity referenced by the
toKey value in an assertion, has not made a matching assertion, to be listed.

o status:fromKey_incomplete: Passing this value causes only those
publisher assertions where the party who controls the businessEntity
referenced by the fromKey value in an assertion, has not made a matching
assertion, to be listed.

o status:both_incomplete. This status value, however, is only applicable to
the context of UDDI subscription and SHOULD not be present as part of a
response to a get_assertionStatusReport request.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 115/420

5.2.12.3 Returns:
Upon successful completion, an assertionStatusReport structure is returned containing zero or
more assertionStatusItem structures. Elements will be sorted by last date change in ascending
order.

The assertionStatusReport has the form:

The assertionStatusReport reports all complete and incomplete assertions and serves an
administrative use for determining if there are any outstanding, incomplete assertions
pertaining to relationships involving businesses with which the publisher is associated.

Since the publisher who was authenticated by the get_assertionStatusReport API may own
several businesses, the assertionStatusReport structure shows the assertions made for all
businesses owned by the publisher.

The assertion status report is composed of a set of assertionStatusItem elements that describe
the assertions in which the publisher’s businesses participate. The assertionStatusItem
element has the form:

The assertionStatusItem structure has the following attribute:

Name Use

completionStatus required

While the elements fromKey, toKey and keyedReference together identify the assertion on
whose status a report is being provided, the keysOwned element designates those
businessKeys the publisher manages. The keysOwned element has the form:

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 116/420

An assertion is part of a reciprocal relationship only if the completionStatus attribute has a
value "status:complete". If completionStatus has a value "status:toKey_incomplete" or
"status:fromKey_incomplete", the party who controls the businessEntity referenced by the
toKey or the fromKey has not yet made a matching assertion.

5.2.12.4 Caveats:
If an error occurs in processing this API call, a dispositionReport element MUST be returned to
the caller within a SOAP Fault. See Section 4.8 Success and Error Reporting. In addition to
the errors common to all APIs, the following error information is relevant here:

• E_invalidCompletionStatus: Signifies that the completionStatus value passed is
unrecognized. The completion status that caused the problem SHOULD be clearly
indicated in the error text.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 117/420

5.2.13 get_publisherAssertions
The get_publisherAssertions API call is used to obtain the full set of publisher assertions that is
associated with an individual publisher. It complements the get_registeredInfo API which
returns information about businesses, services, bindings, and tModels managed by a
publisher.

5.2.13.1 Syntax:

5.2.13.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Authentication tokens are obtained using the get_authToken API call or through some
other means external to this specification. Registries that serve multiple publishers
and registries that restrict who can publish in them typically require authInfo for this
call.

5.2.13.3 Returns:
This API call returns a publisherAssertions structure that contains a publisherAssertion
element for each publisher assertion registered by the publisher. When the registry
distinguishes between publishers, this information is associated with the authentication
information. Only assertions made by the publisher are returned. Elements will be sorted by
last date change in ascending order. See get_assertionStatusReport and Appendix A
Relationships and Publisher Assertions for more details.

The publisherAssertions structure has the form:

5.2.13.4 Caveats:
None, other than those common to all UDDI APIs. See Section 12.1 Common Error Codes.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 118/420

5.2.14 get_registeredInfo
The get_registeredInfo API call is used to get an abbreviated list of all businessEntity and
tModel data that are controlled by a publisher. When the registry distinguishes between
publishers, this is the individual associated with the credentials passed in the authInfo element.
This returned information is intended, for example, for driving tools that display lists of
registered information and then provide drill-down features. This is the recommended API to
use after a network problem results in an unknown status of saved information.

5.2.14.1 Syntax:

Attributes

Name Use

infoSelection required

5.2.14.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Authentication tokens are obtained using the get_authToken API call or through some
other means external to this specification. Registries that serve multiple publishers
and registries that restrict who can publish in them typically require authInfo for this
call.

• infoSelection: This required argument represents an enumerated choice that
determines which tModels are returned. "all" indicates all visible and hidden tModels
owned by the publisher are to be returned (this is the default). "visible" indicates only
visible tModels owned by the publisher are to be returned. "hidden" indicates only
hidden (logically deleted) tModels owned by the publisher are to be returned.

5.2.14.3 Returns:
Upon successful completion, a registeredInfo structure MUST be returned, listing abbreviated
business information in one or more businessInfo elements, and tModel information in one or
more tModelInfo elements. This API is useful for determining the full extent of registered
business and tModel information owned by a single publisher in a single call. This structure
complements the get_publisherAssertions API call, which returns information about assertions
owned by an individual publisher. businessInfos and/or tModelInfos will be sorted case-
sensitively on the primary name in ascending order, using the collation sequence determined
by node policy.

The registeredInfo structure has the form:

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 119/420

5.2.14.4 Caveats:
None, other than those common to all UDDI APIs. See Section 12.1 Common Error Codes.

5.2.15 save_binding
The save_binding API call is used to save or update a complete bindingTemplate element. It
can be used to add or update one or more bindingTemplate elements as well as the
container/contained relationship that each bindingTemplate has with one or more existing
businessService elements. Each bindingTemplate MAY be signed and MAY have publisher-
assigned keys.

5.2.15.1 Syntax:

5.2.15.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Authentication tokens are obtained using the get_authToken API call or through some
other means external to this specification. Registries that serve multiple publishers
and registries that restrict who can publish in them typically require authInfo for this
call.

• bindingTemplate: Required repeating element containing one or more complete
bindingTemplate structures. To save a new bindingTemplate, a bindingTemplate
element is passed with either an empty bindingKey attribute value, or with a publisher-
assigned bindingKey. See Section 5.2.2.2 Behavior of Publishers.

5.2.15.3 Behavior
Each new bindingTemplate passed MUST contain a serviceKey value that corresponds to a
registered businessService controlled by the same publisher. An existing binding template
MAY contain a serviceKey value that corresponds to a registered businessService controlled
by the same publisher. The net effect of this call is to determine the containing parent
businessService for each bindingTemplate affected by this call. If the same bindingTemplate
(determined by matching bindingKey value) is listed more than once, any relationship to the
containing businessService is determined by processing order, which is determined by the
position of the bindingTemplate data in first to last order.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 120/420

If the bindingKey within a bindingTemplate element is missing or is passed with an empty
value, this is a signal that the bindingTemplate is being inserted for the first time. When this
occurs, the node MUST automatically generate a new key for the bindingTemplate that is
without an associated key. New bindingTemplate structures can also be added with publisher-
assigned keys. See Section 5.2.2.2 Behavior of Publishers.

Using this API call it is possible to move an existing bindingTemplate from one
businessService to another by simply specifying a different parent businessService
relationship along with the complete bindingTemplate. Changing a parent relationship in this
way causes two businessService structures to be affected. The net result of such a move is
that the bindingTemplate still resides within one, and only one businessService based on the
value of the serviceKey passed. An attempt to move a bindingTemplate in this manner by a
party who is not the publisher of the businessService that is specified by the serviceKey MUST
be rejected with an error E_userMismatch.

When a bindingTemplate is saved with a categoryBag content that is associated with a
checked value set or category group system tModel, the references MUST be checked for
validity prior to completion of the save, or the node must return E_unsupported, indicating it
does not support the referenced checked value set or category group system. See Section
5.2.3 Special considerations for validated value sets and Appendix F Using Categorization for
additional details.

5.2.15.4 Returns:
This API returns a bindingDetail structure containing the results of the call that reflects the
newly registered information for the effected bindingTemplate elements. If more than one
bindingTemplate is saved in a single save_binding call, the resulting bindingDetail MUST
return results in the same order that they appeared in the save_binding call. If the same
bindingTemplate (determined by matching bindingKey) is listed more than once in the
save_binding call, it MAY be listed once in the result for each appearance in the save_binding
call. If the same bindingTemplate appears more than once in the response, the last occurrence
of the bindingTemplate in the results represents the state stored in the registry. Any
bindingKeys that were assigned as a result of processing the save_binding call are included in
the bindingTemplate data.

The bindingDetail structure has the form:

5.2.15.5 Caveats:
If an error occurs in processing this API call, a dispositionReport element MUST be returned to
the caller in a SOAP Fault. See Section 4.8 Success and Error Reporting. In addition to the
errors common to all APIs, the following error information is relevant here:

• E_accountLimitExceeded: Signifies that user account limits have been exceeded.

• E_invalidKeyPassed: Signifies that the request cannot be satisfied because one or
more uddiKey values specified are not valid key values for the entities being
published. tModelKey, serviceKey, or bindingKey values that either do not exist, or
exist with a different entity type, or are not authorized to be proposed by the publisher
are considered to be invalid values. The key causing the error SHOULD be clearly
indicated in the error text. This error code will also be returned in the event that the
serviceKey is not provided and the bindingKey is either absent or has a value not

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 121/420

registered in the registry. In this case, the error text SHOULD clearly indicate the use
of an incomplete bindingTemplate.

• E_invalidValue: A value that was passed in a keyValue attribute did not pass
validation. This applies to checked value sets that are referenced using
keyedReferences. The error text SHOULD clearly indicate the key and value
combination that failed validation.

• E_keyUnavailable: Indicates that the proposed key has already been assigned to
some other publisher or is not within the partition defined by a key generator tModel
that the publisher owns.

• E_requestTimeout: Signifies that the request could not be carried out because a
needed validate_values service did not respond in a reasonable amount of time.
Details identifying the failing Web service SHOULD be included in the
dispositionReport element.

• E_userMismatch: Signifies that one or more of the uddiKey values passed refers to
data that is not owned by the individual publisher who is represented by the
authentication token.

• E_valueNotAllowed: Restrictions have been placed by the value set provider on the
types of information that should be included at that location within a specific value set.
A validate_values Web service chosen by the UDDI node has rejected this
businessEntity for at least one specified keyedReference. The error text SHOULD
clearly indicate the keyedReference that was not successfully validated.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 122/420

5.2.16 save_business
The save_business API call is used to save or update information about a complete
businessEntity structure. This API has the broadest scope of all of the save_xx API calls, and
can be used to make sweeping changes to the published information for one or more
businessEntity elements controlled by an individual.

This API call can be used to establish a reference relationship to businessService structures
that are managed as the contents of another businessEntity. In this way, a businessService
that is a natural part of one businessEntity can appear as a projected service of another
businessEntity. The content of a businessService projected in this way (by way of a reference
established by this API) are not managed as a part of the referencing entity.

businessEntity structures MAY be signed and MAY have publisher-assigned keys.

5.2.16.1 Syntax:

5.2.16.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Authentication tokens are obtained using the get_authToken API call or through some
other means external to this specification. Registries that serve multiple publishers
and registries that restrict who can publish in them typically require authInfo for this
call.

• businessEntity: Required repeating element containing one or more businessEntity
structures. These can be obtained in advance by using the get_businessDetail API
call or by any other means.

5.2.16.3 Behavior:
If any of the uddiKey values within a businessEntity element (e.g. any data with a key value
regulated by a businessKey, serviceKey or bindingKey) is missing or is passed with an empty
value, this is a signal that the data that is so keyed is being inserted for the first time.24 When
this occurs, the node MUST automatically generate a new key for the data passed that is
without an associated key. New entities can also be added with publisher-assigned keys. See
Section 5.2.2.2 Behavior of Publishers.

To make this API call perform an update to existing registered data, the keyed entities
(businessEntity, businessService or bindingTemplate) MUST have uddiKey values that
correspond to the registered data to be updated.

24

 This does not apply to structures that use keys to refer to other keyed data, such as tModelKey references within
bindingTemplate or keyedReference structures, since these are references. These keys MUST contain values that refer to actual
entities.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 123/420

Data can be deleted with this API call when registered information is different from the new
information provided. Any businessService and bindingTemplate structures found in the
custodial UDDI node, but missing from the businessEntity information provided in this call, are
deleted from the registry by this call.

Data contained within businessEntity structures can be rearranged with this API call. This can
be done by redefining parent container relationships for other registered information. For
instance, if a new businessEntity is saved with information about a businessService that is
registered already as part of a different businessEntity, this results in the businessService
being moved from its current container to the new businessEntity. This condition occurs when
the businessKey of the businessService being saved matches the businessKey of the
businessEntity being saved. An attempt to delete or move a businessService in this manner by
a party who is not the publisher of the businessService MUST be rejected with an error
E_userMismatch.

If the businessEntity being saved contains a businessService that has a businessKey referring
to some businessEntity other than the businessEntity being saved, the UDDI registry notes a
reference, called a "service projection", to the existing businessService. Subsequent calls to
the get_businessDetail API, passing either the businessKey of the businessEntity that contains
the referenced businessService or the businessKey of the businessEntity that contains the
service projection will result in an identical businessService element being included as part of
the result set.

A businessEntity must not contain a businessService and a service projection to this
businessService. As a result, a businessService cannot be moved to a businessEntity that
already has a service projection to that businessService. Regardless of the order of operation,
a businessService and a service projection can never appear under the same businessEntity.
Implementations are required to reject and return an E_fatalError during such a save_business
operation.

No changes to the referenced businessService are effected by the act of establishing a service
projection. Existing service projections associated with the businessEntity being saved that
are not contained in the call to save_business are deleted automatically. This reference
deletion does not cause any changes to the referenced businessService. If the referenced
businessService is deleted by any means, all references to it associated with other
businessEntity structures are left untouched. Such "broken" service projections appear in their
businessEntity as businessService elements containing the businessKey and serviceKey
attributes as their only content. If the businessService is moved to another business, all
projections will be updated to reflect the new businessKey25. For this reason, it is good practice
to coordinate references to businessService data published under another businessEntity with
the party who manages that data

When saving a businessEntity containing a service projection, all of the content of the
businessService provided in the save_business, with the exception of the serviceKey and
businessKey, is ignored. The businessKey and serviceKey of the businessService being
referenced are used to determine if the businessService is for a service projection or not. If the
businessService identified by the serviceKey is not part of the businessEntity identified by the
businessKey, the error E_invalidProjection will be returned.

When a businessEntity is saved with identifierBag or categoryBag contents that is associated
with a checked value set or category group system tModel, the references MUST be checked
for validity prior to completion of the save or the node must return E_unsupported, indicating it
does not support the referenced checked value set or category group system. See Section

25 This solution emphasizes that in all circumstances the real service should be used to retrieve the properties within a service
projection. Based on this premise, there should be no validation or ownership verification done on the businessKey associated with
a service during replication.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 124/420

5.2.3 Special considerations for validated value sets, Appendix E Using Identifiers and
Appendix F Using Categorization for additional details.

5.2.16.4 Returns:
This API returns a businessDetail structure containing the final results of the call that reflects
the new registered information for the businessEntity information provided. Any businessKey,
serviceKey, or bindingKey attributes that were assigned as a result of processing the
save_business are included in the returned data. For businessService elements that are
service projections, the response includes either the businessService elements as provided by
the publisher or the full contents of the real businessService elements. These results include
any businessService elements that are contained by reference. If the same entity
(businessEntity, businessService, or bindingTemplate), determined by matching key, is listed
more than once in the save_business call, it MAY be listed once in the result for each
appearance in the call. If the same entity appears more than once in the response, the last
appearance occurrence of the entity in the results represents either the final saved state stored
in the registry or the last occurrence of the entity provided by the publisher within the request.

The businessDetail has the form:

5.2.16.5 Caveats
If an error occurs in processing this API call, a dispositionReport element MUST be returned to
the caller in a SOAP Fault. See Section 4.8 Success and Error Reporting. In addition to the
errors common to all APIs, the following error information is relevant here:

• E_accountLimitExceeded: Signifies that user account limits have been exceeded.

• E_invalidKeyPassed: Signifies that the request cannot be satisfied because one or
more uddiKey values specified are not valid key values for the entities being
published. tModelKey, businessKey, serviceKey, or bindingKey values that either do
not exist, or exist with a different entity type, or are not authorized to be proposed by
the publisher are considered to be invalid values. The key causing the error SHOULD
be clearly indicated in the error text.

• E_invalidProjection: Signifies that an attempt was made to save a businessEntity
containing a service projection where the businessService being projected is not a
part of the businessEntity that is identified by the businessKey in the businessService.
The serviceKey of at least one such businessService SHOULD be included in the
dispositionReport.

• E_userMismatch: Signifies that one or more of the uddiKey values passed refers to
data that is not owned by the individual publisher who is represented by the
authentication token. The key causing the error SHOULD be clearly indicated in the
error text.

• E_invalidValue: A value that was passed in a keyValue attribute did not pass
validation. This applies to checked value sets that are referenced using
keyedReferences. The error text SHOULD clearly indicate the key and value
combination that failed validation.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 125/420

• E_keyUnavailable: Indicates that the proposed key has already been assigned to
some other publisher or is not within the partition defined by a key generator tModel
that the publisher owns.

• E_requestTimeout: Signifies that the request could not be carried out because a
needed validate_values service did not respond in a reasonable amount of time.
Details identifying the failing Web service SHOULD be included in the
dispositionReport element.

• E_unsupported: A keyedReference in a categoryBag or an identifierBag that
references a checked value set cannot be validated by the UDDI node because the
node does not support the referenced checked value set. The error text should
clearly indicate the keyedReference that cannot be validated.

• E_unvalidatable: A keyedReference in a categoryBag or an identifierBag that
references a checked value set cannot be validated by the UDDI node because the
referenced tModel has been marked unvalidatable. The error text should clearly
indicate the keyedReference that cannot be validated.

• E_valueNotAllowed: Restrictions have been placed by the value set provider on the
types of information that should be included at that location within a specific value set.
A validate_values Web service chosen by the UDDI node has rejected this
businessEntity for at least one specified keyedReference. The error text SHOULD
clearly indicate the keyedReference that was not successfully validated.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 126/420

5.2.17 save_service
The save_service API call adds or updates one or more businessService elements. Each
businessService MAY be signed and MAY have publisher-assigned keys.

5.2.17.1 Syntax:

5.2.17.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Authentication tokens are obtained using the get_authToken API call or through some
other means external to this specification. Registries that serve multiple publishers
and registries that restrict who can publish in them typically require authInfo for this
call.

• businessService: Required repeating element containing one or more complete
businessService elements. For the purpose of performing round trip updates, this
data can be obtained in advance by using the get_serviceDetail API call or by any
other means.

5.2.17.3 Behavior:
Each new businessService passed MUST contain a businessKey value that corresponds to a
registered businessEntity controlled by the same publisher. An existing business service MAY
contain a businessKey value that corresponds to a registered businessEntity controlled by the
same publisher.

If any of the uddiKey values within a businessService element (i.e., any data with a key value
regulated by a serviceKey or bindingKey) is passed with an empty value, this is a signal that
the data that is so keyed is being inserted for the first time. 26 In this case, a new key value
MUST be automatically generated for the data which was passed without an associated key
value. New entities can also be added with publisher-assigned keys. See Section 5.2.2.2
Behavior of Publishers.

If the same businessService is contained in more than one businessService argument, the
final relationship to the containing businessEntity is determined by processing order – which is
determined by first to last order of the information passed in the request. Analogously, if the
same bindingTemplate is specified in the call as being in more than one businessService, the
businessService that is its container at the conclusion of the call is last one listed.

26

 This does not apply to structures that use keys to refer to other keyed data, such as tModelKey references within
bindingTemplate or keyedReference structures, since these are references. These keys MUST contain values that refer to actual
entities.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 127/420

Using this API call it is possible to move an existing bindingTemplate element from one
businessService element to another, or move an existing businessService element from one
businessEntity to another by simply specifying a different parent businessEntity relationship.
Changing a parent relationship in this way causes two businessEntity or two businessService
structures to be changed. An attempt to move a bindingTemplate or a businessService in this
manner by a party who is not the publisher of the businessService that is specified by the
serviceKey or the businessEntity that is specified by the businessKey MUST be rejected with
an error E_userMismatch.

When a businessService is saved with categoryBag contents that is associated with a checked
value set or category group system tModel, the references MUST be checked for validity prior
to completion of the save or the node MUST return E_unsupported, indicating it does not
support the referenced checked value set or category group system. See Section 5.2.3
Special considerations for validated value sets and Appendix F Using Categorization for
additional details.

5.2.17.4 Returns:
This API call returns a serviceDetail containing the final results of the call that reflects the newly
registered information for the affected businessService elements. In cases where multiple
businessService elements are passed in the request, the result contains the final results for
each businessService passed and these appear in the same order as found in the request.
Any serviceKey and bindingKey values that were assigned as a result of processing the
save_service API are included in the businessService data.

If the same entity (businessService, or bindingTemplate), determined by matching key, is listed
more than once in the save_service API, it MAY be listed once in the result for each
appearance in the save_service API. If the same entity appears more than once in the
response, the last occurrence of the entity in the results represents the state stored in the
registry.

The serviceDetail has the form:

5.2.17.5 Caveats:
If an error occurs in processing this API call, a dispositionReport element MUST be returned to
the caller within a SOAP Fault. See Section 4.8 Success and Error Reporting. In addition to
the errors common to all APIs, the following error information is relevant here:

• E_accountLimitExceeded: Signifies that user account limits have been exceeded.

• E_invalidKeyPassed: Signifies that the request cannot be satisfied because one or
more uddiKey values specified are not valid key values for the entities being
published. tModelKey, businessKey, serviceKey, or bindingKey values that either do
not exist, or exist with a different entity type, or are not authorized to be proposed by
the publisher are considered to be invalid values. The key causing the error SHOULD
be clearly indicated in the error text. This error code will also be returned in the event
that the businessKey is not provided and the serviceKey is either absent or has a

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 128/420

value not registered in the registry. In this case, the error text SHOULD clearly
indicate the use of an incomplete businessService.

• E_invalidValue: A value that was passed in a keyValue attribute did not pass
validation. This applies to checked value sets referenced using keyedReferences.
The error text SHOULD clearly indicate the key and value combination that failed
validation.

• E_keyUnavailable: Indicates that the proposed key has already been assigned to
some other publisher or is not within the partition defined by a key generator tModel
that the publisher owns.

• E_requestTimeout: Signifies that the request could not be carried out because a
needed validate_values service did not respond in a reasonable amount of time.
Details identifying the failing Web service SHOULD be included in the
dispositionReport element.

• E_userMismatch: Signifies that one or more of the uddiKey values passed refers to
data that is not owned by the individual publisher who is represented by the
authentication token.

• E_unsupported: A keyedReference in a categoryBag that references a checked
value set cannot be validated by the UDDI node because the node does not support
the referenced checked value set. The error text SHOULD clearly indicate the
keyedReference that cannot be validated.

• E_unvalidatable: A keyedReference in a categoryBag that references a checked
value set cannot be validated by the UDDI node because the referenced tModel has
been marked unvalidatable. The error text SHOULD clearly indicate the
keyedReference that cannot be validated.

• E_valueNotAllowed: The value set validation routine chosen by the UDDI node has
rejected the businessService data provided. The error text SHOULD clearly indicate
the keyedReference that was not successfully validated.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 129/420

5.2.18 save_tModel
The save_tModel API call adds or updates one or more registered tModel elements. tModels
MAY be signed and tModels MAY be saved with publisher-assigned keys, including those
tModels that establish the domain partition of publisher-assigned keys, known as domain key
generator tModels.

5.2.18.1 Syntax:

5.2.18.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Authentication tokens are obtained using the get_authToken API call or through some
other means external to this specification. Registries that serve multiple publishers
and registries that restrict who can publish in them typically require authInfo for this
call.

• tModel: Required repeating element containing one or more required repeating
complete tModel elements. For the purpose of performing round-trip updates, this
data can be obtained in advance by using the get_tModel API call or by other means.

5.2.18.3 Behavior:
If the uddiKey value within a tModel (i.e., tModelKey) is missing or is passed with an empty
value, this is a signal that a new tModel is being inserted and that the UDDI registry MUST
assign a new tModelKey identifier to this data. If the new tModel is categorized with the
keyGenerator value from the uddi:uddi.org:categorization:types category system, any
publisher assigned key MUST end with the string ":keygenerator" , making the tModel a key
generator tModel. If the new tModel is categorized with the keyGenerator value from the
uddi:uddi.org:categorization:types category, an empty uddiKey signifies that the tModelKey
generated by the node will end with the string ":keygenerator", making the tModel a key
generator tModel. New tModels can also be added with publisher-assigned keys. See Section
5.2.2.2 Behavior of Publishers and Section 5.2.18.3.1 Domain Key Generator tModels.

This API call performs an update to existing registered data when the tModelKey values have
uddiKey values that correspond to already registered data.

If a tModelKey value is passed that corresponds to a tModel that was previously hidden via the
delete_tModel API call, the save_tModel service restores the tModel to full visibility, making it
available for return in find_tModel results.

The value of the deleted attribute in the tModel is set to false in all saves.

Multiple representations of the overview document MAY be registered for a tModel allowing,
for example, both technical and human readable representations of the technical overview to
be provided.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 130/420

When a tModel is saved with keyedReferences, all tModelKeys used in keyedReferences
must refer to tModels that existed prior to processing the tModel containing the references. A
save_tModel API call may contain a sequence of tModels, in which case a keyedReference in
a tModel may refer to tModelKeys created earlier but not later in the sequence. A tModel being
created must not refer to itself. Self-referencing tModels can be created by using two
subsequent save_tModel API calls, the first one without the reference, and the second one
with the reference (to the already saved tModel). If these conditions are not met, the node
MUST return E_invalidKeyPassed.

When a tModel is saved with identifierBag or categoryBag contents that is associated with a
checked value set or category group system tModel, the references MUST be checked for
validity prior to completion of the save, or the node MUST return E_unsupported, indicating it
does not support the referenced checked value set or category group system. See Section
5.2.3 Special considerations for validated value sets, Appendix E Using Identifiers and
Appendix F Using Categorization for additional details.

5.2.18.3.1 Domain key generator tModels
For registries that use the recommended key syntax, a domain key generator tModel
establishes a key partition from which uddiKeys can be derived and used in other entities
controlled by the publisher, as described in Section 4.4.1 Key Syntax. Additional
considerations are involved when publishing a domain key generator tModel for the first time.

1. The tModelKey MUST be in the form of a domain_key and MUST end with the term:
keyGenerator.

2. The tModelKey MUST be categorized with the keyGenerator value from the
uddi:uddi.org:categorization:types category system.

3. Registry policy for establishing key domains MAY require the tModel to be signed.

Also, publishers of key generator tModels MAY use the overviewDoc to describe how the key
space is defined.

The save_tModel API call does a first pass check of the tModel to check its suitability and, if it
is acceptable according to the policy of the registry for saving domain key generator tModels,
returns the tModelDetail for the registry. If it is not acceptable the reason is clearly indicated in
the returned dispositionReport and no further processing takes place.

If the registry has multiple nodes, returning the tModelDetail is not an indication that the
domain key generator tModel has been published successfully. A registry that allows publisher
assigned keys MUST have a policy to ensure domainKey collisions do not occur. The
custodial node MUST ensure that the domain key generator tModel is not in the process of
being published simultaneously on some other node. If, after the conclusion of a full replication
cycle, no UDDI node has already assigned or attempted to assign the partition (e.g., no
change record has been received from other nodes), the custodial node completes the publish
operation of the domain key generator tModel, assigning it to the publisher. If some other node
has already been assigned the partition, the tModel is not published. See Section 7.3.9
changeRecordNewDataConditional for more information on the replication structure, and
Section 9.4.2 General Keying Policy and Section 9.4.3 Policy Abstractions for the UDDI keying
scheme for the recommended policy that addresses acceptance of a domain key generator.

When the publishing of a domain key generator tModel has completed, the custodial node
MAY notify the publisher that the tModel is ready for use. Whether a node does this and the
means by which it does so is a node policy. A typical node policy is to notify the publisher by e-
mail using an e-mail address gathered at the time the publisher account was set up.

Before the publish operation is complete, the domain key generator tModel will be ignored by
find_xx and get_xx API calls, and will return an E_keyUnavailable error to further save_tModel
calls.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 131/420

If after the replication cycle the publisher is in doubt about the outcome, get_tModelDetail may
be issued specifying the key of the domain key generator tModel being published. If a tModel
is retrieved and the publisher is the owner, the operation succeeded. If a tModel is retrieved
and some other publisher is the owner, the operation failed because another publisher
published a domain key generator with the chosen domain_key first. If no tModel is retrieved,
then either the registry experienced a failure, or two publishers tried to publish tModels with the
same key "simultaneously", and neither succeeded. In either of these cases, the save_tModel
operation may be retried.

Attempts to remove the following categorization from a successfully published key generator
tModel will fail with E_fatalError, since it is this very categorization that distinguishes key
generator tModels from other tModels:

<tModelKey="uddi:uddi.org:categorization:types" keyValue="keyGenerator" />

5.2.18.4 Returns:
In most cases this API returns a tModelDetail containing the final results of the call that reflects
the new or pending registered information for the affected tModel structures. Any tModelKey
attributes that were assigned as a result of processing the save_tModel API are included in the
tModel data. When a domain key generator is saved for the first time, the tModel that is
returned in the tModelDetail represents an interim state, until all nodes in the registry have
ascertained that the requested key domain does in fact belong to the publisher27. See Section
7.3.9 changeRecordNewDataConditional for more information. If multiple tModel elements are
passed in the save_tModel request, the order of the response MUST exactly match the order
that the elements appeared in the save. If the same tModel, determined by matching key, is
listed more than once in the save_tModel API, it MAY be listed only once in the result for each
appearance in the save_tModel API. If the same tModel appears more than once in the
response, the last occurrence of the tModel in the results represents the state stored in the
registry.

The tModelDetail has the form:

5.2.18.5 Caveats:
If an error occurs in processing this API call, a dispositionReport element MUST be returned to
the caller in a SOAP Fault. See Section 4.8 Success and Error Reporting. In addition to the
errors common to all APIs, the following error information is relevant here:

• E_accountLimitExceeded: Signifies that user account limits have been exceeded.

• E_invalidKeyPassed: Signifies that the request cannot be satisfied because one or
more uddiKey values specified are not valid key values for the entities being
published. tModelKey values that either do not exist, or exist with a different entity

27

 It is not possible to deterministically know when a save_tModel API call for a keyGenerator tModel has been unsuccessful when
such failure occurs as a result of checking performed subsequent to the synchronous response provided with the save_tModel API.
Nodes are, however, encouraged to provide publishers with details on such failures using out-of-band communication
mechanisms, such as e-mail

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 132/420

type, or are not authorized to be proposed by the publisher are considered to be
invalid values. The key causing the error SHOULD be clearly indicated in the error
text.

• E_invalidValue: A value that was passed in a keyValue attribute did not pass
validation. This applies to checked value sets referenced using keyedReferences.
The error text SHOULD clearly indicate the key and value combination that failed
validation.

• E_keyUnavailable: Indicates that the proposed key has already been assigned to
some other publisher, is not within the partition defined by a key generator tModel that
the publisher owns, or, in the case of a domain key generator tModel being saved for
the first time, is assigned to some other publisher or is still pending its first save.

• E_requestTimeout: Signifies that the request could not be carried out because a
needed validate_values Web service did not respond in a reasonable amount of time.
Details identifying the failing Web service SHOULD be included in the
dispositionReport element.

• E_unacceptableSignature: Indicates that the digital signature in the tModel is
missing or does not meet the requirements of the registry. The errInfo element
provides additional details.

• E_userMismatch: Signifies that one or more of the uddiKey values passed refers to
data that is not owned by the individual publisher who is represented by the
authentication token.

• E_unsupported: A keyedReference in a categoryBag or an identifierBag that
references a checked value set cannot be validated by the UDDI node because the
node does not support the referenced checked value set. The error text SHOULD
clearly indicate the keyedReference that cannot be validated.

• E_unvalidatable: A keyedReference in a categoryBag or an identifierBag that
references a checked value set cannot be validated by the UDDI node because the
referenced tModel has been marked unvalidatable. The error text SHOULD clearly
indicate the keyedReference that cannot be validated.

• E_valueNotAllowed: Restrictions have been placed by the value set provider on the
types of information that should be included at that location within a specific value set.
The validation routine chosen by the UDDI node has rejected this tModel for at least
one specified keyedReference. The error text SHOULD clearly indicate the
keyedReference that was not successfully validated.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 133/420

5.2.19 set_publisherAssertions
The set_publisherAssertions API call is used to manage all of the tracked relationship
assertions associated with an individual publisher. See Appendix A Relationships and
Publisher Assertions for more information.

5.2.19.1 Syntax:

5.2.19.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Authentication tokens are obtained using the get_authToken API call or through some
other means external to this specification. Registries that serve multiple publishers
and registries that restrict who can publish in them typically require authInfo for this
call.

• publisherAssertion: Optional repeating element asserting a relationship.
Relationship assertions consist of a reference to two businessEntity key values as
designated by the fromKey and toKey elements, as well as a REQUIRED expression
of the directional relationship within the contained keyedReference element. See
Appendix A Relationships and Publisher Assertions. The fromKey, the toKey, and all
three parts of the keyedReference – the tModelKey, the keyName, and the keyValue
– MUST be specified. E_fatalError is returned if any of these elements are missing in
any of the publisherAssertion elements. Empty (zero length) keyNames and
keyValues are permitted.

5.2.19.3 Behavior:
The full set of assertions associated with a publisher is effectively replaced whenever this API
is used. When this API call is processed, the publisher assertions that exist prior to this API
call for a given publisher are examined by the UDDI registry. Any new assertions not present
prior to the call are added to the assertions attributed to the publisher. Any existing assertions
not present in the call are deleted. As a result, new relationships may be completed (e.g.
determined to have a completed status), and existing relationships may be dissolved. Invoking
this API with no publisherAssertion elements deletes all assertions associated with the
publisher.

Any relationships attributed to assertions previously present but not present in the data
provided in this call are deactivated and are no longer visible via the find_relatedBusinesses
API. For the sake of determining uniqueness within an assertion set, the fromKey, toKey, and
the entire keyedReference within the publisherAssertion element are significant. Any
differences in any of the individual publisherAssertion element contents constitute a new
unique assertion for purposes of detecting new assertions. The direction of the relationship, as

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 134/420

indicated by the two businessKey values in the fromKey and toKey elements, is also relevant
in determining assertion uniqueness.

The publisher must own the businessEntity referenced in the fromKey, the toKey, or both. If
both of the businessKey values passed within an assertion are owned by the publisher, then
the assertion is automatically complete and the relationship described in the assertion is visible
via the find_relatedBusinesses API. To form a relationship when the publisher only owns one
of the two keys passed, the assertion MUST be matched exactly by an assertion made by the
publisher who owns the other business referenced. Assertions exactly match if and only if they:

1. refer to the same businessEntity in their fromKeys;

2. refer to the same businessEntity in their toKeys;

3. refer to the same tModel in their tModelKeys;

4. have identical keyNames; and

5. have identical keyValues.

When a publisherAssertion that is being saved references a checked relationship system
using the tModelKey in the contained keyedReference, the reference MUST be checked for
validity prior to completion of the save, or the node must return E_unsupported, indicating it
does not support the referenced checked relationship system. Validation of a relationship
system reference entails verification that the reference is valid according to the validation
algorithm defined for the relationship system and described by its tModel. For cached checked
relationship system, the validation algorithm verifies that referenced keyedReferences are valid
for the relationship system.

For registries supporting the subscription APIs at any node, it is necessary to track a modified
date for publisherAssertion elements so that nodes have the necessary information for
responding to subscription requests involving find_relatedBusinesses and
get_assertionStatusReport filters.

5.2.19.4 Returns:
Upon successful completion, a publisherAssertions structure is returned containing all of the
relationship assertions currently attributed to the publisher. When registries distinguish
between publishers, the structure contains assertion data that is associated with the authInfo
passed.

See Section 5.2.13.3 get_publisherAssertions for more information on the publisherAssertions
structure and contents.

This API returns all assertions made by the publisher who was authenticated in the
set_publisherAssertions API.

5.2.19.5 Caveats:
If an error occurs in processing this API call, a dispositionReport element MUST be returned to
the caller in a SOAP Fault. See Section 4.8 Success and Error Reporting. In addition to the
errors common to all APIs, the following error information is relevant here:

• E_invalidKeyPassed: Signifies that one of the uddiKey values passed did not match
with any known businessKey or tModelKey values. The assertion element and the
key that caused the problem SHOULD be clearly indicated in the error text.

• E_userMismatch: Signifies that neither of the businessKey values passed in the
embedded fromKey and toKey elements is controlled by the publisher associated with
the authentication token. The error text SHOULD clearly indicate which assertion
caused the error.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 135/420

5.3 Security Policy API Set
The security API includes the following API calls:

• discard_authToken: Used to inform a node that a previously obtained authentication
token is no longer required and should be considered invalid if used after this
message is received.

• get_authToken: Used to request an authentication token in the form of an authInfo
element from a UDDI node. An authInfo element MAY be required when using the
API calls defined in Section 5.1 Inquiry API Set, Section 5.2 Publication API Set,
Section 5.4 Custody and Ownership Transfer API Set, and Section 5.5 Subscription
API Set.

Whether authInfo elements are required on API calls is determined by node policy as
described in Section 4.8 About Access Control and the authInfo Element. In the event that an
authInfo element is not discarded, a node MAY choose to expire the authentication token so it
is no longer valid for authentication in API calls after a period of time. If an expired token is
passed to an API call other than discard_authToken, the error E_authTokenExpired will be
returned as described in Chapter 12, Error Codes.

A UDDI node typically does not support the Security API set if it does not support using an
authInfo element in any API set. If the node does support using an authInfo element in any of
the API set provided by the node, it SHOULD support the Security API set. A node MAY
provide an alternative mechanism for obtaining authInfo elements.

5.3.1 discard_authToken
The discard_authToken API call is used to inform a node that the passed authentication token
is to be discarded, effectively ending the session.

5.3.1.1 Syntax:

5.3.1.2 Arguments:
• authInfo: This required argument is an element that contains an authentication token.

Authentication tokens are obtained using the get_authToken API call.

5.3.1.3 Behavior:
Discarding an expired authToken is processed and reported as a success condition.

5.3.1.4 Returns:
Upon successful completion, an empty message is returned. See section 4.8 Success and
Error Reporting.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 136/420

5.3.1.5 Caveats:
If an error occurs in processing this API call, a dispositionReport structure will be returned to
the caller in a SOAP Fault.

5.3.2 get_authToken
The get_authToken API call is used to obtain an authentication token. An authToken element
MAY be required when using the API calls defined in Section 5.1 Inquiry API Set, Section 5.2
Publication API Set, Section 5.4 Custody and Ownership Transfer API Set, and Section 5.5
Subscription API Set.

5.3.2.1 Syntax:

Attributes

Name Use

userID Required

cred Required

5.3.2.2 Arguments:
• userID: This required attribute argument is the user identifier that an individual

authorized user was assigned by a UDDI node. Nodes SHOULD provide a means for
individuals to obtain a userID and password credentials that will be valid at the given
node.

• cred: This required attribute argument is the password or credential that is associated
with the user.

5.3.2.3 Returns:
Upon successful completion this API call returns an authToken structure that contains a valid
authInfo element that can be used in subsequent calls to API calls that require an authInfo
value.

The authToken message has the form:

The authToken structure contains a single authInfo element that represents a token that is to
be passed back in API calls that require one. This structure is always returned as a
synchronous response to the get_authToken message.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 137/420

5.3.2.4 Caveats:
If an error occurs in processing this API call, a dispositionReport element will be returned to the
caller within a SOAP Fault. In addition to the errors common to all APIs, the following error
information is relevant here:

• E_unknownUser: Signifies that the UDDI node that received the request does not
accept the userID and/or cred argument values passed as valid credentials.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 138/420

5.4 Custody and Ownership Transfer API Set
This section defines the UDDI Custody and Ownership Transfer API Set28. Data custody is
introduced in Section 1.5.6 Data Custody. Ownership transfer is introduced in Section 1.5.7
Transfer of Ownership. By virtue of having created an entity, a publisher has ownership of the
entity and is said to be the owner of the entity. A custodial node MUST maintain a relationship
of ownership between an entity and its publisher by means of authorization mechanisms.
Every node of a multi-node registry MUST guarantee the integrity of an entity's custody. As
such, a node MUST not permit changes to an entity unless it has custody of it.

The Custody and Ownership Transfer API Set enables any nodes of a registry to cooperatively
transfer custody of one or more businessEntity or tModel structures from one node to another,
as well as allowing the transfer of ownership of these structures from one publisher to another.
Associated entities of a businessEntity such as its businessService, bindingTemplate, and
publisherAssertion structures are transferred as part of the custody transfer of the business
entity.

From a custody transfer point of view, the publishers are always distinct, though it may be the
case that the publishers are the same person. Also, the two nodes may or may not be distinct;
intra-node transfer between two publishers is simply a degenerate case in which node custody
does not change. Thus, in the case of an inter-node transfer, ownership transfer is implied. In
the case of an intra-node transfer the behavior results in the transfer of ownership between two
publishers.

For example, one UDDI registry, UDDI-1, MAY allow each node in UDDI-1 (composed of
nodes 1A, 1B and 1C) to define its own policies for registration, authentication and
authorization. In this case, a "person", (P1) would need to review the policies of all 3 nodes
and decide upon the node with which it chooses to register with. P1 may choose to register
with more than one node. P1 registers with node1A . Node1A also specifies how P1 is
authenticated. If P1 successfully authenticates and publishes a business entity (BE1) then P1
becomes the "owner" of BE1. Node1A is said to be the "custodian" of BE1. P1 can also
register at node1B. If P1 successfully authenticates and publishes a business entity (BE2) then
P1 becomes the "owner" of BE2. Node1B is said to be the "custodian" of BE2. There is no
assumption that the registry UDDI-1 or its nodes (node1A and node1B) are aware that P1 is
the same "person". P1 is responsible for maintaining the appropriate identity and
authenticating correctly to each node within a registry.

Another UDDI registry, UDDI-2, MAY require each of its nodes (node2-1, node2-2 and node2-
3) to use the same registration, authentication and authorization mechanisms. In this case, the
policies are the same across all nodes. The relationship of registration, publication and
ownership remains the same. If P1 wants to register with different nodes in UDDI-2, then it
needs to differentiate its registration with the different nodes, since an attempt to register at
node2-2 after registering at node2-1, would fail as "already registered" (since by policy the
nodes all share the same registration, authentication and authorization).

5.4.1 Overview
There are a number of scenarios where a publisher may choose to transfer custodianship or
ownership of one or more entities. These are described in this section.

28

 The Custody Transfer tModel is but one of several tModels defined for UDDI. See Section 11.3.5 UDDI Custody Transfer API
tModel for more information.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 139/420

5.4.1.1 Intra-Node Ownership Transfer
Intra-node ownership transfer involves transferring entity ownership from one publisher to
another within the same UDDI node. Usage scenarios for this type of transfer include the
following:

• Businesses or organizational merges: Multiple organizations need to be consolidated
under the control of a single publisher.

• Domain key generators: One use of ownership transfer is the transfer of ownership of
a derived key generator from one publisher to another to enable her or him to publish
entities using keys in that domain.

The save_xx APIs can also be used to move entities between parent entities that are owned
by the same publisher. The save_service API, for example, can be used to move services
(and binding templates) between one business entity and another as described in Section
5.2.17.3 Behavior of the save_service API. Changing the parent relationship in this way
causes two businessEntity structures to be changed. Doing so enables the following
scenarios:

• Divestitures: An organization needs to reassign the control of a set of services to two
or more publishers.

• Consolidation of registry entities: There are multiple entities for a given business that
are to be consolidated under a single publisher.

5.4.1.2 Inter-Node Custody Transfer
Inter-node custody transfer involves the custody transfer of a set of entities across nodes of a
UDDI registry. A transfer of ownership ensues as a consequence of this custody transfer. In
addition to the intra-node scenarios described above, inter-node custody transfer may be used
to address the following use cases:

• Unsatisfactory service level: The functionality or service level provided by a given
node operator is insufficient, and the publisher wishes to move their UDDI data to
another node.

• Change in availability for a UDDI node: A node is no longer providing UDDI services,
and all publishers need to be migrated to one or more nodes of the registry.

• Organizational Mergers, Divestitures or Consolidations: Changes in organizational
structure may result in the need to make changes to the set of publishers used to
manage the entities at various nodes of a registry.

For any of these intra and inter-node scenarios, a mechanism is specified to facilitate the
transfer the custody of businessEntity and tModel entities between nodes whether the entity is
being transferred within a single node or whether a custody transfer occurs between nodes of
a registry.

5.4.2 Custody Transfer Considerations
When a businessEntity is transferred, all related businessService and bindingTemplate
elements are transferred as well. In addition, any publisherAssertion elements that reference
the businessEntity element’s businessKey that are owned by the publisher are also
transferred.

Note that the relinquishing publisher is not required to transfer all of its UDDI entities (i.e.
businessEntity and/or tModel entities) in a single custody transfer request, nor is it required to
transfer all of its entities to the same target publisher or target node. Any combination or
subset of UDDI registry entities may be transferred to any number of target publishers or
nodes.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 140/420

5.4.3 Transfer Execution
The Custody and Ownership Transfer API Set enables two publishers P1 and P2 and two
nodes, N1 and N2, in a registry to cooperatively transfer custody of one or more existing
businessEntity or tModel structures, E1…En, from N1 to N2 and, and by extension to transfer
ownership of the entities from P1 to P2. Related businessService, bindingTemplate, and
publisherAssertion structures are transferred with their related businessEntities. From the
registry’s point of view, the publishers are always distinct, though it may be the case that P1
and P2 are the same party. The two nodes may or may not be distinct; intra-node transfer of
ownership from P1 to P2 is simply a degenerate case in which node custody does not change.

The Custody and Ownership Transfer API Set is divided into two parts, a set of two client APIs
and a single inter-node API. These client APIs are get_transferToken and transfer_entities; in
short, this constitutes the Ownership Transfer API portion of this API set. The inter-node-API is
transfer_ custody which when combined with replication makes up the Custody Transfer API
portion of this API set.

The overall flow of custody and ownership transfer is as follows:

Publisher P1 invokes get_transferToken on N1, specifying the keys K1…Kn of the entities
E1…En that are to be transferred. If P1 is authorized to do this (i.e., if P1 has ownership of
E1…En), N1 returns a structure T, called a transfer token, that represents authority to transfer
the entities, including all of the naturally contained children and publisher assertions related to
business entities involved in the transfer that are owned by P1. The transferToken is a
structure that consists of an opaque string that is meaningful only to the node that issued it, an
expiration time, and a node identifier.

P1 then gives T to P2 (typically by some secure means since T is valuable). The publisher
obtaining the custody information needs to have previously obtained a publishers account on
the node accepting custody of the entity before he/she can complete the custody transfer. P2
then invokes transfer_entities on N2, passing K1…Kn and T. If transfer_entities completes
successfully, the entities E1…En and their related structures (businessService,
bindingTemplate, and publisherAssertion) are in the custody of N2 and are owned by P2. If the
operation fails, nothing happens to the entities. The actual transfer proceeds as follows, in the
processing of transfer_entities.

If N1 and N2 are not distinct nodes, the ownership transfer from P1 to P2 is an operation that is
purely internal to the node – how it happens is up to the implementation. If N1 and N2 are
distinct, the following protocol occurs while processing the transfer_entities request on N2.

Upon receipt of a transfer_entities request, N2 checks that K1…Kn are valid keys. There is the
possibility that P1 might transfer more data than P2 can accept due to policy-based restrictions
on the limit of entities allowed to be owned by P2 at N2. As is described below, replication is
used to complete the custody transfer process. A question that arises is at the time of
accepting the datum related to the transfer, could N2 throw a replication error because the
data being transferred exceeds the limits of user P2? Such limits can not be enforced during
replication because they are node-local policy decisions from the perspective of enforcement.
Thus, it is therefore possible that as a result of a custody transfer a publisher may be caused to
hold more data that he/she would have been able to publish. Should this situation occur, P2
MUST not be allowed to publish any additional data unless P2 first reduces the number of
entries it owns to an allowable limit.

If all is well, N2 invokes the inter-node API transfer_custody on N1, presenting the keys of top-
level entities to be transferred, K1…Kn, P2’s identity (using the publisher’s authorizedName),
N2’s node identifier (as known in the Replication Configuration structure, see Section 7.5.2
Configuration of a UDDI Node – operator element), and T. The transferToken, T, implies
permission to transfer the entire content of the entities it identifies, including all of the contained
entities and related publisherAssertions, if any. N1 checks to see whether T is a valid
transferToken that it issued and that T represents the authority to transfer E1…En. If the
validation is successful, N1 prevents further changes to entities E1…En. N1 then updates the

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 141/420

authorizedName and nodeID of the operationalInfo of E1…En and related entities so that they
are shown to be in the custody of N2 and owned by P2. Finally, N1 responds to N2 which
triggers N2 to respond to the transfer_entities caller. This completes the processing for the
transfer_entities request.

In the case that the datum being transferred is a key generator tModel, N1 will disallow further
generation of keys associated with this key partition at its node.

Following the issue of the empty message by N1 to the transfer_custody call, N1 will submit
into the replication stream a changeRecordNewData providing in the operationalInfo, N2’s
nodeID identifying it as the node where the datum is being transferred to, and the
authorizedName of P2. The acknowledgmentRequested attribute of this change record MUST
be set to "true".

The last modified date timestamp in the operationalInfo must change to reflect the custody
transfer. Figure 2 depicts the flow of a custody transfer between P1 and P2.

Figure 2 - Custody Transfer

Once N2 receives the changes via the replication stream it assumes custody of E1…En and
assigns ownership of the entities and related entities owned by P1 to P2.

5.4.3.1 Content of a transferToken
The transferToken is a structure that consists of an opaque string that is meaningful only to the
node that issued it, an expiration time, and a node identifier. It represents the one-time
authority to transfer ownership of a specific set of entities to any publisher and to transfer

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 142/420

custody of them to any node in the registry. Issuing it does not cause any such transfer to
occur; it is simply an authorization for such a transfer to take place. The authority represented
by a transferToken expires after some period of time, per node policy.

The expiration time represents the time, according to the node that issued the transferToken,
after which the token is no longer valid. The expiration time is only a convenience; changing it
does not change the time at which the authority expires. The node identification identifies, in a
registry dependent way, the node that issued the transferToken. It is used by the node that
receives the transferToken to determine which node in the registry to direct the
transfer_custody request to.

The opaque token SHOULD reflect the entities that the custodial publisher has sought
permission to be transferred. It is often used in the latter stages of the custody transfer
process by the custodial node to verify that the entities that the target publisher is requesting to
own have been authorized by the target node under the auspices of the transferToken.

5.4.4 discard_transferToken
The discard_transferToken API is a client API used to discard a transferToken obtained
through the get_transferToken API at the same node. This API accepts either a transferToken
or a keyBag as parameters to remove the permission to transfer data associated with a
particular transferToken. If a keyBag is provided, all tokens corresponding to the keys in the
keyBag will be discarded and will no longer be valid for custody or ownership transfer after the
discard_transferToken is processed, irrespective of whether the keys match any known
business or tmodelKey values. In the event that the keyBag represents a subset of the
keyBag for one or more transferToken elements, the transferToken is discarded and will no
longer be valid for transferring any entity. If the token passed in the transferToken argument
does not match an existing token known to the system, no action is taken and success is
reported. Keys in the keyBag argument that do not have a corresponding token are ignored.

5.4.4.1 Syntax

5.4.4.2 Arguments
• authInfo: This OPTIONAL argument is an element that contains an authentication

token. Authentication tokens are obtained using the get_authToken API call or
through some other means external to this specification, and represent the identity of
the publisher at a UDDI node.

• transferToken: This is a known transferToken obtained by a publisher at the node
where the get_transferToken API was invoked.

• keyBag: One or more uddiKeys associated either with businessEntity or tModel
entities owned by the publisher that were to be transferred to some other publisher
and/or node in the registry as the result of invocation of get_transferToken. At least
one businessKey or tModelKey must be provided in a keyBag.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 143/420

5.4.4.3 Returns
Upon successful completion, an empty message is returned. See section 4.8 Success and
Error Reporting.

No error will be reported if the transferToken provided in the call does not match an existing
token. No error will be reported if a token is not found for a particular key in the keyBag.

5.4.4.4 Caveats
If an error occurs in processing this API call, a dispositionReport structure MUST be returned
to the caller in a SOAP Fault. See Section 4.8 Success and Error Reporting. In addition to the
errors common to all APIs, the following error information is relevant here:

• E_invalidKeyPassed: signifies that one of the uddiKey values passed for entities to
be transferred did not match with any known businessKey or tModelKey values. The
key and element or attribute that caused the problem SHOULD be clearly indicated in
the error text.

5.4.5 get_transferToken
The get_transferToken API is a client API used to initiate the transfer of custody of one or more
businessEntity or tModel entities from one node to another. As previously stated, the two
nodes may or may not be distinct; intra-node transfer between two publishers is simply a
degenerate case in which node custody does not change. No actual transfer takes place with
the invocation of this API. Instead, this API obtains permission from the custodial node, in the
form of a transferToken, to perform the transfer. The publisher who will be recipient of the
transferToken returned by this API must invoke the transfer_entities API on the target custodial
node to actually transfer the entities.

5.4.5.1 Syntax

5.4.5.2 Arguments
• authInfo: This OPTIONAL argument is an element that contains an authentication

token. Authentication tokens are obtained using the get_authToken API call or
through some other means external to this specification and represent the identity of
the publisher at a UDDI node.

• keyBag: One or more key (of type uddi:uddiKey) associated either with
businessEntity or tModel entities owned by the publisher that are to be transferred to

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 144/420

some other publisher and/or node in the registry. At least one businessKey or
tModelKey must be provided.

5.4.5.3 Returns
If the publisher identified by the authInfo element owns the businessEntity elements identified
by the businessKey elements provided and the tModel elements identified by the tModelKey
elements provided, a transferToken is returned that represents the one-time permission to
transfer custody of the identified entities.

The transfer token consists of a nodeID, an expirationTime and an opaqueToken. The nodeID
is used during the transfer_entities API by the recipient node to confirm with the relinquishing
custodial node that the custody transfer is authorized and still valid. The nodeID of the
transferToken is the value of the nodeID element of the Replication Configuration Structure.
Refer to Section 7.5.2 Configuration of a UDDI Node – operator Element.

The expirationTime, defined as xsd:dateTime, represents the time at which the transfer token
is no longer valid.

The opaqueToken is only meaningful to the node that issues it. The opaqueToken is defined
as xsd:base64Binary to allow for a RECOMMENDED encryption of the token under the
relinquishing custody node’s own encryption key.

5.4.5.4 Caveats
If an error occurs in processing this API call, a dispositionReport structure MUST be returned
to the caller in a SOAP Fault. See section 4.8 Success and Error Reporting. In addition to the
errors common to all APIs, the following error information is relevant here:

• E_invalidKeyPassed: signifies that one of the uddiKey values passed for entities to
be transferred did not match with any known businessKey or tModelKey values. The
key and element or attribute that caused the problem SHOULD be clearly indicated in
the error text.

• E_tokenAlreadyExists: signifies that one or more of the businessKey or tModelKey
elements that identify entities to be transferred are associated with a transferToken
that is still valid and has not been discarded, used or expired. The error text SHOULD
clearly indicate which entity keys caused the error.

• E_userMismatch: signifies that one or more of the businessKey or tModelKey
elements that identify entities to be transferred are not owned by the publisher
identified by the authInfo element. The error text SHOULD clearly indicate which
entity keys caused the error.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 145/420

5.4.6 transfer_entities
The transfer_entities API is used by publishers to whom custody is being transferred to
actually perform the transfer. The recipient publisher must have an unexpired transferToken
that was issued by the custodial node for the entities being transferred.

5.4.6.1 Syntax

5.4.6.2 Arguments
• authInfo: This OPTIONAL argument is an element that contains an authentication

token. Authentication tokens are obtained using the get_authToken API call or
through some other means external to this specification, and represent the identity of
the publisher at a UDDI node, in this case, the new owner of the entities being
transferred.

• transferToken: Required argument obtained from the custodial node via a call to
get_transferToken by the publisher requesting a transfer of custody. The
transferToken contains an opaque token, an expiration date, and the identity of the
custodial node. The transferToken represents permission to transfer the entities that
have been identified via a prior call to the get_transferToken API.

• keyBag: One or more uddiKeys associated with businessEntity or tModel entities that
are to be transferred to this publisher at the target node in the registry. The set of keys
must be the same as the set of keys in the keyBag of the get_transferToken API call
from which the given transferToken was once obtained.

5.4.6.3 Returns
The target node responds to this API by performing the transfer operation. This operation is
comprised of four steps:

• Verification that the entity keys are valid.

• Verification that ownership of the entities by the recipient publisher is allowed and
would not violate any policies at the target node related to publisher limits.

• Verification with the custodial node that the transfer of the designated entities is
allowed. This is accomplished by invoking transfer_custody on the custodial node
that is identified by the nodeID element in the transferToken. Any errors returned by
the custodial node cause this API to fail and are propagated to the caller.

• Changing custody and ownership of the designated entities and entering these
changes into the replication stream.

Upon successful completion, an empty message is returned indicating the success of the
transfer operation. In the case of an inter-node custody transfer, while the transfer is in
process, the entities being transferred are not available for modification. To determine the state
of the data, UDDI clients can use the get_operationalInfo API to determine when custody and

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 146/420

ownership transfer has taken place. A change in the nodeID of the operationalInfo provides
such an indication.

5.4.6.4 Caveats
If an error occurs in processing this API call, a dispositionReport structure MUST be returned
to the caller in a SOAP Fault. See Section 4.8 Success and Error Reporting. In addition to the
errors common to all APIs, the following error information is relevant here:

• E_accountLimitExceeded: signifies that the target node has determined that the
transfer of custody of the identified entities would result in the target publisher
exceeding policy limits for the number of owned entities. The error text SHOULD
clearly indicate which entities cause the publishers limits to be exceeded. It is possible
for a publisher to come into possession of more data than the target node’s policy
allows. The condition and node behavior under these circumstances are described in
Section 5.4.3Transfer Execution.

• E_invalidKeyPassed: signifies that one of the uddiKey values passed for entities to
be transferred did not match with any known businessKey or tModelKey values. The
key and element or attribute that caused the problem SHOULD be clearly indicated in
the error text.

• E_transferNotAllowed: signifies that the transfer of one or more entities has been
rejected by the target node or the custodial node. Reasons for rejection include
expiration of the transferToken, use of an invalid transferToken, and attempts to
transfer a set of entities that does not match the one represented by the
transferToken. The reason for rejecting the custody transfer SHOULD be clearly
indicated in the error text.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 147/420

5.4.7 transfer_custody
Invoked by the target node in a custody transfer operation in response to transfer_entities, this
API is used by the custodial node to ensure that permission has been granted to transfer
custody of the entities that the target publisher has requested. The transfer_custody API is in
the replication namespace since it is sent from one node to another node in a registry using
replication.

5.4.7.1 Syntax

5.4.7.2 Arguments
• transferToken: Required argument obtained from the custodial node via a call to

get_transferToken by the publisher requesting a transfer of custody. The
transferToken contains an opaque token, an expiration date, and the identity of the
custodial node. The transferToken represents permission to transfer the entities that
have been identified via a prior call to the get_transferToken API. The custodial node
MUST verify that the transferToken has not expired and that the businessKey and
tModelKey elements that the target publisher has provided in transfer_entities are
allowed to be transferred as captured in the transfer token’s opaqueToken.

• keyBag: One or more uddiKeys associated with businessEntity or tModel entities that
the target publisher is requesting ownership of at the target node in the registry. The
set of keys must be the same as the set of keys in the keyBag of the
get_transferToken API call from which the given transferToken was once obtained.

• transferOperationalInfo: Required argument. The accepting publisher’s
authorizedName and the accepting node’s nodeID are provided on input to the
relinquishing custodial node to allow it to update the operationalInfo associated with
the entities whose custody is being transferred. The authorizedName and nodeID
elements are both required. The accepting node’s nodeID is obtained via the
Replication Configuration structure as described in Section 7.5.2 Configuration of a
UDDI Node – operator element. The authorizedName is obtained from the call to
transfer_entities by the requesting publisher.

5.4.7.3 Returns
The custodial node must verify that it has granted permission to transfer the entities identified
and that this permission is still valid. This operation is comprised of two steps:

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 148/420

1. Verification that the transferToken was issued by it, that it has not expired, that it
represents the authority to transfer no more and no less than those entities identified
by the businessKey and tModelKey elements and that all these entities are still valid
and not yet transferred. The transferToken is invalidated if any of these conditions are
not met.

2. If the conditions above are met, the custodial node will prevent any further changes to
the entities identified by the businessKey and tModelKey elements identified. The
entity will remain in this state until the replication stream indicates it has been
successfully processed via the replication stream.

Upon successful verification of the custody transfer request by the custodial node, an empty
message is returned by it indicating the success of the request and acknowledging the custody
transfer.

Following the issue of the empty message, the custodial node will submit into the replication
stream a changeRecordNewData providing in the operationalInfo, the nodeID accepting
custody of the datum and the authorizedName of the publisher accepting ownership. The
acknowledgmentRequested attribute of this change record MUST be set to "true".

Finally, the custodial node invalidates the transferToken in order to prevent additional calls of
the transfer_entities API.

5.4.7.4 Caveats
If an error occurs in processing this API call, a dispositionReport structure MUST be returned
to the caller in a SOAP Fault. See Section 4.8 Success and Error Reporting. In addition to the
errors common to all APIs, the following error information is relevant here:

• E_transferNotAllowed: signifies that the transfer of one or more entities has been
rejected by the custodial node. Reasons for rejection include expiration of the
transferToken and attempts to transfer a set of entities that does not match the one
represented by the transferToken. The reason for rejecting the custody transfer
SHOULD be clearly indicated in the error text.

• E_invalidKeyPassed: signifies that one of the uddiKey values passed for entities to
be transferred did not match with any known businessKey or tModelKey values. The
key and element or attribute that caused the problem SHOULD be clearly indicated in
the error text.

5.4.8 Security Configuration for transfer_custody
The use of mutual authentication of UDDI nodes in conjunction with the transfer_custody API
is RECOMMENDED. This MAY be achieved using mutual X.509v3 certificate-based
authentication as described in the Secure Sockets Layer (SSL) 3.0 protocol. SSL 3.0 with
mutual authentication is represented by the tModel uddi-org:mutualAuthenticatedSSL3 as
described within Section 11.3.2 Secure Sockets Layer Version 3 with Mutual Authentication.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 149/420

5.5 Subscription API Set
Subscription provides clients, known as subscribers, with the ability to register their interest in
receiving information concerning changes made in a UDDI registry. These changes can be
scoped based on preferences provided with the request. The APIs described below support
this capability. Usage scenarios and examples are provided in Appendix C Supporting
Subscribers. Each of the subscription APIs described here are OPTIONAL for UDDI
implementations and MAY be implemented entirely at the discretion of a Node.

5.5.1 About UDDI Subscription API functions
The subscription API set satisfies a variety of requirements. The flexibility of the subscription
API allows monitoring of activity in a registry by registering to track new, changed and deleted
entries for each of these entities:

• businessEntity

• businessService

• bindingTemplate

• tModel

• related businessEntity

• publisherAssertion (limited to those publisherAssertions for which the subscriber owns
at least one of the businesses referenced)

With the exception of single publisher registries subscription typically is limited to authorized
clients as a matter of node policy. Therefore, subscribers MUST typically authenticate with the
node before saving subscription requests. Individual nodes, including those in the UDDI
Business Registry, MAY establish policies concerning the use of the subscription APIs they
choose to offer. Such policies might include restricting the use of subscription, defining which
APIs are supported, establishing whether subscriptions require authentication, defining special
rules affecting different classes of subscriptions, or even imposing fees for the use of these
services. The use of the authInfo argument is OPTIONAL throughout the subscription APIs,
although registries which support multiple users or which require authentication for publishing
operations typically require it.

Subscription allows subscribers to "monitor" a particular subset of data within a registry. Two
patterns are defined. Nodes MAY support either or both:

• Asynchronous notification – subscribers choose to be asynchronously notified by the
node when registry data of interest changes via calls to the notify_subscriptionListener
API, which they implement as a "subscription listener" service.

• Synchronous change tracking – subscribers issue a synchronous request using the
get_subscriptionResults API to obtain information on activity in the registry which
matches their subscription preferences.

A subscription request establishes criteria for the subscription and specifies how and if the
subscriber is to be notified of changes matching the specified criteria. Any of the existing
standard inquiry APIs (find_xx and get_xx) may be used within a subscription request to define
the criteria, although nodes are free to restrict which inquiry APIs are supported in subscription
as a matter of policy. The duration, or life of a subscription is also a matter of node policy, but
subscribers can renew existing subscriptions periodically instead of having to create new ones.
Subscribers may also create multiple subscriptions. Each subscription request is treated
independently. The level of detail provided for the data returned is controlled by the
subscription request.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 150/420

When asynchronous notifications are requested, subscriptions provide information on new,
changed or deleted entities within a registry that occur after the point in time that the
subscription is registered. A node notifies subscribers based upon its identification of data
matching the requested subscription criteria. Subscribers can choose to have these
notifications provided via email or an HTTP/SOAP-based Web service, which the subscriber
MAY implement. Such services are called "subscription listeners." Notifications are made
periodically rather than in response to the continuous stream of changes that normally occur
within the registry. This means that subscription results provided via notifications pertain only
to the current state of the entities at the time they are reported – intermediate state changes
are not provided. While subscribers can specify a frequency for these notifications, nodes
MAY choose to restrict this as a matter of policy.

When synchronous requests are made for subscription results, the current state of the registry
data, which matches the subscription criteria, is returned for entries that were last created,
changed or deleted within a specified date range. Prior states of the registry data are not
available and are not returned.

Subscriptions are owned by the subscriber who creates them. A subscriptionKey, which
distinguishes each individual subscription, is not visible to anyone except the subscriber.
While node policy MAY permit others besides the subscription’s owner to receive or retrieve
subscription results, such interested parties require knowledge of the relevant subscriptionKey
from the subscription owner in order to do so.

5.5.1.1 Definition of Changed Entities
As stated above, the subscription API allows monitoring of new, changed and deleted entities.
This section provides the definition of changed entities. The following are the criteria for
considering an entity to have been "changed":

• For businessEntity, businessService, bindingTemplate, and tModel:
The entity is considered to be changed if the modifiedIncludingChildren element of the
operationalInfo element of the entity has been changed.

• For publisherAssertion:
A publisherAssertion is considered to be changed if the publisher has updated the
publisherAssertion via the set_publisherAssertions, or add_publisherAssertions APIs.

• For related businessEntity:
A related businessEntity (related to the business specified in the businessKey
argument of find_relatedBusinesses API) is considered to be changed if either:

1. the related businessEntity is changed, or

2. at least one of the two reciprocal publisherAssertions that represents the
relationship is changed.

5.5.2 Specifying Durations
Time durations used in the subscription APIs are of type xsd:duration defined in XML Schema
from [ISO 8601]. Any form supported by this data type is permitted. For example, the lexical
representation extended format can be used, which is of the form PnYnMnDTnHnMnS, where
nY represents the number of years, nM the number of months, nD the number of days, 'T' is
the date/time separator, nH the number of hours, nM the number of minutes and nS the
number of seconds. The "P" identifies the field as duration. The number of seconds can
include decimal digits to arbitrary precision.

5.5.3 Specifying Points in Time
Points in time used in the subscription APIs are all of the XML Schema type, xsd:dateTime.
Two points in time are used to specify a period of time.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 151/420

5.5.4 Subscription Coverage Period
The APIs, which support each of the patterns previously described for obtaining subscription
results, accept a coveragePeriod argument, which is composed of two points in time. Each of
these corresponds to the last point in time which any given entity in the registry was modified
(i.e., created, deleted or changed). The syntax of this element is:

Where:

• startPoint: Signifies the point in time after which subscription results are to be
collected and/or returned. The startPoint is optional. If it is not specified, this indicates
that all available results are to be returned from the beginning of the registry.

• endPoint: Signifies the point in time corresponding to the last activity date for entities
matching subscription results. No activity among matching entities, which occurred
after this point in time, is returned. The endPoint is optional. If not provided, it signifies
that the latest changes available, which match the subscription criterions that are to be
returned.

With respect to notifications, the startPoint of a given notification SHOULD align with the
endPoint of the previous notification. If this is not the case, the subscriber SHOULD assume a
notification was missed, or lost. The subscriber can then take corrective action by using the
get_subscriptionResults API. Note that it is permissible for nodes to send the same data more
than once, depending on overlaps in these times.

5.5.5 Chunking of Returned Subscription Data
If a subscriber specifies a maximum number of entries to be returned with a subscription and
the amount of data to be returned exceeds this limit, or if the node determines based on its
policy that there are too many entries to be returned in a single group, then the node SHOULD
provide a chunkToken with results. The chunkToken is a string based token which is used by
the node to maintain the state of the subscription results for a particular caller, when these
results are chunked across multiple responses. The format and content of the chunkToken is
a matter of implementation choice by individual nodes. The chunkToken returned with a
particular subscription result set SHOULD be used to retrieve subsequent results when
subscription results are requested in a synchronous manor. If no more results are pending,
the value of the chunkToken MUST be "0".

A chunkToken is intended as a short-term aid in obtaining contiguous results across multiple
API calls and is therefore likely to remain valid for only a short time. Nodes MAY establish
policies on how long a chunkToken remains valid.

5.5.6 Use of keyBag in Subscription
The subscription results returned by the subscription APIs allow for the use of a structure
called a keyBag. A keyBag contains a list of entity keys, which correspond to any of the core
data structures (businessEntity, businessService, bindingTemplate or tModel). The keyBag
has two uses.

• Returning results when a "brief" format is selected, which minimizes returned
information.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 152/420

• Indicating entities which have been deleted, or which no longer match the subscription
criteria provided with the subscription. This later situation is referred to as a "virtual
delete", in that the entity in question may not actually have be deleted from the
registry, but it no longer matches the criterion which the subscriber defined in the
subscription for tracking registry changes. It should be noted that nodes MUST
maintain information pertaining to registry changes for both forms of deletion, to be
reported with subscription results for applicable subscriptions, although they MAY
establish policies on how long such information is retained. Further details on the use
of this structure are discussed in the relevant API sections that follow. When the
keyBag is used for deleted entities, the deleted element is set to "true," and all entities
listed in such a keyBag are assumed to represent deletions.

������������	�
���
������������������ ����	������ ���"!�#�$�!�%��&� $�����	���'��(���)� � �+*,� ��'-���.���0/�	���'��&� 1 *(��')�.%�����
2� ���
!�#�$�!�%��&� /)�.� 	��(%��&� �.����� '�$�#)��34'�!(������	�����
"	�����	�
�� ��� ��
2�.	���	�1 	���5�������'-�.%��4� ���"!�#�$�!�%��&� /)�.� 	��
%��&� �.����� '�$�����	����2� ���"!�#�$�!�%��&� $����634'�!(� ����	��7����
"	��6� ���"��'-�.%���8

A UDDI node MAY inform a subscriber about the real or virtual deletion of an entity multiple
times.

The syntax of a keyBag is shown here:

5.5.7 Subscription API functions
The APIs in this section describe how to interact with a UDDI node implementation to create
and manage requests for the tracking of new and changed registry content. These APIs are
synchronous and are exposed via SOAP, although the notifications they may generate are not.

The subscription APIs are:

• delete_subscription: Cancels one or more specified subscriptions.

• get_subscriptionResults: Synchronously returns registry data pertaining to a
particular subscription within a specified time period.

• get_subscriptions: Returns a list of existing subscriptions previously saved by the
subscriber.

• save_subscription: Establishes a new subscription or changes an existing one.
Also used to renew existing subscriptions.

The OPTIONAL client API is:

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 153/420

• notify_subscriptionListener: A node invoked API which the client implements as a
subscription listener service to accept notifications containing the data that changed
since notify_subscriptionListener was last invoked for a particular subscription.

5.5.8 save_subscription
The save_subscription API registers a request to monitor specific registry content and to have
the node periodically notify the subscriber when changes are available. Notifications are not
returned synchronously with results for this API. Only data that matches the requested
subscription criteria and which changes after the point in time that the subscription request is
accepted is returned to the subscriber via a notification.

This API returns a duration for which this particular subscription is valid. Depending upon the
policy of the Node, subscriptions need to be renewed before the expiration date in order to
insure that they remain active. Subscriptions can also be redefined or renewed using this API.
The subscriptionKey pertaining to the subscription to be renewed must be supplied in the
save_subscription invocation in order to accomplish this. This allows both renewal and
changes to the subscription. Invoking save_subscription automatically resets the expiration
period for the subscription in question to a value based upon the node’s policy.

5.5.8.1 Syntax:

The syntax of the subscription structure is:

Attributes

Name Use

brief optional

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 154/420

The syntax of the subscriptionFilter structure is:

5.5.8.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Registries that wish to restrict who can save a subscription typically require authInfo
for this call, though this is a matter of node policy.

• bindingKey: This optional argument of type anyURI specifies the bindingTemplate
which the node is to use to deliver notifications to subscription listeners. It is only
required when asynchronous notifications are used. This bindingTemplate MUST
define either a Web service that implements notify_subscriptionListener (see below),
or an email address to receive the notifications. If a notify_subscriptionListener Web
service is identified, the node invokes it to deliver notifications. If an email address is
identified, the node delivers notifications via email to the address supplied. When
notifications are delivered via email, the body of the email contains the body of the
SOAP message, which would have been sent to the notify_subscriptionListener
service if that option had been chosen. The publisher making the subscription request
MUST own the bindingTemplate. If this argument is not supplied, no notifications are
sent, although subscribers may still use the get_subscriptionResults API to obtain
subscription results. See Section 5.5.11 get_subscriptionResults for details. If email
delivery to the specified address fails, nodes MAY attempt re-delivery, but are not
obligated to do so. Depending upon node policy, excessive delivery failures MAY
result in cancellation of the corresponding subscription.

• brief: This optional argument controls the level of detail returned to a subscription
listener. The default is "false" when omitted. When set to "true," it indicates that the
subscription results are to be returned to the subscriber in the form of a keyBag, listing
all of the entities that matched the subscriptionFilter. Refer to Section 5.5.6 Use of
keyBag in Subscription, for additional information. This option has no effect on the
assertionStatusReport structure, which is returned as part of a notification when the

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 155/420

subscriptionFilter specifies the get_assertionStatusReport filter criteria. See the
explanation of subscriptionFilter below.

• expiresAfter: This optional argument allows subscribers to specify the period of time
for which they would like the subscription to exist. It is of the XML Schema type
xsd:dateTime. Specifying a value for this argument is no guarantee that the node will
accept it without change. Information on the format of expiresAfter can be found in
Section 5.5.1.1 Specifying Durations.

• maxEntities: This optional integer specifies the maximum number of entities in a
notification returned to a subscription listener. If not specified, the number of entities
sent is not limited, unless by node policy.

• subscriptionFilter: This argument specifies the filtering criteria which limits the
scope of a subscription to a subset of registry records. It is required except when
renewing an existing subscription. The get_xx and find_xx APIs are all valid choices
for use as a subscriptionFilter. Only one of these can be chosen for each
subscription. Notifications, based on the subscriptionFilter, are sent to the subscriber
if and only if there are changes at the node, which match this criterion during a
notification period. A subscriptionFilter MUST contain exactly one of the allowed
inquiry elements. The authInfo argument of the specified get_xx or find_xx API call is
not required here and is ignored if specified. All of the other arguments supported
with each of these inquiry APIs are valid for use here.

Specifying find_relatedBusinesses is useful for tracking when reciprocal relationships
are formed or dissolved. Specifying get_assertionStatusReport can be used in
tracking when reciprocal relationships (which pertain to a business owned by the
subscriber) are formed, dissolved, or requested by the owners of some other
business.

For a get_assertionStatusReport based subscription, there is a specific status value,
status:both_incomplete, defined in the XML schema. When appearing in an
assertionStatusItem of a subscriptionResultsList, status:both_incomplete indicates
that the publisher assertion embedded in the assertionStatusItem has been deleted
from both ends.

Note that the above handling of deleted publisher assertions is different from the case
when a business entity, business service, binding template, or tModel is removed. In
the latter case, the key to the entity in question is simply put inside a keyBag. A
publisher assertion, on the other hand, has no key and therefore the keyBag idea is
not applicable.

• subscriptionKey: This optional argument of type anyURI identifies the subscription.
To renew or change an existing subscription, a valid subscriptionKey MUST be
provided. When establishing a new subscription, the subscriptionKey MAY also be
either omitted or specified as an empty string in which case the node MUST assign a
unique key. If subscriptionKey is specified for a new subscription, the key MUST
conform to the registry’s policy on publisher-assigned keys.

• notificationInterval: This optional argument is only required when asynchronous
notifications are used. It is of type xsd:duration and specifies how often change
notifications are to be provided to a subscriber. If the notificationInterval specified is
not acceptable due to node policy, then the node adjusts the value to match the next
longer time period that is supported. The adjusted value is provided with the returns
from this API. Also see Section 5.5.1.1 Specifying Durations.

5.5.8.3 Returns:
Upon successful completion this API returns a subscriptions structure. Included in the
subscription structure(s) it MUST contain is a subscriptionKey (of type anyURI) that is used by

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 156/420

the subscriber to manage the subscription. This key is required in order to delete
(unsubscribe), modify or renew the subscription. If a subscriber has multiple subscriptions,
the subscriptionKey can be used to distinguish between different subscriptions. The
subscriptionKey is also part of the data contained in the notifications returned to subscription
listeners.

The subscription structure(s) returned from this API, MUST each contain an expiresAfter
value, which has been assigned by the node. Nodes SHOULD attempt to honor the value(s)
provided with the save_subscription request, but MAY modify them based on node policy.
Depending upon the node’s policy, the node MAY delete a subscription after it has expired.

The value of the notificationInterval included in the subscription structure(s) returned MAY be
adjusted by the node to the value closest to that requested which is supported by its policies.
Depending upon the Registry’s workload a node MAY skip a notification cycle. If a cycle is
skipped, the next notification sent SHOULD include information based on registry activity,
which has occurred since the last notification was issued.

5.5.8.4 Caveats:
If any error occurs in processing this API call, a dispositionReport structure is returned to the
caller in a SOAP Fault. In addition to the errors common to all APIs, the following error
information is relevant here:

• E_invalidKeyPassed: signifies that an entity key value passed did not match with
any known key values. The error structure signifies that the condition occurred and
the error text clearly calls out the offending key.

• E_unsupported: signifies that one of the argument values was not supported by this
implementation. The offending argument is clearly indicated in the error text.

• E_resultSetTooLarge: signifies that the node refuses to accept the subscription
because it deems that result sets associated with the subscription are too large. The
subscription criteria that triggered this error should be refined and re-issued.

• E_accountLimitExceeded: signifies that the request exceeded the quantity limits for
subscription requests, based on node policy.

• E_userMismatch: signifies that an attempt has been made to use the subscription
API to change a subscription that is controlled by another party. Or that the
bindingTemplate specified does not belong to the publisher.

• E_requestDenied: signifies that the subscription cannot be renewed. The request
has been denied due to either node or registry policy.

5.5.9 delete_subscription
Cancels an existing subscription.

5.5.9.1 Syntax:

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 157/420

5.5.9.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Registries that wish to restrict who can delete a subscription typically require authInfo
for this call, though this is a matter of node policy.

• subscriptionKey: This required argument specifies, using anyURIs, the subscription
or subscriptions to be deleted.

5.5.9.3 Returns:
If no errors occur then an empty message is returned.

5.5.9.4 Caveats:
If an error occurs in processing this API call, a dispositionReport structure is returned to the
caller in a SOAP Fault. In addition to the errors common to all APIs, the following error
information is relevant here:

• E_userMismatch: signifies that an attempt has been made to use the subscription
API to delete a subscription that is controlled by another party.

• E_invalidKeyPassed: signifies that the subscriptionKey is invalid or that the
subscription has expired.

5.5.10 get_subscriptions
Returns the complete list of existing subscriptions owned by the subscriber.

5.5.10.1 Syntax:

5.5.10.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Registries that wish to restrict who can obtain information on subscriptions typically
require authInfo for this call, though this is a matter of node policy.

5.5.10.3 Returns:
This API call returns information on all of the subscriptions owned by the subscriber, together
with the expiration date for each. The subscriptions structure returned contains zero or more
subscription structures, each pertaining to a subscription. Only subscriptions created by the
invoking subscriber are returned. See Section 5.5.8.1, [save_subscription] Syntax, for details
on these structures.

5.5.10.4 Caveats:
If any error occurs in processing this API call, a dispositionReport structure is returned to the
caller in a SOAP Fault. There is no specific error information, other than the errors common to
all APIs.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 158/420

5.5.11 get_subscriptionResults
This API allows a subscriber to request that the information pertaining to an existing
subscription be returned. This is useful, for example, to obtain historical data when a
subscription is first set up or when a subscriber misses the notification normally provided by
the registry. The results are returned synchronously as the response to this call. The
get_subscriptionResults API can also be used as an alternative to notifications for obtaining
subscription data. If this is the preference, then the subscriber SHOULD not provide a
bindingKey when saving the associated subscription. See Section 5.5.8 save_subscription.
This API is not affected by the value of the notificationInterval in the subscription.

5.5.11.1 Syntax:

5.5.11.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Registries that wish to restrict who can retrieve subscription data typically require
authInfo for this call, though this is a matter of node policy.

• chunkToken: This optional argument is used to retrieve subsequent groups of data
when the first call to this API indicates more data is available. This occurs when a
chunkToken is returned whose value is not "0" in the subscriptionResultsList structure
described in the next section. To retrieve the next chunk of data, the value returned
should be used as an argument to the next invocation of this API.

• coveragePeriod: This structure defines the time period over which the most recent
changes in node data are compared with the subscription criteria in order to produce
the result set. It provides start and end date/time information according to the format
described in Section 5.5.4 Subscription Coverage Period. The "current" state of
registry entries pertaining to the subscription referenced by the subscriptionKey
provided are returned if they were last created, changed or deleted during the
specified time period.

• subscriptionKey: This required argument of type anyURI identifies the subscription
for which non-recurring synchronous results are being sought.

5.5.11.3 Returns:
A subscriptionResultsList is returned whose content is determined by the coveragePeriod and
the criteria in the subscription:

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 159/420

Attributes

Name Use

someResultsUnavailable optional

Subscription results MAY be chunked. See Section 5.5.5 Chunking of Returned Subscription
Data, for more information on chunking of results. If results are chunked, then subsequent
"chunks" can be retrieved using the chunkToken returned as an argument in a subsequent
invocation of this API.

Note that the results returned in the subscriptionResultsList represent a snapshot of the current
state of relevant entries in the registry. They are non-transactional in nature and prior states
cannot be returned. Deleted entities and virtual deletes of entities, which have been changed
in such a way that they no longer match the subscription criterion saved with the subscription,
are returned only in the form of a keyBag structure, for which the deleted element is set to
"true". A UDDI node MAY inform a subscriber about the real or virtual deletion of an entity
multiple times.

The someResultsUnavailable attribute is set to "true" whenever the node has found it
necessary to flush subscription results information pertaining to entity deletions (either actual or
virtual) which pertain to this subscription, which have not yet been reported through prior calls
to this API, or through use of the notify_subscriptionListener API described below. The period

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 160/420

of time which a node retains information on deletions for a given subscription is a matter of
node policy.

The API used in the subscription filter determines the sort order for returned entities. By
default, they will be sorted according to the behavior specified in the "returns" section of that
API.

5.5.11.4 Caveats:
If an error occurs in processing this API call, a dispositionReport structure is returned to the
caller in a SOAP Fault. In addition to the errors common to all APIs, the following error
information is relevant here:

• E_invalidKeyPassed: signifies that the subscriptionKey is invalid or that the
subscription has expired.

• E_invalidValue: signifies that the chunkToken value supplied is either invalid or has
expired.

• E_unsupported: signifies that one of the argument values was not supported by this
implementation. The offending argument is clearly indicated in the error text.

• E_userMismatch: signifies that, in a violation of node policy, an attempt has been
made to use the subscription API to change a subscription that is controlled by
another party.

• E_invalidTime: signifies that one or both of the values provided in the
coveragePeriod range is invalid or does not define a range. The error structure
signifies the condition that occurred and the error text clearly calls out the cause of the
problem.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 161/420

5.5.12 notify_subscriptionListener
This API, when implemented by a subscriber and specified in a subscription, enables the node
to deliver notifications to subscription listeners by invoking a Web service. New, modified, and
deleted data that matches the subscription is passed to notify_subscriptionListener. If the brief
attribute of the subscription is "true", then only the relevant keys will be sent; full details of the
changed data can be accomplished via the standard get_xx API’s if required. If a particular
item that matches the subscription criteria is deleted during the notificationInterval, or is
changed in such a way that it no longer matches the criterion defined for the subscription, then
these entities are included in a keyBag containing a deleted element with a value of "true".

To allow subscribers to determine whether a notification has been lost, the coverage period of
the notification is included. A date/time indicating the date/time values corresponding to the
start and end points of this is provided. The start date/time used in this call SHOULD align with
the end date/time of the previous call and so fourth.

If the maxEntities option was specified in the save_subscription call, the response supplied via
this call is limited to that number of entities. If the node cannot send all of the results in a
single notify_subscriptionListener call, then the node repeatedly invokes the
notify_subscriptionListener service until all information has been transmitted. In no case will
the data sent to notify_subscriptionListener exceed the maximum message size per the policy
of the node.

5.5.12.1 Syntax:

5.5.12.2 Arguments:
• authInfo: This optional argument is an element that contains an authentication token.

Subscription listener services that wish to restrict who can transmit subscription data
MAY require authInfo for this call, though this is a matter of client policy.

• subscriptionResultsList: This list contains the results for this notification, which
consist of the result structures which are normally returned for standard find_xx or
get_xx APIs, based upon the criteria saved in the subscriptionFilter for the
subscription which is generating this notification. Note that the chunkToken is not
returned with this structure for this API. The subscriptionResultsList also contains a
coveragePeriod structure which defines the time period over which the node data is
compared with the subscription criterion in order to produce the result set. It provides
the start and end date/time information according to the format described in Section
5.5.4 Subscription Coverage Period. The "current" state of registry entries pertaining
to the subscription referenced by the subscriptionKey provided are returned if they
were last changed during the specified time period. See Section 5.5.11.3 Returns for
more information on the subscriptionResultsList’s content.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 162/420

5.5.12.3 Returns:
Upon successful completion, notify_subscriptionListener returns an empty message. Note that
this is being returned by the client supported API.

5.5.12.4 Caveats:
If an error occurs in processing this API call, a dispositionReport structure is returned to the
caller in a SOAP Fault. In addition to the errors common to all APIs, the following error
information is relevant here:

• E_fatalError: signifies the client’s failure to receive notification data. The node is not
obligated to retry.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 163/420

5.6 Value Set API Set
Whenever a keyedReference is involved in a save operation it may be checked to see that it is
valid. Similarly, a keyedReferenceGroup element that is involved in a save operation may also
be checked to ensure that it is valid. Checking is performed for tModels that are deemed to be
"checked", as determined by the policy of the UDDI registry.

UDDI provides the ability for third parties to register value sets, and then control the validation
process used by UDDI to perform such checks. UDDI registries MAY support caching of these
external value sets. UDDI registries MAY also support external validation. Node and registry
policies determine the manner in which validation of references to external value sets is
performed. The APIs in this section can be used by UDDI registries and nodes in their
validation policies.

Third parties that want to provide an external checking capability may be required by the UDDI
registry to implement a Web service in the same manner that UDDI does (e.g. using SOAP for
message passing using literal encoding) that exposes a single method named validate_values.
The interface for validate_values is described here.

In some cases a node may desire to eliminate or minimize the number of calls to external
validation Web services. It can do so by caching valid values for those external value sets that
allow caching of their values. A node has two normative options for obtaining the set of valid
values. One is to periodically obtain the set of valid values from those value set providers that
implement a Web service that handles the get_allValidValues API. This API is described
below. The other method of obtaining a cache of valid values is to accumulate the valid values
from successful calls to validate_values.

5.6.1 Value Set Programming Interfaces
The Application Programming Interfaces in this section represent capabilities that a UDDI
registry MAY use to enable validation of references to value sets. Registry policy determines
which external value sets are supported and how. See Section 9.4.19 Value Set Policies and
Section 9.6.5Value Sets for more information on registry support of external value sets. These
SOAP messages all behave synchronously.

The publicly accessible APIs that are used to support external value set validation are:

• validate_values: Used by nodes to allow external providers of value set validation
Web services to assess whether keyedReferences or keyedReferenceGroups are
valid. Returns a dispositionReport structure.

• get_allValidValues: Used by nodes that support caching of valid values from
cacheable checked value sets to obtain the set of valid values. Returns an empty
message or a dispositionReport structure.

Registry policy may require value set providers that offer one of these Web services to publish
the bindingTemplate for the service and the tModel for the value set in a particular way so that
the proper Web service can be discovered. See Section 9.6.5 Value sets for more information.
When a value set provider offers one of these Web services, a tModel for the checked value
set SHOULD be published in any registry the provider wishes to offer it, and a
bindingTemplate SHOULD be published for the Web service(s) the value set provider offers
for the checked value set. The tModel SHOULD have categorizations from the uddi-org:types
category system to indicate the type of value set (categorization, identifier, relationship,
categorizationGroup), that it is checked (checked), and, if the value set provider allows
validation to occur against node caches of valid values, the cacheable categorization should
also be provided.

In order for a value set to be considered checked, the tModel MUST first be categorized with
the checked value from the uddi-org:types category system. The decision to check such value
sets is a registry and node policy decision.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 164/420

If a value set tModel is categorized as checked, then in response to attempts to publish a
keyedReference which uses the checked tModel, nodes MUST either perform the required
validation, or return E_unsupported.

The tModel should also have a categorization reference to the bindingTemplate of the
get_allValidValues or validate_values Web service that the value set provider designates,
using the uddi-org:validatedBy category system. See Section 11.1.1 UDDI Types Category
System and Section 11.1.7 Validated By Category System for more information.

The bindingTemplate for the get_allValidValues or the validate_values Web service SHOULD
reference in its tModelInstanceDetails the appropriate value set API tModel (Section 11.2.7
Value Set Caching API tModel or Section 11.2.8 Value Set Validation API tModel) as well
tModels for all of the value sets the service applies to.

5.6.2 validate_values
A UDDI node that supports external validation sends the validate_values API to the
appropriate external Web service, of which there is exactly one, whenever a publisher saves
data that uses a keyedReference or keyedReferenceGroup whose use is regulated by the
external party who controls that Web service. For purposes of discussion, the identifier,
category, and relationship type systems that the keyedReference elements refer to are called
checked value sets. The category group systems that the keyedReferenceGroup elements
refer to are similarly called checked category group systems.

The normal use for checked value sets is to verify that specific values (checking the keyValue
attribute of values supplied) exist within the value set. For certain value sets the value set
provider may further restrict the use of a value based on a contextual evaluation of the passed
data. The provider may do enable this contextual checking by offering a validation Web
service.

Validation algorithms for checked category group systems similarly verify that the contents of
the keyedReferenceGroup elements form a valid set according to the validation algorithm for
the checked category group system. Frequently such validation ensures that the value sets
identified in contained keyedReferences are allowed to participate in the category group
system.

5.6.2.1 Syntax:

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 165/420

5.6.2.2 Arguments:
The UDDI node that is calling validate_values MUST pass one or more businessEntity
elements, one or more businessService elements, one or more bindingTemplate elements,
one or more tModel elements, or one or more publisherAssertion elements as the sole
argument to this Web service. The one or more elements passed represents the outermost
UDDI data structure(s) being passed within a save_business, save_service, save_binding,
save_tModel, add_publisherAssertion, or set_publisherAssertions API call. Multiple elements
of the same type may be passed together if multiples are included in the same save
invocation.

The optional authInfo argument is an element that contains an authentication token. An
authentication token is obtained using the get_authToken API call or through some other
means external to this specification. Providers of validate_values Web services that serve
multiple registries and providers that restrict who can use their service may require authInfo for
this API.

5.6.2.3 Behavior
The called Web service for a checked value set performs validation on all of the
keyedReferences or keyedReferenceGroups that are associated with the value sets the Web
service is authorized to check. This can involve merely checking that the keyValue values
supplied are good for the given value set (as signified by the embedded keyedReference
tModelKey values). Other types of validation as desired may be performed, including context
sensitive checks that utilize the information passed in the entity being saved.

The entity being saved may contain multiple references to values from the value set(s) that the
validation Web service is authorized to validate. When the entity being saved is a
businessEntity, contained businessService and bindingTemplate entities may themselves
reference values from the authorized value sets as well. All references to values that are
associated with the value set(s) that the validation Web service is authorized to check MUST
be validated without regard to their placement in the entity being saved.

If the external value set and the node both support caching of valid values, the node may not
invoke validate_values if it already knows that the referenced values are valid, through
checking its cache.

A checked category group system is treated in the same manner as a checked value set. The
tModelKey associated with the keyedReferenceGroup identifies the checked category group
system. A node may be able to validate a reference to a cacheable checked category group
system without calling validate_values if it can determine using its cache that the tModelKey
attributes from the keyedReference elements contained in the keyedReferenceGroup are
allowed for the category group system.

5.6.2.4 Returns:
If all values referenced in the entity being saved are valid from the value set(s) or category
group system(s) that the validation Web service is authorized to validate, the proper response
is an empty message.

5.6.2.5 Caveats:
If any error is found, or the called Web service needs to signal that the information being saved
is not valid based on the validation algorithm chosen by the external Web service provider,
then the Web service MUST raise a SOAP Fault as specified in Section 4.8 Success and Error
Reporting.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 166/420

When an error is signaled in this fashion, the UDDI node MUST reject the pending change and
return to the original caller the same SOAP fault data returned by the validation Web service.
The error codes indicate one of the following reasons, and the error text clearly indicates the
keyedReference or keyedReferenceGroup data that is being rejected and the reason it is
being rejected.

• E_invalidValue: One or more of the keyValues in the keyedReference or
keyedReferences in the keyedReferenceGroup supplied failed validation. Only the
first error encountered need be reported.

• E_valueNotAllowed: The values may be valid, but are not allowed contextually.

5.6.3 get_allValidValues
A UDDI node that supports external value sets MAY invoke a get_allValidValues Web service
offered by a value set provider that has granted permission to that registry to cache the valid
values for that value set. The external value set provider MAY offer the get_allValidValues
Web service and the UDDI node MAY use it. The normal use is to return a full set of valid
values for the identified value set. If the value set provider determines there are too many
values to return in one chunk, the set of valid values may be returned in chunks.

Registry policy may require the value set provider that offers a get_allValidValues Web service
to republish its value set tModel when the cache should be re-acquired by participating nodes.
See Section 9.6.5 Value Sets for more information.

get_allValidValues can similarly be used to obtain the set of tModelKeys for value sets that can
participate in a cached category group system.

5.6.3.1 Syntax:

5.6.3.2 Arguments:
• tModelKey: A required uddiKey value that identifies the specific instance of the

tModel which describes the value set or category group system for which a Web
service to get all valid values has been provided. It uniquely identifies the category,
identifier, or category group system for which valid values are being requested.

• chunkToken: Optional element used to retrieve subsequent groups of data when the
first invocation of this API indicates more data is available. This occurs when a
chunkToken is returned whose value is not "0" in the validValuesList structure
described in the next section. To retrieve the next chunk of data, the chunkToken
returned should be used as an argument to the next invocation of this API.

• authInfo: An optional element that contains an authentication token. Authentication
tokens are obtained using the get_authToken API call or through some other means
external to this specification. Providers of get_allValidValues Web services that serve
multiple registries and providers that restrict who can use their service may require
authInfo for this API.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 167/420

5.6.3.3 Returns
A validValuesList structure is returned containing the set of valid values for the external
category or identifier system. The list MUST contain a chunkToken if the Web service provider
wishes to provide the data in packets. The validValuesList has the form:

And its contained validValue element has the form:

5.6.3.4 Behavior
The called Web service returns the set of valid values in a validValuesList on success. This
structure lists every valid value associated with the value set or category group system that is
described by the tModelKey provided. In the event too many values exist to be returned in a
single response (i.e., the message size exceeds the maximum number of bytes allowed by the
UDDI registry), or the value set provider wants to supply the values in multiple packets, then
the validValueList includes the chunkToken element and the API can be re-issued to get the
remaining valid values.

5.6.3.4.1 Chunking of valid values
If the value set provider determines that there are too many values to be returned in a single
group, then the provider SHOULD provide a chunkToken with the results. The chunkToken is
a string based token which is used by the value set provider to maintain the state of the set of
values for a particular caller, when these results are chunked across multiple responses.
Providers should establish their own policies for determining the content and format of the
chunkToken. The chunkToken returned with a particular value set result set SHOULD be used
to retrieve subsequent results. If no more results are pending, the value of the chunkToken will
be "0" or the chunkToken will be absent.

A chunkToken is intended as a short-term aid in obtaining contiguous results across multiple
API calls and is therefore likely to remain valid for only a short time. Value set providers may
establish policies on how long a chunkToken remains valid.

5.6.3.5 Caveats:
If any error occurs in processing this API, a dispositionReport structure MUST be returned to
the caller in a SOAP Fault. See Section 4.8 Success and Error Reporting. The following error
information is relevant:

• E_invalidKeyPassed: Signifies that the tModelKey passed did not match with the
uddiKey of any known tModels. The details on the invalid key SHOULD be included
in the dispositionReport element.

• E_noValuesAvailable: Signifies that no values could be returned.

• E_unsupported: Signifies that the Web service does not support this API.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 168/420

• E_invalidValue: Signifies that the chunkToken value supplied is either invalid or has
expired.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 169/420

6 Node Operation
This chapter defines the normative behavior required of an operator hosting a UDDI node. It
outlines the operational parameters and requirements that a node MUST follow. It also
provides guidance when first bringing a node online. The intended audience for this chapter is
someone intending to implement and host a UDDI node.

Note that this chapter alone is not sufficient to understand how to implement and host a node.
Refer to each of the preceding chapters, in order to understand the full scope of the UDDI
specification. They provide the normative behavior in terms of how the APIs work.
Considerations regarding intra-registry operation (such as replication between nodes) and
inter-registry operation (such as publishing data across multiple registries) are dealt with in
Chapter 7 Inter-Node Operation and Chapter 8 Publishing Across Multiple Registries
respectively. Also, node implementers must be cognizant of the policy decisions that they
must make; the list of policy-related decisions can be found in Chapter 9 Policy.

This chapter addresses only the operational specifics that must be followed when hosting a
node, regardless of whether that node exists as the sole node in a registry or takes part in a
multi-node environment.

6.1 Managing Node Contents
This section provides procedures and requirements for managing and maintaining the
information within the UDDI registry.

6.1.1 XML Requirements
Given the use of XML, XML Schema, SOAP, and XML-Dsig within UDDI, a node must take
care to adhere to these standards when processing data. Specific additional requirements
layered upon these standards are included in the UDDI specification. Each node is
responsible for implementing these additional requirements as well as those defined by the
published standards.

6.1.1.1 Processing by XML Schema Assessment
UDDI nodes MUST assess the validity of the XML elements that comprise the API requests
they receive. This SHOULD be carried out by means of appealing to the 2nd or 3rd approaches
enumerated in Section 5.2 Assessing Schema-Validity of XML Schema Structures
(http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#validation_outcome). API request
elements which, having been so assessed are not found to have a [validity] property
(http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#sic-e-outcome) of valid, MUST
not be further processed by the node. An indication of this fact MUST be reported to the client
by returning an error.

Note that a side effect of processing by XML Schema Assessment is that whitespace in
elements and attributes is normalized (http://www.w3.org/TR/2001/REC-xmlschema-1-
20010502/section-White-Space-Normalization-during-Validation) in a well-defined manner.

6.1.1.2 Normalization and Canonicalization
UDDI registries provide publishers with the ability to digitally sign entities they publish, and
inquirers with the ability to validate the digital signatures on published material. In order for this
to be possible, publishers and registries MUST handle "normalization" and "canonicalization"
as described in Section 4.6.1.1 Normalization and Canonicalization.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 170/420

6.1.2 Key Generation and Maintenance
At the core of the UDDI specification is the ability to uniquely identify entities in a UDDI registry.

6.1.2.1 Key Uniqueness
Each key stored by a node must be verified to be unique. The node must not allow the
generation or storage of a key that is already present somewhere in the registry. This applies
to both the node where the entry was originally saved, and, in the event the node is a part of a
multi-node registry, any other node in the registry. See Section 4.4 About uddiKeys for an
extensive discussion around considerations in key generation and Chapter 9 Policy for more
on policy decisions a node must make around key generation.

6.1.2.2 Node Generated Keys
When a node generates a uuidKey for an entity, it must make certain that the process of
creating these is a correct one. Nodes SHOULD use the time-based or random number based
UUID generation algorithm as defined at http://uddi.org/pubs/draft-leach-uuids-guids-01.txt.

6.1.3 Updates and Deletions
When an entity that contains other entities is updated, the entire content of the updated entity,
including contained entities, is replaced. When making updates to the registered information,
the integrity of the overall registry must be maintained.

In particular, when deleting information from the UDDI registry, the following atomicity must be
maintained:

• When the deletion of an entity occurs and that entity contains other entities (i.e., a
businessService within a businessEntity), all contained entities MUST also be deleted.

• Any referenced entities (i.e., a tModel reference) MUST NOT be deleted.

• tModel deletion (more accurately described as deprecation or "hiding") behavior is
different from that of the other UDDI entities. The result of a tModel deletion request is
that it is stored in a deprecated state.

6.2 Considerations When Instantiating a Node
When first bringing a node online, several steps should be followed.

6.2.1 Canonical tModel Bootstrapping
A node MUST provide the canonical UDDI tModels (outlined in Chapter 11 Utility tModels and
Conventions) for entities to reference. The node MAY acquire these canonical tModels either
through performing an import of these tModels, through participating in a replication topology
or through other means.

6.2.2 Self-Registration of Node Business Entity

6.2.2.1 Normative Modeling of Node Business Entity
A node MUST register itself in the UDDI registry of which it is a part, so that it can be uniquely
distinguished within a registry. This UDDI entry is known as the "Node Business Entity". The
node MUST categorize its Node Business Entity with the uddi:uddi.org:categorization:nodes
tModel using the keyValue, "node":

 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:nodes"
 keyName=""

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 171/420

 keyValue="node"/>
 </categoryBag>

This checked category system is only permitted to be used by the node itself. If another
publisher attempts to save a categoryBag that has a reference to the
"uddi:uddi.org:categorization:nodes" category system, the node MUST return an error. This
checking guarantees the ability to query a single node and determine all the nodes that
participate in a given registry.

6.2.2.2 Recommended Modeling of Node Business Entity
A node is composed of Web services that implement one or more UDDI API sets. A node
SHOULD model those Web services within its Node Business Entity. The modeling of the
Node Business Entity SHOULD include the following characteristics:

• Each bindingTemplate that describes an implementation of a UDDI API set SHOULD
use tModelInstanceInfos that reference the API tModels of the API sets the
implementation supports (e.g., uddi-org:inquiry_v3). See Chapter 9 Policy and
Section 11.1.9 UDDI Registry API tModels.

• Each bindingTemplate provided SHOULD model the transport protocols and security
protocols supported by the implementation it describes.

• Each bindingTemplate provided SHOULD model the policies of the given node. One
option is to provide those policies in a document that can be found via the
overviewURL of the tModelInstanceInfo of a given bindingTemplate. Another option is
to model those policies using instanceParms, categorization schemes or other UDDI
constructs.

Because the UDDI data model offers great flexibility in how the modeling of services is
achieved and because the context in which a node might exist varies greatly, normative
mandates on the modeling of a Node Business Entity are inappropriate. However, it may be
the policy of a given registry that each node participating in that registry must model its Node
Business Entity according to a given template or pattern.

6.3 User Credential Requirements

6.3.1 Establishing User Credentials
A UDDI node MAY require users to establish an account with the node, before they are
allowed to utilize some or all of the services at the node. The process for registration is
determined by policy and may be node-specific.

For registries or nodes that enforce a policy relating particular publishers as owners of
particular datum, it is essential that there is a mechanism to identify the publisher of each entity
published at the node. Although this data is not reflected in the schema provided by UDDI, it
should be stored and obtainable by a node for entities for which it has custody of. See Section
1.5.8 Data Custody and Section 1.5.6 Person, Publisher and Owner.

6.3.2 Changing Entity Ownership
A UDDI node SHOULD provide an interface to permit a user to transfer ownership of data it
currently owns to another user within that node. An API for this procedure is given in Section
5.4 Custody and Ownership Transfer API.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 172/420

6.4 Checked Value Set Validation
This section describes the normative node behavior with respect to value set references.
Much of the node behavior in this area is not normative, but instead is driven by registry and
node policy.

For more on external validation checking, see Section 5.6 Value Set API and Chapter 9 Policy.

6.4.1 Normative behavior during saves
Every time a publisher saves an entity that has a keyedReference associated with a checked
value set, the node MUST perform validation in a manner that is acceptable to the value set
provider, or MUST reject the reference with an E_unsupported error code. How a UDDI node
determines that the referenced value set is checked, where that value set is hosted, locates
and invokes the validation algorithm, determines that a validation algorithm is acceptable, and
deals with unavailability of the validation algorithm is all driven by registry, and in some cases,
node policy.

When a UDDI node encounters a reference to a checked value set that it validates it MUST:

• Perform validation for each top-level entity being saved.

• Inspect tModel references in categoryBag, identifierBag or publisherAssertion
keyedReferences, and keyedReferenceGroups to determine if references are to be
checked.

• Fail the save when any keyedReference fails validation.

• Pass along error information for E_ invalidValue and E_valueNotAllowed errors from
the validation algorithm to the caller of the save operation.

• Return E_unvalidatable if the validation algorithm is unavailable.

A UDDI node that encounters a keyedReference for a checked value set that it validates
MUST do so using one of the following methods:

• Invoke the validation algorithm once for each individual reference, or once for the for
the collective set of references to all value sets that share the same validation
algorithm

• Perform validation itself on cached values for checked value sets that the value set
provider has allowed to be cached.

• Grandfather previously validated value references when the validation algorithm is not
available such that existing keyedReferences are considered still valid and are not re-
checked while the validation algorithm is unavailable. Nodes MAY allow previously
validated keyedReferences associated with that unavailable value set to be
(re)published without failing the save (e.g. the references are grandfathered and
remain valid even though they can't be checked). This gives nodes the opportunity to
not penalize those publishers that attempt to reference a value set marked
unvalidatable. However, new value references an unavailable value sets MUST be
rejected.

6.5 HTTP GET Services for UDDI Data Structures
A node may offer an HTTP GET service for access to the XML representations of UDDI data
structures. If a node offers this service, the URLs should be in a format that is predictable and
uses the entity key as a URL parameter.

The RECOMMENDED syntax for the URLs for such a service is as follows:

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 173/420

If a UDDI node’s base URI is http://uddi.example.org/mybase, then the URI
http://uddi.example.org/mybase?<entity>Key=uddiKey would retrieve the XML for the
data structure whose type is <entity> and whose key is uddiKey. For example, the
XML representation of a tModel whose key is "uddi:tempuri.com:fish:interface" can be
retrieved by using the URL
http://uddi.example.org/mybase?tModelKey=uddi:tempuri.com:fish:interface.

In the case of businessEntities, the node MAY add these URIs to the businessEntity’s
discoveryURLs structure, though this is NOT RECOMMENDED behavior as it complicates the
use of digital signatures.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 174/420

7 Inter-Node Operation
This chapter defines the normative behavior of UDDI nodes interacting as a single UDDI
registry. It outlines the operational parameters and requirements that UDDI nodes and UDDI
registries must follow. These parameters and requirements are policies that a registry must
establish and that the nodes must enforce. This chapter also describes the OPTIONAL
replication protocol for propagation of UDDI data among nodes of a registry. The intended
audiences for this chapter are registry administrators and node operators intending to
implement and host a multi-node UDDI registry.

Considerations regarding inter-registry operation, such as data import and export between
affiliated registries, are detailed in Section 8.2 Data Management Policies and Procedures
Across Registries.

7.1 Inter-Node Policy Assertions
Any set of nodes composing a single UDDI registry MUST enforce a set of policies for keying,
data management and value sets as defined in Chapter 9.

This chapter focuses on the replication protocol that is appropriate to a multi-node registry that
uses a single-master data model and assumes the data custody policy in the following section.

7.1.1 Data Custody
Registries that use the replication protocol defined in Section 7.4 Replication API Set MUST
enforce the data custody policy specified in Section 1.5.6 Data Custody.

Portions of the Custody Transfer process discussed in Section 5.4 Custody and Ownership
Transfer API are designed to utilize UDDI Replication.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 175/420

7.2 Concepts and Definitions
Where two or more nodes are integrated into a registry, the use of the replication API
described in this chapter allows the registry to be viewed as a single logical entity. A registry
designed in this way supports uniform access to a complete set of registry data from any node
within the registry. The goal of replication is to facilitate the establishment and maintenance of
a single consistent shared set of registry data. Replication latency notwithstanding, all nodes in
a registry should at all times contain common content.

This chapter describes the data replication process and programmatic interface required to
achieve complete data replication in UDDI registries composed of more than one node. The
replication process makes use of Extensible Markup Language (XML) and Simple Object
Access Protocol (SOAP) specification for using XML in simple message-based exchanges as
described in Section 7.4 Replication API Set.

In general terms this section describes the replication API’s and behavior required of any node
that intends to support UDDI replication. This function may be thought of as satisfying the
following base requirements:

• Support the addition of a node, by supplying to it an image of the current registry
contents.

• Support periodic replication between the nodes that compose a registry.

• Support recovery from errors encountered during replication processing.

Note: Please refer to Chapter 2 UDDI Schemas for the reference to the UDDI XML Schema
and to the UDDI Replication XML Schema files.

7.2.1 Update Sequence Number
Each node SHALL maintain a strictly increasing register known as its Originating Update
Sequence Number (USN). An originating USN is assigned to a change record at its creation
by a node. The originating USN SHALL NEVER decrease in value, even in the face of system
crashes and restarts. UDDI nodes MUST NOT rely on an originating USN sequence
increasing monotonically by a value of "1". Gaps in a node's originating USN sequence MUST
be allowed for as they are likely to occur in the face of system crashes and restarts.

While processing changes to the Registry as a result of performing UDDI Replication, all
replicated data MUST be assigned an additional unique and locally generated USN register
value – a local USN.

The originating and local USN registers MUST be sufficiently large such that register rollover is
not a concern. For this purpose, UDDI nodes MUST implement a USN of exactly 63 bits in
size.

Note that it is semantically meaningless to compare USNs that have been generated on
different nodes; only USNs generated on the same node may be meaningfully compared to
each other.

NO change record MAY have a USN equal to 0 (zero).

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 176/420

7.2.2 Change Records
When a publisher changes a specific datum at a node, the node will create a change record
that describes the details of the change.

Each change record contains the following information:

• The unique key of the originating node at which the change record was initially
created.

• An originating USN with which the change record is assigned at its creation by its
originating node.

• A payload of data that conveys the semantics of the change in question. These are
elaborated and specified later in this chapter.

The UDDI replication process defines how change records are transmitted between nodes of a
registry. Each step of replication involves the transmission of such records from one node to
another, say from Node A to Node B. As Node B receives change records from Node A, Node
B assigns each incoming record with a fourth piece of (Node-B-generated) information, a local
USN.

It is RECOMMENDED that within an implementation, a node should first process a new or
updated record and then increment its originating and local USN registers. This process
assures that the USN values remain unique.

Should an implementer choose to record change records generated by an implementation
within a Change Record Journal, the local USN and the originating USN values it assigns to a
given change record MAY be set to an identical USN value. Thus, all change records ever
processed by a node can be sequenced in order of the time of arrival via the replication stream
by sorting on the local USNs values of change records it holds.

A node that is ready to initiate replication of change records held at another node within the
registry uses the get_changeRecords message. Part of the message is a high water mark
vector that contains for each node of the registry the originating USN of the most recent
change record that has been successfully processed by the invocating node. The effect of
receiving a get_changeRecords message causes a node to return to the calling node change
records it has generated locally and processed from other nodes constrained by the directives
of the high water mark vector specified. As such, by invoking get_changeRecords a node
obtains from its adjacent node all change records (constrained by the high water mark vector)
the adjacent node has generated locally or successfully processed from other nodes
participating in the replication topology. What constitutes an adjacent node is governed by the
replication communication graph. Replication topology is controlled via a Replication
Configuration Structure. Amongst other parameters, the Replication Configuration Structure
identifies one unique URL to represent the replication point, soapReplicationURL, of each of
the nodes of the registry.

Upon receiving a get_changeRecords message, a node MUST return change records strictly
in increasing order of its local USN values. This property, together with the rules by which local
USNs are assigned, provides the following guarantee: Suppose a publisher, whose data is
held at node B (that is, Node B is the custodian of that data) changes its data. Node B
originates a change record cr. Then it is guaranteed that any other node that receives change
record cr will have previously received all changes which on Node B had a local USN less than
the local (and originating) USN of cr. This, however, is true only of changes cr that Node B
originates.

This important cause and effect relationship is relied upon in several places in the UDDI
Replication design, notably the algorithm by which information is ultimately deleted from the
UDDI registry.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 177/420

7.2.3 Change Record Journal
Accurate replication of data within a UDDI registry relies on accurate and faithful creation,
transmission, and retransmission of change records between all nodes of the UDDI registry. A
change record originated by a node is the authoritative reference for change information
propagation. It is critical that change records are not inadvertently altered as they are
conveyed from the originating node through intermediate nodes to reach other nodes in the
UDDI registry.

To that end, each node SHOULD create and maintain as part of their internal implementation
a change record journal that explicitly records verbatim the XML text of change records as they
are received from other nodes. This journaling may be performed before or after standard
XML parsing of the change record.

Implementers may find it convenient to also place their own change records in their change
record journal as described above.

7.2.4 High Water Mark Vector
Each node maintains state information in the form of a high water mark vector that contains the
originating USN of the most recent change record that has been successfully processed by
each node of the registry. This vector has one entry for each node that can now or has ever
introduced change records into the replication stream. Each entry contains the following
information:

• nodeID, that provides the unique key of a node in the replication communication
graph, and

• originatingUSN, that provides the originating USN of the most recent change
associated with the node identified by operatorNodeID that has been successfully
consumed. Since changes originating from a given node are always originated and
thus consumed in order, this will necessarily normally be the largest originating USN
that the calling node has successfully consumed from the node identified.

A consuming node MAY reset the originating USN to another value that had been previously
been requested for a given node. This may occur due to the need to obtain change records
from other nodes as part of a recovery operation following a system failure.

7.2.5 Replication Messages
Replication processing consists of the notification of changes that are available and then the
subsequent "pulling" of changes from one of the nodes within the registry. A node within the
registry MAY advertise that changes are available at that node. The advertisement of changes
available includes sufficient information so that another node within the registry can determine
if and when it should pull the changes from the offering node to itself for replication processing.

UDDI Replication defines four messages. The first two presented here are used to perform
replication and issue notifications. These are:

• get_changeRecords - This message is used to initiate the replication of change
records from one node to another. The invoking node, wishing to receive new change

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 178/420

records, provides as part of the message a high water mark vector. This is used by
the replication source node to determine what change records satisfy the caller’s
request.

• notify_changeRecordsAvailable - Nodes can inform others that they have new
change records available for consumption by replication by using this message. The
notify_changeRecordsAvailable message is the predecessor to the
get_changeRecords message.

Figure 3 depicts the use of the get_changeRecords and notify_changeRecordsAvailable
messages to carry out the process of replicating changes between UDDI nodes.

Figure 3 - Replication Processing

Two ancillary messages are also defined to support UDDI Replication. These are:

• do_ping - This UDDI API message provides the means by which the current
existence and replication readiness of a node may be obtained.

• get_highWaterMarks - This UDDI API message provides a means to obtain a list of
highWaterMark elements containing the highest known USN for all nodes in the
replication communication graph.

7.2.6 Replication Processing
Replication SHOULD be configured so that in the absence of failures, changes propagate
throughout the UDDI registry within a set amount of time. This requirement means that
get_changeRecords requests MAY have to be sent in some scheduled manner.

For example, assume that the communications graph is a cycle of 4 nodes (A, B, C, and D)
such that D places get_changeRecords request to C (D>C), C>B, B>A, and then finally A>D.

In this example, A starts the Replication process. Periodically, A generates a timer event and
notifies B of its high water vector; if necessary, B issues a get_changeRecords request to A,
and then sends C its high water vector. This continues around the cycle (B>A, C>B, D>C,
A>D), but doesn't stop there. B has not received any changes from C or D for the current
period, and C has not received any changes from D.

So A continues this algorithm around the cycle again (B>A, C>B, D>C). At this point, all
changes that existed when A handled its timer event have been circulated to all nodes.
(Subsequent changes may have also been propagated.)

Nodes within the registry MAY do local optimizations of changes prior to replicating the
changes throughout the UDDI registry. Any local optimizations performed must be invisible to
other nodes within the registry.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 179/420

This UDDI API provides a means to obtain a list of highWaterMark elements containing the
highest known USN for all nodes in the replication communication graph.

Validation of replicated data is discussed in Section 7.7 Validation of Replicated Data. Error
detection and processing is discussed in Section 7.6 Error Detection and Processing.

7.3 Change Record Structures
This section provides the definition of the various changeRecord elements defined for use for
UDDI Replication. The overall changeRecord element is defined as follows.

Each change record contains a changeID that identifies the node on which the change
originated and the originating USN of the change within that node. It then contains one of
several allowed forms of change indication; these are elaborated below. With the exception of
a changeRecordAcknowledgement type record, a changeRecord may contain an
acknowledgementRequested attribute.

If present with the acknowledgementRequested value set to "true," then when each node
receives a change record and successfully processes it into internal data store, that node
MUST in turn originate a new changeRecord with a changeRecordPayload_type of
changeRecordAcknowledgement. This is done to acknowledge the message processing
success and allow that knowledge to be disseminated through the rest of the UDDI registry.

As each changeRecord element first arrives at a node, it must be assigned a local USN value
from the receiving node’s USN register. This local USN allows the node to maintain over time
the relative order of changes it has received from others and changes it has originated locally.
As was mentioned previously, when changes are replicated to others in response to a
get_changeRecords request, the change records are provided in ascending order according to
this local USN. However, the local USN itself never actually appears in any node-to-node data
transmission.

In the event that any changeRecordPayload_type listed below is deprecated in a future version
of this specification, transmissions of the change records of the deprecated
changeRecordPayload_type MUST be treated as replication errors. The corresponding

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 180/420

handling of those replication transmission errors is specified within Section 7.6 Error Detection
and Processing.

7.3.1 changeRecordNull
The changeRecordNull element is defined as follows:

Change records of this form do not in fact indicate any sort of semantic change. Rather, their
utility largely lies in providing a convenient and safe means to exercise and test certain aspects
of the UDDI replication infrastructure. In addition, a changeRecordNull to which an
acknowledgement request is attached expands this testing capability of the UDDI registry.

A changeRecordNull is considered "successfully processed" once a node has received it and
durably stored it in its Change Record Journal.

7.3.2 changeRecordNewData
The changeRecordNewData element is defined as follows:

A changeRecordNewData MUST not be empty; it must contain a valid semantic piece of new
data. Change records of this type provide new or updated business or modeling information
that is to be incorporated. Partial updates to a datum are not provided for; rather, the entire
new contents of the datum and its operationalInfo are to be provided, and these replace any
existing definition of the datum and its operationalInfo with the recipient of the change record.
The hidden state (i.e. the deleted attribute) must be persisted through replication to allow for a
custody transfer of hidden tModels between nodes via the replication protocol.

The operationalInfo element MUST contain the operational information associated with the
indicated new data. No validation other than schema assessment and presence requirements
are performed by the consuming node. Specifically, the creation date may change; the
creation date need not be earlier than the modification date; the modification date need not be
earlier than the modified including children date.

A changeRecordNewData is considered "successfully processed" once a node has received it,
assigned a local USN to it, validated it, durably stored it in its change record journal, and then
successfully incorporated it into the node’s data store.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 181/420

7.3.3 changeRecordHide
The changeRecordHide element is defined as follows:

A changeRecordHide element corresponds to the behavior of hiding a tModel described in the
delete_tModel in the Publish API section of this Specification. A tModel listed in a
changeRecordHide should be marked as hidden, so that it is not returned in response to a
find_tModel API call.

The changeRecordHide MUST contain a modified timestamp to allow multi-node registries to
calculate consistent modifiedIncludingChildren timestamps as described in Section 3.8
operationalInfo Structure.

7.3.4 changeRecordDelete
The changeRecordDelete element is defined as follows:

A changeRecordDelete element indicates that an item defined in the UDDI registry is to no
longer be used and expunged from the data stores in each of the nodes. The item to be
deleted is indicated in the change record by the key of an appropriate entity type; this must
contain the unique key of some businessEntity, businessService, bindingTemplate, or tModel
that is presently defined. The changeRecordDelete element for deleting tModels corresponds
to the administrative deletion of a tModel described in Section 6.1.3 Updates and Deletions of
this specification. The changeRecordDelete for a tModel does not correspond to any API
described in this specification and should only appear in the replication stream as the result of
an administrative function to permanently remove a tModel.

Permanent deletions of tModel information within the node may be made administratively. In
this event, a UDDI Node may insert a delete operation into the replication stream. The
publisher identifier for this operation is the account associated with the UDDI Node. Note that
a permanent deletion of tModel information from the registry must have the prior approval of
the other nodes participating within the registry.

The changeRecordDelete MUST contain a modified timestamp to allow multi-node registries
to calculate consistent modifiedIncludingChildren timestamps as described in Section 3.8
operationalInfo Structure.

7.3.5 changeRecordPublisherAssertion
The changeRecordPublisherAssertion element describes the information that UDDI replication
MUST convey in order to support the business-to-business relationship definition supported by
UDDI.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 182/420

An implementation MUST be able to determine the Registry changes from the information
transmitted within the replication stream. The fromBusinessCheck and toBusinessCheck
elements are Boolean values that represent which side of the business relationship is being
asserted. A changeRecordPublisherAssertion message may include one or both sides of the
relationship. For example, if the fromBusinessCheck is present and set to "true" then the
assertion represents the parent-side of a parent-child relationship.

A changeRecordPublisherAssertion element indicates that one or both sides of the business
relationship are to be inserted.

a. changeRecordPublisherAssertion with:

<fromBusinessCheck>true</fromBusinessCheck> and
<toBusinessCheck>true</toBusinessCheck> is used to indicate that both sides of the
publisherAssertion (i.e., business relationship) are to be inserted. The two businessEntity
elements that are referred to within the publisherAssertion MUST be in the custody of the
node that originates the changeRecord.

b. changeRecordPublisherAssertion with:

<fromBusinessCheck>true</fromBusinessCheck> and
<toBusinessCheck>false</toBusinessCheck> is used to indicate that the
fromBusinessCheck side of the publisherAssertion (i.e., business relationship) is to be
inserted. The businessEntity that is referred to in the fromBusinessCheck MUST be in the
custody of the node that originates the changeRecord.

c. changeRecordPublisherAssertion with:

<fromBusinessCheck>false</fromBusinessCheck> and
<toBusinessCheck>true</toBusinessCheck> is used to indicate that the toBusinessCheck
side of the publisherAssertion (i.e., business relationship) is to be inserted. The
businessEntity that is referred to in the toBusinessCheck MUST be in the custody of the
node that originates the changeRecord.

d. changeRecordPublisherAssertion with:

<fromBusinessCheck>false</fromBusinessCheck> and
<toBusinessCheck>false</toBusinessCheck> if this is received in the replication stream,
such a changeRecord will not generate any change to the registry. The node SHOULD log
any events such as this.

The operationalInfo element MUST contain a modified date corresponding to the update for
the publisher assertion. This modified date should be stored by nodes supporting the
subscription APIs in order to respond to subscription requests involving
find_relatedBusinesses and get_assertionStatusReport filters. Since the publisherAssertions
corresponding to a relationship may be originated from more than one node, the modified date
stored for any relationship corresponding to the publisher should be the most recent date
received from any node.

To handle signed publisherAssertion elements, it is necessary to indicate which set of
signatures are being completely replaced as a result of the originating node’s change to
update one or both sides of the relationship represented by the publisherAssertion. The

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 183/420

optional signature element in the publisherAssertion must be ignored in replication and the
toSignatures and fromSignatures elements must be used to replace signatures stored for the
publisherAssertion. One of the elements toSignatures, fromSignatures or both must appear in
the changeRecordPublisherAssertion. The presence of a toSignatures or fromSignatures
element indicates that the signatures associated with the "to" or "from" side of the relationship
must be deleted and completely replaced with the Signatures in the toSignatures or
fromSignatures element. In the case where a single publisherAssertion represents both sides
of the relationship, the node originating the corresponding changeRecordPublisherAssertion
must include both a toSignatures and fromSignatures element with the identical set of
Signature elements in both the toSignatures and fromSignatures. When the toSignatures
element is not present, no changes are made to the signature elements associated with the
"to" side of the relationship in the node. Similarily, when the fromSignatures element is not
present, no changes are made to the signature elements associated with the "from" side of the
relationship in the node.

7.3.6 changeRecordDeleteAssertion
The changeRecordDeleteAssertion element is defined as follows:

A changeRecordDeleteAssertion element indicates that one or both sides of the business
relationship are to be deleted.

a. changeRecordDeleteAssertion with:

<fromBusinessCheck>true</fromBusinessCheck> and
<toBusinessCheck>true</toBusinessCheck> is used to indicate that both sides of the
publisherAssertion (i.e., business relationship) are to be deleted. The two businessEntity
elements that are referred to within the publisherAssertion MUST be in the custody of the
node that originates the changeRecord.

b. changeRecordDeleteAssertion with:

<fromBusinessCheck>true</fromBusinessCheck> and
<toBusinessCheck>false</toBusinessCheck> is used to indicate that the
fromBusinessCheck side of the publisherAssertion (i.e., business relationship) is to be
deleted. The businessEntity that is referred to in the fromBusinessCheck MUST be in the
custody of the node that originates the changeRecord.

c. changeRecordDeleteAssertion with:

<fromBusinessCheck>false</fromBusinessCheck> and
<toBusinessCheck>true</toBusinessCheck> is used to indicate that the toBusinessCheck
side of the publisherAssertion (i.e., business relationship) is to be deleted. The
businessEntity that is referred to in the toBusinessCheck MUST be in the custody of the
node that originates the changeRecord.

d. changeRecordDeleteAssertion with:

<fromBusinessCheck>false</fromBusinessCheck> and
<toBusinessCheck>false</toBusinessCheck> if this is received in the replication stream,

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 184/420

such a changeRecord will not generate any change to the registry. The node SHOULD log
any events such as this.

In the event that a businessEntity deleted with a delete_business API message references
publisherAssertions, the node SHOULD NOT create corresponding changeRecords for the
referenced publisherAssertions. Please refer to Section 7.2.6 Replication Processing for more
discussion related to this.

To handle signed publisherAssertion elements, it is necessary to delete signatures
corresponding to the deleted publisherAssertion. For each part of the relationship deleted as a
result of this changeRecordDeleteAssertion, it is necessary to remove the all Signature
elements associated with that part of the relationship.

The changeRecordDeleteAssertion element MUST contain a modified timestamp
corresponding to the update for the publisher assertion. This modified date MUST be stored by
nodes supporting the subscription APIs in order to respond to subscription requests involving
find_relatedBusinesses and get_assertionStatusReport filters. Since the publisherAssertions
corresponding to a relationship may be originated from more than one node, the modified
timestamp stored for any relationship corresponding to the publisher MUST be the most recent
date received from any node.

7.3.7 changeRecordAcknowledgment
The changeRecordAcknowledgement element is defined as follows:

A node MUST originate a changeRecordAcknowledgement message when it receives and
successfully processes a changeRecord that contains an acknowledgementRequested
attribute set to true. The changeRecordAcknowledgement message contains the identification
of the change that it is acknowledging.

It is specifically required that all nodes receiving a changeRecord with an acknowledgement
request MUST originate an acknowledgement for it, even the node that originated the
changeRecord in the first place.

7.3.8 changeRecordCorrection
A changeRecordCorrection contains information that is the corrected version of a change
record that was previously originated in error. The correction simply contains the whole
changeRecord that should have been transmitted in the first place; the originating node and
originating USN information therein can be used to locate the offending record in change
record journals.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 185/420

When a node receives a changeRecordCorrection, it processes it only by making annotations
in its change record journal; the data store of the node is not otherwise updated with the
corrected change29. Specifically, and simply put, if the original offending change is still present
in the node’s change record journal, its entry SHOULD be merely annotated in such a way that
if the change needs to be propagated to a replication partner that the correct contents of the
change are transmitted instead of the original. The changeRecordCorrection may be
considered successfully processed once this has been durably accomplished and the
changeRecordCorrection itself durably recorded in the change record journal.

7.3.9 changeRecordNewDataConditional
From time to time, registries may find it useful to permit certain new data with certain particular
keys to be introduced at possibly any of their nodes. For example, registries face the issue that
the tModel representing the definition of a new domainKey partition in the keying scheme may
be published at any node, and thus possibly at more than one node simultaneously. Some
means is therefore necessary to prevent the introduction at multiple nodes of different (and
thus conflicting) data under the key in question.

The changeRecordNewDataConditional element provides a means by which this can be
accomplished. Such elements necessarily contain wholly new data, that is, data residing under
a key that does not yet exist in the registry. The replication and processing of these records
ensure that either (a) the new data contained therein is introduced throughout the registry
without conflict with other such introductions, or (b) that a conflict is detected by the originating
node in the registry and as a consequence informs all nodes the data not to be introduced.
That is, race conditions are detected and resolved. Informing other nodes that the data should
not be introduced is accomplished using changeRecordConditionFailed described in Section
7.3.10 changeRecordConditionFailed. When a node has determined that the data can be
successfully introduced at all nodes, the originating node adds the changeRecordNewData
element as another changeRecord in the change record journal.

It is a matter of registry policy which forms of data, if any, may be replicated within a given
registry using the changeRecordNewDataConditional element.

Change records of type changeRecordNewDataConditional MUST be replicated in change
records with an acknowledgementRequested attribute set to "true". For this type of change
record nodes that originate such change records MAY emit their own acknowledgment to their
own request at any time after having originated it.

If a Node A originates a change record a with payload of type
changeRecordNewDataConditional, then, at the instant of origination (that is, at the instant at
which the change record a is assigned its local USN by Node A), it MUST be the case at Node
A that the following three rules all are adhered to:

1. The new data is valid at Node A. That is, Node A would at this instant be willing to
have the data published into the registry’s data set. Thus, the data in question must
conform to all the specifications and policies applicable to it. In particular, for example,
if the registry in question supports publisher assigned keys and the data is a tModel
representing the introduction of a new domainKey, then the tModel MUST be
categorized with the value "keyGenerator" from the uddi-org:types category system,
must be trusted as legitimate according to the policy of the registry, and so on.

29

 The job of bringing data stores up to date should be addressed by a following change containing the now-current state of the
data modified by the offending change.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 186/420

2. The key k is not an existing key at Node A. That is, at Node A there does not exist
a change record x with local USN less than that of the USN of the change record a
where x contains a changeRecordNewData or changeRecordNewDataConditional
payload using the key k in its datum, and there does not exist subsequent to x a
change record z with payload changeRecordDelete or
changeRecordNewDataConditional also containing the key k. In other words, there is
no pre-existing data already using the proposed key, and Node A has not already
issued a changeRecordNewDataConditional for key k.

3. No other node is known by Node A to have requested the key k first. That is, at
Node A there does not exist a change record x with local USN less than that of the
USN of the change record a where x contains a payload of type
changeRecordNewDataConditional whose contained data also has key k and for
which it has not been determined that x was involved in a race in the manner set forth
below. In other words, Node A has not already acknowledged a
changeRecordNewDataConditional which was issued by another node using the
same key k, and which is still in a "conditional state".

7.3.9.1 Detection of collisions in conditional new data publication
The description within this section uses domain key generator tModels as an example. The
behavior described MUST be applied to any type of new data that is found to collide with data
from other nodes within the registry.

When two nodes have saved a domainKey key generator tModel with the same domainKey, a
collision has occurred. Only one publisher can establish a domainKey domain at only one
node. When multiple publishers attempt to establish ownership over a single key domain only
one can be allowed to succeed to guarantee uniqueness of publisher assigned keys.

Suppose an arbitrary registry has three nodes A, B and C and publishers are attempting to
save a tModel, T, with the same key at each node. As a result of the save_tModel Node A
originates a changeRecordNewDataConditional change record a. SimilarlySimilarily, Node B
also originates a changeRecordNewDataConditional change record (call it b) which contains a
datum with same key as that of the datum in a. Finally, Node C be also originates a
changeRecordNewDataConditional change record (call it c) which contains a datum with same
key as that of the datum in a. Let the notation (x,Y) represent the acknowledgement by Node Y
(in a changeRecordAcknowledgement originated by Node Y) of
changeRecordNewDataConditional change record x, and let the notation Col(x) represent the
changeRecordConditionFailed message for changeRecordNewDataConditional x..Then,
recalling the ordering principle of replication of change records mentioned in Section 7.2.2
Change Records, all of the following scenario must be true:

Step Operation Node A Node B Node C

1 save T a

2 save T b

3 save T c

4 A->B b

(b, A)

Col(a)

5 B->A a

(a, B)

Col(b)

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 187/420

6 A->C c

 (c, A)

7 B->C c

 (c, B)

8 A->B Col(b)

(c, B)

9 B->A Col(a)

(c, A)

10 C->A a

(a, C)

Col(c)

 b

 (b, C)

(b, A)

Col(a)

(c, A)

Col(b)

 (c, B)

11 A->C (a, C)

Col(c)

(b, C)

12 B->C (a, C)

Col(C)

(b, C)

Please note in this scenario that nodes do not emit their own acknowledgement as they are
allowed to and each node Y must generate (x, Y) when receiving x even if Y detects a
collision. The originator of the changeRecordNewDataConditional must generate Col(x) when
it detects a collision or must generate a changeRecordNewData after all the related
acknowledgements have been received from the other nodes actively participating in the
replication topology.

The operations at each node in the scenario above are:

1. T is saved on A that generates a, and inserts a in conditional storage.
2. T is saved on B that generates b, and inserts b in conditional storage.
3. T is saved on C that generates c, and inserts c in conditional storage.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 188/420

4. A gets b from B by replication and detects a collision with a.
A generates (b, A), and discards b and removes a from conditional storage30.
A also generates Col(a) indicating that a collision was detected and a will not be
durably stored.

5. B gets a from A by replication and detects a collision with b.
B generates (a, B), and discards a and removes b from conditional storage.
B also generates Col(b) indicating that a collision was detected and b will not be
durably stored.
B also receives Col(a) which has already been discarded from conditional storage.

6. A gets c from C by replication. It is valid since there is no collision detected given that
at step 4 evidence of the collision had been discarded.
A generates (c, A), and A inserts c or (c, A)31 into conditional storage (Rule 3).

7. B gets c from C by replication. It is valid since there is no collision detected given that
at step 5 evidence of the collision had been discarded.
B generates (c, B), and B inserts c or (c, B) into conditional storage (Rule 3).

8. A gets Col(b) and (c, B) from B by replication and can now consider T to be in a state
where it can be successfully saved via to conditional record c (if Node A wanted to
unnecessarily track such state information).

9. B gets Col(a) and (c, A) from A by replication and can now consider T to be in a state
where it can be successfully saved via conditional record c (if Node B wanted to
unnecessarily track such state information).

10. C gets a from A and detect a collision with c.
C generates (a, C) and discards a and removes c from conditional storage.
C also generates Col(c) indicating that a collision was detected and c will should not
be durably stored anywhere.
C also receives b from A and generates (b, C) and inserts b or (b, C) into conditional
storage (Rule 3).
C also receives (b, A) and does nothing (it is now waiting on a
changeRecordNewData from B.)
C also receives Col(a) from A, a or (a, C) are removed from conditional storage if they
are still present.
C also receives (c, A) for which c has already been discarded from conditional
storage.
C also receives Col(b) and discards b or (b, C) from conditional storage.
C also receives (c, B) which has already been discarded from conditional storage.

11. A gets (a, C) from C and does nothing as a has already been discarded from
conditional storage.
A also gets Col(c) and discards c from conditional storage.
A gets (b, C) from C and does nothing as b or (b, A) has already been discarded from
conditional storage.

12. B gets (a, C) from C and does nothing as a or (a, B) has already been discarded
from conditional storage.
B also gets Col(c) and discards c or (c, B) from conditional storage.
B gets (b, C) from C and does nothing as b has already been discarded from
conditional storage.

30 As an implementation detail, instead of removing b and a from conditional storage, the Node could remove a
from conditional storage and wait to remove b until such time that a changeRecordConditionFailed change record is
received.
31 Whether c or (c, A) is inserted into conditional storage is an implementation issue. An implementation may
choose to do either or both as a means of achieving the goals identified by Rule 3 i.e. requirement to prevent
additional changeRecordNewDataConditional for a given T prior to having 1) receiving a changeRecordNewData
or 2) a changeRecordConditionFailed.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 189/420

Thus, at all nodes in the registry when Col(x) precedes any normal changeRecordNewData for
x, none of the nodes will durably store x because the expected changeRecordNewData has
been canceled by the changeRecordConditionalFailed.

Therefore, we can specify in a well-formed manner the following decision procedure:

• When a conditional record x is originated at any Node X, and when acknowledgement
(x, xY) is seen for all nodes Y other than Node X before any other conditional record y
is seen by Node X that conflicts with x, then Node X MUST conclude no such yx in
fact exists, and that Node X can now safely publish the key in question, and that the
data contained in the changeRecordNewData inside of record x can be successfully
incorporated into the node’s data store. Node X must also emit a
changeRecordNewData for x to indicate that the data should be incorporated in the
data store at all nodes.

• Conversely, if record yy is seen before all the acknowledgements from nodes other
than Node X, then Node X SHOULD conclude that a race has occurred. Node X
MUST then emit a changeRecordConditionFailed so that neither Node X nor any
node that it was racing with has published the key, and that the introduction of neither
records xx nor yy into the replication stream had any enduring effect on the data of the
registry due to the changeRecordConditionFailed for x and any other records y that
collided (the changeRecordNewDataConditional followed by the
changeRecordConditionFailed for the same x is a no-opno-op).

In typical uses of the changeRecordNewDataConditional functionality, these sorts of races
only arise due to the end-user error of attempting to simultaneously establish new data (such
as domainKey key generators) at more than one node. The outcome of such errors is that the
new data is not introduced at all, and thus the user must try again.

7.3.10 changeRecordConditionFailed
A changeRecordConditionFailed contains the changeID of a conditional change record that
has failed to meet the criteria established by the registry for insertion into the data model at
each node. The changeID identified the changeRecord that MUST be removed from any
conditional storage; the originating node and originating USN information therein can be used
to locate the changeRecordNewDataConditional record in change record journals.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 190/420

7.4 Replication API Set
UDDI Replication defines four APIs. The first two presented here are used to perform
replication and issue notifications. The latter ancillary APIs provide support for other aspects of
UDDI Replication.

• get_changeRecords

• notify_changeRecordsAvailable

• do_ping

• get_highWaterMarks

7.4.1 get_changeRecords Message
The get_changeRecords message is used to initiate the replication of change records from
one node to another. The caller, who wishes to receive new change records, provides as part
of the message a high water mark vector. This is used by the replication source node to
determine what change records satisfy the caller’s request.

7.4.1.1 Syntax

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 191/420

7.4.1.2 Arguments
• requestingNode: The requestingNode element provides the identity of the calling

node. This is the unique key for the calling node and SHOULD be specified within the
Replication Configuration Structure.

• changesAlreadySeen: The changesAlreadySeen element, if present, indicates
changes from each node that the requestor has successfully processed, and thus
which should not be resent, if possible.

• responseLimitCount or responseLimitVector: A caller MAY place an upper bound
on the number of change records he wishes to receive in response to this message
by either providing a integer responseLimitCount, or, using responseLimitVector,
indicating for each node in the graph the first change originating there that he does not
wish to be returned.

More specifically, the recipient determines the particular change records that are returned by
comparing the originating USNs in the caller’s high water mark vector with the originating
USNs of each of the changes the recipient has seen from others or generated by itself. The
recipient SHOULD only return change records that have originating USNs that are greater
than those listed in the changesAlreadySeen highWaterMarkVector and less than the limit
required by either the responseLimitCount or the responseLimitVector.

In nodes that support pre-bundled replication responses, the recipient of the
get_changeRecords message MAY return more change records than requested by the caller.
In this scenario, the caller MUST also be prepared to deal with such redundant changes where
a USN is less than the USN specified in the changesAlreadySeen highWaterMarkVector.

The response to a get_changeRecords message is a changeRecords element. Under all
circumstances, all change records returned therein by the message recipient MUST be
returned sorted in increasing order according to the recipient’s local USN.

7.4.1.3 Returns:
A node will respond with the corresponding changeRecords.

7.4.1.4 Caveats:
Processing an inbound replication message may fail due to a server internal error. The
common behavior for all error cases is to return an E_fatalError error code. Error reporting
SHALL be that specified by Section 4.8 – Success and Error Reporting of this specification.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 192/420

7.4.2 notify_changeRecordsAvailable Message
Nodes can inform other nodes that they have new change records available for consumption
by replication by using this message. This provides a proactive means through which
replication can be initiated, potentially reducing the latency of the dissemination of changes
throughout the set of UDDI nodes. The notify_changeRecordsAvailable message is the
predecessor to the get_changeRecords message.

Each node MUST respond with the message defined within the Section 7.4.2.3 Returns when
a valid notify_changeRecordsAvailable message is received.

At an interval set by policy after the origination of new change records within its node, a node
SHOULD send this message to each of the other nodes with which it is configured to
communicate this message according to the currently configured communication graph. It
SHOULD ignore any response (errors or otherwise) returned by such invocations.

7.4.2.1 Syntax

7.4.2.2 Arguments
• notifyingNode: The parameter to this message indicates that the notifyingNode has

available the indicated set of changes for request via get_changeRecords.

• changesAvailable: When sending the notify_changeRecordsAvailable message, a
node shall provide a high water mark vector identifying what changes it knows to exist
both locally and on other nodes with which it might have had communications.
Typically, no communication graph restrictions are present for the
notify_changeRecordsAvailable message. In the event that the sending node does
not know the USN for a specific node within the CommunicationGraph, the
changesAvailable element MAY contain a highWaterMark for that node with an
unspecified nodeID element.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 193/420

7.4.2.3 Returns
Success reporting SHALL be that specified by Section 4.8 – Success and Error Reporting of
this specification.

7.4.2.4 Caveats:
Processing an inbound replication message may fail due to a server internal error. The
common behavior for all error cases is to return an E_fatalError error code. Error reporting
SHALL be that specified by Section 4.8 – Success and Error Reporting of this specification.

7.4.3 do_ping Message
This UDDI API message provides the means by which the current existence and replication
readiness of a node may be obtained.

7.4.3.1 Syntax

7.4.3.2 Arguments
None

7.4.3.3 Returns
The response to this message must contain the operatorNodeID element of the pinged node.

7.4.3.4 Caveats:
Processing an inbound replication message may fail due to a server internal error. The
common behavior for all error cases is to return an E_fatalError error code. Error reporting
SHALL be that specified by Section 4.8 – Success and Error Reporting of this specification.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 194/420

7.4.4 get_highWaterMarks Message
This UDDI API message provides a means to obtain a list of highWaterMark element
containing the highest known USN for all nodes in the replication graph.

7.4.4.1 Syntax

7.4.4.2 Arguments
None

7.4.4.3 Returns
A highWaterMarks element is returned that contains a list of highWaterMark elements listing
the highest known USN for all nodes in the replication communication graph. See Section
7.2.4 High Water Mark Vector for details.

If the highest originatingUSN for a specific node within the registry is not known, then the
responding node MUST return a highWaterMark for that node with an originatingUSN of 0
(zero).

<highWaterMark>
 <nodeID>…</nodeID>
 <originatingUSN>0</originatingUSN>
</highWaterMark>

7.4.4.4 Caveats:
Processing an inbound replication message may fail due to a server internal error. The
common behavior for all error cases is to return an E_fatalError error code. Error reporting
SHALL be that specified by Section 4.8 – Success and Error Reporting of this specification.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 195/420

7.5 Replication Configuration

7.5.1 Replication Configuration Structure
The replication of UDDI data within a registry SHOULD be governed by information maintained
within a Replication Configuration Structure. This structure MAY be contained within a
Replication Configuration File. The structure includes sufficient information to uniquely identify
each node within the UDDI registry. If used, each node within the registry MUST specify at
least one contact as described below.

If used, UDDI nodes MUST manage any and all changes to the contents of the Replication
Configuration Structure.

The XML schema definition describing the replicationConfiguration element is shown below.
The root element of an instance document of this XML schema must be a
replicationConfiguration element as defined in the UDDI v3 replication schema32:

The Replication Configuration Structure contains a serial number which is increased by at least
one each time the published configuration is updated or changed. For the convenience of
users, the element timeOfConfigurationUpdate identifies the time of the last update. The
formatting of the timeOfConfigurationUpdate element is described later in this specification.
The registryContact identifies a party who maintains and updates the Replication Configuration
Structure.

The element, maximumTimeToGetChanges, allows for the specification of the maximum
amount of time (in hours) that an individual node may wait to request changes. Nodes MUST
perform a get_changeRecords replication message within the time frame defined by the value

32

 All schema definitions here are presented per the 2001 Recommendation of XML Schema. Note that the schema definitions in
this present document should be considered as informative only; the normative schema definitions are found in an accompanying
.XSD specification file.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 196/420

of the maximumTimeToGetChanges element defined within the Replication Configuration
Structure. Thus, change data can always be propagated throughout the UDDI registry within a
finite amount of time, while at the same time changes will often propagate quickly. Use of this
element is determined by registry policy as detailed in Section 9.6.4 Replication Policies.

The operator elements in a Replication Configuration Structure are a list of the nodes and
established paths of communication between the nodes within a registry. The communication
paths and general replication topology considerations are discussed later in this specification.

The element, maximumTimeToSyncRegistry, allows for the specification of when (in hours) a
change made at any single node in the Registry is expected to be visible at all nodes within the
registry. The element, maximumTimeToGetChanges, allows for the specification of the
maximum amount of time (in hours) that an individual node may wait to request changes. Use
of this element is determined by registry policy as detailed in Section 9.6.4 Replication Policies.

The dsig:Signature elements in a Replication Configuration Structure allow for signing of the
document for assurance of its integrity using XML Digital Signature.

7.5.2 Configuration of a UDDI Node – operator element
Each current UDDI node within the Registry is identified with an operator element in the
replicationConfiguration:

The operatorNodeID contains a unique key that is used to uniquely identify this node
throughout the UDDI registry. The value used MUST match the businessKey of the Node
Business Entity as referenced in Section 6.2.2 Self-Registration of Node Business Entity. The
contact or contacts listed provide information about humans who should be contacted in the
face of administrative and technical situations of various sorts. . The dsig:KeyInfo elements are
intended to contain the certificate details if the soapReplicationURL makes use of Secure
Sockets Layer 3.0 with mutual authentication as described in Section 7.5.5 Security
Configuration.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 197/420

7.5.3 Replication Communication Graph
The Replication Configuration Structure provides a means by which the UDDI replication traffic
can be controlled and administered. This is achieved with the use of a communicationGraph
element:

The communicationGraph element begins by explicitly listing a unique ID for each node within
the registry. This second listing of the unique IDs within the Replication Configuration
Structure enables the separate control of communication with a node from the management of
other aspects of the node’s configuration.

Following the listing of nodes is the controlledMessage element that lists the set of messages
over which this communication graph is intended to administer control of. If a message
element local name is listed in the controlledMessage element, then such messages SHALL
only be sent between nodes that are listed in the subsequent edges of the graph. In contrast,
communication restrictions are not imposed on replication messages not identified in the
controlledMessage element.

The next element of the communication graph, the edge element, identifies the graph edges
imposed for those nodes that are listed. All node ID’s listed in an edge MUST have been
previously identified in the node element of the communication graph.

Each edge in the graph is a directed edge. The message elements contain the local name of
the Replication API message elements. They indicate that only messages of the type explicitly
identified for a particular edge MAY be sent from the specified messageSender to the specified
messageReceiver. Restricted two-way communication between nodes MUST, if desired, be
identified as a pair of edges with opposing directionality. A given directed edge MAY be listed
at most once: for each edge, the pairing (messageSender, messageReceiver) MUST be
unique over the entire set of edges of the graph.

For each directed edge, an ordered sequence of zero or more alternate, backup edges MAY
be listed using the messageReceiverAlternate element. Should a communications failure
prevent message communication over the indicated primary edge, the backup edges MAY be
tried in order until communication succeeds.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 198/420

In the absence of a communicationGraph element from the Replication Configuration
Structure, all nodes listed in the node element MAY send any and all messages to any other
node of the registry.

A non-normative example of the use of the CommunicationGraph can be found within
Appendix J UDDI Replication Examples.

7.5.4 SOAP Configuration
In UDDI, node-to-node replication communication MUST be carried out by means of SOAP
messages and responses. The soapReplicationURL element of the operator element indicates
where such messages should be sent to communicate with a given node. Specifically, in order
to carry out a message invocation of type X with a given node in the registry, a message is
sent using HTTP POST, as described in Chapter 4, to the URL identified within the Replication
Configuration Structure.

7.5.5 Security Configuration
Mutual authentication of UDDI nodes is RECOMMENDED. This MAY be achieved using
mutual X.509v3 certificate-based authentication as described in the Secure Sockets Layer
(SSL) 3.0 protocol. SSL 3.0 with mutual authentication is represented by the tModel uddi-
org:mutualAuthenticatedSSL3 as described within Section 11.3.2 Secure Sockets Layer
Version 3 with Mutual Authentication. The certificate credentials that SHOULD be used for the
mutual authentication SHOULD be included in the dsig:KeyInfo element(s) for each node
Replication Configuration Structure.

7.6 Error Detection and Processing
While replication errors are expected to happen rarely, mechanisms must be in place to detect,
deal with, and help manage the correction of such problems.

Throughout this section we will consider a UDDI registry consisting of 4 nodes (A, B, C, and D)
configured in a cyclic replication pattern such that D places get_changeRecords requests to C
(D>C), C>B, B>A, A>D. In addition to each node’s primary replication edge a set of alternate
edges have been defined for each node which, in case of difficulty, permits it to bypass each
upstream node in turn (i.e. B has two secondary edges: B>D and B>C). For clarity, only one is
depicted below in Figure 4.

Figure 4 - Alternate Edge Example

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 199/420

Asserting an invalid change record, it follows that:

In all of the cases below we assume that the following steps are executed, in the order
listed:

1. A Publisher of data held in custody at Node D saves changes to that data

2. Node D originates a change record x.

3. Node A issues a get_changeRecords request to Node D and successfully
processes the change record set containing x which D issued in response.

4. Node B issues a get_changeRecords request to Node A and processes the
change record set that Node A issued in response. During processing of the
change record set Node B encounters x and is unable to validate it.

When Node B is unable to validate x it is required to signal that it has encountered a
change record that it considers invalid (see Section 7.7 Validation of Replicated Data for a
precise definition of what it means for a change record to be ‘invalid’). It does this by
communicating to all of the UDDI nodes. The communication must include the following:

• The originating Node’s USN Value

• The reporting Operator Node ID

• The Originating Node ID

• The Replication operation type being processed (i.e.,
changeRecordPayload_type)

• The unique key of the datum being processed

• The type of datum being processed (i.e., businessEntity, businessService,
tModel, etc.)

In addition Node B must refuse to accept x from Node A (i.e. it MUST NOT add x to its
journal, MUST NOT process x into its registry, and MUST NOT update its high water mark
vector to reflect processing of x) and MUST NOT consider x to be successfully processed.
Recall that Node A is required to deliver records ordered by local USN and Node B is
required to consume records in the order they are provided. As a consequence, Node B
will for the moment be unable to accept any other new records from Node A. Note that
Node B may have successfully processed other change records from the change record
set it received from Node A. If those change records preceded x, then they are unaffected
by the issues associated with x.

This design avoids polluting Node B with data that it knows to be invalid, while preserving
the important ordering guarantee of change propagation upon which other replication
semantics rely.

7.6.1 UDDI Registry Investigation and Correction
Once Node B has asserted the existence of an invalid change record the UDDI nodes MUST
take remedial action. The investigation of Node B's assertion regarding x MAY have a number
of outcomes. Those are documented in the cases below.

The following change records are used in these cases:

• x: a changeRecordNewData message created by Node D that Node B asserts is
invalid.

• y: a changeRecordCorrection message created by Node D containing x’, a corrected
payload for x.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 200/420

• z: a changeRecordNewData message created by Node D containing current payload
for x.

7.6.1.1 Case 1: Invalid record validation
The UDDI nodes MAY determine that Node B’s assertion that x is invalid MAY be a result of
overly aggressive checking and validation in Node B’s UDDI implementation. In this case:

• Node B WILL BE REQUIRED to change its code,

• Node B WILL continue to participate in replication cycles, retrying propagation of x
from A to B in each cycle until the code changes are deployed and x is processed
successfully.

7.6.1.2 Case 2: Invalid interim representation
The assertion by Node B that x is incorrect MAY reflect incorrect handling of x by interim Node
A (recall that x is replicated first from node D to Node A, then from Node A to Node B). Note
that the originating Node D contains a valid x. In these cases:

• Node A WILL BE REQUIRED to change its code.

• Node D WILL BE REQUIRED to generate y and z.

• Node A WILL continue to participate in replication, processing y (annotating x in its
journal to refer to x’ in y) and z in one or more change record sets from Node D,

• Node B WILL continue to participate in replication in subsequent cycles. In each it
WILL attempt to propagate x from Node A, then begin to exercise its alternate edges,
descending one additional edge each cycle (i.e. in cycle (n+1) it WILL attempt to
replicate using B>A and B>D). At some point node B MAY process a valid x from an
alternate node, in these instances, Node B WILL later process y (annotating x to point
to x’ in y) and z from Node A. If Node B has not processed a valid x from an alternate
node prior to issuing a get_changeRecords to Node A which has processed y, then
Node B WILL process x’, y (annotating x to point to x’ in y), and z from Node A.

• Node C WILL continue replication and will receive x, y, and z from Node B.

Expanded Description:

Handling of the assertion that change record x delivered by Node A is invalid begins in
replication cycle (n+0) with Node B communicating the details of the issue to all nodes within
the UDDI registry, discarding x and all subsequent change records received from Node A, and
halting its replication.

During its next replication cycle (n+1) Node B WILL attempt to process a change record set
from Node A. Assuming that Node A has not yet processed y produced by Node D, Node B
WILL encounter an invalid x as the first record in the change record. In this case Node B WILL
NOT issue a redundant message including the details of the issue to all nodes within the UDDI
registry, however it WILL again discard x and all subsequent change records within the set
issued by Node A. Node B WILL then use its first alternate replication edge (B>D) to
circumvent Node A and will process a change record set containing x returned by Node D.

In its next replication cycle (n+2) Node B WILL successfully process a change record returned
by Node A. Since Node B’s high water mark vector entry for Node D has been updated to
reflect its successful processing of x, Node A WILL NOT be asked to deliver x, and should it do
so Node B WILL NOT attempt to process it (recall that a node responding to a
get_changeRecords request MUST reply with at least the data requested, but MAY respond
with more data than was requested by the caller).

During an arbitrary replication cycle following Node B’s receipt of an invalid x from Node A,
Node D WILL produce a changeRecordCorrection y containing a valid version x’ of x. Node A

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 201/420

WILL process y annotating x within its journal to indicate that the payload in x is replaced by x’
in y. Note that although Node A’s journal now contains a valid x, Node A’s registry does not.

Node B’s next get_changeRecords request to Node A WILL result in a change record set
containing either x’ and y or only y. Change record x’ is delivered in instances where Node A
processed y before Node B issued its (n+1) get_changeRecords request to A.

Following production of y, Node D WILL produce z (which contains the now-current contents of
the information manipulated by x). Change record z WILL be propagated normally through
replication.

7.6.1.3 Case 3: Invalid generation
The assertion that x is invalid MAY be due to Node D having improperly generated x. In this
case:

• Node D WILL BE REQUIRED to change its code so that in future it generates correct
change records, and to generate y and z.

• Node A WILL BE REQUIRED to change its code so that in future it detects invalid
change records such as x.

• Node A WILL continue participating in replication, processing y (annotating x to point
to x’ in y) and z.

• Node B WILL continue participating in cycles, continuing to attempt propagation of x
from Node A to Node B until it processes x’, y (annotating x to point to x’ in y), and z.

• Node C WILL continue replication cycles, receiving x’, y (annotating x to point to x’ in
y), and z.

Expanded Description:

In this case handling of the assertion that record x delivered by Node A is invalid begins in
replication cycle (n+0) with Node B communicating the details of the issue to all nodes within
the UDDI registry, discarding x and all subsequent change records received from Node A, and
halting its replication.

During its next replication cycle (n+1) Node B WILL again process a change record set from
Node A. It should encounter x as the first record in the change record set returned by Node A.
If processing of x again yields an error, Node B WILL NOT issue a redundant message
including the details of the issue to all nodes within the UDDI registry, it WILL discard x and all
subsequent change records from Node A. Node B WILL then use its first alternate replication
edge (B>D) to circumvent Node A and request change records from another node (D). In
processing the change record set returned by Node D it WILL encounter an invalid x. It WILL
then communicate the details of the issue to all nodes within the UDDI registry (pointing to
Node D as the originating and the sending node), discard x and all subsequent change
records received from Node D, and halt its replication.

In its next replication cycle (n+2) Node B WILL again process a change record set from Node
A. Should it again encounter an invalid x as the first record in the set it WILL discard x and all
subsequent change records from Node A and proceed to its first alternate replication (B>D).
Should processing a change record set from Node D again uncover an invalid x as the first
record in the set from Node D, Node B WILL discard x and all subsequent change records
from Node D and proceed to its second alternate replication edge (B>C) to circumvent nodes
A and D. Since Node C has not received x the change record set is produces should be valid.

During an arbitrary replication cycle following production of x, Node D WILL produce a
changeRecordCorrection y containing the corrected version x’ of x. This new change record y
propagates using the normal replication mechanism. Node A WILL process y, annotating x in

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 202/420

its journal to now refer to x’ in y. At this point Node A’s journal is correct, however its registry
still contains an invalid version of x.

In a subsequent replication cycle, Nodes B and C WILL process x’ and y. Following production
of y, Node D WILL produce z. In a subsequent replication cycle Nodes A, B, and C WILL
process z. At this point all three nodes contain a valid representation of the data addressed by
x.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 203/420

7.7 Validation of Replicated Data
UDDI nodes MUST enforce the validity of all the data entering their data store, both data they
originate themselves, and data that they receive from other nodes through replication. A
registry policy should define the level of validation that nodes enforce above and beyond
validating that the data conforms to the UDDI schemas and does not cause corruption of the
node data store.

Specifically, it is required that a node fail to accept any publication API request which would,
were it accepted, at that instant put its data store into an invalid state. Nodes must also support
analogous enforcement through any user interfaces or other means by which the data in their
data store may be added to or updated.

Moreover, as a node receives replicated changeRecords from another node in response to a
get_changeRecords request, it must consider the potential effect of the incorporation of the
change into its data store. If the incorporation by the receiving node of such a change record
(together, of course, with any preceding changes) would put its data store into an invalid state,
then an error in one or more of the UDDI node implementations within the registry has been
detected. In response, the receiving node must carry out the error detection processing
sequence described in Section 7.6 Error Detection and Processing.

Upon the receipt of changeRecords related to publisherAssertions that refer to businesses that
have been previously deleted, or access point information that refers to invalid bindingKeys, or
a tModelKey of a keyedReference that refers to a tModel that no longer exist, or any attempts
to project a service that no longer exist at the node, or a reference in a isReplacedBy
keyedReference to an invalid or missing businessEntity or tModel key, nodes MUST NOT
raise replication errors. Nodes MUST include the respective changeRecords in a response to
relevant get_changeRecord messages.

Note as a point of implementation that it might often be useful to batch together several
incoming change records under one validity check; this is a valid optimization since later
change records cannot adversely affect the validity of earlier changes. However, should such
an optimized validity check fail, an implementation must be prepared to back out of and fail to
accept the entire set of candidate change records involved and then reconsider each
individually in turn.

As a checked value set reference may be validated or checked at an originating node within
the registry, it need not be checked again at a node in the midst of processing a replication
stream. If a checked value set reference is checked again during replication it SHOULD not
generate a replication stream error.

7.8 Adding a Node to a Registry Using Replication
The following steps MAY be used to add a node to a registry that uses UDDI v3 replication. A
registry policy may be defined for the addition of a node and the policy MAY define a different
or more detailed process than the following process:

1. Add the new node to the Replication Configuration Structure with the operatorStatus
value set to "new". If a communicationGraph is used in the registry’s replication
Configuration Structure, one or more edges MUST be added so the new node may
call the get_changeRecords API.

2. Administrators of the existing nodes are notified of the update. They each retrieve and
process the new information in the configuration file in order to add the new node as
one of the parties with which their implementations are willing to authenticate and
communicate. To verify the ability to communicate, each node pair within the current
UDDI registry SHALL successfully exchange the do_ping message.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 204/420

3. Once all existing nodes within the registry have verified the ability to successfully
communicate with the new node, the configuration file is changed a second time to
add appropriate edges to the communicationGraph in order to introduce the new node
into the active replication graph. The messages allowed between the new node and
its primary may be restricted to allow for startup processing. Replication then
proceeds to provide change records to the new node which establish in it a current
image of the registry.

4. The new node MUST issue a get_changeRecords API call to an existing node and
SHOULD process all available changeRecord elements. As nodes MAY limit the
number of changeRecord elements in a response, processing all available
changeRecord elements MAY require several get_changeRecords API calls.

5. When the new node has completed processing of the change history and is ready to
engage in all UDDI registry activities, the operatorStatus value, within the Replication
Configuration Structure, WILL be updated from "new" to "normal" and any message
restriction that may have been imposed earlier may be removed. The updated
replicationConfiguration will be distributed to the nodes defined within the
communicationGraph via replication.

7.9 Removing a Node from a Registry Using Replication
The following steps MAY be used to remove a node to a registry that uses UDDI v3 replication.
A registry policy may be defined for the removal of a node and the policy MAY define a
different or more detailed process than the following process

1. At least one node in the registry MUST obtain all changeRecord elements
representing the final state of the node that will be removed.

2. The value of the operatorStatus element in the operator element in the Replication
Configuration Structure of the node that is being removed MUST be changed from
"normal" to "resigned." In addition any edge elements that include the node that is
being removed MUST be removed from the communicationGraph element. The
operator element for the removed node remains in the Replication Configuration
Structure so other nodes in the registry accept the changeRecord elements from the
removed node.

3. Depending on registry policy, the custody of the UDDI data from the removed node
MAY subsequently be changed to one or more nodes in the registry.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 205/420

8 Publishing Across Multiple Registries
In prior versions of the UDDI Specification, the behavior in which a publisher wished to copy
the entirety of a UDDI registry entity from one registry to another while preserving the identical
key was explicitly not allowed. The Version 1 and 2 specifications mandated that only the
UDDI node could generate keys. A publisher could not pre-assign the key of a UDDI entity.
With this stipulation in place, a publisher could not import or export data between registries.
The rationale behind this mandate was to insure that no duplicate keys would ever be
generated in a given registry because only nodes within that registry had the authority to
generate keys. Consequently data sharing between registries in Version 1 and 2 of UDDI was
functionally not allowed.

Version 3 of UDDI approaches the issue of key generation in a significantly different fashion
and, as such, the possibility of publishing an entity to another UDDI registry while preserving
the key is allowed. This behavior is known as entity promotion. With this version of UDDI, a
publisher is permitted to propose a new key for an entity, and, given the policies of a registry,
that key and the entity associated with that key may be inserted into the registry. Thus, the
possibility of sharing data among UDDI registries is a reality and, with this new functionality,
UDDI’s scope in terms of a more broadly distributed environment is made manifest.

At its core, registry-to-registry data sharing, or the publishing of data across multiple registries,
involves the sharing of data between two UDDI registries. With such a notion, individual UDDI
registries can be connected in complex ways. In fact, for a given registry, a publisher may
have the authority to add many entities to a registry and, as such, a publisher could potentially
publish the entirety of a registry’s contents into another registry, effectively mirroring the data.
Or, the publisher might be interested in only a subset of data from another registry and only
copy a portion of that data. When considering the implications of entity promotion, it is
important to conceive of a publisher in a broader context, which makes possible a number of
interesting scenarios.

The most important aspect to consider in terms of data that has been published across
multiple registries is that no a priori assumptions can be made about the nature of a
relationship between the data in two registries and, by implication, no assumption can be
made about the relationship between an entity that happens to exist in two (or more) registries.
The data associated with a given key is by default scoped to a single registry and not to
multiple registries. Consequently, inter-registry publication is quite different than inter-node
behavior, i.e., the behavior of replication of nodes within a single registry. In replication, there
is a normative model for the nodes that participate in a replication topology and the for data
management of those nodes. However, a normative model for inter-registry publication does
not exist and therefore cannot be assumed. The nature of interaction between two given
registries is not mandated by the UDDI specification. The trust models and data management
procedures between two registries are a matter of policy established by the two registries and
are defined as non-normative behavior in terms of the UDDI v3 specification. In this way, inter-
registry interaction differs significantly from inter-node replication.

While normative inter-registry behavior is outside the scope of the specification, an explanation
of exactly how the specification enables the ability to share data between registries is in order.
The focus of this chapter is to outline further the rationale for inter-registry communication, to
introduce the different kinds of inter-registry communication, and to provide guidance when
considering engaging in inter-registry publication.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 206/420

8.1 Relationships between Registries

8.1.1 Root Registries and Affiliate Registries
For this new capability to be useful, care must be taken to avoid key collision between
registries. The recommended way to prevent such collision is to establish a root registry, a
registry that acts as the authority for key spaces. A root registry serves to delegate key
partitions such that other registries can rely upon the root registry for verification and validation
of a given key partition. All other registries that interact with the root registry are called affiliate
registries. Affiliate registries rely on the root registry to delegate key partitions and insure that
uniqueness across key partitions is maintained. By relying on a common root registry as an
arbitrator of key spaces, affiliate registries can share data with both the root registry and
among one another with the knowledge that a given partition is unique. Note that it is still the
responsibility of each registry, both a root registry and its affiliates, to insure the data integrity
and uniqueness of the keys within its custody.

An important example of a root registry is the UDDI Business Registry, which has a set of
policies in place to generate unique uuidKeys as well as to validate domainKeys through
signatures that correlate with DNS records. These policies insure the uniqueness of both
domainKeys and uuidKeys within the UDDI Business Registry, and thus the UBR serves as a
reasonable root registry for many purposes. In fact, establishing alternate root registries is not
recommended, as this would ultimately defeat the goal of publishers being able to share data
between multiple registries with an assurance of avoiding a key collision. By acknowledging
the UDDI Business Registry as a root, an affiliate registry can establish inter-registry
communication policies and procedures with both the UDDI Business Registry and any other
registry which is an affiliate of the UDDI Business Registry.

8.1.2 A Closer Look at Inter-Registry Communication Models
Before looking at the operational details of sharing data between registries, a look at some of
the permutations of inter-registry communication is in order. Using a Venn diagram to
represent the cross publication models between three registries sheds some light on
permutations of data sharing. Note that the diagram below does not represent the directional
flow with regard to how exactly how the data might move between registries. However, the
diagram does provide a conceptual framework to begin thinking about how the data in multiple
registries might be related.

In the Venn diagram below, the circle (1) represents the UDDI Business Registry, a root
registry, while the two other circles represent registry A and registry B, two affiliate registries

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 207/420

Consider Scenario (1), in which the three registries contain data that exist independent of the
other registries. There are certainly scenarios that exist in which data would not be of value or
interest to another registry, and thus would exist in one and only one registry. In this case, it
may appear that there are not concerns about possible key collision with another registry.

However, it is critical to realize that, registry policy aside, nothing prevents a user of a registry
from promoting entities from one registry to another registry. Put another way, no registry is an
island. A user with read authority in one registry and publish authority in some other registry
can retrieve entities from the first and publish them in the second. And, once that data has
been promoted, nothing prevents the publisher from altering the data in the original registry.
This concern is mitigated with the advent of digital signature support. A signed UDDI entity can
be copied across multiple registries and the publisher can verify that the original content has
not been modified.

It is important for both nodes and clients to remember that a registry typically does not control
the data outside of itself. A client of a given registry must be aware that different registries
might contain identical keys with different data. In some scenarios, this is the desired

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 208/420

behavior, but there are also cases where such behavior could be construed as malicious. As
such, clients need to be cognizant of the policies and procedures of registries they interact
with.

In Scenario (2), Affiliate A and Affiliate B each have data that exists in both an affiliate registry
and the UDDI Business Registry. This could have occurred in several different ways. A
publisher in Affiliate A may have subscribed to a certain set of entities in the root registry,
publishing them in itself on an ongoing basis as changes are received. Or, a publisher in
Affiliate A may have generated a set of entities in its local registry and then published them to
the UBR. Such data exchange is potentially a two-way process: the data may originate in the
root and end up in Affiliate A, or it may originate in Affiliate A and end up in the root.

In Scenario (3), the two affiliates share data. Again, this sharing has several permutations.
Publishers in Affiliate A and B may have an explicit agreement to subscribe to one another’s
data, or a publisher of one of the registries may have simply copied a set of data from another
registry, unbeknownst to that registry, and published the data to its registry.

Scenario (4) brings the interaction among these three registries to a zenith: there is the case
where all three registries share a common set of data, such as key generator tModels. Again,
the circumstances and mechanisms through which such a common dataset is established are
manifold.

Given the above exercise, it is critical both for nodes of registries and for clients of registries to
understand the different ways in which inter-registry communication can occur. In particular,
understanding how the establishment of key generators within different registries regulates the
process of inter-registry publication is paramount.

8.2 Data Management Policies and Procedures Across
Registries

8.2.1 Establishing a Relationship with a Root Registry
If a registry intends to allow the users of that registry to copy entities into other registries, some
considerations need to be taken when that registry goes online, before it generates a single
key. This is crucial because if the registry begins to generate keys before establishing a key
generator with a root registry, the registry may not be able to become an affiliate later on.

To bring up each node in a registry affiliated with a root registry, the node should begin by
publishing a new key generator tModel of type keyGenerator33 in the root UDDI registry. The
node should then save this tModel in itself exactly as it has been saved in the root registry.
This tModel then becomes the key generator tModel for the new node. Owning the imported
tModel gives the new node the capability it needs to generate new keys that are guaranteed to
be unique within the root registry by deriving them from its key generator.

During normal operation, nodes need to generate keys – i.e., while saving new entities for
which keys have not been proposed by their publisher. They do this by deriving them from key
generators they own. Nodes may choose any algorithm they wish to generate the key specific
string (KSS)34 that makes each of the derived keys unique. Each node is responsible for
managing the uniqueness of the keys it generates for itself. One way to do this is to use UUIDs
for the extensions it generates. Another is to use sequential integers.

Once a key generator is established with the root registry, the affiliate registry can begin safely
generating keys that are unique in the context of the root registry and unique in any registries

33

 See section 5.3.18.3.1 Domain Key Generator tModels

34
 See section 5.3.2 Publishing Entities With Publisher Assigned Keys

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 209/420

that share an affiliation with the root registry and have followed the recommended keying
policy.

For example, imagine Registry X is established by a company as an affiliate of the UDDI
Business Registry. The following steps would occur:

1. To begin Registry X would publish a tModel of type keyGenerator in one of the UBR
nodes. The tModel might be as follows: uddi:AC104DCC-D623-452F-88A7-
F8ACD94D9B2B:keygenerator. Note that this example uses a uuidKey for its key
partition. It could have used a domainKey as well.

2. Then, Registry X would save that tModel into its own registry.

3. Additionally, Registry X would establish that all entities saved to Registry X that need
a new key generated would be programmatically derived from uddi:AC104DCC-
D623-452F-88A7-F8ACD94D9B2B:keygenerator. For example, Registry X might use
sequential numbering to perform this task, so that the first businessEntity saved into
node x would get key uddi:AC104DCC-D623-452F-88A7-F8ACD94D9B2B:1, the 2nd
would get the key uddi:AC104DCC-D623-452F-88A7-F8ACD94D9B2B:2 and so on.

A consequence of the way key generation works is that if a registry exports a key generator
tModel from some other registry and assigns it to a publisher, that publisher may use that
tModel to generate keys in that registry. In other words, the procedure outlined above can be
used between affiliate registries as well.

Note: If a registry has started generating keys without first becoming an affiliate of a root
registry and its publishers still wish to share data with another registry, the registry would need
to become an affiliate and then re-key its data with keys derived from the registry’s key
generator. In the case where the registry has begun generating keys as a v1 or v2 registry, the
keys will need special consideration35.

8.2.2 Data Sharing
The actual operation of sharing data between registries is accomplished using the existing API
sets. The Inquiry API and/or the Subscription API are used to get data from a registry; the
Publish API is used to promote entities into a registry. A new set of terms is introduced to help
clarify the behavior:

A source registry is a registry with data to share.

A target registry is a registry that will consume data.

An importer is a publisher who reads data via the Inquiry or Subscription API from one or more
source registries and publishes it to a target registry. Likely, importers are software applications
that use the UDDI APIs to achieve this multi-step process.

8.2.2.1 Sharing Data
Importers copy entities from one or more source registries and publish them, potentially with
modification36, in a target registry. Given its description, every importer is a publisher in its
target registry and an inquirer in its source registries. Importers can read their source registries
by subscribing to them or by simply issuing find_xx and get_xx Inquiry APIs calls.

For an importer to do its work it must own the requisite key generator tModels in the target
registry, and the target registry must have a policy that allows publisher-assigned keys. In this

35

 See Chapter 10 Multi-Version Support

36 Signed entities may not be modified without breaking the signature

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 210/420

way, the importer can preserve the keys of the entities it reads from the source registry and
publishes to the target registry.

An important case for which this is particularly simple is the one in which the importer is a part
of the operation of an affiliate, the source registry is that affiliate, the target is the root, and the
data to be imported has keys based on the affiliate’s key generator. Since the affiliate already
owns the requisite key generator in the target, and the root, by definition, accepts publisher-
assigned keys, the required conditions are met. This scenario is visually represented by case
2 in the diagram above.

Another important but simple case is one in which the source registry is the root, the target is
an affiliate, and the importer is a part of the operation of the target registry. Since the target is
the importer, it is granted the authority to publish root key generators and entities with uuid
keys. With these permissions, the importer can import any entities from the root that the
target’s policy dictates. Because the importer is still bound by the rules for key generation – in
particular because it is not permitted to generate keys in a partition for which it does not own
the key generator – the importer cannot cause key conflict. This scenario is also visually
represented by case 2 in the diagram above; but with the reverse data flow.

In the case where both the source and the target are affiliates, the process may not be as
simple. First, the target registry must have a policy that allows it to accept publisher-assigned
keys. Assuming this is the case, the importer must own the necessary key generator tModels
in the target registry. The recommended way for the importer to obtain the required ownership
is to have the target registry import key generators from the root registry and then transfer
ownership of them to the importer. In other words, out-of-band communication is required that
cannot be conducted simply by a save_tModel call from the importer. The out-of-band
communication is important because it provides the target registry with an opportunity to verify
that the importer should be allowed to be the proxy in the target for whoever owns the key
generator in the root.

Consider an example. An importer wants to copy data from Registry K to Registry J, both of
which are affiliates of the UDDI Business Registry. The importer must get Registry J to grant it
the authority to be a publisher and must get Registry J to give it ownership of the key
generator(s) it needs to publish the entities it wishes to import from Registry K. If Registry J
trusts the importer, it grants the importer publishing authority, imports the key generator
tModels requested by the importer from the root, and transfers ownership of them from itself to
the importer. Typically, the key generators the importer needs include the key generator(s)
used by Registry K when it generates keys.

Phrased differently, target registries should establish a trust relationship with those it grants
ownership of the key generators it imports. By granting a publisher ownership of an imported
key generator, the target registry is granting the publisher the authority to be the representative
in the target registry of whoever owns the key generator in the root.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 211/420

9 Policy
Policies within UDDI are statements of required and expected behavior. Within the UDDI
architecture there are registries which are composed of one or more nodes. The registry
defines the domain of the policy for the nodes that make it up and may delegate the definition
of a particular policy to one or more of the nodes within its domain. Within policy then, there is
a hierarchical relationship between registry policies and node policies including whether a
registry allows nodes to specify polices. Registries MUST also identify the Policy Decision
Points. Policy Enforcement Points are responsible for enforcing the policies and these MAY be
the same as the Policy Decision Point.

Registries may also affiliate. Affiliated registries are sets of registries that share compatible
policies for assigning keys and managing data. (See Section 1.5.5.Affiliations of Registries)

9.1 Definitions
See Appendix L Glossary of Terms for definitions of terms appearing in bold. Many of these
are derived from general terms in RFC 3198, the IETF glossary for policy. See
http://ietf.org/rfc/rfc3198.txt.

9.2 Policy
This specification defines policy abstractions. Registries MUST define a policy rule for each
of the policy abstractions. Each policy rule is decided by a Policy Decision Point (PDP). For
some policy abstractions the PDP MUST be the registry. Part of each policy rule is to
designate the Policy Enforcement Points (PEP) that is responsible for enforcing the policy.
The PEP MAY be the same component as the Policy Decision Point.

The combination of policies and implementation for a UDDI registry should form an explicit
security model that is available for evaluation in a risk assessment. It is recommended that
implementers of UDDI nodes and registries and users of those registries obtain or perform a
risk assessment of the implementation.

In the following Section 9.4 UDDI Registry Policy Abstractions, the registry policy abstractions
are defined in a narrative form. Other policies MAY be delegated to the node and these are
defined in Section 9.5 UDDI Node Policy Abstractions. At the end of the document is a
summary table which captures the abstractions in a way that cross references to the narrative
text and includes some additional information.

A registry MAY specify additional policy abstractions and rules. A registry MAY also allow
nodes in the registry to specify additional policy abstractions and rules. Representation of the
policy rules corresponding to policy abstractions in this chapter and any additional policy
abstractions SHOULD be communicated as described in the following section.

9.3 Representation of Policy
There are two types of polices defined in the following sections. There are policies that can be
communicated through representation in an XML document and there are policies that can be
modeled within UDDI through the use of UDDI elements. Section 9.7 UDDI Policy Summary
recommends a method (document or model) for conveying each policy.

If a policy abstraction can be modeled, Section 9.4 and Section 9.5 describe how this MAY be
done. Policies that impact the configuration of UDDI clients SHOULD be modeled in the UDDI
data structures.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 212/420

Policies communicated through an XML document SHOULD include the name of the policy
abstraction from this section, a description of the policy rule and a declaration of the policy
decision point and the policy enforcement point. An XML Schema for creating this document
has been created in the namespace urn:uddi-org:policy_v3 and is described below in Section
9.3.1 Policy Schema.

When documenting policies, there is a hierarchy in the way policies are defined. A registry
defines the broad registry policy abstractions, one of which is whether or not a policy may be
defined by the individual nodes within the registry. If a registry allows nodes to specify policies
it is said to be "delegating" the policy expression to the node.

If policies are "delegated" to nodes to specify, the node may specify the abstraction or it may
specify policy rules.

The picture below illustrates the relationship between a registry and its nodes. The registry as
the Policy Decision Point for the registry and its nodes defines its policy abstractions and rules.

If the registry allows delegation, the nodes may also define policy abstractions and rules, but
these must be consistent with the policies inherited from the registry.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 213/420

9.3.1 Policy Schema
The policies element illustrated below represents all of the policies as a sequence of policy
elements. Each policy element in the sequence represents one policy listed in the policy
abstractions that are applicable to the UDDI API set. In the policy document instance
referenced by the policy service, there should be one instance of a policy element for each
policy that applies to all API sets provided by the node. The policies element MAY also
contain an XML Signature using the dsig:Signature element. Signing a policy document is
described in Appendix I.

A policy element represents one individual policy. It contains the name of the policy abstraction
in the policyName element, a string describing where the policy is decided in the
policyDecisionPoint element and the actual description of the policy in one or more languages
in the sequence of policyDescription elements.

The policyName element contains the policy name defined in the policy abstractions below in
Section 9.4 and 9.5.

The policyDescription element contains a description of the effect of the policy implementation.
This element can be adorned with the xml:lang attribute and can appear multiple times to allow
for translations of the policy description.

The policyDecisionPoint element contains a string describing where the policy is decided.
Typically, this value will be either the string "node" or "registry". Use of an alternative policy
decision point should be described in this element.

9.3.2 Policy Documents
An instance of the policy document should be a Web accessible document and the URL for
retrieving this document should be included in the overviewDoc element in the instanceDetails
element of a tModelInstanceInfo element referencing a UDDI API set tModel. The contents of
the elements in the policy document are intended to be human readable.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 214/420

Appendix K contains an example of an instance of a policy document and the corresponding
Node Business Entity element for the implementation of a UDDI API set. The instance of the
policy document that is associated with each API set SHOULD include all policies of the
registry and of the node that are applicable to the API set.

It is RECOMMENDED that the instance of the policy XML Document(s) conform to the XML
Schema for policy in the namespace urn:uddi-org:policy_v3. A policy document SHOULD be
provided for each UDDI API set binding and the location of the policy document SHOULD be
an HTTP GET accessible document with the URL identified in the overviewURL element of the
overviewDoc in the instanceDetails element of a tModelInstanceInfo element referencing a
UDDI API set tModel.

In the event that another form of policy documentation format or standard for policy declaration
captures a policy decision or decisions in a manner more appropriate to the particular node
and registry, it is recommended that this standard be registered as a tModel with the
overviewURL identifying the documentation for the document format. Registering a tModel
allows different policy document formats and standards to be used by a particular
implementation of a UDDI node or registry. The actual instance of the policy document
SHOULD be provided for each UDDI API set binding where the policies will be enforced. In the
bindingTemplate element, the location of the policy document SHOULD be an HTTP GET
accessible document with the URL identified in the overviewURL element.

9.3.3 Policy Service within UDDI
By using the UDDI model for defining Web services it is possible to define a policy service
which supplies the documented policies of the registry and node.

It is RECOMMENDED that a UDDI node provide a separate businessService of the Node
Business Entity that represents the general policy service. This businessService MUST have
one bindingTemplate that references the uddi-org:v3_policy tModel described in Section
11.5.7 UDDI Policy Description Specification. This policy service is described below in Section
9.3.3 Policy Service within UDDI.

9.3.4 Policy Modeling
Policy decisions that can impact the configuration of a UDDI client SHOULD be represented in
UDDI data structures for discovery by UDDI clients. The modeling of policy makes use of the
data structures of UDDI by representing policy concepts as tModels. Use of the concept by an
implementation of a UDDI API set is reflected by including the tModel in the bindingTemplate
for the UDDI API set. Options within a concept are represented as instance parameters in the
instanceParms element. Instance parameter values that are related to options described in
the UDDI Version 3.0 Specification are included in the UDDI Version 3.0 Policy Instance
Parameters schema which is in the namespace, urn:uddi-org:policy_v3_instanceParms

Support of an API set, described in Chapter 5, by a node as part of this procedure MUST be
represented in a bindingTemplate in each Node Business Entity that supports it.

As multiple policy instance parameter elements need to be reflected in the instanceParms
element, the container element, UDDIInstanceParmsContainer, MUST be used to wrap other
elements as defined in the Policy Instance Parameters schema.

It is important to note that XML in instanceParms MUST be encoded as described in Section
3.5.2.4 instanceDetails.

See Appendix K Modeling UDDI within UDDI - A Sample for examples.

9.4 UDDI Registry Policy Abstractions
This section includes the highest level of policy abstractions, the registry policy abstractions.
Since registries may be composed of nodes, the next level of abstraction is the node

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 215/420

abstraction which is described in Section 9.5 Node Policy Abstractions. In some cases there
are UDDI policies that are "recommended". These are documented in Section 9.5.16 UDDI
Recommended Registry Policies.

9.4.1 Registry Policy Delegation
A registry MUST specify whether or not it supports delegation of policies to the nodes within it.
The definition of policies that a registry identifies MAY be delegated to a node to specify a
node-specific policy. This is indicated in the summary table as "may be delegated".

9.4.2 Registry General Keying Policy
UDDI Version 3 introduces the ability for publishers to generate entity keys. This feature
preserves the requirement for distinct keys while enabling keys to be created in a safe, efficient
manner.

A registry MUST have a policy on key format and key generation. The registry MUST have a
policy on data integrity or how the keyspace is protected from unauthorized modification.

Registries MAY use whatever keying policies they wish subject only to the constraints that
keys MUST be URIs, and the registry MUST have policies that prevent key collisions.

9.4.3 UDDI keying scheme
This specification presents a keying scheme (in Section 4.4 About uddiKeys) that all registries
MUST use. Policy decisions MUST be defined for the following policy abstractions.

9.4.3.1 Registry Key Generation for Nodes
Registries MUST establish policies for deciding whether a given node is permitted to publish a
given key generator tModel. Section 4.4 About uddiKeys contains details on key generation.
See Section 5.2 Publication API Set for details on publish APIs.

9.4.3.2 Registry Key Generation for Publishers
Registries MUST establish policies for deciding whether publishers are permitted to publish
key generator tModels. Section 4.4 About uddiKeys contains details on key generation. See
Section 5.2 Publication API Set for details on publish APIs.

Also, registries MUST establish policies for the criteria by which a given publisher is allowed to
register a given key generator tModel. Chapter 5 UDDI Programmers APIs also contains
details on key generator tModels and this section should be reviewed before creating the key
generation policy.

9.4.3.3 Registry Key Default
The registry MUST specify what the policy is when a key is not supplied on an API, but MAY
delegate the generation of default keying to its nodes.

9.4.3.4 Registry Support of uuidKeys
Another policy decision is whether nodes will accept a key generator tModel that is NOT a
domainKey, but is a uuidKey.

9.4.3.5 Root Key Generation
In order for an affiliation to be established among UDDI registries, the registries involved
MUST have compatible policies regarding key generation. The keying scheme facilitates this
by designating one of registries in the affiliation as "the root registry". The root UDDI registry
serves as the naming authority by assigning first-order or "root" partitions of the space of keys

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 216/420

to registries and others who need to generate keys. All registries that participate in that
affiliation look to the root registry as the source on which to establish the uniqueness of a given
set of keys. An example of a root registry is the UDDI Business Registry. See Section below
on UBR policies to see the details of the UBR Root Key Generation Policy.

9.4.4 UDDI Information Access Control Policy
The goal of a UDDI registry is to be a useful, reliable registry of business services. To achieve
this purpose each registry must establish the policies needed to appropriately protect the
information in its possession. The policies that a registry defines to protect business
information is its information management policy.

UDDI nodes that maintain custody of UDDI information and implement a data storage
mechanism are responsible for the Data Model of the underlying storage of the data elements
and its mapping to the Information Model.

The mapping to the information model is represented by the implementation of the API sets
defined in this specification. This information model MAY be extended as described in
Appendix H Extensibility. When an extension to the information model is used, it MUST be
represented by a different tModel as described in Appendix H and the extension MAY have a
significant impact on interpretation of the information and the policies of the registry. Use of an
extension MAY be prohibited by a registry, and if allowed, it is STRONGLY RECOMMENDED
that an impact of an extension on the information model of UDDI is assessed by both
operators and users of the registry.

9.4.5 Adding nodes to a registry
A registry MUST specify how nodes are added to and deleted from the registry. If a registry
supports the removal of nodes, then it MUST specify how the node custody will be transferred
and how the data migration will occur.

If a registry uses configuration information for tracking the nodes of the registry, then it must
state how this configuration information is protected from unauthorized access. Protection of
information is provided through access control, data integrity and data confidentiality policies.

9.4.6 Person, Publisher and Owner
When publishing information in a UDDI registry the information becomes part of the published
content of the registry. During publication of an item of UDDI information, a relationship is
established between the publisher, the item published and the node at which the publish
operation takes place. A registry may be composed of more than one node. The node to which
the information was submitted and accepted via the UDDI v3 publication API set is the
custodian of the item. A registry MUST specify whether transfer of ownership is supported and
how this is accomplished.

9.4.6.1 Registry Registration Policy
A registry MUST specify how individuals who want to publish information become known to the
registry. The registry may delegate registration to its nodes.

9.4.6.2 Publication Limits
When defining who can publish information, a registry may also constrain the amount of
information that an individual can publish and through what means. A registry may establish
different limits for different classes of users. These are known as "tier limits". This policy may
be delegated to the nodes in a registry.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 217/420

9.4.7 Transfer of Ownership
The registry must define whether intra-node ownership transfer is a service that is supported.
 If it is supported, the node must ensure that the UDDI information model is preserved while
the data model is modified. A process for ownership transfer that MAY be supported by a
registry or node is outlined in Section 5.4 Custody and Ownership Transfer API Set.

9.4.7.1 Modeling of Ownership Transfer Support
It is RECOMMENDED that the Custody and Ownership Transfer API Set described in Section
5.4 be used for intra-node ownership transfer of businesses and tModels. If this
recommended API is supported by a node, this MUST be represented as an instance of the
uddi-org:custody_v3 tModel in a bindingTemplate in the Node Business Entity. Use of a
different API set for ownership transfer is outside the scope of this specification, but should be
modeled as a tModel referenced by a bindingTemplate in the Node Business Entity.

9.4.8 Registry Authorization Policy
A registry MUST have a policy on access to the information registered in it. A registry may
specify a policy of global access for all API’s or it may specify a different type of access for
each API and/or each publisher. The registry policy MAY specify that the authInfo element is
required for an API. The policy describing who has access to what information is called the
authorization policy. The implementation of each API, as reflected by the bindingTemplate that
describes it (see section below), is a Policy Enforcement Point.

9.4.8.1 Delegation of Authorization Policy
A registry MAY allow nodes to specify their own access policies (delegation of policy), but an
individual node’s access policy MUST be consistent with that of the other nodes in the registry
and MUST NOT compromise the data in the registry as a whole.

If the registry policy for authorization requires a unique identity for each owner of UDDI data,
the registry MAY delegate the registration to each node in the registry but the registry MUST
specify how the registration maps to the authorization policy.

9.4.9 Modeling Authorization
A policy that requires authorization to use a particular UDDI API set SHOULD be represented
in the structures of the Node Business Entity element. An authorization concept used by an
implementation of a UDDI API set SHOULD be represented by a tModel. This tModel
SHOULD be referenced in the bindingTemplate implementing a UDDI API set that uses the
particular authorization concept. An example of this modeling would be a tModel representing
an authorization concept that requires the use of authentication credentials transmitted as
HTTP headers. An implementation using this concept in conjunction with the publication API
would be represented by a bindingTemplate containing both a tModelInstanceInfo for the
publication API set tModel and a tModelInstanceInfo for the tModel for the authorization
concept.

In addition to authorization methods that are outside the scope of this specification, several of
the UDDI API sets allow implementations to enforce authorization using an authInfo element
obtained through the Security API set described in Section 5.3 Security Policy API Set. The
bindingTemplate element representing each UDDI API set implementation SHOULD indicate if
the authInfo element is required, optional or ignored in the bindingTemplate for the API set. It
is RECOMMENDED that an XML document be inserted in the instanceParms element of the
bindingTemplate element that represents an implementation of the Inquiry, Publication or
Subscription API set. The XML element that SHOULD be in the instanceParms XML
document is an instance of one of the NMTOKEN values for authInfoUse included in the UDDI
v3 Policy Instance Parameters schema:

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 218/420

<authInfoUse xmlns="urn:uddi-org:api_v3_instanceParms">required</authInfoUse>
<authInfoUse xmlns="urn:uddi-org:api_v3_instanceParms">optional</authInfoUse>
<authInfoUse xmlns="urn:uddi-org:api_v3_instanceParms">ignored</authInfoUse>

9.4.10 Registry Data Integrity
A registry MUST specify how it maintains the information registered in it. The nodes MUST
enforce this policy.

9.4.11 Registry Approved Certificate Authorities
Each registry MUST establish the certificate authorities it recognizes. A registry MAY delegate
this policy to a node.

9.4.12 Registry Data Confidentiality
A registry MAY have a policy for protecting the information under the custody of its nodes from
unauthorized access. This policy has two dimensions.

9.4.12.1 Persistent Data Confidentiality
A registry MAY specify a policy for the encryption of UDDI data when stored .This policy MAY
be delegated to the node to implement and is usually referred to as persistent data
confidentiality

9.4.12.2 Transient Data Confidentiality
The data supplied in an API MAY need to be protected from being "sniffed" on the wire while
being transmitted. This confidentiality (or the encryption of the information) MAY be specified
as part of the transport of the API. Each API set MAY have different policies for Data
Confidentiality.

It is also possible to extend the transport of the information model in UDDI. This allows other
transport protocols and extensions of SOAP to be used by an implementation. The impact of
such an extension may, and will likely impact the information model presented in this
specification. These extensions MUST be represented in the UDDI structures as tModels, or
concepts, which include documentation to explain the concept of the extension or substitution
of a transport protocol. Extension or substitution of any portion of the normative or
recommended mechanisms in this specification is treated as an extension or substitution of the
UDDI information model. In accordance with extensions to the information model, it is
STRONGLY RECOMMENDED that an impact of an extension on the information model of
UDDI is assessed by both operators and users of the registry.

9.4.12.3 Modeling Data Confidentiality
The RECOMMENDED means of conveying the policy for data confidentiality in transmission is
to include a tModelInstanceInfo referencing a tModel that represents the mechanism for
confidentiality in the binding for the UDDI API set. One example of modeling data
confidentiality in transmission is represented by the application protocol tModel in Section
11.3.1 Secure Sockets Layer Version 3 with Server Authentication.

9.4.13 Registry Audit Policy
A registry MAY specify a policy for the recording of information to maintain an account of the
activity that has been processed. The audit policy MAY be delegated to the nodes in a registry.
The audit policy SHOULD state what actions are audited and under what conditions. Also, the
audit policy SHOULD state who has access to the audit trail. Audit policies could conceivably

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 219/420

need to be presented as evidence in a legal proceeding and a UDDI registry SHOULD have a
risk analysis done in order to assess the critical information that needs to be recorded.

9.4.14 Registry Privacy Policy
A registry MAY specify a policy for protecting the information collected about users of the
registry. The privacy policy MAY be delegated to the nodes in a registry.

9.4.15 Registry Clock Synchronization Policy
The degree to which the clocks of each UDDI node are synchronized is a matter of registry
policy. The clock is used to generate the created, modified and modifiedIncludingChildren
elements. The frequency with which each clock is incremented (e.g.: 60 Hz, 100 Hz, etc) is
also a matter of registry policy.

9.4.16 Registry Replication Policy
When a registry consists of a single node, replication is not required. If the registry consists of
multiple nodes, then a policy for replication of the information in each node to every other node
of the registry MUST be specified.

9.4.16.1 Registry with Single-Master data model
Registries that use the replication protocol defined in Chapter 7 Inter-Node Operation to
replicate data use a single-master data model. See the section below on UDDI Node Policy
Abstractions for recommendations for a single-master data model of replication.

9.4.17 Support for Custody Transfer
A multi-node registry MUST establish a policy stating if it allows transfer of custody of its data
from one node in the registry to another node.

9.4.17.1 Modeling Custody Transfer
It is RECOMMENDED that the Custody Transfer API Set described in Section 5.4 be used to
initiate inter-node custody transfer. If this recommended API is supported by a registry this
MUST be represented as instances of the uddi-org:custody_v3 tModel in bindingTemplate
elements in each participating node’s Node Business Entity.

It is further RECOMMENDED that the transfer_entities API described in Section 5.4 be used to
communicate the custody transfer between nodes. If this recommended API is supported by a
registry this MUST be represented as instances of the uddi-org:custody_ transfer_v3 tModel in
bindingTemplate elements in each participating node’s Node Business Entity

Use of a different API set for custody transfer is outside the scope of this specification but
should be modeled as a tModel referenced by bindingTemplate in the node’s Node Business
Entity.

9.4.18 Registry Subscription Policy
A registry must define a policy for supporting subscriptions including whether nodes may
define their own policy. Individual nodes, including those in the UDDI Business Registry MAY
establish policies concerning the use of the subscription API. A registry that supports
subscription MUST contain at least one node that has a bindingTemplate referencing the uddi-
org:subscription_v3 tModel in its Node Business Entity.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 220/420

9.4.18.1 Registry Limits on Volume, Renewal and Retries
Such policies might include restricting the use of subscription, defining which APIs are
supported, establishing authentication requirements for subscriptions, or even imposing fees
for the use of subscription services.

9.4.18.2 Subscription Duration
The duration or life of a subscription is also a matter of node policy. Subscribers may also
create multiple subscriptions and registries may impose limits on the number or type of
subscriptions subscribers may create.

9.4.18.3 Authorization for Subscription
A registry MUST specify a policy for deciding who is able to create, subscribe to and receive
subscriptions including whether each node may have its own policies on subscription. The
policies that include authorization SHOULD be reconciled with other authorization policies
including the registries policy for authorization of APIs.

9.4.18.4 Modeling Subscription
A registry that supports subscription MUST contain at least one node that has a
bindingTemplate referencing the uddi-org:subscription_v3 tModel in its Node Business Entity.

The bindingTemplate element describing the subscription API set implementation SHOULD
indicate whether find API elements as a filter are supported by the implementation. It is
RECOMMENDED that an XML document be inserted in the instanceParms element of the
bindingTemplate that represents an implementation of the Subscription API set. The XML
element that SHOULD be in the instanceParms XML document is an instance of one of the
NMTOKEN values for filterUsingFindAPI included in the UDDI v3 Policy schema:

<filterUsingFindAPI xmlns="urn:uddi-org:policy_v3_instanceParms>
 supported</filterUsingFindAPI >
<filterUsingFindAPI xmlns="urn:uddi-org:policy_v3_instanceParms>
 unsupported</filterUsingFindAPI>

It is important to note that XML in instanceParms MUST be encoded as described in Section
3.5.2.4 instanceDetails.

9.4.19 Registry Value Set Policies
UDDI allows for the creation of category, identifier, and category group systems and allows this
information to be referenced within the registry. The node is the enforcement point for value set
policies. The node MUST respond with an E_unsupported error code to requests to publish
which include references to the unsupported checked value set tModels.

9.4.19.1 Value set delegation policy
The registry MUST have a policy on whether or not it allows individual nodes to specify their
own policies for value sets.

9.4.19.2 Checked value sets policy
Value sets can be checked or unchecked. A registry must decide if it supports checked value
sets. If checked value sets are allowed, the registry MUST have a policy for differentiating
checked and unchecked value sets. Further, the registry MAY have a policy for determining
which checked value sets it supports.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 221/420

9.4.19.3 Uncached checked value sets policy
If checked value sets are allowed, the registry MUST have a policy for determining whether
uncached checked value sets are supported.

9.4.19.4 Cache invalidation policy
If cached checked value sets are supported, the registry must establish a policy for detecting a
need for cache invalidation.

9.4.19.5 External validation Web service supported policy
If uncached checked value sets are supported, the registry must establish a policy for
determining whether external validation Web services are supported.

9.4.19.6 Value set Web service discovery policy
If checked value sets are supported, the registry must establish a policy for modeling external
value set caching and/or validation Web services, and their means of discovery.

9.5 UDDI Node Policy Abstractions
This section describes the policy abstractions that a registry MAY delegate to a node to define.
These node policies need to be consistent with those of the registry.

9.5.1 Node Key Generation
If a registry delegates Key Generation, the nodes MUST establish policies for deciding
whether publishers MAY publish a given key generator tModel. Section 5.2.2 Publishing
entities with publisher-assigned keys contains details on key generation. See section 5.2
Publication API Set for details on publication APIs.

If delegated, the node MUST specify what the policy is when a key is not supplied on a
publication API.

9.5.2 Node Publisher Generated Key Assertion
Each node must establish whether it will accept publisher generated keys. Nodes may accept
a key generator tModel that is NOT a domainKey but is a uuidKey.

9.5.3 Node Information Policy
UDDI nodes that maintain custody of UDDI information and implement a data storage
mechanism are responsible for the Data Model of the underlying storage of the data elements
and its mapping to the Information Model.

9.5.4 Node Authorization Policy
If a registry allows nodes to specify their own access policies (delegation of policy), an
individual node access policy MUST be consistent with the other nodes in the registry and
MUST not compromise the data in the registry as a whole.

If the registry policy for authorization requires a unique identity for each owner and is delegated
to the node, each node in the registry MUST specify how the registration maps to the
authorization policy.

9.5.5 Node Registration and Authentication
The node, as custodian of registry information MUST have a policy on what publishers are
known to it. This is called the registration policy. The registration policy MUST support the

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 222/420

implementation of the authorization policy. The registration policy MAY specify that all access
to the information is public. The registration policy MAY specify that all users are required to
authenticate to the node before API access is allowed.

The node MUST specify whether (or under what conditions) any meta information about a
publisher is accessible (name, company, phone number, etc). The protection and release of
such meta information MAY also be considered to be a privacy policy.

9.5.6 Node Publication Limits
A node MAY chose to establish limits for the amount of information publishers are allowed to
publish.

9.5.7 Node Policy for Contesting Entries
Each node SHOULD establish a convention for contesting entries.

9.5.8 Node Audit Policy
The audit policy MAY be delegated to the nodes in a registry.

9.5.8.1 Node Availability Policy
Each node SHOULD make available its policies for UDDI service availability. Each node
SHOULD make clearly visible planned outage and maintenance schedules.

9.5.9 Node Collation Sequence Policy
Each node MUST specify the default collation sequence which it supports. A node MAY
specify support for optional additional collation sequences. All collation sequences are
specified via use of sortOrder tModels.

9.5.9.1 Modeling Sort Orders
The tModels for all supported sort orders SHOULD be included in the bindingTemplate for the
UDDI Inquiry API set. The default sort order SHOULD be indicated as an instance parameter
using the defaultSortOder element declared in the UDDI v3 Policy Instance Parameters
schema

<defaultSortOrder xmlns="urn:uddi-org:api_v3_instanceParms>
 binarySort</defaultSortOrder>

9.5.10 Find Qualifier Policy
Each node MUST specify the find qualifiers which it supports on the Inquiry API Set and
Subscription API Set. A node MAY specify support for optional additional find qualifiers not
documented in this specification by registering them as a tModel. All find qualifiers are
specified via use of findQualifier tModels.

9.5.10.1 Modeling Find Qualifiers
The tModels for all supported find qualifiers beyond those listed as required by UDDI
implementations in Section 5.1.4 SHOULD be included in the bindingTemplate for the UDDI
Inquiry API and Subscription API sets. All find qualifiers in Section 5.1.4, with the exception of
the OPTIONAL diacriticInsensitveMatch find qualifier, are supported by a UDDI Web service
referenced in a bindingTemplate which references the Inquiry API set tModel or a Subscription
API set tModel where a find API is supported as a filter.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 223/420

9.5.11 Node Approved Certificate Authorities
Each node MUST establish the certificate authorities it recognizes.

9.5.12 Node Subscription API Assertion
The Subscription API is an optional API that may or may not be implemented by a node. Each
node MUST determine whether subscription is in fact supported and, if so, the exact kinds of
subscription that are supported.

9.5.13 Node Element Limits
A node may limit the number of <name>, <personName> or <description> elements decorated
with the same xml:lang attribute. So, for example, a node may reject a message if the node
policy is to only allow two name elements with the same language and more than two
elements are supplied.

An additional limit that a node may impose is a limit on the size of requests to a particular API.
The limit should be expressed as the maximum number of bytes that will be accepted for
subsequent processing in one request message.

9.5.13.1 Modeling Request Size Limit
The bindingTemplate element describing the API which limits the size of a request message
SHOULD indicate the limit in number of bytes in the instanceParms element. The XML
element that SHOULD be in the instanceParms XML document is an instance of one of the
maximumRequestMessageSize elements included in the UDDI v3 Policy schema:

<maximumRequestMessageSize xmlns="urn:uddi-org:policy_v3_instanceParms>
 2000000</maximumRequestMessageSize>

It is important to note that XML in instanceParms MUST be encoded as described in Section
3.5.2.4 instanceDetails.

9.5.14 Node HTTP GET Services
A node MAY specify if it supports an HTTP GET service for access to the XML representations
of UDDI data structures. If the node does offer such a service, it SHOULD specify the base
URI to be used. The base URI SHOULD be specified in the policyDescription element of the
policy element for the "HTTP GET Support" policy. See Section 6.5 Node HTTP GET
Services.

9.5.15 Node discoveryURL Generation
A node MAY establish a policy on whether it generates and adds discoveryURLs to
businessEntity elements. This is NOT RECOMMENDED behavior as it complicates the use of
digital signatures.

9.5.16 Node XML Encoding Policy
A node MAY establish a policy on whether it uses UTF-8 or UTF-16 as the character encoding
it uses in response messages so that client-side XML document processing can be optimized.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 224/420

9.6 UDDI Recommended Registry Policies
The policies listed in this section are those that are RECOMMENDED in order to provide an
example of a UDDI Registry instance. Each registry MAY chose to define its own policies but
should be cautious and understand the relationships between policies, registries and nodes.

.

9.6.1 Key Generator tModels
It is RECOMMENDED that the saving of a key generator tModel is disallowed and rejected
from v1 and v2 clients.

9.6.2 Information Model
The UDDI information model is instantiated in the data model through the descriptions of the
data structures (see Chapter 3 Data Structures), operations (see Chapter 5 UDDI
Programmers APIs) and the policies described in this section.

A registry MAY offer different bindings for the APIs across the constituent nodes of the registry.
A particular node in a UDDI registry MAY provide access to the UDDI data through one or
more UDDI API sets. A UDDI node MAY also support any number of bindings for the number
of APIs it offers. Variations of policies for these different bindings MAY be different. For
example, a node might choose to offer both http and https bindings for the inquiry API and
apply different access policies depending on which binding is used.

9.6.2.1 Modeling UDDI APIs
A UDDI registry MUST have at least one node that offers a Web service compliant with the
Inquiry API set. A UDDI registry SHOULD have at least one node that offers a Web service
compliant with the Publication, Security, and Custody and Ownership Transfer API sets. If a
UDDI registry has multiple nodes, all nodes SHOULD offer Web services that are compliant
with the Replication API set. The Subscription and Value Set API sets are OPTIONAL for all
nodes and all registries.

The availability of one or more UDDI API sets at a node SHOULD be reflected through a
bindingTemplate referencing the appropriate UDDI API set tModel for each Web service
endpoint.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 225/420

API Set tModel Recommended
Transport

Recommended
Security
Mechanisms

Integrity /
Confidentiality

Authentication

Inquiry uddi-org:inquiry_v3 HTTP

Publication uddi-org:publication_v3 HTTP SSL V3

Security uddi-org:security_v3 HTTP SSL V3

Custody
Transfer

uddi-org:custody_v3 HTTP SSL V3

Replication uddi-org:replication_v3 HTTP SSL V3 Mutual
authentication

Subscription uddi-org:subscription_v3

uddi-
org:subscriptionListener_v3

HTTP SSL V3

Value Set uddi-
org:valueSetValidation_v3

uddi-
org:valueSetCaching_v3

HTTP

9.6.3 Domain key generator tModels
It is recommended that an authorization policy for saving a root key generator tModel based on
a domain key be established by the registry. This policy should include whether the registry
requires a Signature element and what constitutes a valid signature for saving the domain key
generator tModel..

9.6.4 Replication Policies
Registries that use the replication protocol defined in Chapter 7 Inter-Node Operation to
replicate data use a single-master data model. The nodes in a registry using this replication
protocol MUST enforce the recommended policy in Section 7.1 Inter-Node Policy Assertions.
The registry SHOULD define policies detailing the topology for replication and the frequency of
replication API calls, or acceptable latency for processing changeRecord elements.

These policies MAY be declared using the Replication Configuration Structure as described in
Section 7.5 Replication Configuration. If the registry policy requires that the nodes adhere to
the details in the registry Replication Configuration Structure, a policy SHOULD further detail
management of the Replication Configuration Structure. The policy for the management of the
Replication Configuration Structure SHOULD include details on the authorized publisher of the
Replication Configuration Structure and it is RECOMMENDED that the authorized publisher
use the dsig:Signature element to sign the Replication Configuration Structure for integrity. It is
further RECOMMENDED that the registry distribute the Replication Configuration Structure in
a manner that restricts access to the file to the operators of nodes in the registry. Changes to
the replication topology as well as the number of nodes in a registry MAY be initiated through
changes to the Replication Configuration Structure. The RECOMMENDED method for using
the Replication Configuration Structure to add and remove nodes from a registry using
replication is described in Sections 7.8 and 7.9.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 226/420

The registry SHOULD define policies detailing the authentication method that is used to
authorize access to the change record journal for each node in the registry. It is
RECOMMENDED that SSL Version 3.0 with mutual authentication be implemented by each
node in a registry using the replication API set as described in Section 7.5.5 Security
Configuration.

The total set of replication policies SHOULD be documented using the Replication
Configuration Structure in conjunction with human readable documentation that is distributed
to the operators of the nodes in a registry using the replication protocol.

This section describes the registry and node policies that must be established surrounding the
use of value sets in UDDI. Value sets are identifier and categorization systems that are
referenced using keyedReferences and are applied to tModels, businessEntities,
businessServices, and binding Templates by publishers. Inquirers can use value sets to
enhance discovery.

9.6.5 Value sets

9.6.5.1 Recognizing value sets
Publishers of value set tModels SHOULD categorize those that are for category systems with
the categorization value, for identifier systems with the identifier value, and for category group
systems with the categorizationGroup value.

9.6.5.2 Unchecked value sets
An unchecked value set is one that allows unrestricted references to its values. A UDDI
registry is REQUIRED to have a policy to differentiate between unchecked value sets and
checked value sets. UDDI registries MUST allow unchecked value sets to be referred to in
keyedReferences. tModels that represent unchecked value sets SHOULD be categorized with
the unchecked value from the uddi-org:types category system.

9.6.5.3 Checked value sets
Published keyedReferences involving checked value sets are validated using a validation
algorithm acceptable to the value set provider. The most common validation is that referenced
values are part of a predefined set. Checking can often be accommodated by the node using
a cached set of valid values. More complicated or contextual validation can be handled by
external validation services. See Section 5.6 Value Set API Set for more information.

tModels that represent checked value sets MUST be categorized with the checked value from
the uddi-org:types category system. If a value set tModel is categorized as checked, then in
response to attempts to publish a keyedReference which uses the checked tModel, nodes
MUST either perform the required validation, or return E_unsupported.

Validation algorithms that do no more than verify that referenced values are part of a set of
approved values can often be hosted by a node if the value set provider agrees to allow this to
happen. tModels for checked value sets that allow caching of valid values for this simple kind
of validation SHOULD be categorized with the cacheable categorization from the uddi-
org:types category system. Similarly, if a tModel for a checked value set does not support
caching of its values for validation, it SHOULD be categorized with the uncacheable
categorization by uddi-org:types category system.

A node may acquire the set of valid values for a cached checked value set through private
arrangements or through the invocation of a get_allValidValues Web service. A node can
similarly validate references to a checked value set through private arrangements or through
the invocation of a validate_values Web service. The tModel for a checked value set that has a
get_allValidValues or validate_values Web service SHOULD be categorized with a reference
to the bindingTemplate for the get_allValidValues or validate_values Web service using the

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 227/420

uddi-org:validatedBy category system. The referred to bindingTemplate SHOULD contain a
reference to all value set tModels to which the value set Web service applies in the
tModelInstanceDetails element.

A node SHOULD flush a valid values cache that was previously obtained through invocation of
a get_allValidValues service when it receives notice as the custodial node or through the
replication stream that the tModel for the checked value set has been republished. The
recommended technique for a provider of a cached checked value set to notify UDDI nodes of
new valid values is to republish the tModel for the value set. Providers of cached value sets
SHOULD NOT delete valid values from the value set or change the meaning of values as this
adversely affects entities that previously referenced the value set and erodes the confidence in
these references.

9.7 UDDI Policy Summary
The tables below summarize the information presented in this chapter for easy access.

9.7.1 UDDI Registry Policy Abstractions
The following table captures the policies that a registry MAY specify.

Policy
Group

Policy Name Policy Rule Description PDP Sections Type

Policy
Delegation

Registry Policy
Delegation

The registry may allow
nodes to define their own
policies.

Registry 9.4.1 Registry Policy
Delegation

Document

 Delegation of
User
registration

A registry defines if
nodes may specify their
own user registration

Registry 1.7 Introduction to
Security

Document

 Delegation of
Authorization

A registry defines if
nodes may specify their
own access control
policy

Registry 1.7 Introduction to
Security

9.4.8.1 Delegation
of Authorization
Policy

Document

 Delegation of
Subscription
Policy

The registry defines if
nodes may define their
own policies for
subscription.

Registry

9.4.18 Registry
Subscription Policy

Document

 Value set policy
delegation
policy

Value set policy
delegated to node

Registry 9.4.19.1 Value Set
Delegation Policy

Document

Keying Registry
General Keying
Policy

The registry defines a
policy for key format and
key generation.

Registry 9.4.2 Registry
General Keying
Policy

Document

UDDI
keying

Registry Key
Generation

The registry defines a
policy for whether and
how a given node or
publisher is allowed to
register a key generator
tModel.

Registry

[may be
delegated]

5.2.2 Publishing
entities with
publisher assigned
keys

Document

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 228/420

Policy
Group

Policy Name Policy Rule Description PDP Sections Type

 Registry Key
Default

The registry defines what
happens when a key is
not supplied.

Registry

[may be
delegated]

9.4.3.3 Registry Key
Default

Document

 Registry
Support of
UUIDKeys

The registry defines
whether uuidKeys are
accepted.

Registry 9.4.3.4 Registry
Support of UUID
Keys

Document

 Registry Root
Key Generation

The registry defines
whether or not affiliations
are allowed and how key
partitions are maintained.

Registry

[may be
delegated]

9.4.3.5 Root Key
Generation

Document

UDDI
Information
and Access
Control
Policies

Registry
Registration

The registry defines a
policy for registration of
users.

Registry

[may be
delegated]

1.7 Introduction to
Security

9.4.4 UDDI
Information and
Access Control
Policy

Document

 Registry
Authorization

The registry defines a
policy for Authorization of
users.

 Registry

[may be
delegated]

9.4.8 Registry
Authorization Policy

Model

 Registry Data
Integrity

The registry defines a
policy for Data Integrity.

Registry

[may be
delegated]

9.4.10 Registry Data
Integrity

Model

 Registry
Persistent Data
Confidentiality

The registry defines a
policy for persistent Data
Confidentiality (data in
the data repository)

Registry

[may be
delegated]

9.4.12 Registry Data
Confidentiality

Document

 Registry Audit The registry defines a
policy for Audit

Registry

[may be
delegated]

9.4.13 Registry
Policy Audit

Document

 Registry
Privacy

The registry defines a
policy for Privacy.

Registry

[may be
delegated]

9.4.14 Registry
Privacy Policy

Document

 Registry
Extensibility

The registry defines a
policy for extensibility

Registry Appendix H Model

 Registering
Nodes in a
registry

The registry defines how
nodes are added and
deleted from a registry.

Registry 7.8 Adding a Node
to a Registry Using
Replication

Document

APIs Data
Confidentiality
for Inquiry

The registry defines a
policy for Data
Confidentiality for the
inquiry API set.

Registry

[may be
delegated]

9.4.12 Registry Data
Confidentiality

Model

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 229/420

Policy
Group

Policy Name Policy Rule Description PDP Sections Type

 Authorization
for Inquiry

The registry determines
if authorization is
required on the API set
and how this is supplied.

Registry

[may be
delegated]

9.4.9 Modeling
Authorization

Model

 Data
Confidentiality
for Publish

The registry defines a
policy for Data
Confidentiality for the
publish API set.

Registry

[may be
delegated]

9.4.12 Registry Data
Confidentiality

Model

 Authorization
for Publish

The registry determines
if authorization is
required on the API set
and how this is supplied.

Registry

[may be
delegated]

9.4.9 Modeling
Authorization

Model

 Data
Confidentiality
for Subscription

The registry defines a
policy for Data
Confidentiality for the
subscription API set.

Registry

[may be
delegated]

9.4.12 Registry Data
Confidentiality

Model

 Authorization
for subscription

The registry determines
if authorization is
required on the API set
and how this is supplied.

Registry

[may be
delegated]

9.4.9 Modeling
Authorization

Model

 Data
Confidentiality
for Replication

The registry defines a
policy for Data
Confidentiality for the
replication API set.

Registry

[may be
delegated]

9.4.12 Registry Data
Confidentiality

Model

 Authorization
for replication

The registry determines
if authorization is
required on the API set
and how this is supplied.

Registry

[may be
delegated]

9.4.9 Modeling
Authorization

Model

 Data
Confidentiality
for Custody
Transfer

The registry defines a
policy for Data
Confidentiality for the
Custody and Ownership
Transfer API set.

Registry

[may be
delegated]

9.4.12 Registry Data
Confidentiality

Model

 Authorization
for custody
transfer

The registry determines
if authorization is
required on the API set
and how this is supplied.

Registry

[may be
delegated]

9.4.9 Modeling
Authorization

Model

 Data
Confidentiality
for External
validations

The registry defines a
policy for Data
Confidentiality for the
external validations API
set.

Registry

[may be
delegated]

9.4.12 Registry Data
Confidentiality

Model

 Authorization
for external
validations

The registry determines
if authorization is
required on the API set
and how this is supplied.

Registry

[may be
delegated]

9.4.9 Modeling
Authorization

Model

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 230/420

Policy
Group

Policy Name Policy Rule Description PDP Sections Type

Time
Policies

Clock
Synchroniza-
tion Policy

The registry may define
how nodes in a registry
synchronize their clocks.

Registry 9.4.15 Registry
Clock
Synchronization
Policy

Document

User
Policies

Publication
Limits

A registry defines the
amount of information
that publishers are able
to publish.

Registry

[may be
delegated]

9.4.6.2 Publication
Limits

Document

 Person,
Publisher and
Owner

A registry defines the
relationship between
data and publishers.

Registry 9.4.6 Person,
Publisher and
Owner

Document

 Transfer of
Ownership

A registry defines if data
is able to be transferred
between owners in the
registry.

Registry 9.4.7 Transfer of
Ownership

Document

 Data
Custody

Registry
support for
Data Custody

Registries must specify
whether custody transfer
is supported

Registry 9.4.17.1 Modeling
custody transfer

Document

Replication Replication
support for
Data Custody

A registry defines if
replication of transfer is
supported

Registry 9.4.17 Replication
support for Custody
Transfer

Document

 Registry
Support for
Replication

The registry defines if
replication is supported

Registry 7.1 Inter-Node
Policy Assertions

Model

 Single Master
Replication

The registry defines if the
Single master data
model for replication is
supported

Registry 7.1 Inter-Node
Policy Assertions

Model

Subscription Registry
Support for
Subscription

The registry defines if
subscription is
supported.

Registry

[may be
delegated]

5.5 Subscription API
Set

9.4.18 Registry
Subscription Policy

Model

 Registry limits
for email
subscriptions

The registry defines
limits for the number of
email subscription-
related notification-based
retries.

Registry

[may be
delegated]

 9.4.18 Registry
Subscription Policy

Document

 Registry
support for filter
criteria

The registry defines if the
Inquiry APIs are
available for use as filter
criteria in a subscription

Registry

[may be
delegated]

9.4.18.1 Registry
Limits

Model

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 231/420

Policy
Group

Policy Name Policy Rule Description PDP Sections Type

 Registry
conditions for
subscription
renewal

The registry defines
conditions for
subscription renewal

Registry

[may be
delegated]

9.4.18.1 Registry
Limits

Document

 Registry limits
on subscription
volume

The registry defines the
limit on the volume of
data to be returned in
subscription results.

Registry

[may be
delegated]

9.4.18.1 Registry
Limits

Document

 Subscription
Duration

The registry defines the
duration of time in which
a subscription remains
active.

Registry

[may be
delegated]

9.4.18.2
Subscription
Duration

Document

Value Set
Policy

Checked value
sets policy

Checked values sets
supported

Registry

9.4.19 Registry
Value Set Policies

Document

 Cache
invalidation
policy

Cache Invalidation
Trigger

Registry 9.4.19.4 Cache
Invalidation Policy.

Document

 Uncached
checked value
sets policy

Uncached value sets
supported

Registry

[delegated]

9.4.19.3 Uncached
checked value sets
policy

Document

 External
validation Web
service
supported
policy

External validation Web
services supported

Registry

[delegated]

9.4.19.5 External
Validation Policies

Document

 Value set Web
service
discovery policy

Modeling policy for
registering and
discovering value set
Web services

 9.4.19 Registry
Value Set Policies

Document

 Data
Integrity/Data
Confidentiality

A policy for certificate
authorities is supported

Node 9.4.11 Registry
Approved Certificate
Authorities

Document

9.7.2 UDDI Node Policy Abstractions
Policy
Group

Policy Name Policy Rule Description PDP Sections Type

Node Key
Policies

Node Key
Generation

If delegated, a node may
define which publishers
are allowed to register
tModels.

Node 5.2.1 Publishing
entities with node
assigned keys

Document

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 232/420

Policy
Group

Policy Name Policy Rule Description PDP Sections Type

 Node Publisher
Generated Key
Assertion

Each node must
establish whether or not
it will accept publisher
generated keys.

Node 9.5.2 Node
Publisher
Generated Keys

Document

Node
Information

Policy

Node Message
Limit

A node may limit the
maximum size of a
request message

Node 9.5.13 Node
Element Limits

Model

 Node
Registration

The node defines a
Policy for registration of
users.

Node 9.5.5 Node
Registration and
Authentication

Document

 Node
Publication
Limits

A node defines the
amount of information
that publishers are able
to publish.

Node 9.5.6 Node
Publication Limits

Document

 Disclaimers A policy for contesting
entries is supported

Node 9.5.7 Node Policy
for Contesting
Entries

Document

 Node
Authentication

The node defines a
policy for Authentication
of its registered users.
Mapping between
identification and
authorization

Node 1.7 Introduction to
Security

9.5.5 Node
Registration and
Authentication

Model

 Node
Authorization

The node defines a
policy for Authorization of
its users.

Node 9.5.4 Node
Authorization Policy

Model

 Node Privacy
Policy

A node defines the
privacy policy for the
operational information
that it collects and
maintains as a result of
registration.

Node Document

 Node Audit
Policy

A node defines its local
policy for audit

Node Document

 Node
Availability
Policy

 A node defines a policy
for its service availability.

Node Document

 Node Sort
Order

Each node MUST
specify the default sort
order supported. A node
MAY specify support for
any optional additional
sort orders. All sort
orders are specified via
use of a sortOrder
tModel.

Node 9.5.9 Node Sort
Order Policy

Document

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 233/420

Policy
Group

Policy Name Policy Rule Description PDP Sections Type

 Node APIs Node use of
Security APIs

The node defines if the
criteria for identifying
authorized publishers is
via authInfo

Node 4.7 About Access
control and the
authInfo Element

Model

 Authorization
for Inquiry APIs

AuthInfo is supported on
the Inquiry APIs

Node 4.7 About Access
control and the
authInfo Element

Model

 Authorization
for Publish APIs

AuthInfo is supported on
the Publish APIs

Node 4.7 About Access
control and the
authInfo Element

Model

 Authorization
for Custody
APIs

AuthInfo is supported on
the Custody and
Ownership Transfer APIs

Node 4.7 About Access
control and the
authInfo Element

Model

 Authorization
for Subscription
APIs

AuthInfo is supported on
the Subscription APIs

Node 4.7 About Access
control and the
authInfo Element

Model

 Authorization
for Value Set
APIs

AuthInfo is supported on
the Value Set APIs

Node 4.7 About Access
control and the
authInfo Element

Model

 Data
Integrity/Data
Confidentiality

A policy for certificate
authorities is supported

Node 9.5.11Node
Approved Certificate
Authorities

Document

Misc. Node Element
Limits

A node may limit the
number of elements
within the same
language.

Node 9.5.13 Node
Element Limits

Document

 Node Discovery
URLs

A node may establish a
policy on whether or not
it generates Discovery
URLs.

Node 9.5.15 Node
discoveryURL
Generation

Document

 Node HTTP
Get Service

A node MAY specify if it
supports an HTTP GET
service for access to the
XML representations of
UDDI data structures

Node 9.5.14 Node HTTP
GET Services

Document

 Node XML
Encoding

A node MAY specify the
character encoding
(UTF-8 or UTF-16) it
uses in response
messages.

Node 4.2 XML Encoding
Requirements

9.5.16 Node XML
Encoding Policy

Document

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 234/420

10 Multi-Version Support
There are instances when a UDDI node may support multiple UDDI API versions that interact
with a common set of UDDI data. A UDDI node MAY choose to support the Version 3
specification while continuing to allow users to perform Version 2 inquiry and publish API
calls37. In such a configuration, a node MUST respond to an API with behavior according to
the namespace from which the API originated. For example, a find_business call within the
uddi-org:api_v2 namespace MUST behave according to the Version 2 specification, while a
find_business call within the uddi-org:api_v3 namespace MUST behave according the Version
3 specification – regardless of the fact that these queries were issued on an identical dataset.

There are situations where this guiding principle is not sufficient to address differences in the
behavior of existing APIs as well as entirely new APIs that may not exist in an earlier version.
To help node implementers in these unclear situations, this chapter will review the special
considerations to be taken into account when supporting a multi-versioned node. This chapter
also covers the considerations of migrating earlier versions of UDDI data to the Version 3 data
structures.

10.1 Entity Key Compatibility with Earlier Versions of UDDI
The V3 key format change has some important considerations for implementations that wish to
simultaneously support several versions of the UDDI APIs. This section explores how to
support a multi-versioned UDDI implementation with regard to entity keys.

10.1.1 Generating Keys From a Version 3 API Call
A UDDI registry that wishes to support both UDDI v2 and UDDI v3 interfaces is faced (among
other issues) with the problem of needing to manifest to its v2 inquirers keys for entities that
were created using UDDI v3 and thus do not natively possess keys acceptable to the UDDI v2
key format as is the case for a v3 domainKey. The manner in which a UDDI v2 key is
associated with such a UDDI v3 entity is not normatively defined, and so may be carried out by
any means desired so long (of course) as the same result is seen by all UDDI v2 inquirers at
any node in the registry.

The following approach is straightforward and efficient, and is RECOMMENDED. In particular,
since this approach is entirely algorithmic, no additional information need be communicated or
conveyed for this purpose between the nodes of the registry beyond that which would normally
be necessary in a UDDI-v3-only registry.

A registry may establish as part of its key management policy, use of a direct mapping
algorithm for UUID keys. This mapping consists of what follows: V3 keys that are UUID keys
are transformed to V2 keys by removing the "uddi:" prefix, and in the case of a key referring to
a tModel, pre-pending "uuid:" to the UUID. All other V3 keys that are not UUID keys are
hashed using the hashing algorithm described herein.

Let k3 be a UDDI v3 key.

1. take an MD5 hash of the concatenation of:

a. the 16-byte sequence 14 e3 a2 b1 3b d8 4c f5 af a6 0d 14 1b f3 20 76

37

 The same principal holds true for version 1 API calls.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 235/420

b. the normalized form of k3 (including the required "uddi:" prefix); see Section
4.4 About uuidKeys for the normalization process

2. modify the 16 octets output of the MD5 hash:

a. change the four most significant bits of the seventh octet to ‘0011’

b. change the two most significant bits of the ninth octet to ‘10’

3. format the 16 octets in the form of a UUID string; in making this interpretation, we rely
on the specification of UUIDs as found in http://uddi.org/pubs/draft-leach-uuids-guids-
01.txt:

a. convert them into a hexadecimal string

b. separate them into groups of 8, 4, 4, 4, and 12 hexadecimal digits with
hyphens

Once this is done, one straightforwardly defines a UUID v2 key for the entity denoted by k3 in
the normal UDDI v2 manner as appropriate for the type of that entity.

Some examples of V3 domainKeys that have been processed into UUID-based UDDI Version
1 and 2 keys using this algorithm are:

For the businessKey uddi:tempuri.org = 5de0d2b4-ce18-318a-a7fa-64692c42dc25

For the tModelKey uddi:tempuri.org:keygenerator = uuid:eabe885f-9de2-3924-bd41-
9eff2ce52606

As shown in the examples above, keys for tModels in UDDI Version 1 and 2 were denoted
with a prefix "uuid:" followed by the UUID. All other keys in UDDI Version 1 and 2 are in the
format of a UUID without the prefix.

Note that while there exists a mapping between two keys, a client must use the appropriate
key for the version being used. A Version 2 API must specify an entity with a Version 2 key
and vice versa.

10.1.2 Generating Keys from a Version 2 API Call
In the case where an entity is saved in a multi-versioned registry using a Version 2 API, a
different set of issues arise. Again, the manner in which this is accomplished is non-normative,
but a correlation must be in place between the v2 and v3 entity. A recommended approach to
this requirement is to generate a v3 key prior to generating a v2 key and then using the
recommended hashing algorithm and/or a mapping algorithm to create a v2 key for the user.
Again, because this approach is algorithmic, it introduces no replication issues.

As an example of the hashing algorithm, suppose a tModel is being published at a node of a
registry that generates its V3 keys in the partition of the key generator
"uddi:example.com:registry:sales:keygenerator". And suppose that the node assures
uniqueness in the partition by generating monotonically increasing serial numbers.

When the publication is done with a v2 API, the node first generates a v3 key of the form
"uddi:example.com:registry:sales:y" where y is the next serial number. It then generates a v2
using the MD5 hash discussed above.

As an example of the mapping algorithm, the node first generates a v3 UUID key of the form
"uddi:3942306d-2438-492a-9b2a-185413b93673", it then generates the v2 key as "3942306d-
2438-492a-9b2a-185413b93673" or "uuid:3942306d-2438-492a-9b2a-185413b93673" if the
entity is a tModel.

Note that a publisher cannot perform "backward migration". In other words, one cannot
correlate a v3 key that is proposed by a publisher and an existing v2 key. For example, if a
business had published a businessEntity under v2 and then acquired a domainKey generator
under v3, that publisher could not create a domainKey and have it be associated with the

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 236/420

existing businessKey created for the v2 entry. In this case, the publisher would have to delete
the first entity and resave the entity with the new domainKey.

10.1.3 Migrating Version 2 keys to a Version 3 Registry
Migrating data containing v2 format keys is introduces a different set of issues. One needs to
generate and add v3-format keys to match keys already in the data. Implementations are free
to choose whatever algorithm they choose for this, but a correlation must be maintained
between the existing v2 entity and its correlative v3 entity. Because the hashing solution
discussed above is a one way hash, a different mapping is required to preserve the v2 key of
the existing v2 entity while creating a valid v3 key.

A mapping can still be created algorithmically which does not require nodes to transmit
additional information to one another as follows:

10.1.3.1 Within a Root Registry
During migration, to generate a v3 key corresponding to a v2 tModelKey, replace the "uuid:"
prefix with the v3 prefix "uddi:". To generate the v3 key corresponding to any other type of key,
prepend the v2 key with the v3 prefix "uddi:".

For example, the v2 tModelKey "uuid:68DE9E80-AD09-469D-8A37-088422BFBC36" would
correspond to the v3 key "uddi:68DE9E80-AD09-469D-8A37-088422BFBC36" and the v2
businessKey "D2033110-3AAF-11D5-80DC-002035229C64" would correspond to the v3 key
"uddi:D2033110-3AAF-11D5-80DC-002035229C64".

Note that this algorithm is transitive: after migration, given a v3 key, one can determine its v2
equivalent by applying this same pattern in reverse.

10.1.3.2 Within an Affiliate Registry
In order to insure that the affiliate registry’s keys are unique in the context of other registries,
the affiliate registry cannot migrate to v3 keys until it has established a key generator tModel
with the root registry. By establishing a key generator, the affiliate registry can then migrate its
keys, using the keyGenerator prefix as a basis for its keys.

For example, the affiliate might establish the key generator, "uddi:example.com:keygenerator".
It would use this prefix when migrating the entirety of its v2 keys. For example, the v2
tModelKey "uuid:68DE9E80-AD09-469D-8A37-088422BFBC36" would correspond to the v3
key "uddi:example.com:68DE9E80-AD09-469D-8A37-088422BFBC36" and the v2
businessKey "D2033110-3AAF-11D5-80DC-002035229C64" would correspond to the v3 key
"uddi:example.com:D2033110-3AAF-11D5-80DC-002035229C64".

Again, this algorithm is transitive: after migration, given a v3 key, one can determine its v2
equivalent by stripping the keyGenerator prefix and, in the case of tModel, appending "uuid:".
It is important that all nodes in the affiliate registry are aware of the algorithm used during the
migration such that a correlation is maintained.

10.1.4 Mapping v1/v2 Canonical tModel Keys to v3 Evolved Keys
Another exception to the algorithmic mapping is for the v1/v2 canonical tModel keys. In order
to preserve these ubiquitous keys, there must be a direct mapping to the v1/v2 GUIDs
documented in the v1/v2 specification. As such, nodes responding to a v2 request with one of
the v3 canonical tModels must not generate a hashed key, but rather must correlate the v3
with an existing GUID. The list of those GUIDs and domainKeys are listed below and are also
clearly noted in Chapter 11 Utility tModels and Conventions as evolved keys as opposed to
derived keys.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 237/420

V3 key V1/V2 key

uddi:uddi.org:categorization:types uuid:C1ACF26D-9672-4404-
9D70-39B756E62AB4

uddi:uddi.org:categorization:general_keywords uuid:A035A07C-F362-44dd-
8F95-E2B134BF43B4

uddi:uddi.org:categorization:nodes uuid:327A56F0-3299-4461-
BC23-5CD513E95C55

uddi:uddi.org:relationships uuid:807A2C6A-EE22-470D-
ADC7-E0424A337C03

uddi:uddi.org:categorization:owningbusiness uuid:4064C064-6D14-4F35-
8953-9652106476A9

uddi:uddi.org:identifier:isreplacedby uuid:E59AE320-77A5-11D5-
B898-0004AC49CC1E

uddi:uddi.org:transport:http uuid:68DE9E80-AD09-469D-
8A37-088422BFBC36

uddi:uddi.org:transport:smtp uuid:93335D49-3EFB-48A0-
ACEA-EA102B60DDC6

uddi:uddi.org:transport:ftp uuid:5FCF5CD0-629A-4C50-
8B16-F94E9CF2A674

uddi:uddi.org:transport:fax uuid:1A2B00BE-6E2C-42F5-
875B-56F32686E0E7

uddi:uddi.org:transport:telephone uuid:38E12427-5536-4260-
A6F9-B5B530E63A07

10.1.4.1 Response for V2 inquires for evolved tModels
When a V2 find_tModel or get_tModelDetail inquiry for the V2 tModels evolved into the V3
specification as part of the response will be based on the tModel Structure in Chapter 11 of the
V3 specification. The specific difference in the tModels when a V2 client queries a multi-
version V3 registry for the evolved V2 tModels are that the tModel overviewURL and
keyedReference elements in the categoryBag will be from the V3 specification.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 238/420

10.2 Version 2 API Considerations

10.2.1 Multiple xml:lang attributes of the same language
In Versions 2 there could only be one name or description element with a given xml:lang. In
Version 3 of UDDI there can be multiple names with the same language attribute. When this
occurs the first name or description is considered the default for that language.

10.2.2 Error codes
Registries that support multiple versions of the UDDI APIs respond with error codes
appropriate to the version of the APIs that are invoked. For example, when a v2 API is
invoked, a registry MUST NOT respond with a NEW v3 error code. In this case the registry
SHOULD use the E_fatalError code.

There are also a number of error codes from V2 that are deprecated in V3. A registry MAY
NOT return these specific errors to a V2 API call if the V3 data model does not require that the
error be returned in the corresponding V3 API. By example, if too many names are specified
in a V2 Inquiry API sent to a V3 registry, the V3 registry may successfully process the request
instead of returning the V2 error E_tooManyOptions.

10.2.3 Return of a dispositionReport
A dispositionReport on success is not returned by v3; rather an empty message is returned
instead. The use of a dispositionReport in v3 is reserved to signal an error condition. A registry
MUST return a dispositionReport to a v2 client to signal success consistent with the v2
specification.

10.2.4 Mapping Between URLType and useType attribute on
accessPoint
The v3 specification no longer supports the attribute URLType on the accessPoint element.
Rather, it uses the useType attribute. This necessitates a mapping between the values of the
v2 URLType with the values of the v3 useType.

When a v3 node is responding to a v2 inquiry, the v2 URLType will always be returned as
"other". When a v3 node is responding to a v2 publication, the returned v2 URLType will
always be "other" regardless of the original URLType in the publication message; this means
that the data returned from a successful v2 save will NOT match the data sent due to this data
conversion. V3 inquiries that return data stored from a v2 publication will always return
"endpoint" as the useType.

10.2.5 Supporting External Value Set Providers Across Versions
A situation may arise when there may be incongruent value sets of a checked taxonomy
between two different versions. For example, the uddi:uddi.org:categorization:types taxonomy
has new values in Version 3 that were not specified in Version 2. In such a situation, it is
permissible for an inquiry API to return data that would be considered "invalid" given the valid
values for that taxonomy.

In the case of external value sets, the same schema version specified in a save_xx API call,
whose categoryBag or identifierBag references an externally validated value set, is used by
the node in the associated validate_values API call performed in order to complete the
save_xx request. If the needed validate_values API is not available at the required schema
version, then the save_xx request results in the error E_unsupported. In such cases, the error
text clearly indicates the cause of the problem.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 239/420

10.2.6 Version 3 Schema Assessment
The UDDI v3 specification mandates use of schema assessment. (See Section 6.1.1.1
Processing By XML Schema Assessment.) It is RECOMMENDED that a multi-version registry
perform schema assessment on earlier versioned APIs. It is further RECOMMENDED that a
multi-version registry perform schema assessment according to the errata for XML Schema for
conformance to RFC 3066 for the language type used by xml:lang (see
http://www.w3.org/2001/05/xmlschema-errata#e2-25).

10.2.7 XML Encoding
Because UTF-16 is not supported in both UDDI Version 1 and 2, all response messages to
UDDI Version 1 or 2 API calls are encoded in UTF-8.

10.2.8 Length Discrepancies
A number of fields are permitted to be longer in v3 than in prior versions of the UDDI
specification. In the case when a v2 inquiry is made on a UDDI node which supports multiple
versions, the node MAY return a field length longer than is specified in the v2 specification.

10.2.9 White Space Handling
The v3 specification mandates the usage of schema assessment with regard to the handling of
white space, which differs slightly from the handling of white space in earlier versions. (See
Section 6.1.1.1 Processing By XML Schema Assessment.) A multi-version node may return
XML to an earlier versioned API with data that has been processed by v3 schema
assessment.

10.3 Version 2 Inquiry API Considerations

10.3.1 keyedReference data
With Version 3, tModelKey elements MUST be specified for a keyedReference structure.
Requests to the Version 3 namespace containing keyedReference structures without
tModelKey elements will fail schema validation and be rejected. Requests in the version 2
namespace with empty or absent tModelKey elements MAY be processed by a multi-version
node as a reference to the general_keyWords tModel. As this node behavior was optional in
version 2, It is STRONGLY RECOMMENDED that all UDDI version 2 clients provide
tModelKey attribute in keyedReference elements.

10.3.2 keyedReferenceGroup data
Because keyedReferenceGroups elements did not exist in Version 2, they will not be returned
when a Version 2 API requests an entity that in fact has keyedReferenceGroup elements.

10.3.3 Multiple overviewDoc data
With Version 3, an entity may have multiple overviewDoc elements. If a Version 2 API queries
such an entity, the first overviewDoc element will be returned according to its document order.

10.3.4 Multiple personName data
With Version 3, a contact may have multiple personName elements. If a Version 2 API
queries such an entity, the first personName element will be returned according to its
document order.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 240/420

10.3.5 Service Projections
Because service projections are not available in UDDI Version 1, they never appear in the
result set of a Version 1 find_business or find_service inquiry.

10.3.6 Sorting and Matching Behavior
The set of sorting and matching findQualifiers, as well as default sorting and matching
behavior, for the Version 3 namespace has changed significantly. Please refer to the
appropriate version-specific specifications for detailed explanations of sorting and matching
semantics.

10.4 Version 2 Publish API Considerations

10.4.1 Data update semantics consistent with request namespace
If a publisher saves data using a Version 3 API call and then attempts to update that data by
performing a Version 2 save_xx API call and passing the identical key, the entity will not
preserve any Version 3 data that is not part of the Version 2 entity. As is true with all save_xx
operations, a Version 2 save_xx operation performed on a Version 3 registry that supports it
completely replaces the entity being saved. If the entity being replaced previously contained
data not expressible in that prior version, it will no longer contain such data after a successful
prior version save_xx operation.

For example, if the Version 3 entity contained a signature and was then re-saved with a
Version 2 call, the signature would be lost. This same principle holds true for Version 1 API
calls.

10.4.2 keyedReference data
With Version 3, tModelKey elements MUST be specified for a keyedReference structure
contained within Publish API requests. Requests to the Version 3 namespace containing
keyedReference structures without tModelKey elements will fail schema validation and be
rejected.

When migrating Version 2 keyedReference data to a Version 3 node, publishers MUST
construct tModelKey values for migrated data in a manner consistent with Section 10.1.4
Mapping v1/v2 Canonical tModel Keys to v3 Evolved Keys.

A keyedReference referring to the UDDI Types Category System with a keyValue attribute
equal to "keyGenerator" is reserved exclusively for key generator tModels. Any attempt to use
it in a V2 Publish API call will fail with E_valueNotAllowed returned.

10.5 Data Migration and Multi-version Runtime Considerations

10.5.1 Empty Containers – Enforcement of Schema Strictness
In Version 3, the schema was changed to no longer allow "empty containers" – XML wrapper
tags that stored no data. Version 3 enforces a minOccurs=1.

Migration behavior. The modification of behavior introduced in v3 requires that a migration of
the data from v2 to v3 must prune any XML structures that were saved with such a structure.
Without such pruning, it is possible that a v3 API call might return XML that is not valid
according to the v3 schema. This would hold true for both structures within the find_xx API
calls as well as structures within the get_xx and save_xx API calls.

Runtime behavior. Similar considerations are present in the face of operating a v2/v3 multi-
version registry whereby v2 clients may publish information that does not adhere to the v3

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 241/420

schema. At the time of processing the publish operation, a v2/v3 multi-version node will apply
the same pruning used to migrate v2 data to v3.

Elements subject to migration and runtime pruning. The following structures need to be
pruned either in the case of migration from v2 to v3, or at runtime by a v2/v3 multi-version
registry:

• <addressLine> in <address>

• <bindingTemplate> in <bindingTemplates>

• <businessInfo> in <businessInfos>

• <businessService> in <businessServices>

• <contact> in <contacts>

• <description> or <overviewURL> in <overviewDoc>

• <findQualifier> in <findQualifiers>

• <fromKey> or <tokey> in <keysOwned>

• <instanceParms> or <overviewDoc> in <instanceDetails>

• <keyedReference> or <keyedReferenceGroup> in <categoryBag>

• <keyedReference> in <identifierBag>

• <relatedBusinessInfo> in <relatedBusinessInfos>

• <serviceInfo> in <serviceInfos>

• <tModelInfo> in <tModelInfos>

• <tModelInstanceInfo> in <tModelInstanceDetails>

10.5.2 Length Validation During v2/v3 Migration and During Runtime
in a v2/v3 Multi-version Registry
Similarly, Version 3 introduces the notion of length validation – both minLength and maxLength
-- within the schema. This change also affects data that is migrated from v2 to v3. The
following elements now enforce such length validation:

• accessPoint38

• addressLine

• authInfo

• description

• discoveryURL

• email

• keyName

38

 The Version 2 Schema requires the accessPoint field, but the schema does not enforce a minLength. However, Version 2
errata clarified this behavior and enforced through the specification that an accessPoint of minLength one is required. Therefore,
migrating accessPoint between v2 and v3 is not an issue.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 242/420

• keyValue

• name

• personName39

• phone

• useType

When a client submits a value that exceeds the maxLength, the value will no longer be
truncated by the node, but rather, the XML message will not pass validation. More importantly,
in terms of the minLength requirement, if there are instances of v2 elements and attributes that
are not of the required minLength, those v2 entities will need to be pruned during migration
and at runtime, so that they will return XML that is valid according to the v3 schema.

As stated in Section 10.2.8, a multi-version v2/v3 registry responding to a v2 inquiry MAY
return a field length longer than is specified in the v2 specification.

Example: Consider the following valid XML file from a v2 registry:

<businessDetail generic="2.0" operator="Microsoft UDDI Services"
 truncated="false" xmlns="urn:uddi-org:api_v2">
 <businessEntity businessKey="176a3131-0c20-45d1-b31d-efb4f61b8b14"
 operator="sample" authorizedName="sample">
 <discoveryURLs>
 <discoveryURL useType="businessEntity">
 http://sample/uddipublic/discovery.ashx?businessKey=176a3131...
 </discoveryURL>
 </discoveryURLs>
 <name>sample</name>
 <description xml:lang="en" />
 <contacts/>
 </businessEntity>
</businessDetail>

In order to be compatible with a v3 registry, the v2 XML response would have to be migrated
or at runtime be returned as follows:

<businessDetail generic="2.0" operator="Microsoft UDDI Services"
 truncated="false" xmlns="urn:uddi-org:api_v2">
 <businessEntity businessKey="176a3131-0c20-45d1-b31d-efb4f61b8b14"
 operator="sample" authorizedName="sample">
 <discoveryURLs>
 <discoveryURL useType="businessEntity">
 http://sample/uddipublic/discovery.ashx?businessKey=176a3131...
 </discoveryURL>
 </discoveryURLs>
 <name>sample</name>
 </businessEntity>
</businessDetail>

Note that the <description> element and the <contacts/> element have been pruned.

10.6 Value sets with entity keys as valid values
There are value sets which use entity keys as valid values. Special handling of these values is
necessary in a multi-version registry as specified in Section 11.1.9 UDDI "Entity Key Values"
Category System.

39

 The Version 2 Schema requires personName and the specification allows it to be minLength=0. This presents a problem during
migration. There is not a normative way to handle this migration issue; nodes may handle this situation as they choose.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 243/420

They must be mapped as entity keys are everywhere else they are used. For example, if a V2
application saves a tModel that includes a keyedReference that uses the owningBusiness
Value Set, the keyValue that will be used will be the V2 key of the appropriate businessEntity.
If a V3 application retrieves this tModel then the keyValue returned MUST be the V3 key of the
same businessEntity.

This behavior applies to the following set of tModels as well as any other tModel categorized
using the entityKeyValues category system:

• uddi-org:validatedBy

• uddi-org:derivedFrom

• uddi-org:isReplacedBy

• uddi-org:owningBusiness

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 244/420

11 Utility tModels and Conventions
To facilitate consistency in Service Description (tModel) registration, and to provide a
framework for their basic organization within UDDI registries, a set of tModels has been
established for UDDI. This section describes this set of tModels that facilitate registration of
common information and the services provided by the UDDI registry itself. Registration of
these tModels is MANDATORY for all UDDI registries. Implementation of these tModels
depends on the type of tModel and on the structure of the registry.

In addition to these "canonical" conventions and tModels, the UDDI Business Registry has
established further conventions and tModels that registries MAY wish to adopt. See the UDDI
Business Registry for additional useful tModel descriptions40.

In the sections that follow a number of attributes are called out for each tModel described.
These include the name of the tModel, the description of the tModel, its categorization(s), and
its keys. Version 3 format keys are used when accessing a UDDI Version 3 registry using
UDDI Version 3 APIs. When a node supports multiple versions of UDDI, Version 1 and 2
format keys are used for the tModels when the Version 3 registry is accessed with a prior
version API.

There are two kinds of Version 1 and 2 format keys. There are those keys for tModels that are
new in Version 3. The Version 1 and 2 format keys for these tModels can be derived
algorithmically. See Section 10.1.1 Generating Keys From a Version 3 API Call for more
information. tModels with this kind of V1 and V2 format key have the Derived V1, V2 Format
Key attribute. tModels that existed in a prior version of UDDI have a V1 and V2 format key that
is migrated following the algorithm described in Section 10.1.4 Mapping v1/v2 Canonical
tModel Keys to v3 Evolved Keys. tModels with this kind of V1 and V2 format key have the
Evolved V1, V2 Format Key attribute.

11.1 Canonical Category Systems, Identifier Systems and
Relationship Systems

In UDDI, tModels are used to establish the existence of a variety of concepts and to point to
their technical definitions. tModels that represent value sets such as category, identifier, and
relationship systems are used to provide additional data to the UDDI core entities to facilitate
discovery along a number of dimensions. This additional data is captured in keyedReferences
that reside in categoryBags, identifierBags, or publisherAssertions. The tModelKey attributes
in these keyedReferences refer to the value set that related to the concept or namespace
being represented. The keyValues contain the actual values from that value set. In some
cases keyNames are significant, such as for describing relationships and when using the
general keywords value set. In all other cases, however, keyNames are used to provide a
human readable version of what is in the keyValue.

tModels related to value sets can be checked or unchecked. keyValue references to
unchecked value sets are never validated. Their use is unrestricted. keyValue references to
checked value sets are either rejected out of hand (when the UDDI node does not support the
referenced checked value set) or validated. Validation can occur internally by a node or by
invoking an external validation Web service.

40 Some of the tModels that appeared in prior versions of the UDDI specification are not considered normative and are therefore
not part of this specification. The UDDI Business Registry, however, continues to support these tModels.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 245/420

tModels related to value sets can also be placed out of service by marking them unvalidatable.
When a new reference to a tModel that is marked unvalidatable is encountered, the reference
is automatically rejected.

Registration of and support for the tModels that follow are MANDATORY for all UDDI
registries. In addition to these tModels, the UDDI Business Registry has defined a number of
common value sets, for example the NAICS and UNSPSC category systems, that UDDI
registries MAY support. These are described in the overviewURLs for the UDDI Business
Registry tModels.

11.1.1 UDDI Types Category System

11.1.1.1 Introduction
To distinguish among various types of concept, UDDI has established the Types category
system. Publishers should categorize the tModels they publish using values from uddi-
org:types to make them easy to find. The approach to categorization of tModels within the
UDDI Type Category system is consistent with that used for categorizing other entities using
other category systems. The categorization information for each tModel is added to the
<categoryBag> elements in a save_tModel API. One or more <keyedReference> elements
are added to the category bag to indicate the types of the tModel that is being registered. See
Appendix F Using Categorization for more information.

11.1.1.2 Design Goals
The goal of the UDDI Types category system is to establish an unambiguous, simple UDDI-
compatible category system that distinguishes the kinds of concepts that tModels can
represent.

11.1.1.3 tModel Definition

Name: uddi-org:types

Description: UDDI Type Category System

UDDI Key (V3): uddi:uddi.org:categorization:types

Evolved V1,V2 format key: uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4

Categorization: categorization

Checked: Yes

11.1.1.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:categorization:types">
 <name>uddi-org:types</name>
 <description>UDDI Type Category System</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#UDDITypes
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:checked"
 keyValue="checked"

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 246/420

 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:cacheable"
 keyValue="cacheable"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.1.1.4 Valid Values
Checking of references to this value set consists of ensuring that the keyValues are from the
set of categories listed below. No contextual checks are performed unless otherwise specified
for a given value.

The following constitute the value set for this category system. The valid values are those
categories marked as being "allowed". These values are used in the keyValue attributes of
keyedReference elements that are contained in categoryBag elements.

ID Parent ID Allowed Description

tModel No These types are used for tModels

 valueSet tModel Yes Value set

 identifier valueSet Yes Identifier system

 namespace valueSet Yes Namespace

 categorization valueSet Yes Categorization system

 postalAddress categorization Yes Postal address system

 categorizationGroup tModel Yes Category group system

 relationship tModel Yes Relationship type system

 specification tModel Yes Specification for a Web service

 xmlSpec specification Yes Specification for a Web service using
XML messages

 soapSpec xmlSpec Yes Specification for interaction with a Web
service using SOAP messages

 wsdlSpec specification Yes Specification for a Web service
described in WSDL

 protocol tModel Yes Protocol

 transport protocol Yes Wire/transport protocol

 signatureComponent tModel Yes Signature component

 unvalidatable tModel Yes Prevents a checked value set from
being used

 checked tModel Yes Checked value set

 unchecked tModel Yes Unchecked value set

 cacheable tModel Yes Cacheable checked value set

 uncacheable tModel Yes Uncacheable checked value set

 keyGenerator tModel Yes Key generator (Note: A contextual
check is performed as specified below

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 247/420

ID Parent ID Allowed Description

if this value is used)

 findQualifier tModel Yes Find qualifier

 sortOrder findQualifier Yes Sort order

 useTypeDesignator tModel Yes Designates a kind of usage for the
pieces of data with which it is
associated

bindingTemplate No These types are used for
bindingTemplates

 wsdlDeployment bindingTemplate Yes bindingTemplate represents the WSDL
deployment of a Web service

• tModel: The UDDI type category system is structured to allow for categorization of
registry entries other than tModels. This key is the root of the branch of the category
system that is intended for use in categorization of tModels within the UDDI registry.
Categorization is not allowed with this key.

• valueSet: A valueSet is the parent branch for the identifier, namespace, and
categorization values in this category system. A tModel categorized with this value
indicates it can be referenced by some other value set tModel to indicate redefinition
of purpose, derivation, extension or equivalence.

• identifier: An identifier tModel represents a specific set of values used to uniquely
identify information. Identifier tModels are intended to be used in keyedReferences
inside of identifierBags. For example, a Dun & Bradstreet D-U-N-S® Number uniquely
identifies companies globally. The D-U-N-S® Number system is an identifier system.

• namespace: A namespace tModel represents a scoping constraint or domain for a set
of information. In contrast to an identifier, a namespace does not have a predefined
set of values within the domain, but acts to avoid collisions. It is similar to the
namespace functionality used for XML. For example, the uddi-org:relationships
tModel, which is used to assert relationships between businessEntity elements, is a
namespace tModel.

• categorization: A categorization tModel is used for category systems within the UDDI
registry. NAICS and UNSPSC are examples of categorization tModels.

• postalAddress: A postalAddress tModel is used to identify different forms of postal
address within the UDDI registry. postalAddress tModels may be used with the
address element to distinguish different forms of postal address.

• categorizationGroup: A categorizationGroup tModel is used to relate one or more
category system tModels to one another so that they can be used in
keyedReferenceGroups.

• relationship: A relationship tModel is used for relationship categorizations within the
UDDI registry. relationship tModels are typically used in connection with publisher
relationship assertions.

• specification: A specification tModel is used for tModels that define interactions with a
Web service. These interactions typically include the definition of the set of requests
and responses, or other types of interaction that are prescribed by the Web service.
tModels describing XML, COM, CORBA, or any other Web services are specification
tModels.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 248/420

• xmlSpec: An xmlSpec tModel is a refinement of the specification tModel type. It is
used to indicate that the interaction with the Web service is via XML. The UDDI API
tModels are xmlSpec tModels.

• soapSpec: Further refining the xmlSpec tModel type, a soapSpec is used to indicate
that the interaction with the Web service is via SOAP. The UDDI API tModels are
soapSpec tModels, in addition to xmlSpec tModels.

• wsdlSpec: A tModel for a Web service described using WSDL is categorized as a
wsdlSpec.

• protocol: A tModel describing a protocol of any sort.

• transport: A transport tModel is a specific type of protocol. HTTP, FTP, and SMTP are
types of transport tModels.

• signatureComponent: A signature component is used to for cases where a single
tModel can not represent a complete specification for a Web service. This is the case
for specifications like RosettaNet, where implementation requires the composition of
three tModels to be complete - a general tModel indicating RNIF, one for the specific
PIP, and one for the error handling services. Each of these tModels would be of type
signature component, in addition to any others as appropriate.

• unvalidatable: Used to mark a categorization or identifier tModel as unavailable for
use by keyedReferences. A value set provider may mark its value set tModel
unvalidatable if it wants to temporarily disallow its use. See Section 6.4 Checked
Value Set Validation for more information.

• checked: Marking a tModel with this categorization asserts that it represents a value
set or category group system whose use, through keyedReferences, may be
checked. Registry, and possibly node policy determines when and how a checked
value set is supported.

• unchecked: Marking a tModel with this categorization asserts that it represents a
value set or category group system whose use, through keyedReferences, is not
checked.

• cacheable: Marking a tModel with this categorization asserts that it represents a
checked value set or category group system whose values may be cached for
validation. The validation algorithm for a supported cacheable checked value set or
category group system must rely solely upon matching references against the cached
set of values.

• uncacheable: Marking a tModel with this categorization asserts that it represents a
checked value set or category group system whose values must not be cached for
validation. The validation algorithm for a supported uncacheable checked value set
must be specified and associated with the tModel marked with this categorization and
may consider contextual criteria involving the entity associated with the reference.

• keyGenerator: Marking a tModel with this categorization designates it as one whose
tModelKey identifies a key generator partition that can be used by its owner to derive
and assign other entity keys. This categorization is reserved for key generator
tModels. Any attempt to use this categorization for something other than a key
generator tModel will fail with E_valueNotAllowed returned.

• findQualifier: A findQualifier tModel is used as the value of a findQualifier element to
indicate the type of processing to occur for the inquiry function in which it is included.

• sortOrder: A sort order tModel defines a collation sequence that can be used during
inquiries to control ordering of the results.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 249/420

• useTypeDesignator: A useTypeDesignator tModel is used to describe the way a piece
of data should be interpreted. It is frequently used to extend the space of resource
types found at a URI, such as access points, overview URLs, and discovery URLs.
UDDI designates a set of common use types as simple strings; tModels of the
useTypeDesignator type are used to describe others.

• bindingTemplate: This key is the root of the branch of the category system that is
intended for use in categorization of bindingTemplates within the UDDI registry.
Categorization is not allowed with this key.

• wsdlDeployment: A bindingTemplate categorized as a wsdlDeployment contains
within its accessPoint the endpoint for a WSDL deployment document.

11.1.1.5 Example of Use
The following demonstrates how to categorize a tModel as representing a checked value set.
The UDDI approximateMatch findQualifier tModel, for example, is categorized this way.

<tModel
 tModelKey="uddi:uddi.org:findqualifier:approximatematch">
 …
 <categoryBag>
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.1.2 General Keyword Category System

11.1.2.1 Introduction
Usually, category systems in UDDI are defined by registering a new tModel to represent the
value set, but sometimes such formality is unnecessary. The UDDI General Keywords
Category System provides a way of informally defining any number of unchecked value sets,
each consisting of a namespace identifier and an associated set of category values. See
Appendix F Using Categorization for more information.

11.1.2.2 Design Goals
Provide a simple, lightweight means for establishing and using unchecked UDDI category
systems. Such value sets are generally fairly simple and often of interest only to a small
number of people. Checked value sets must, and complex or broadly interesting value sets
should be defined by registering a new tModel, which is the formal means of documenting the
meaning and intended use of a value set.

11.1.2.3 tModel Definition

Name: uddi-org:general_keywords

Description: Category system consisting of namespace identifiers and
the keywords associated with the namespaces

UDDI Key (V3): uddi:uddi.org:categorization:general_keywords

Evolved V1,V2 format key: uuid:A035A07C-F362-44dd-8F95-E2B134BF43B4

Categorization: categorization

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 250/420

Checked: Yes

11.1.2.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:categorization:general_keywords">
 <name>uddi-org:general_keywords</name>
 <description>Category system consisting of namespace
 identifiers and the keywords associated with
 the namespaces.
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#GenKW
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:checked"
 keyValue="checked"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.1.2.4 Valid Values
The general_keywords category system in UDDI behaves differently than do any of the other
category systems. Like other category systems, the general_keyword category system is used
in keyedReference elements to categorize the entities. Unlike other category systems, in the
general_keyword category system both the keyName and the keyValue attributes of
keyedReference elements are semantically meaningful and are required. The keyName
identifies a particular value set and the keyValue specifies the value within that value set. With
other category systems, the keyName plays no semantic role -- it is essentially commentary.
This difference is reflected in the UDDI inquiry APIs: When a keyedReference containing a
reference to the general_keywords category system appears in an inquiry, the keyNames are
used.

Although UDDI requires only that keyName attributes be specified when used with the
general_keywords, such keyNames SHOULD be URNs -- with what the W3C calls "an
institutional commitment to persistence" -- in a domain name space you own. Following this
convention will help avoid name collisions.

UDDI places no limitations on the value of keyValue attributes for keyedReferences that
reference this tModel.

Checking for this category system consists of ensuring that keyName is not omitted or
specified as the zero-length string; UDDI registries MUST fail save operations that contain
keyedReferences that involve uddi-org:general_keywords and that do not specify a non-empty
keyName.

11.1.2.5 Example of Use
In The Analytical Language of John Wilkins (translated from the Spanish El idioma analítico de
John Wilkins by Lilia Graciela Vázquez; edited by Jan Frederik Solem with assistance from
Bjørn Are Davidsen and Rolf Andersen) Jorge Luis Borges discusses the problems inherent to
any system of classification. The "ambiguities, redundancies and deficiencies remind us of
those which doctor Franz Kuhn attributes to a certain Chinese encyclopedia entitled Celestial
Empire of Benevolent Knowledge. In its remote pages it is written that the animals are divided

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 251/420

into: (a) belonging to the emperor, (b) embalmed, (c) tame, (d) sucking pigs, (e) sirens, (f)
fabulous, (g) stray dogs, (h) included in the present classification, (i) frenzied, (j) innumerable,
(k) drawn with a very fine camelhair brush, (l) et cetera, (m) having just broken the water
pitcher, (n) that from a long way off look like flies."

While this taxonomy has been widely referred to, it turns out that Borges probably made the
whole thing up. Legitimate or bogus, the taxonomy certainly makes his point: "[I]t is clear that
there is no classification of the Universe not being arbitrary and full of conjectures."

For some unknowable reason, Island Trading (islandtrading.example, a completely fictitious
outfit) is organized internally using this category system, one division per category. (Division
"m" is very small.) It wishes to categorize the business services it offers according to the
division that offers it, and it wants to use the Celestial Empire taxonomy to do so. Since the
category is only of interest to Island Trading, it is decided that the general_keyword approach
will be used. "islandtrading.example:categorization:animals" is chosen to represent the
taxonomy. This is the URN that is placed into the keyName attributes of keyedReferences that
refer to this taxonomy. The Tame Division and the Fabulous Division both have catalog
browsing business services. They appear as follows:

<businessServices>
 <businessService>
 <name>Island Trading Tame Animal Catalog Service</name>
 <description xml:lang="en">
 Search our Tame animals catalog on line
 </description>
 <bindingTemplates>
 <bindingTemplate>
 <accessPoint useType="endpoint">
 https://islandtrading.example/tame/catalog.html
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:ubr:transport:http">
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:general_keywords"
 keyName="islandtrading.example:categorization:animals"
 keyValue="c"/>
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:unspsc"
 keyName="UNSPSC: Livestock" keyValue="101015"/>
 </categoryBag>
 </businessService>
 <businessService>
 <name>
 Celestial Animals Fabulous Animal Books Catalog Service
 </name>
 <description xml:lang="en">
 Search our tame animals catalog on line
 </description>
 <bindingTemplates>
 <bindingTemplate>
 <accessPoint content="endpoint">
 https://islandtrading.example/fabulous/catalog.html
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:ubr:transport:http">
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 <categoryBag>
 <keyedReference

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 252/420

 tModelKey="uddi:uddi.org:categorization:general_keywords"
 keyName="islandtrading.example:categorization:animals"
 keyValue="f"/>
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:unspsc"
 keyName="unspsc-org:UNSPSC: Picture or drawing or
 coloring books for children"
 keyValue="55-10-15-07"/>
 </categoryBag>
 </businessService>
</businessServices>

11.1.3 UDDI Nodes Category System

11.1.3.1 Introduction
UDDI provides a mechanism that may be used by publishers to categorize businessEntity and
tModel elements according to any number of category systems and by inquirers to discover
entities so categorized. See Appendix F Using Categorization for more information.

This section defines a tModel used to categorize a businessEntity as representing a UDDI
node in the registry in which the businessEntity appears. See Section 6.2.2.1 Normative
Modeling of Node Business Entity.

11.1.3.2 Design Goals
Each UDDI registry can be comprised of a number of nodes. Each UDDI node has a special
businessEntity associated with it, called its Node Business Entity. The businessService
elements in this businessEntity represent Web services that relate to the node's role in the
UDDI registry.

The uddi-org:nodes category system is designed to allow reliable discovery of the Node
Business Entity structures for nodes in a UDDI registry so that UDDI clients can locate the
businessService structures associated with the operation of the registry.

11.1.3.3 tModel Definition

Name: uddi-org:nodes

Description: Category system for identifying nodes of a registry

UDDI Key (V3): uddi:uddi.org:categorization:nodes

Evolved V1,V2 format key: uuid:327A56F0-3299-4461-BC23-5CD513E95C55

Categorization: categorization

Checked: Yes

11.1.3.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:categorization:nodes">
 <name>uddi-org:nodes</name>
 <description>Category system for identifying the nodes
 of a registry.
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#Nodes

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 253/420

 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:checked"
 keyValue="checked"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:uncacheable"
 keyValue="uncacheable"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.1.3.4 Valid Values
Checking of references to this value set consists of ensuring that the publisher is the UDDI
node and the keyValue has the value "node". Each node allows the use of uddi-org:nodes
only by itself, only on its own Node Business Entity, and only with the value of "node". This
value is used in the keyValue attributes of keyedReference elements that are contained in
categoryBag elements to locate the Node Business Entity elements in the registry.

11.1.3.5 Example of Use
Consolidated Holdings (consolidatedholdings.example, a fictitious company) has become a
node in a UDDI registry. As it sets itself up, it categorizes its Node Business Entity with the
uddi:-org:nodes category system in the following way:

<businessEntity businessKey="uddi:consolidatedholdings.example"
...
 <categoryBag>
 <!-- Identify this businessEntity as a Node Business Entity -->
 <keyedReference keyName="uddi-org:nodes:Consolidated Holdings"
 keyValue="node"
 tModelKey="uddi:uddi.org:categorization:nodes"/>
 </categoryBag>
...
</businessEntity>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 254/420

11.1.4 UDDI Relationships System

11.1.4.1 Introduction
UDDI provides a mechanism that may be used by publishers to assert relationships between
businessEntity structures they publish and other businessEntity structures according to any
number of relationship type schemes. See Appendix A Relationships and Publisher Assertions
for more information. This section defines a tModel representing a relationship type system for
use in describing the way businessEntity structures relate to one another.

11.1.4.2 Design Goals
While UDDI provides for any number of relationship type system to be used in relating
businessEntity structures to one another, it is useful to define a "starter set" of relationship
types that publishers may use without needing to define their own. The uddi-org:relationships
relationship type system is such a starter set that covers a number of basic relationships. All
three attributes are significant in keyedReferences that describe relationship types. The
keyValue attributes should contain well known but somewhat broad versions of the relationship
type, like those described in this relationship type set. The keyName attributes should be used
to more explicitly type the relationship.

11.1.4.3 tModel Definition

Name: uddi-org:relationships

Description: Basic types of businessEntity relationships

UDDI Key (V3): uddi:uddi.org:relationships

Evolved V1,V2 format key: uuid:807A2C6A-EE22-470D-ADC7-E0424A337C03

Categorization: relationship

Checked: No

11.1.4.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:relationships">
 <name>uddi-org:relationships</name>
 <description>Basic types of business relationships
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#Relationships
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:unchecked"
 keyValue="unchecked"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 255/420

11.1.4.4 Valid Values
The following constitute the value set for this relationship type system. The valid values are
those types marked as being allowed. These values are used in the keyValue attributes of
keyedReferences that are associated with publisherAssertions. The keyName attributes are
also significant when used in publisherAssertions and can be used to more explicitly describe
the relationship.

ID ParentID Allowed Description

Relationship No The root of the relationships type
system.

 peer-peer Relationship Yes Indicates that the two businessEntity
structures are related as peers.

 parent-child Relationship Yes Indicates that the businessEntity
referred to by the fromKey is in some
sense the parent of the businessEntity
referred to by the toKey.

 identity Relationship Yes Indicates that the businessEntity
referred to by the fromKey represents
the same business or organization as
the businessEntity referred to by the
toKey.

11.1.4.5 Example of Use
Tokyo Traders has a subsidiary, Chiba Traders, and wishes to assert that Chiba Traders is,
indeed, its subsidiary. It wishes to use the uddi-org:relationships type system to assert that the
businessEntity for Tokyo Traders is related via a parent-child subsidiary relationship to Chiba
Traders. To do so it sends an add_publisherAssertions API to the node at which it published its
businessEntity. The new assertion contained in the API looks as follows:

<publisherAssertion>
 <!-- Specify Tokyo Traders' businessKey as fromKey-->
 <fromKey>
 uddi:tokyotraders.example:business
 </fromKey>
 <!-- Specify Chiba Traders businessKey as toKey-->
 <toKey>
 uddi:chibatraders.example:business
 </toKey>
 <!--Specify a subsidiary relationship using uddi-org:relationships -->
 <keyedReference keyName="subsidiary"
 keyValue="parent-child"
 tModelKey="uddi:uddi.org:relationships"/>
</publisherAssertion>

In the example above, the keyName is used to qualify the parent-child relationship.

Once Tokyo Traders has added this assertion and Chiba Traders has done the same, a
relationship is formed. The find_relatedBusinesses API may then be used to, for example, find
Tokyo Traders' subsidiaries. The result would include Chiba Traders.

Note: A relationship between two businessEntity structures will be formed using the
publisherAssertion mechanism only if the publisher of each of the businessEntity structures

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 256/420

involved asserts an identical publisherAssertion. In particular, this means that the
keyedReferences must match exactly on keyName, keyValue, and tModelKey.

11.1.5 UDDI "Owning Business" Category System
The owningBusiness tModel represents a category system that may be used to locate the
businessEntity associated with the publisher of a tModel.

11.1.5.1 Design Goals
It is often desirable to be able to discover the business entity that represents the publisher of a
given tModel. When choosing among similar Web service definitions, for example, it is useful
to be able to determine that one of them is published by a known organization. For most UDDI
entities this can be deduced by inspecting the containment hierarchy of the entity to its root
businessEntity. For tModels, the UDDI owningBusiness category system fills this need by
allowing tModels to point to the businessEntity of their publisher.

11.1.5.2 tModel Definition

Name: uddi-org:owningBusiness

Description: Category system used to point to the
businessEntity associated with the publisher of
the tModel

UDDI Key (V3): uddi:uddi.org:categorization:owningbusiness

Evolved V1,V2 format key: uuid:4064c064-6d14-4f35-8953-9652106476a9

Categorization: categorization

Checked: Yes

11.1.5.2.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:categorization:owningbusiness">
 <name>uddi-org:owningBusiness_v3</name>
 <description>Category system used to point to the businessEntity
 associated with the publisher of the tModel.
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#owningBusiness
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:checked"
 keyValue="checked"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:uncacheable"
 keyValue="uncacheable"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="entityKeyValues"
 keyValue="businessKey"
 tModelKey="uddi:uddi.org:categorization:entitykeyvalues"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 257/420

11.1.5.3 Valid Values
The value set of this value set is the set of businessKeys. The content of keyValue in
keyedReferences that refers to this tModel must be a businessKey. The keyValue is used to
specify that the businessEntity whose businessKey is the keyValue in a keyedReference
"owns" the tagged tModel. The entity tagged must be a tModel, the referred-to businessEntity
must exist, and it must have been published by the same publisher.

11.1.5.4 Example of Use
The My API specification was published by some business. To indicate that this is so, the My
API specification tModel has a keyedReference in its categoryBag that uses uddi-
org:owningBusiness to point to the some business businessEntity.

<tModel tModelKey="uddi:some.business.example:myapispecification">
 <name>some-business-example:MyAPI</name>
 <categoryBag>
 <keyedReference keyName="owningBusiness:someBusiness"
 keyValue="uddi:some.business.example:business"
 tModelKey="uddi:uddi.org:categorization:owningbusiness"/>
 </categoryBag>
 ...
</tModel>

In this example, the keyName field serves to help readability but has no further meaning.

11.1.6 UDDI "Is Replaced By" Identifier System
UDDI provides a mechanism that may be used by publishers to tag their businessEntities and
tModels with information that identifies them according to any number of identification systems.
This tModel represents an identifier system that may be used to identify the tModel or
businessEntity that logically replaces the tModel or businessEntity in which it is used. This
version of the isReplacedBy identifier system replaces the prior version of this identifier system
by providing a means for referring to replacement entities that have version 3 format keys.

11.1.6.1 Design Goals
It is often desirable to gracefully retire a tModel in favor of a replacement. For example, when a
Web service definition is replaced by an incompatible version, the publisher of the specification
may wish to leave the tModel for the existing definition in place so that existing uses will not be
disturbed, while at the same time making it clear that there is a replacement available. The
UDDI isReplacedBy identifier system, coupled with the behavior of UDDI with respect to
obsolete tModels, fills this need by allowing the obsolete tModel to point to its replacement.
See Section 5.2.11 delete_tModel.

The isReplacedBy identifier system exists in prior versions of UDDI. keyedReferences that
refer to this original isReplacedBy identifier system contain entity keys in the version 1 and 2
formats (as UUIDs with the uuid or no scheme prefix). When accessed using a prior version
API in a multi-version registry, the older isReplacedBy identifier system yields valid references
to businessEntity or tModel keys that are in the format of the prior version, and thus remain
valid. When viewed using the version 3 UDDI API these same references to the earlier
isReplacedBy identifier system contain invalid version 3 format keys. A new version of this
identifier system is required to be able to reference the set of values defined by version 3
format keys.

11.1.6.2 tModel Definition

Name: uddi-org:isReplacedBy

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 258/420

Description: An identifier system used to point to the entity, using
UDDI keys, that is the logical replacement for the one in
which isReplacedBy is used.

UDDI Key (V3): uddi:uddi.org:identifier:isreplacedby

Evolved V1,V2 format key: uuid:e59ae320-77a5-11d5-b898-0004ac49cc1e

Categorization: identifier

Checked: Yes

11.1.6.2.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:identifier:isreplacedby">
 <name>uddi-org:isReplacedBy</name>
 <description>Identifier system used to point to the UDDI entity,
 using UDDI keys, that is the logical replacement
 for the one in which isReplacedBy is used.
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#IsReplacedBy
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:identifier"
 keyValue="identifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:checked"
 keyValue="checked"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:uncacheable"
 keyValue="uncacheable"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="entityKeyValues"
 keyValue="businessKey"
 tModelKey="uddi:uddi.org:categorization:entitykeyvalues"/>
 <keyedReference keyName="entityKeyValues"
 keyValue="tModelKey"
 tModelKey="uddi:uddi.org:categorization:entitykeyvalues"/>
 </categoryBag>
</tModel>

11.1.6.3 Valid Values
The keyValues in keyedReferences that refer to this tModel must be tModelKeys or
businessKeys. Such a keyValue specifies the entity that is the replacement for the entity in
which the keyedReference appears. The above and further validation requirements are as
follows:

a. In the case where a reference is made from an obsolete business entity the following
validation rules apply:

1. reference to a new business entity; this is a valid operation

2. reference to self; this is invalid

3. reference to a service, binding or tModel; this is an invalid operation given that the
entity being pointed to must be a business

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 259/420

4. reference to another publisher’s business; this is a valid operation; no ownership
check is made

5. reference to another publisher’s service, binding or tModel; this is an invalid
operation because of a.3 above

6. reference to invalid keys; this is an invalid operation; a key must be valid.

b. In the case where a reference is made from an obsolete tModel the following
validation rules apply:

1. reference to a new tModel; this is a valid operation

2. reference to self; this is invalid

3. reference to a service, binding or business; this is an invalid operation given that
the entity being pointed to must be a tModel

4. reference to another publisher’s tModel; this is a valid operation; no ownership
check is made

5. reference to another publisher’s service, binding or business; this is an invalid
operation because of b.3 above

6. reference to invalid keys; this is an invalid operation; a key must be valid.

7. reference to a hidden tModel; this is a valid operation

c. Adding isReplacedBy to a service’s or binding’s category bag: this is a semantically
wrong operation and will be rejected.

When returning an error encountered in the above, E_invalidValue will be returned to indicate
that a value that was passed in a keyValue attribute did not pass validation.

While this validation is intended at save time, references to replacing business entities may
become invalid if (A) the business is deleted and (B) in V3 the business is deleted and then the
key is re-used for a different entity. As such, in a replicating registry, nodes processing
changeRecords related to business entities or tModels that refer to (now) invalid or missing
business or tModels entity keys respectively, MUST NOT raise replication errors.

11.1.6.4 Example of Use
In the example below, the UDDI Version 2 uddi-org:publication_v2 tModel has been replaced
by the uddi-org:publication_v3 tModel. To indicate this, the uddi-org:isReplacedBy identifier
system is used to point the Version 2 uddi-org:publication_v2 tModel to the uddi-
org:publication_v3 tModel. To do this the uddi-org:publication_v2 tModel has a
keyedReference added to its identifierBag, as follows:

<tModel tModelKey="uuid:A2F33B65-2D66-4088-ABC7-914D0E05EB9E">
 ...
 <name>uddi-org:publication_v2</name>
 ...
 <identifierBag>
 <!-- Use uddi-org:IsReplacedBy to indicate that the
 uddi V2 publication tModel is logically replaced
 by the V3 publication tModel. -->
 <keyedReference keyName="isReplacedBy:publication_v3"
 keyValue="uuid:72ade754-c6cc-315b-b014-7c94791fe15c"
 tModelKey="uuid:e59ae320-77a5-11d5-b898-0004ac49cc1e"/>
 </identifierBag>
 ...
</tModel>

Here the keyName attribute is commentary serving to help readability. The keyValue specifies
which tModel replaces this one -- the version 3 publication tModel in this case. And the

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 260/420

tModelKey specifies that the keyedReference is using the uddi-org:isReplacedBy identifier
system..

11.1.7 UDDI "Validated By" Category System
This tModel represents a category system that is used to point a tModel representing a
checked value set to the bindingTemplate for a value set caching or value set validation Web
service.

11.1.7.1 Design Goals
One of the concepts that tModels can represent is a checked value set. A checked value set
is one whose use is monitored by a validation algorithm. There are two types of validation
algorithms: simple checking of referenced values against a pre-defined set of allowable values,
and any other kind of validation. UDDI provides the Value Set API set (see Section 5.6 Value
Set API Set) to acquire the set of allowable values or execute an external validation algorithm.

A validation algorithm for a checked value set can be acquired by nodes privately, or can be
obtained through normal UDDI discovery. The validatedBy category system facilitates
discovery of the value set caching or value set validation Web service for a checked value set
tModel by pointing to the bindingTemplate for the Web service.

For the Web service to be useful, it must recognize any and all checked value sets that it is
expected to be associated with. The recommended way for doing so is to place the tModels
for the checked value sets it supports in the tModelInstanceDetails of the bindingTemplate for
the Web service. Registry policy may require that providers of the Web service recognize
value sets supported using this technique.

11.1.7.2 tModel Definition

Name: uddi-org:validatedBy

Description: A category system used to point a value set or
category group system tModel to associated value
set Web service implementations.

UDDI Key (V3): uddi:uddi.org:categorization:validatedby

Derived V1,V2 format key: uuid:25b22e3e-3dfa-3024-b02a-3438b9050b59

Categorization: categorization

Checked: Yes

11.1.7.2.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:categorization:validatedby">
 <name>uddi-org:validatedBy</name>
 <description>Category system used to point a value set or category
 group system tModel to associated value set Web service
 implementations.
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#validatedBy
 </overviewURL>
 </overviewDoc>
 <categoryBag>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 261/420

 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:checked"
 keyValue="checked"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:uncacheable"
 keyValue="uncacheable"
 tModelKey="uddi:uddi.org:categorization:types"/>

<keyedReference keyName="entityKeyValues"
 keyValue="bindingKey"
tModelKey="uddi:uddi.org:categorization:entitykeyvalues"/>

 </categoryBag>
 </tModel>

11.1.7.3 Valid Values
The keyValues in keyedReferences that refer to this tModel must be bindingKeys. Such a
keyValue SHOULD reference a bindingTemplate that specifies a Web service that implements
a value set caching or value set validation API and which SHOULD reference the value set
tModel so categorized with this category system. No other contextual checks are performed.

11.1.7.4 Example of Use
In the example below, an example checked value set tModel uses the validatedBy category
system to refer to the bindingTemplate of a get_allValidValues Web service that is prepared to
yield the set of valid values for the value set. The referenced bindingTemplate is shown below
the tModel:

<tModel tModelKey="uddi:anexample:mycheckedvalueset">
 ...
 <categoryBag>
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:checked"
 keyValue="checked"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:cacheable"
 keyValue="cacheable"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <!-- Use uddi-org:validatedBy to point to the binding
 Template for the Web service that implements the
 get_allValidValues API. -->
 <keyedReference keyName="validatedBy:myCheckedValueSet:values"
 keyValue="uddi:anexample:mycheckedvalueset:values"
 tModelKey="uddi:uddi.org:identifier:validatedby"/>
 </categoryBag>
 ...
</tModel>

The referenced bindingTemplate for the get_allValidValues Web service is shown below. Note
that the bindingTemplate references the value set tModel above, indicating it can yield valid
values for that value set.

<bindingTemplate bindingKey="uddi:anexample:mycheckedvalueset:values"
serviceKey="…">
 <description>Web service to retrieve valid values for myCheckedValueSet
 </description>
 <accessPoint useType="endpoint">
 http://URL_of_service
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:v3_valuesetcaching" />
 <tModelInstanceInfo
 tModelKey="uddi:anexample:mycheckedvalueset" />

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 262/420

 </tModelInstanceDetails>
</bindingTemplate>

11.1.8 UDDI "Derived From" Category System

11.1.8.1 Introduction
UDDI provides a mechanism that may be used by publishers to categorize UDDI
entities according to any number of category systems. See Appendix F Using Categorization
for more information. This section defines a tModel used to associate a tModel, frequently a
category system, with some other tModel, frequently the value set of some other category
system, for the purpose of extension or redefinition of purpose.

11.1.8.2 Design Goals
Most value sets are used with some purpose in mind. To avoid ambiguity in publisher and
inquirer intent it is not uncommon for this purpose to be explicitly associated with the value set
in its tModel. The IS0 3166 geographic category system, for example, has the purpose service
offering area.

Similarly, the UDDI API is comprised of a fixed set of programming interfaces and structures.
UDDI registries can extend the UDDI API through schema derivation, to offer additional
functionality.

The Derived From category system exists to allow tModels to refer to the tModels that they
extend in some way. Value set values can be re-used by referring a derived value set tModel
to the values in some other value set tModel. The reason for reuse can be for assigning
another purpose to the set of values, for extending the set of values, for associating one set of
values with another, or for some other kind of derivation.

Specification tModels that extend some other specification tModel can similarly use this
category system to refer to the tModels they extend, providing end users with knowledge about
the full scope of the API.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 263/420

11.1.8.3 tModel Definition

Name: uddi-org:derivedFrom

Description: Category system for referring tModels to other
tModels for the purpose of reuse

UDDI Key (V3): uddi:uddi.org:categorization:derivedfrom

Derived V1,V2 format key: uuid:5678dd4f-f95d-35f9-9ea6-f79a7dd64656

Categorization: categorization

Checked: Yes

11.1.8.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:categorization:derivedfrom">
 <name>uddi-org:derivedFrom</name>
 <description>Category system for referring tModels to other
 tModels for the purpose of reuse.
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#DerivedFrom
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:checked"
 keyValue="checked"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:uncacheable"
 keyValue="uncacheable"
 tModelKey="uddi:uddi.org:categorization:types"/>

 <keyedReference keyName="entityKeyValues"
 keyValue="tModelKey"

 tModelKey="uddi:uddi.org:categorization:entitykeyvalues"/>
 </categoryBag>
</tModel>

11.1.8.4 Valid Values
The keyValue attribute in a keyedReference element that references this tModel within a
categoryBag must be some other tModelKey in the UDDI registry. For value set derivations the
tModel that is referred to contain the root values for the derived value set. A tModel for a
derived value set is not automatically checked if the referred to value set is checked. The
derived value set must itself go through the registry's process for making the derived value set
checked.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 264/420

11.1.8.5 Example of Use
Assume that the ISO 3166 Geographic system is a checked value set used to characterize
where a business offers its Web services. Its tModel, after going through the registry's process
for obtaining a checked value set looks like this:

<tModel tModelKey="uddi:uddi.org:ubr:categorization:iso3166">
 <name>ubr-uddi-org:iso-ch:3166-1999</name>
 <categoryBag>
 <!--Specify that this is a checked value set tModel by
 giving it "categorization" and "checked" values
 under the uddi-org:types category system -->
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:checked"
 keyValue="checked"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:cacheable"
 keyValue="cacheable"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <!--Further specify that this value set can be extended
 through derivation -->
 <keyedReference keyName="uddi-org:types:valueSet"
 keyValue="valueSet"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

To use the ISO 3166 values for the purpose of describing geographic location, a derived
tModel is created with the new purpose. Note that even though the ISO 3166 value set tModel
above is checked, meaning references to its values are validated, the derived tModel for
describing the geographic location is not necessarily checked itself. To actually be checked,
the provider of the validation algorithm must agree to check the values associated with the
derived value set.

<tModel
 tModelKey="uddi:uddi.org:ubr:categorization:iso3166:
 business_location">
 <name>ubr-uddi-org:iso-ch:3166-1999:business_location</name>
 <categoryBag>
 <!--Derive values from the iso3166 value set -->
 <keyedReference
 keyName="derivedFrom:ubr-uddi-org:iso-ch:3166-1999"
 keyValue="uddi:uddi.org:ubr:categorization:iso3166"
 tModelKey="uddi:uddi.org:categorization:derivedfrom"/>
 <!--Specify that this is a checked value set tModel by
 categorizing it as "categorization"
 under the uddi-org:types category system -->
 <keyedReference keyName="uddi-org:types"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types"
 keyValue="unchecked"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 265/420

A businessEntity that is categorized with geographic information with both intended purposes
might look like this:

<businessEntity businessKey="uddi:a_business_key"
...
 <categoryBag>
 <!-- Categorize this businessEntity with original
 geographical purpose -->
 <keyedReference
 keyName="geoServiceArea:California, USA"
 keyValue="US-CA"
 tModelKey="uddi:uddi.org:ubr:categorization:iso3166"/>
 <!-- Categorize this businessEntity with derived
 geographical purpose -->
 <keyedReference keyName="geoLocation:California, USA"
 keyValue="US-CA"
 tModelKey="uddi:uddi.org:ubr:categorization:iso3166:
 business_location"/>
 </categoryBag>
...
</businessEntity>

For an example on using the derivedFrom category system with a specification extension, see
Appendix H Extensibility.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 266/420

11.1.9 UDDI "Entity Key Values" Category System
The entity key values tModel represents a category system that may be used to indicate that a
value set uses entity keys for its valid values.

11.1.9.1 Design Goals
There are several value sets in UDDI that have entity keys as valid values, and other such
value sets may be defined. Special handling of the keyValue values is required for these value
sets to ensure that they can be used by applications using any version of the UDDI API. By
categorizing a value set with this tModel the publisher of the value set indicates that entity keys
form the valid values of the value set. This allows a UDDI implementation to map entity keys
between versions as is done with all other uses of entity keys.

If keys of only one type are valid for a particular value set, then that value set should have a
single keyedReference relating to this tModel and the keyValue should contain the type of
entity key that is valid, for example "tModelKey". If multiple types of key are valid, as in the
case of uddi-org:isReplacedBy, then multiple keyedReferences can be used, one for each type
of key. If any type of key is valid then a single keyedReference should be used with a
keyValue of "entityKey".

A value set categorized with this tModel SHOULD be treated as an internally checked value
set, whether or not it is also categorized as checked.

If the entity key supplied as the keyValue in a keyedReference relating to such a value set is
not a valid entity key, or is the key of an entity of a type not supported by the particular value
set, then the error E_invalidValue MAY be returned.

Value sets may require additional validation, and this additional validation MAY be performed
before or after the validation of the key itself, therefore a different error MAY be returned if one
of these additional validation steps fails before the validation of the key itself.

If an entityKeyValue value set is updated to remove all of the keyedReference elements
referring to the "Entity Key Values" category system, a normative mapping behavior to update
the keyValue of any existing references to the entityKeyValue value set is unspecified. Any
new references or updates to existing references using keyedReference elements pointing to
the tModel that formerly represented the entityKeyValue value set will be treated as a normal
value set, where the keyValue is a string.

Further, if a tModel is updated to add at least one keyedReference element referring to the
"Entity Key Values" category system, a normative mapping behavior to update the keyValue of
any existing references to the entityKeyValue value set is unspecified. Any new references or
updates to existing references using keyedReference elements pointing to the tModel that
formerly represented the value set will be case folded and validated as an entityKeyValue
value set, where the keyValue is verified to be an existing and appropriate entityKey.

In inquiry, the treatment of the keyValue is determined by the state of the value set tModel at
the time of the inquiry. If the keyValue in an inquiry is contained in a keyedReference referring
to the "Entity Key Value" set tModel, the keyValue must be case folded as part of the inquiry.

11.1.9.2 tModel Definition

Name: uddi-org:entityKeyValues

Description: Category system used to declare that a value set
uses entity keys as valid values

UDDI Key (V3): uddi:uddi.org:categorization:entitykeyvalues

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 267/420

Derived V1,V2 format key: uuid:916b87bf-0756-3919-8eae-97dfa325e5a4

Categorization: categorization

Checked: Yes

11.1.9.2.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:categorization:entitykeyvalues">
 <name>uddi-org:entityKeyValues</name>
 <description>Category system used to declare that a value set
 uses entity keys as valid values.
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#entityKeyValues
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:checked"
 keyValue="checked"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.1.9.3 Valid Values
The valid values of this categorization system are the following strings:

• "entityKey"

• "businessKey"

• "tModelKey"

• "serviceKey"

• "bindingKey"

• "subscriptionKey"

11.1.9.4 Example of Use
The V3 version of the owningBusiness Category System has the following extra
keyedReference added to its tModel to declare that the valid values of the owningBusiness
value set are business keys:

<keyedReference keyName="entityKeyValues"
 keyValue="businessKey"
 tModelKey="uddi:uddi.org:categorization:entitykeyvalues"/>

11.2 UDDI Registry API tModels
UDDI defines a number of tModels to represent the UDDI application programming interface.
Each of the core tModels are listed in this section. Every registry is required to register these
tModels whether Web services that conform to these specifications are offered or not.
Equivalent registry tModels from prior versions can be found in prior versions of the UDDI
specification.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 268/420

11.2.1 UDDI Inquiry API

11.2.1.1 Introduction
The group of APIs represented by this tModel deals with finding and retrieving information from
the registry. To be a UDDI Version 3 compliant registry at least one of the nodes in a registry
must provide a Web service that implements this tModel. See Section 5.1 Inquiry API Set.

11.2.1.2 Design Goals
The UDDI inquiry API provides a simple, complete set of programming interfaces that are used
to:

• Search a UDDI registry to locate registry entries meeting a particular technical or
business need.

• Retrieve details of registry entries once they have been found.

11.2.1.3 tModel Definition

Name: uddi-org:inquiry_v3

Description: UDDI Inquiry API Version 3 - Core Specification

UDDI Key (V3): uddi:uddi.org:v3_inquiry

Derived V1,V2 format key: uuid:01b9bbff-a8f5-3735-9a5e-5ea5ade7daaf

Categorization: specification, xmlSpec, soapSpec, wsdlSpec

11.2.1.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:v3_inquiry">
 <name>uddi-org:inquiry_v3</name>
 <description>UDDI Inquiry API V3.0</description>
 <overviewDoc>
 <overviewURL useType="wsdlInterface">
 http://uddi.org/wsdl/uddi_api_v3_binding.wsdl#UDDI_Inquiry_SoapBinding
 </overviewURL>
 </overviewDoc>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#InqV3
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:wsdl"
 keyValue="wsdlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:soap"
 keyValue="soapSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:xml"
 keyValue="xmlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:specification"
 keyValue="specification"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 269/420

11.2.1.4 Programming Interfaces Covered
The UDDI APIs covered by this tModel are:

• find_binding: Used to locate specific bindings within a registered businessService.
Returns a bindingDetail structure.

• find_business: Used to locate information about one or more businesses. Returns a
businessList structure.

• find_relatedBusinesses: Used to locate information about businessEntity structures
that are related to a specific business entity whose key is passed in the inquiry. The
relatedBusinesses feature was introduced in UDDI version 2 and is used to manage
registration of business units and subsequently relate them based on organizational
hierarchies or business partner relationships. Returns a relatedBusinesses structure.

• find_service: Used to locate specific businessService structures within a registered
businessEntity. Returns a serviceList structure.

• find_tModel: Used to locate one or more tModel information structures. Returns a
tModelList structure.

• get_bindingDetail: Used to get full bindingTemplate information suitable for making
one or more service requests. Returns a bindingDetail structure.

• get_businessDetail: Used to get the full businessEntity information for one or more
businesses or organizations. Returns a businessDetail structure.

• get_businessDetailExt: Used to get extended businessEntity information. Returns a
businessDetailExt structure.

• get_operationalInfo: Used to obtain metadata associated with core entities. Returns
an operationalInfo structure.

• get_serviceDetail: Used to get full details for a given set of registered businessService
date. Returns a serviceDetail structure.

• get_tModelDetail: Used to get full details for a given set of registered tModel data.
Returns a tModelDetail structure.

11.2.1.5 Example of Use
The following is a typical bindingTemplate for a Web Service that implements the UDDI
Version 3 Inquiry API:

<bindingTemplate bindingKey="…" serviceKey="…">
 <description>UDDI Inquiry API V3</description>
 <accessPoint useType="endpoint">
 http://URL_of_service
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:v3_inquiry">
 <instanceDetails>
 <instanceParms>
 <![CDATA[
 <?xml version="1.0" encoding="utf-8" ?>
 <UDDIinstanceParmsContainer
 xmlns="urn:uddi-org:policy_v3_instanceParms">
 <defaultSortOrder>
 uddi:uddi.org:sortorder:binarysort
 </defaultSortOrder>
 </UDDIinstanceParmsContainer>
]]>
 </instanceParms>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 270/420

 </instanceDetails>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
</bindingTemplate>

11.2.2 UDDI Publication API

11.2.2.1 Introduction
The group of programming interfaces represented by this tModel deals with adding or
modifying information in the registry. While a UDDI Version 3 compliant registry is not required
to have any of its nodes provide a Web service that implements this tModel, most do
implement this tModel as a standard mechanism for providing the data on which the UDDI
Inquiry API is based. See Section 5.2 Publication API Set.

11.2.2.2 Design Goals
The UDDI publication API provides a simple, complete set of programming interfaces that
publishers of registry entries can use to publish UDDI registry entries.

11.2.2.3 tModel Definition

Name: uddi-org:publication_v3

Description: UDDI Publication API Version 3

UDDI Key (V3): uddi:uddi.org:v3_publication

Derived V1,V2 format key: uuid:72ade754-c6cc-315b-b014-7c94791fe15c

Categorization: specification, xmlSpec, soapSpec, wsdlSpec

11.2.2.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:v3_publication">
 <name>uddi-org:publication_v3</name>
 <description>UDDI Publication API V3.0</description>
 <overviewDoc>
 <overviewURL useType="wsdlInterface">
 http://uddi.org/wsdl/uddi_api_v3_binding.wsdl#UDDI_Publication_SoapBinding
 </overviewURL>
 </overviewDoc>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#PubV3
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:wsdl"
 keyValue="wsdlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:soap"
 keyValue="soapSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:xml"
 keyValue="xmlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:specification"
 keyValue="specification"
 tModelKey="uddi:uddi.org:categorization:types"/>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 271/420

 </categoryBag>
</tModel>

11.2.2.4 Programming Interfaces Covered
The UDDI APIs covered by this tModel are:

• add_publisherAssertions: Used to add relationship assertions to the existing set of
assertions. See Appendix A Relationships and Publisher Assertions for more
information.

• delete_binding: Used to remove an existing bindingTemplate from the
bindingTemplates collection that is part of a specified businessService structure.

• delete_business: Used to delete registered businessEntity information from the
registry.

• delete_publisherAssertions: Used to delete specific assertions from the assertion set
managed by a particular publisher account. Only effects the relationship assertions
specified, causing any relationships formed by virtue of a prior assertion to be
invalidated.

• delete_service: Used to delete an existing businessService from the businessServices
collection that is part of a specified businessEntity.

• delete_tModel: Used to hide registered information about a tModel. Any tModel
hidden in this way is still usable for reference purposes, but is simply hidden from
find_tModel result sets. There is no way to actually cause a tModel to be deleted,
except by administrative petition.

• get_assertionStatusReport: Used to get a list of relationship assertions that is useful
for display in tools that help an administrator manage active and tentative assertions
regarding relationships. Relationships help manage complex business structures that
require more than one businessEntity or more than one publisher account to manage
parts of a businessEntity. Returns an assertionStatusReport that includes the status of
all assertions made involving any businessEntity controlled by the requesting
publisher account.

• get_publisherAssertions: Used to get a list of active relationship assertions that are
controlled by an individual publisher account. Returns a publisherAssertions structure
containing a document that contains all relationship assertions associated with a
specific publisher account.

• get_registeredInfo: Used to request an abbreviated synopsis of all information
currently managed by a given individual.

• save_binding: Used to register new bindingTemplate information or update existing
bindingTemplate information. Use this to control information about technical
capabilities exposed by a registered business.

• save_business: Used to register new businessEntity information or update existing
businessEntity information. Use this to control the full set of information about the
entire business. Of the save_xx API’s this one has the broadest effect.

• save_service: Used to register or update complete information about a
businessService exposed by a specified businessEntity.

• save_tModel: Used to register or update complete information about a tModel.

• set_publisherAssertions: Used to save the complete set of relationship assertions for
an individual publisher account. Replaces any existing assertions, and causes any old
assertions that are not reasserted to be removed from the registry.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 272/420

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 273/420

11.2.2.5 Example of Use
The following is a typical bindingTemplate for a Web Service that implements the UDDI
Version 3 Publication API:

<bindingTemplate bindingKey="…" serviceKey="…">
 <description>UDDI Publication API V3</description>
 <accessPoint useType="endpoint">
 https://URL_of_service
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:v3_publication">
 <instanceDetails>
 <instanceParms>
 <![CDATA[
 <?xml version="1.0" encoding="utf-8" ?>
 <UDDIinstanceParmsContainer
 xmlns="urn:uddi-org:policy_v3_instanceParms">
 <authInfoUse>required</authInfoUse>
 </UDDIinstanceParmsContainer>
]]>
 </instanceParms>
 </instanceDetails>
 </tModelInstanceInfo>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:protocol:serverauthenticatedssl3" />
 </tModelInstanceDetails>
</bindingTemplate>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 274/420

11.2.3 UDDI Security API

11.2.3.1 Introduction
The group of programming interfaces represented by this tModel pertains to authenticating
with a UDDI node. Each registry and its nodes define policies for registering, authenticating
and authorizing publishers and these APIs offer one way to provide tokens for use in
authorizing other API access..

11.2.3.2 Design Goals
The UDDI security API provides a simple, complete set of APIs that users of registry entries
MAY use to obtain the security credentials necessary to use all or parts of UDDI registries that
distinguish between publishers. See Section 5.3 Security Policy API Set.

11.2.3.3 tModel Definition

Name: uddi-org:security_v3

Description: UDDI Security API Version 3

UDDI Key (V3): uddi:uddi.org:v3_security

Derived V1,V2 format key: uuid:e4cd70e2-22ec-3032-b1e6-cc31a9d55935

Categorization: specification, xmlSpec, soapSpec, wsdlSpec

11.2.3.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:v3_security">
 <name>uddi-org:security_v3</name>
 <description>UDDI Security API V3.0</description>
 <overviewDoc>
 <overviewURL useType="wsdlInterface">
 http://uddi.org/wsdl/uddi_api_v3_binding.wsdl#UDDI_Security_SoapBinding
 </overviewURL>
 </overviewDoc>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#SecV3
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:wsdl"
 keyValue="wsdlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:soap"
 keyValue="soapSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:xml"
 keyValue="xmlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:specification"
 keyValue="specification"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 275/420

11.2.3.4 Programming Interfaces Covered
The UDDI APIs covered by this tModel are:

• discard_authToken: Used to inform a UDDI node that a previously obtained
authentication token is no longer required and should be considered invalid if used
after this call is received.

• get_authToken: Used to request an authentication token in the form of an authInfo
element from a UDDI node. An authInfo element MAY be required when using the
API calls defined in Section 5.1 Inquiry API Set, Section 5.2 Publication API Set,
Section 5.4 Custody and Ownership Transfer API Set, and Section 5.5 Subscription
API Set.

11.2.3.5 Example of Use
The following is a typical bindingTemplate for a Web Service that implements the UDDI
Version 3 Security API:

<bindingTemplate bindingKey="…" serviceKey="…">
 <description>UDDI Security API V3</description>
 <accessPoint useType="endpoint">
 https://URL_of_service
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:uddi.org:v3_security"/>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:protocol:serverauthenticatedssl3"/>
 </tModelInstanceDetails>
</bindingTemplate>

11.2.4 UDDI Replication API

11.2.4.1 Introduction
The group of programming interfaces represented by this tModel deals with managing the
replication of information between nodes in a UDDI registry. See Section 7.4 Replication API
Set. Nodes in multi-node UDDI registries SHOULD each offer Web services that conform to
this specification.

11.2.4.2 Design Goals
The UDDI Replication API set provides a simple, complete set of APIs that UDDI nodes can
use to replicate custodial data with other nodes in a multi-node registry.

11.2.4.3 tModel Definition

Name: uddi-org:replication_v3

Description: UDDI Replication API Version 3

UDDI Key (V3): uddi:uddi.org:v3_replication

Derived V1,V2 format key: uuid:998053a9-8672-3bf3-908a-c82deb4baecf

Categorization: specification, xmlSpec, soapSpec, wsdlSpec

:

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 276/420

11.2.4.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:v3_replication">
 <name>uddi-org:replication_v3</name>
 <description>UDDI Replication API V3.0</description>
 <overviewDoc>
 <overviewURL useType="wsdlInterface">
 http://uddi.org/wsdl/uddi_repl_v3_binding.wsdl
 </overviewURL>
 </overviewDoc>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#Repl
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:wsdl"
 keyValue="wsdlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:soap"
 keyValue="soapSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:xml"
 keyValue="xmlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:specification"
 keyValue="specification"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.2.4.4 Programming Interfaces Covered
The UDDI APIs covered by this tModel are:

• do_ping: Used to discover the existence and replication readiness of a node.

• get_changeRecords: Used to initiate the replication of change records from one node
to another.

• notify_changeRecordsAvailable: Used to notify other nodes that the sending node has
change data to be replicated.

• get_highWaterMarks: Used to obtain the high water marks from a node.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 277/420

11.2.4.5 Example of Use
The following is a typical bindingTemplate for a Web Service that implements the UDDI
Version 3 Replication API:

<bindingTemplate bindingKey="…" serviceKey="…">
 <description>UDDI Replication API V3</description>
 <accessPoint useType="endpoint">
 https://URL_of_service
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:v3_replication" />
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:protocol:mutualauthenticatedssl3" />
 </tModelInstanceDetails>
</bindingTemplate>

11.2.5 UDDI Custody and Ownership Transfer API

11.2.5.1 Introduction
The group of programming interfaces represented by this tModel enables two publishers to
cooperatively transfer ownership of one or more existing businessEntity or tModel structures
from one publisher to another. See Section 5.4 Custody and Ownership Transfer API Set.
Registries that offer a publishing Web service (uddi-org:v3_publish) SHOULD also offer a
custody transfer Web service.

11.2.5.2 Design Goals
The UDDI Custody and Ownership Transfer API provides a simple, complete set of APIs that
publishers can use to transfer ownership of UDDI entities from one publisher account to
another and initiate custody transfer from one node to another.

11.2.5.3 tModel Definition

Name: uddi-org:ownership_transfer_v3

Description: UDDI Custody and Ownership Transfer API Version 3

UDDI Key (V3): uddi:uddi.org:v3_ownership_transfer

Derived V1,V2 format key: uuid:07ae0f8f-1bdc-32a7-b8dc-fe1d93d929a7

Categorization: specification, xmlSpec, soapSpec, wsdlSpec

:

11.2.5.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:v3_ownership_transfer">
 <name>uddi-org:ownership_transfer_v3</name>
 <description>UDDI Custody and Ownership Transfer API V3.0</description>
 <overviewDoc>
 <overviewURL useType="wsdlInterface">
 http://uddi.org/wsdl/uddi_custody_v3_binding.wsdl
 </overviewURL>
 </overviewDoc>
 <overviewDoc>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 278/420

 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#OwnershipTransfer
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:wsdl"
 keyValue="wsdlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:soap"
 keyValue="soapSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:xml"
 keyValue="xmlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:specification"
 keyValue="specification"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.2.5.4 Programming Interfaces Covered
The UDDI APIs used to transfer ownership of entities and initiate custody transfer by this
tModel are:

• get_transferToken: Used by a custodial publisher to initiate an ownership and/or
custody transfer process at the custodial UDDI node.

• transfer_entities: Used by the target publisher to perform the transfer of ownership
and/or initiate a custody transfer at the target node.

11.2.5.5 Example of Use
The following is a typical bindingTemplate for a Web Service that implements the UDDI
Version 3 Custody and Ownership Transfer API set:

<bindingTemplate bindingKey="" serviceKey="…">
 <description>UDDI Custody and Ownership Transfer API V3</description>
 <accessPoint useType="endpoint">
 https://URL_of_service
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:v3_ownership_transfer">
 <instanceDetails>
 <instanceParms>
 <![CDATA[
 <?xml version="1.0" encoding="utf-8" ?>
 <UDDIinstanceParmsContainer
 xmlns="urn:uddi-org:policy_v3_instanceParms">
 <authInfoUse>required</authInfoUse>
 </UDDIinstanceParmsContainer>
]]>
 </instanceParms>
 </instanceDetails>
 </tModelInstanceInfo>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:protocol:serverauthenticatedssl3" />
 </tModelInstanceDetails>
</bindingTemplate>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 279/420

11.2.6 UDDI Node Custody Transfer API

11.2.6.1 Introduction
The programming interface represented by this tModel enables two nodes in a registry to
cooperatively transfer custody of one or more existing businessEntity or tModel structures from
one node to another and at the same time to transfer ownership of the entities from one
publisher to another. The API represented by this tModel is used to complete an inter-node
custody transfer. See Section 5.4 Custody and Ownership Transfer API Set. Multi-node
registries that offer a publishing Web service (uddi-org:v3_publish) and a custody transfer Web
service (uddi-org:v3_custody) SHOULD offer the node custody transfer API.

11.2.6.2 Design Goals
The UDDI Node Custody Transfer API provides an API that UDDI nodes can use to complete
a publisher request to transfer custody of UDDI entities from one node to another.

11.2.6.3 tModel Definition

Name: uddi-org:node_custody_transfer_v3

Description: UDDI Node Custody Transfer API Version 3

UDDI Key (V3): uddi:uddi.org:v3_node_custody_transfer

Derived V1,V2 format key: uuid:215c7844-5e81-347c-a2bf-54023ad463c8

Categorization: specification, xmlSpec, soapSpec, wsdlSpec

11.2.6.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:v3_node_custody_transfer">
 <name>uddi-org:node_custody_transfer_v3</name>
 <description>UDDI Node Custody Transfer API V3.0</description>
 <overviewDoc>
 <overviewURL useType="wsdlInterface">
 http://uddi.org/wsdl/uddi_custody_v3_binding.wsdl
 </overviewURL>
 </overviewDoc>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#NodeCustodyTransfer
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:wsdl"
 keyValue="wsdlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:soap"
 keyValue="soapSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:xml"
 keyValue="xmlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:specification"
 keyValue="specification"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 280/420

11.2.6.4 Programming Interfaces Covered
The UDDI API covered by this tModel is:

• transfer_custody: In a multi-node custody transfer, used when processing
transfer_entities by the target node to verify acceptability of the transfer with the
custodial node and to initiate the process of transferring the data between nodes.

11.2.6.5 Example of Use
The following is a typical bindingTemplate for a Web Service that implements the UDDI
Version 3 Custody Transfer API:

<bindingTemplate bindingKey="…" serviceKey="…">
 <description>UDDI Node Custody Transfer API V3</description>
 <accessPoint useType="endpoint">
 https://URL_of_service
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:v3_node_custody_transfer">
 </tModelInstanceInfo>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:protocol:mutualauthenticatedssl3"/>
 </tModelInstanceDetails>
</bindingTemplate>

11.2.7 UDDI Value Set Caching API

11.2.7.1 Introduction
The programming interface represented by this tModel deals with obtaining a set of values for
a checked value set so UDDI nodes may perform validation of publisher references
themselves using the cached values obtained from such a Web service. See Section 5.6
Value Set API Set. Providers of registry checked value sets SHOULD offer a Web service that
conforms to this specification.

11.2.7.2 Design Goals
The version 3.0 UDDI Value Set API defines programming interfaces that may be used by
UDDI registries in the validation of references to checked category and identifier systems. The
Value Set Caching API is a subset of the Value Set API. The usage restrictions can vary from
simple to complex. A common example is insisting that the keyValues in keyedReferences
come from a well-defined set. The UDDI registry and value set provider may agree that the
UDDI nodes may cache the set of valid values. The provider may offer, and UDDI nodes use,
a Web service to obtain the entire set of valid values at one time.

11.2.7.3 tModel Definition

Name: uddi-org:valueSetCaching_v3

Description: UDDI Value Set Caching API Version 3

UDDI Key (V3): uddi:uddi.org:v3_valuesetcaching

Derived V1,V2 format key: uuid:a24d9150-cdbb-3cb4-8843-41a5d0547170

Categorization: specification, xmlSpec, soapSpec, wsdlSpec

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 281/420

11.2.7.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:v3_valuesetcaching">
 <name>uddi-org:valueSetCaching_v3</name>
 <description>UDDI Value Set Caching API V3.0</description>
 <overviewDoc>
 <overviewURL useType="wsdlInterface">
 http://uddi.org/wsdl/uddi_vscache_v3_binding.wsdl
 </overviewURL>
 </overviewDoc>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#VSCaching
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:wsdl"
 keyValue="wsdlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:soap"
 keyValue="soapSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:xml"
 keyValue="xmlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:specification"
 keyValue="specification"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.2.7.4 Programming Interface Covered
The UDDI version 3 Value Set Caching API consists of one optional API:

• get_allValidValues: A UDDI registry that supports caching of external value sets may
send the get_allValidValues API to the appropriate external Web service to refresh a
cache of valid values for a category or identifier system that has granted permission to
have its values cached.

11.2.7.5 Example of Use
The following is a typical bindingTemplate for a Web Service that implements the UDDI
Version 3 Value Set Caching API. This Web service is registered by a value set provider:

<bindingTemplate bindingKey="" serviceKey="…">
 <description>UDDI Value Set Caching API V3</description>
 <accessPoint useType="endpoint">
 http://URL_of_service
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:v3_valuesetcaching" />
 </tModelInstanceDetails>
</bindingTemplate>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 282/420

11.2.8 UDDI Value Set Validation API

11.2.8.1 Introduction
The programming interface represented by this tModel deals with validating publisher use of
category and identifier systems when describing their businessEntity, businessService, and
tModel structures. See Section 5.6 Value Set API Set. Providers of externally checked value
sets SHOULD offer a Web service that conforms to this specification.

11.2.8.2 Design Goals
The version 3.0 UDDI Value Set API defines programming interfaces that may be used by
UDDI registries in the validation of references to checked value sets. The Value Set Validation
API is a subset of the Value Set API and consists of a single programming interface that may
be offered by a value set provider and used by UDDI nodes to validate references to checked
value sets. The usage restrictions can vary from simple to complex.

11.2.8.3 tModel Definition

Name: uddi-org:valueSetValidation_v3

Description: UDDI Value Set Validation API Version 3

UDDI Key (V3): uddi:uddi.org:v3_valuesetvalidation

Derived V1,V2 format key: uuid:056fc4a2-bea3-30e5-8382-6d61e1ee23ce

Categorization: specification, xmlSpec, soapSpec, wsdlSpec

11.2.8.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:v3_valuesetvalidation">
 <name>uddi-org:valueSetValidation_v3</name>
 <description>UDDI Value Set Validation API V3.0</description>
 <overviewDoc>
 <overviewURL useType="wsdlInterface">
 http://uddi.org/wsdl/uddi_vs_v3_binding.wsdl
 </overviewURL>
 </overviewDoc>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#VSValid
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:wsdl"
 keyValue="wsdlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:soap"
 keyValue="soapSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:xml"
 keyValue="xmlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:specification"
 keyValue="specification"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 283/420

11.2.8.4 Programming Interface Covered
The UDDI version 3 Value Set Validation API consists of one optional API:

• validate_values: A UDDI registry that supports externally validated value sets may
send the validate_values API to the appropriate external validation Web service when
a publisher saves data that uses a value set whose use is regulated by the external
party who controls that Web service. The normal use is to verify that specific
categories or identifiers (keyValues) exist within the given value set. For certain value
sets, the party providing the validation Web service may further restrict the use of a
value based on other information known about the publisher or passed in the API.

11.2.8.5 Example of Use
The complete process a value set provider must follow to publish and activate a validation
Web service for checked value set is determined by the registry's policy as detailed in Section
9.6.5 Value Set Policies. The following is a typical bindingTemplate for a Web Service that
implements the UDDI Version 3 Value Set Validation API. This Web service is registered by a
value set provider:

<bindingTemplate bindingKey="" serviceKey="…">
 <description>UDDI Value Set Validation API V3</description>
 <accessPoint useType="endpoint">
 http://URL_of_service
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:v3_valuesetvalidation" />
 </tModelInstanceDetails>
</bindingTemplate>

11.2.9 UDDI Subscription API

11.2.9.1 Introduction
The group of programming interfaces represented by this tModel deals with the subscription of
changed data from a UDDI registry. UDDI nodes can implement a subscription capability
based on this API if they choose, but are not required to do so. The UDDI Subscription API is
comprised of two complementary Web services: one that is implemented by a registry to
enable and manage subscriptions and notify subscribers of changes; and one that can be
implemented by subscribers to receive update notifications from a UDDI registry. See Section
5.5 Subscription API Set.

11.2.9.2 Design Goals
The UDDI Subscription API provides a simple, complete set of programming interfaces that
subscribers of registry entries can use and/or implement to obtain updates to a UDDI registry.
This API is comprised of two parts. The subscription capability is covered here. The subscriber
portion of the API is covered in Section 11.2.10 UDDI Subscription Listener API.

11.2.9.3 tModel Definition

Name: uddi-org:subscription_v3

Description: UDDI Subscription API

UDDI Key (V3): uddi:uddi.org:v3_subscription

Derived V1,V2 format key: uuid:c6eb3d94-8051-3fbb-9320-a6147e266e57

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 284/420

Categorization: specification, xmlSpec, soapSpec, wsdlSpec

11.2.9.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:v3_subscription">
 <name>uddi-org:subscription_v3</name>
 <description>UDDI Subscription API V3.0</description>
 <overviewDoc>
 <overviewURL useType="wsdlInterface">
 http://uddi.org/wsdl/uddi_sub_v3_binding.wsdl
 </overviewURL>
 </overviewDoc>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#Sub
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:wsdl"
 keyValue="wsdlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:soap"
 keyValue="soapSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:xml"
 keyValue="xmlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:specification"
 keyValue="specification"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.2.9.4 Programming Interfaces Covered
The UDDI APIs that are covered by this tModel are:

• delete_subscription: Used to remove an existing subscription from the UDDI node.
Notifications of changes will cease.

• get_subscriptions: Used by a publisher to obtain all of the subscriptions that are in
effect for that publisher's account.

• get_notification: Used to request that a notification be resent.

• save_subscription: Used to register new subscription information or update existing
subscription information.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 285/420

11.2.9.5 Example of Use
The following is a typical bindingTemplate for a Web Service that implements the UDDI
Version 3 Subscription API:

<bindingTemplate bindingKey="…" serviceKey="…">
 <description>UDDI Subscription API V3</description>
 <accessPoint useType="endpoint">
 https://URL_of_service
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:v3_subscription">
 <instanceDetails>
 <instanceParms>
 <![CDATA[
 <?xml version="1.0" encoding="utf-8" ?>
 <UDDIinstanceParmsContainer
 xmlns="urn:uddi-org:policy_v3_instanceParms">
 <authInfoUse>required</authInfoUse>
 <filterUsingFindAPI>supported</filterUsingFindAPI>
 </UDDIinstanceParmsContainer>
]]>
 </instanceParms>
 </instanceDetails>
 </tModelInstanceInfo>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:protocol:serverauthenticatedssl3" />
 </tModelInstanceDetails>
</bindingTemplate>

11.2.10 UDDI Subscription Listener API

11.2.10.1 Introduction
This tModel complements the UDDI Subscription API. The programming interface represented
by this tModel deals with receiving notifications from a UDDI node that implements the UDDI
Subscription API. This API is implemented by UDDI subscribers when they wish to receive
asynchronous notification of changes to UDDI entities. See Section 5.5 Subscription API Set.

11.2.10.2 Design Goals
The version 3.0 UDDI SubscriptionListener API defines a programming interface to receive
asynchronous information about changes to UDDI entities that the subscriber previously
expressed interest in using the UDDI Subscription Listener API.

11.2.10.3 tModel Definition

Name: uddi-org:subscriptionListener_v3

Description: UDDI Subscription Listener API

UDDI Key (V3): uddi:uddi.org:v3_subscriptionlistener

Derived V1,V2 format key: uuid:0f965bee-b120-3a66-bdc2-4908819c1174

Categorization: specification, xmlSpec, soapSpec, wsdlSpec

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 286/420

11.2.10.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:v3_subscriptionlistener">
 <name>uddi-org:subscriptionListener_v3</name>
 <description>UDDI Subscription Listener API V3.0</description>
 <overviewDoc>
 <overviewURL useType="wsdlInterface">
 http://uddi.org/wsdl/uddi_subr_v3_binding.wsdl
 </overviewURL>
 </overviewDoc>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#Subscribe
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:wsdl"
 keyValue="wsdlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:soap"
 keyValue="soapSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:xml"
 keyValue="xmlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:specification"
 keyValue="specification"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.2.10.4 Programming Interfaces Covered
The UDDI version 3 Subscription Listener API consists of a single optional API:

• notify_subscriptionListener: A UDDI node that supports subscription uses this
programming interface to provide programmatic notification of records matching the
criteria of a saved subscription to subscribers that have indicated they should receive
asynchronous updates to subscribed UDDI entities using SOAP.

11.2.10.5 Example of Use
The following is a typical bindingTemplate for a Web Service that implements the UDDI
Version 3 Subscription Listener API. This Web service is registered by a subscriber of
asynchronous updates to UDDI entities:

<bindingTemplate bindingKey="…" serviceKey="…">
 <description>UDDI Subscription Listener API V3</description>
 <accessPoint useType="endpoint">
 http://URL_of_service
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:v3_subscriptionlistener" />
 </tModelInstanceDetails>
</bindingTemplate>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 287/420

11.3 Transport and Protocol tModels
tModels of the transport and protocol sort are referenced by service bindings to describe the
type of protocol or transport used to invoke the service. This is often done when other parts of
the technical fingerprint (other tModels referenced in the same bindingTemplate) are silent or
ambiguous with respect to the protocol or transport used by the particular service binding, or
when the provider of the Web service wants to explicitly call out the protocol or transport in the
technical fingerprint, to enable proper discovery. Protocol and transport tModels are frequently
coupled with other tModels that describe what the service does in detail.

The tModels that follow correspond to protocols and transports that are recommended for
different parts of the UDDI API as described in Section 9.6.2 Information Model. The
bindingTemplate structures for the UDDI API described in Section 11.1.9 UDDI Registry API
tModels SHOULD reference one or more of these tModels.

11.3.1 Secure Sockets Layer Version 3 with Server Authentication

11.3.1.1 Introduction
The use of Secure Sockets Layer Version 3.0 (SSL 3.0) 41 for transport confidentiality and
server authentication as an application protocol is represented by this tModel. The server
authentication on SSL 3.0 represented by this tModel involves the presentation of a server side
certificate to the client that initiates the SSL 3.0 connection. Web services that require use of
SSL 3.0 SHOULD reference this tModel in their bindingTemplate structures.

11.3.1.2 Design Goals
There are two principal design goals for the SSL 3.0 with server authentication tModel. The
first is to separate the use of SSL 3.0 described from the application protocol HTTP and also
from the higher level messaging protocol, such as SOAP. The second goal for this tModel is
to facilitate discovery of Web services that support SSL 3.0 for transport confidentiality and
server authentication.

11.3.1.3 tModel Definition
This tModel is used in bindingTemplate elements of Web services to indicate that the Web
service implementation requires the use of SSL 3.0 with server authentication.

Name: uddi-org:serverAuthenticatedSSL3

Description: Secure Sockets Layer 3.0 with Server Authentication

UDDI Key (V3): uddi:uddi.org:protocol:serverauthenticatedssl3

Derived V1,V2 format key: uuid:c8aea832-3faf-33c6-b32a-bbfd1b926294

Categorization: protocol

41

 http://www.netscape.com/eng/ssl3/index.html

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 288/420

11.3.1.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:protocol:serverauthenticatedssl3">
 <name>uddi-org:serverAuthenticatedSSL3</name>
 <description>Secure Sockets Layer Version 3.0 with Server
 Authentication</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#serverSSL3
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:protocol"
 keyValue="protocol"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.3.1.4 Example of Use
The following is an example of a bindingTemplate for a UDDI Publish API Web service that
uses the SSLv3 with server authentication tModel to represent the transport layer:

<bindingTemplate bindingKey="uddi:...." serviceKey="uddi:....">
 <description>UDDI Publication API V3</description>
 <accessPoint useType="endpoint">
 https://URL_of_service
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:v3_publication" />
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:protocol:serverauthenticatedssl3"/>
 </tModelInstanceDetails>
</bindingTemplate>

11.3.2 Secure Sockets Layer Version 3 with Mutual Authentication

11.3.2.1 Introduction
The use of Secure Sockets Layer Version 3.0 (SSL 3.0) 42 for transport confidentiality and
mutual authentication as an application protocol is represented by this tModel. Mutual
authentication as represented by this tModel includes both client and server authentication.
The server authentication using SSL 3.0 represented by this tModel involves the presentation
of a server side certificate to the client that initiates the SSL 3.0 connection. The client
authentication using SSL 3.0 represented by this tModel involves the server issuing a
certificate request for a client certificate and the client sending a client certificate as described
in the SSL 3.0 specification. Web services that require SSL 3.0 Mutual Authentication
SHOULD reference this tModel in their bindingTemplate structures.

42

 http://www.netscape.com/eng/ssl3/index.html

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 289/420

11.3.2.2 Design Goals
There are two principal design goals for the SSL 3.0 with mutual authentication tModel. The
first is to separate the use of SSL 3.0 described from the application protocol HTTP and also
from the higher level messaging protocol, such as SOAP. The second goal for this tModel is
to facilitate discovery of UDDI Web services that support SSL 3.0 for transport confidentiality
and mutual authentication.

11.3.2.3 tModel Definition
This tModel is used in bindingTemplate elements of Web services to indicate that the Web
service implementation requires the use of SSL 3.0 with mutual authentication.

Name: uddi-org:mutualAuthenticatedSSL3

Description: Secure Sockets Layer 3.0 with Mutual
Authentication

UDDI Key (V3): uddi:uddi.org:protocol:mutualauthenticatedssl3

Derived V1,V2 format key: uuid:9555b5b6-55d4-3b0e-bb17-e084fed4e33f

Categorization: protocol

11.3.2.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:protocol:mutualauthenticatedssl3">
 <name>uddi-org:mutualAuthenticatedSSL3</name>
 <description>Secure Sockets Layer Version 3.0 with Mutual
 Authentication</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#mutualSSL3
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:protocol"
 keyValue="protocol"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.3.2.4 Example of Use
The following is an example of a bindingTemplate for a UDDI Replication API Web service
using the SSLv3 with mutual authentication tModel to represent the transport layer:

<bindingTemplate bindingKey="...." serviceKey="....">
 <description>UDDI Replication API V3</description>
 <accessPoint useType="endpoint">
 https://URL_of_service
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:v3_replication" />
 <tModelInstanceInfo
 tModelKey=" uddi:uddi.org:protocol:mutualauthenticatedssl3" />
 </tModelInstanceDetails>
</bindingTemplate>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 290/420

11.3.3 UDDI HTTP Transport

11.3.3.1 Introduction
In UDDI, tModels are used to establish the existence of a variety of concepts and to point to
their technical definitions. Transport tModels are referenced by service bindings to describe the
type of transport used to invoke the service, either when other parts of the technical fingerprint
(other tModels referenced in the same bindingTemplate) do not specify the transport used by
the particular service binding, or when the service provider wants to explicitly call out the
transport in the technical fingerprint so as to enable discovery. Transport tModels are
frequently coupled with other tModels that describe more completely what the service does.
For example, the HTTP Transport tModel may be coupled with the SOAP Protocol tModel to
indicate that a Web service communicates using SOAP over HTTP. The HTTP Transport
tModel provides a means for designating that services transport messages using the HTTP
protocol.

11.3.3.2 Design Goals
The HTTP Transport tModel is provided to enable discovery of services that transport
messages using the HTTP protocol. This tModel can be used alone to provide a technical
fingerprint for simple services that are accessed through HTTP when they might otherwise not
have a tModel to reference in their bindingTemplates, or it can be used in conjunction with
other protocol tModels to indicate the applicable transport when other parts of the technical
fingerprint are ambiguous or silent with respect to the transport to use.

11.3.3.3 tModel Definition
This tModel is used to describe a Web service that transports messages using the HTTP
protocol.

Name: uddi-org:http

Description: A Web service that uses HTTP transport

UDDI Key (V3): uddi:uddi.org:transport:http

Evolved V1,V2 format key: uuid:68DE9E80-AD09-469D-8A37-088422BFBC36

Categorization: transport

:

11.3.3.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:transport:http">
 <name>uddi-org:http</name>
 <description> A Web service that uses HTTP transport</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#overHTTP
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:transport"
 keyValue="transport"
 tModelKey="uddi:uddi.org:categorization:types"/>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 291/420

 </categoryBag>
</tModel>

11.3.3.4 Example of Use
The following is a typical bindingTemplate for a simple service that references the HTTP
Transport tModel:

<bindingTemplate bindingKey="uddi:...." serviceKey="uddi:....">
 <description xml:lang="en">Buy from Bigfoot Breweries over
 the Web</description>
 <accessPoint useType="endpoint"
 http://www.bigfootbreweries.example/shop.html
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:transport:http />
 </tModelInstanceDetails>
</bindingTemplate>

The next example shows a bindingTemplate for a service whose technical fingerprint (the first
tModel referenced) specifies two alternative access techniques, of which HTTP is one:

<bindingTemplate bindingKey="uddi:...." serviceKey="uddi:...">
 <description xml:lang="en">Obtain financing</description>
 <accessPoint useType="endpoint">
 http://www.consolidatedholdings.example/finance.html
 </accessPoint>
 <!-- The first tModel describes a technical interface (to
 obtain financing) which includes multiple binding
 descriptions. HTTP is one such supported binding. -->
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:some.tmodelkey…"/>
 </tModelInstanceDetails>
 <!-- The second tModel indicates that this service instance
 is accessed using http -->
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:transport:http"/>
 </tModelInstanceDetails>
</bindingTemplate>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 292/420

11.3.4 UDDI SMTP Transport

11.3.4.1 Introduction
In UDDI, tModels are used to establish the existence of a variety of concepts and to point to
their technical definitions. tModels of the transport sort are referenced by service bindings to
describe the type of transport used to invoke the service, either when other parts of the
technical fingerprint (other tModels referenced in the same bindingTemplate) are silent or
ambiguous with respect to the transport used by the particular service binding, or when the
service provider wants to explicitly call out the transport in the technical fingerprint so as to
enable proper discovery. Transport-type tModels are frequently coupled with other tModels
that describe more completely what the service does. For very simple services, a transport
tModel may be the only tModel referenced in a bindingTemplate. The SMTP transport tModel
provides a means for designating those services that are invoked by sending an eMail to the
accessPoint in the bindingTemplate.

11.3.4.2 Design Goals
The SMTP Transport tModel is provided to enable discovery of services that are invoked by
sending an eMail to the address in the accessPoint element of the bindingTemplate, to mix-in
the applicable transport when other parts of the technical fingerprint are ambiguous or silent
with respect to the transport to use, and to enable simple services that are accessed through
eMail to have a technical fingerprint when they might otherwise not have a tModel to reference
in their bindingTemplates.

11.3.4.3 tModel Definition
This tModel is used to describe a Web service that is invoked through SMTP eMail
transmissions. These transmissions may be either between people or applications.

Name: uddi-org:smtp

Description: E-mail based Web service

UDDI Key (V3): uddi:uddi.org:transport:smtp

Evolved V1,V2 format key: uuid:93335D49-3EFB-48A0-ACEA-EA102B60DDC6

Categorization: transport

11.3.4.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:transport:smtp">
 <name>uddi-org:smtp</name>
 <description>E-mail based Web service</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#overSMTP
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:transport"
 keyValue="transport"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 293/420

11.3.4.4 Example of Use
The following is a typical bindingTemplate that references the SMTP Transport tModel:

<bindingTemplate bindingKey="...." serviceKey="uddi:...">
 <description xml:lang="en">Send eMail to buy from
 Island Trading</description>
 <accessPoint useType="endpoint">
 mailto:order@islandtrading.example
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:transport:smtp"/>
 </tModelInstanceDetails>
</bindingTemplate>

11.3.5 UDDI FTP Transport

11.3.5.1 Introduction
In UDDI, tModels are used to establish the existence of a variety of concepts and to point to
their technical definitions. tModels of the transport sort are referenced by service bindings to
describe the type of transport used to invoke the service, either when other parts of the
technical fingerprint (other tModels referenced in the same bindingTemplate) are silent or
ambiguous with respect to the transport used by the particular service binding, or when the
service provider wants to explicitly call out the transport in the technical fingerprint so as to
enable proper discovery. Transport-type tModels are frequently coupled with other tModels
that describe more completely what the service does. For very simple services, a transport
tModel may be the only tModel referenced in a bindingTemplate. The FTP transport tModel
provides a means for designating those services that are invoked using the File Transfer
Protocol on the accessPoint in the bindingTemplate.

11.3.5.2 Design Goals
The FTP Transport tModel is provided to enable discovery of services that are invoked by
performing an FTP on the address in the accessPoint element of the bindingTemplate, to mix-
in the applicable transport when other parts of the technical fingerprint are ambiguous or silent
with respect to the transport to use, and to enable simple services that are accessed using
FTP to have a technical fingerprint when they might otherwise not have a tModel to reference
in their bindingTemplates.

11.3.5.3 tModel Definition
This tModel is used to describe a Web service that is invoked through file transfers via the
FTP.

Name: uddi-org:ftp

Description: File Transfer Protocol (FTP) based Web service

UDDI Key (V3): uddi:uddi.org:transport:ftp

Evolved V1,V2 format key: uuid:5FCF5CD0-629A-4C50-8B16-F94E9CF2A674

Categorization: transport

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 294/420

11.3.5.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:transport:ftp">
 <name>uddi-org:ftp</name>
 <description>File Transfer Protocol (FTP) based Web service</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#overFTP
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:transport"
 keyValue="transport"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.3.5.4 Example of Use
The following is a typical bindingTemplate that references the FTP Transport tModel:

<bindingTemplate bindingKey="...." serviceKey="uddi:...">
 <description xml:lang="en">Obtain Island Trading product
 catalog using FTP</description>
 <accessPoint useType="endpoint">
 ftp://islandtrading.example/catalog
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:transport:ftp"/>
 </tModelInstanceDetails>
</bindingTemplate>

11.3.6 UDDI Fax Transport

11.3.6.1 Introduction
In UDDI, tModels are used to establish the existence of a variety of concepts and to point to
their technical definitions. tModels of the transport sort are referenced by service bindings to
describe the type of transport used to invoke the service, either when other parts of the
technical fingerprint (other tModels referenced in the same bindingTemplate) are silent or
ambiguous with respect to the transport used by the particular service binding, or when the
service provider wants to explicitly call out the transport in the technical fingerprint so as to
enable proper discovery. Transport-type tModels are frequently coupled with other tModels
that describe more completely what the service does. For very simple services, a transport
tModel may be the only tModel referenced in a bindingTemplate. The fax transport tModel
provides a means for designating those services that are invoked using the fax machine on the
accessPoint in the bindingTemplate.

11.3.6.2 Design Goals
The Fax Transport tModel is provided to enable discovery of services that are invoked by
sending a fax to the address in the accessPoint element of the bindingTemplate, to mix-in the
applicable transport when other parts of the technical fingerprint are ambiguous or silent with
respect to the transport to use, and to enable simple services that are accessed by sending a
fax to have a technical fingerprint when they might otherwise not have a tModel to reference in
their bindingTemplates.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 295/420

11.3.6.3 tModel Definition
This tModel is used to describe a Web service that is invoked through fax transmissions.
These transmissions may be either between people or applications.

Name: uddi-org:fax

Description: Fax-based Web service

UDDI Key (V3): uddi:uddi.org:transport:fax

Evolved V1,V2 format key: uuid:1A2B00BE-6E2C-42F5-875B-56F32686E0E7

Categorization: transport

11.3.6.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:transport:fax">
 <name>uddi-org:fax</name>
 <description>Fax-based Web service</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#overFax
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:transport"
 keyValue="transport"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.3.6.4 Example of Use
The following is a typical bindingTemplate that references the Fax Transport tModel. Note that
the accessPoint contains a URI using the fax scheme43.

<bindingTemplate bindingKey="...." serviceKey="uddi:…">
 <description xml:lang="en">Send facsimile to buy from
 Island Trading</description>
 <accessPoint useType="endpoint">fax:+1-800-555-5555</accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:uddi.org:transport:fax"/>
 </tModelInstanceDetails>
</bindingTemplate>

11.3.7 UDDI Telephone Transport

11.3.7.1 Introduction
In UDDI, tModels are used to establish the existence of a variety of concepts and to point to
their technical definitions. tModels of the transport sort are referenced by service bindings to
describe the type of transport used to invoke the service, either when other parts of the
technical fingerprint (other tModels referenced in the same bindingTemplate) are silent or

43

 http://www.ietf.org/rfc/rfc2806

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 296/420

ambiguous with respect to the transport used by the particular service binding, or when the
service provider wants to explicitly call out the transport in the technical fingerprint so as to
enable proper discovery. Transport-type tModels are frequently coupled with other tModels
that describe more completely what the service does. For very simple services, a transport
tModel may be the only tModel referenced in a bindingTemplate. The telephone transport
tModel provides a means for designating those services that are invoked using a voice over a
telephone on the accessPoint in the bindingTemplate.

11.3.7.2 Design Goals
The Telephone Transport tModel is provided to enable discovery of services that are accessed
using voice with a telephone, to mix-in the voice over telephone access technique when other
parts of the technical fingerprint are ambiguous or silent with respect to the way the service is
accessed, and to enable simple services that are accessed by using a telephone to have a
technical fingerprint when they might otherwise not have a tModel to reference in their
bindingTemplates.

11.3.7.3 tModel Definition
This tModel is used to describe a service that is invoked through a telephone call and
interaction by voice and/or touch-tone.

Name: uddi-org:telephone

Description: Telephone based service

UDDI Key (V3): uddi:uddi.org:transport:telephone

Evolved V1,V2 format key: uuid:38E12427-5536-4260-A6F9-B5B530E63A07

Categorization: transport

11.3.7.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:transport:telephone">
 <name>uddi-org:telephone</name>
 <description>Telephone based service</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#overPhone
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:transport"
 keyValue="transport"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 297/420

11.3.7.4 Example of Use
The following is a typical bindingTemplate that references the Telephone Specification tModel.
Note that the accessPoint contains a URI using the tel scheme44.

<bindingTemplate bindingKey="...." serviceKey="uddi:...">
 <description xml:lang="en">Buy from Island Trading over
 the phone</description>
 <accessPoint useType="endpoint">tel:+1-800-555-5555</accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:transport:telephone"/>
 </tModelInstanceDetails>
</bindingTemplate>

11.4 Find Qualifier tModels
The tModels in this section are defined to be used when performing inquiry functions to qualify
the inquiry criteria and describe treatment of the results. UDDI requires that all UDDI registries
include these tModels. The designation "Support: Mandatory" indicates the tModel MUST be
supported by UDDI nodes. Short names provided represent the short strings that can be used
to identify the find qualifiers included herein. See Section 5.1.4 Find Qualifiers for more
information.

In UDDI, tModels are used to establish the existence of a variety of concepts and to point to
their technical definitions. tModels of the find qualifier sort are referenced by findQualifier
elements in UDDI inquiries to describe behaviors related to the search input data and
treatment of the result set.

11.4.1 UDDI SQL99 Approximate Match Find Qualifier

11.4.1.1 Introduction
The SQL 99 Approximate Match find qualifier allows wildcards to be specified in UDDI name
and keyedReference elements according to the character version of the <like predicate> of
section 8.5 of the SQL 99 specification45.

11.4.1.2 Design Goals
The SQL99 Approximate Match tModel is provided to enable discovery of UDDI entities when
exact matching criteria is unknown or too restrictive. Approximate matching is performed on
UDDI name, keyValue, and where significant, keyName elements. Wildcards are denoted with
a percent sign (%) to indicate any value for any number of characters and an underscore (_) to
indicate any value for a single character. The backslash character (\) is used as an escape
character for the percent sign, underscore and backslash characters.

11.4.1.3 tModel Definition
This tModel is a find qualifier that is used to enable approximate matching in UDDI inquiries.
This tModel cannot be referenced in a find qualifier if the exactMatch find qualifier tModel is
referenced. By default, case and diacritic sensitive matching is performed on any portion of
the value provided.

44

 http://www.ietf.org/rfc/rfc2806

45
 SQL99, ISO/IEC9075-2:1999(E) section 8.5

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 298/420

Use of wildcards in the keyValue fields of keyedReferences takes precedence over the effects
of category treatment find qualifiers such as andAllKeys, orAllKeys and orLikeKeys. This
means that the individual elements from the set of keyValues that result from using a wildcard
are not subject to the ANDing and ORing criteria described by these other find qualifiers, but
the set itself is. For example, the inquiry of the form find businesses with services in Georgia
that relate to transporting goods, is specified with Georgia as an explicit keyValue from a
geographic value set, transporting goods as a partial keyValue from a product and services
value set with a trailing wildcard, and the andAllKeys find qualifier (either explicitly specified, or
omitted as it is the default behavior for the categoryBag). The inquiry is performed by finding
the businesses that have the Georgia service location AND a product and services
categorization starting with the product code for transportation of goods.

Name: uddi-org:approximateMatch:SQL99

Short name: approximateMatch

Description: UDDI SQL99 approximate matching find qualifier

UDDI Key (V3): uddi:uddi.org:findqualifier:approximatematch

Derived V1,V2 format key: uuid:8af9e55a-5c35-30dd-915a-8a7961bc1054

Categorization: findQualifier

Support: Mandatory

:

11.4.1.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:findqualifier:approximatematch">
 <name>uddi-org:approximateMatch:SQL99</name>
 <description>UDDI approximate matching find qualifier
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#wildcard
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 299/420

11.4.1.4 Example of Use
The following represent a typical inquiry that uses the SQL99 approximateMatch find qualifier.
This example shows an inquiry using the SQL99 approximateMatch find qualifier to find all
businesses that are either themselves categorized or that have businessService or
bindingTemplate structures categorized with any of the categories in the UNSPSC family
"Telephones and personal telecommunications devices and accessories". In this example a
wildcard character is added to the end of the keyValue specified for a UNSPSC
keyedReference because this value set is formatted hierarchically with more detailed nodes
represented by additional numeric fragments on the right side of the value.

<find_business xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:combinecategorybags
 </findQualifier>
 </findQualifiers>
 <categoryBag>
 <keyedReference keyValue="34.10.%"
 tModelKey="uddi:uddi.org:ubr:categorization:unspsc"/>
 </categoryBag>
</find_business>

11.4.2 UDDI Exact Match Find Qualifier

11.4.2.1 Introduction
The Exact Match find qualifier represents the default behavior for matching name, keyValue,
and keyName arguments used in UDDI inquiry functions. This qualifier directs inquiry functions
to find matches based on exactly what has been provided in the input criteria of the inquiry.

11.4.2.2 Design Goals
The Exact Match find qualifier tModel is provided to explicitly request discovery of UDDI
entities with an exact match on the name, keyValue, and where applicable, keyName
arguments, after normalization.

11.4.2.3 tModel Definition
This tModel is a find qualifier that is used to enable exact matching in UDDI inquiries. When
this tModel is referenced in a find qualifier, only entities with names, keyValues, and where
applicable, keyNames that exactly match the values passed in the input criteria, after
normalization, will be returned. This qualifier conflicts with any approximate match qualifier
such as uddi-org:approximateMatch and with uddi-org:caseInsensitiveMatch.

Name: uddi-org:exactMatch

Short name: exactMatch

Description: UDDI Exact Matching find qualifier

UDDI Key (V3): uddi:uddi.org:findqualifier:exactmatch

Derived V1,V2 format key: uuid:05a6e3ef-2e94-3c91-9360-a31cd335c758

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 300/420

Categorization: findQualifier

Support: Mandatory, default

11.4.2.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:findqualifier:exactmatch">
 <name>uddi-org:exactMatch</name>
 <description>UDDI exact name matching findQualifier
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#exactmatch
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.4.2.4 Example of Use
The following represents a typical inquiry that references the Exact Name Match find qualifier
tModel. All businesses with the name ‘My Company Name’ are returned.

<find_business xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:exactmatch
 </findQualifier>
 </findQualifiers>
 <name>My Company Name</name>
</find_business>

11.4.3 UDDI Case Insensitive Match Find Qualifier

11.4.3.1 Introduction
The Case Insensitive Match find qualifier allows matching to occur on any inquiry involving a
name, keyValue, and where relevant, keyName, without regard to the case of the search
argument(s).

11.4.3.2 Design Goals
The Case Insensitive Match find qualifier tModel is provided to enable discovery of UDDI
entities when case sensitivity is not important.

11.4.3.3 tModel Definition
This tModel is a find qualifier that is used to enable case insensitive matching in UDDI
inquiries. When this tModel is referenced in a find qualifier, case is irrelevant in the search
results and all entries, independent of case, that match the value passed in the search
arguments will be returned. This qualifier is ignored for languages that are not case-significant
and cannot be used with the uddi-org:exactMatch or the uddi-org:caseSensitiveMatch find
qualifiers.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 301/420

Name: uddi-org:caseInsensitiveMatch

Short name: caseInsensitiveMatch

Description: UDDI case insensitive matching find qualifier

UDDI Key (V3): uddi:uddi.org:findqualifier:caseinsensitivematch

Derived V1,V2 format key: uuid:9e217abc-51f0-3703-ba50-ccd9177040f0

Categorization: findQualifier

Support: Mandatory

11.4.3.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:findqualifier:caseinsensitivematch">
 <name>uddi-org:caseInsensitiveMatch</name>
 <description>UDDI case insensitive matching find qualifier
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#caseinsens
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 302/420

11.4.3.4 Example of Use
The following represents a typical inquiry that references the Case Insensitive Match find
qualifier tModel. All tModels that start with the name ‘rosetta’ are returned, without regard to
case.

<find_tModel xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:caseinsensitivematch
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 </findQualifiers>
 <name>rosetta%</name>
</find_tModel>

11.4.4 UDDI Case Sensitive Match Find Qualifier

11.4.4.1 Introduction
The Case Sensitive Match find qualifier allows matching to occur on any inquiry involving a
name, keyValue, and where relevant, keyName, where the case of the UDDI data must match
case of the search argument(s).

11.4.4.2 Design Goals
The Case Sensitive Match find qualifier tModel is the implied default for both approximate and
exact matching. It is provided to allow explicit specification of the case sensitivity criterion for
the inquiry function.

11.4.4.3 tModel Definition
This tModel is a find qualifier that is used to specify case sensitive matching (the default) in
UDDI inquiries. When this tModel is referenced in a find qualifier, case is relevant in the search
results and all entries that match the value passed in the search arguments will be returned.
This qualifier is ignored for languages that are not case-significant and cannot be used with the
uddi-org:caseInsensitiveMatch find qualifier.

Name: uddi-org:caseSensitiveMatch

Short name: caseSensitiveMatch

Description: UDDI Case Sensitive Matching find qualifier

UDDI Key (V3): uddi:uddi.org:findqualifier:casesensitivematch

Derived V1,V2 format key: uuid:272a64a3-73c8-3b3d-9560-c7dfaa79cc6d

Categorization: findQualifier

Support: Mandatory, default

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 303/420

11.4.4.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:findqualifier:casesensitivematch">
 <name>uddi-org:caseSensitiveMatch</name>
 <description>UDDI Case Sensitive Matching find qualifier
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#casesens
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.4.4.4 Example of Use
The following represents a typical inquiry that references the Case Sensitive Match find
qualifier tModel. Note that because case sensitive matching is the default for inquiry functions,
specification of this find qualifier is not necessary. This example finds tModels that are
categorized with a rating of AAA from the example: Rating informal category system.

<find_tModel xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:casesensitivematch
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 </findQualifiers>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:general_keywords"
 keyName="example:Rating"
 keyValue="AAA" />
 </categoryBag>
</find_tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 304/420

11.4.5 UDDI Diacritics Insensitive Match Find Qualifier

11.4.5.1 Introduction
The Diacritics Insensitive Match find qualifier allows matching without regard to diacritics in the
searched data.

11.4.5.2 Design Goals
The Diacritics Insensitive Match find qualifier tModel is provided to enable discovery of UDDI
entities when diacritics sensitivity is not important.

11.4.5.3 tModel Definition
This tModel is a find qualifier that is used to enable diacritics insensitive matching in UDDI
inquiries. When this tModel is referenced in a find qualifier, diacritic symbols (e.g. accents,
diaeresis, cedilla) are irrelevant in the searched data and all entries, independent of diacritics,
that match the base characters passed in the input criteria will be returned. This qualifier uses
as diacritics, that set of characters defined to constitute diacritics in the Default Unicode
Collation Element Table46. This qualifier is ignored for languages that are not diacritics-
significant and cannot be used with the uddi-org:exactMatch or uddi-
org:diacriticsSensitiveMatch find qualifiers.

Name: uddi-org:diacriticsInsensitiveMatch

Short name: diacriticsInsensitiveMatch

Description: UDDI Diacritics Insensitive Matching find qualifier

UDDI Key (V3): uddi:uddi.org:findqualifier:diacriticsinsensitivematch

Derived V1,V2 format key: uuid:81479f4e-018a-3e8a-9ef4-2c87232b6b19

Categorization: findQualifier

Support: Optional

:

11.4.5.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:findqualifier:diacriticsinsensitivematch">
 <name>uddi-org:diacriticsInsensitiveMatch</name>
 <description>UDDI Diacritics Insensitive Matching find qualifier
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#diacritInsens
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:findQualifier"

46

 http://www.unicode.org/unicode/reports/tr10/allkeys.txt

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 305/420

 keyVal ue=" f i ndQual i f i er "
 t Model Key=" uddi : uddi . or g: cat egor i zat i on: t ypes" / >
 </ cat egor yBag>
</ t Model >

11.4.5.4 Example of Use
The following represents a typical inquiry that references the Diacritics Insensitive Match find
qualifier tModel. All tModels that start with the name ‘Forte’ are returned, without regard to
diacritics, even when the supplied search pattern, ‘Forté’ has a diacritic.

<f i nd_t Model xml ns=" ur n: uddi - or g: api _v3" >
 <f i ndQual i f i er s>
 <findQualifier>
 uddi:uddi.org:findqualifier:diacriticsinsensitivematch
 </findQualifier>
 <f i ndQual i f i er >
 uddi : uddi . or g: f i ndqual i f i er : appr oxi mat emat ch
 </ f i ndQual i f i er >
 </ f i ndQual i f i er s>
 <name>For t é%</ name>
</ f i nd_t Model >

11.4.6 UDDI Diacritics Sensitive Match Find Qualifier

11.4.6.1 Introduction
The Diacritics Sensitive Match find qualifier allows matching to occur on any inquiry involving a
name, keyValue, and where relevant, keyName, where the diacritics in the UDDI data must
match diacritics in the search argument(s).

11.4.6.2 Design Goals
The Case Sensitive Match find qualifier tModel is the implied default for both approximate and
exact matching. It is provided to allow explicit specification of the case sensitivity criterion for
the inquiry function.

11.4.6.3 tModel Definition
This tModel is a find qualifier that is used to specify case sensitive matching (the default) in
UDDI inquiries. When this tModel is referenced in a find qualifier, case is relevant in the search
results and all entries that match the value passed in the search arguments will be returned.
This qualifier is ignored for languages that are not diacritics-significant and cannot be used with
uddi-org:diacriticsInsensitiveMatch find qualifier.

Name: uddi-org:diacriticsSensitiveMatch

Short name: diacriticsSensitiveMatch

Description: UDDI Diacritics Sensitive Matching find qualifier

UDDI Key (V3): uddi:uddi.org:findqualifier:diacriticssensitivematch

Derived V1,V2 format key: uuid:ff85bfaf-1421-39a5-8207-d4df87fc2b17

Categorization: findQualifier

Support: Mandatory, default

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 306/420

11.4.6.3.1 tModel Structure
This tModel is represented with the following structure:

<t Model
 t Model Key=" uddi : uddi . or g: f i ndqual i f i er : di acr i t i cssensi t i vemat ch" >
 <name>uddi - or g: di acr i t i csSensi t i veMat ch</ name>
 <descr i pt i on>UDDI Di acr i t i cs Sensi t i ve Mat chi ng f i nd qual i f i er
 </ descr i pt i on>
 <over vi ewDoc>
 <over vi ewURL useType=" t ext " >
 ht t p: / / uddi . or g/ pubs/ uddi _v3. ht m#di acr i t Sens
 </ over vi ewURL>
 </ over vi ewDoc>
 <cat egor yBag>
 <keyedRef er ence keyName=" uddi - or g: t ypes: f i ndQual i f i er "
 keyVal ue=" f i ndQual i f i er "
 t Model Key=" uddi : uddi . or g: cat egor i zat i on: t ypes" / >
 </ cat egor yBag>
</ t Model >

11.4.6.4 Example of Use
The following represents a typical inquiry that references the Diacritics Sensitive Match find
qualifier tModel. Note that because diacritic sensitive matching is the default for inquiry
functions, specification of this find qualifier is not necessary. This example finds tModels that
have names that start with Garçon.

<f i nd_t Model xml ns=" ur n: uddi - or g: api _v3" >
 <f i ndQual i f i er s>
 <findQualifier>
 uddi:uddi.org:findqualifier:diacriticssensitivematch
 </findQualifier>
 <f i ndQual i f i er >
 uddi : uddi . or g: f i ndqual i f i er : appr oxi mat emat ch
 </ f i ndQual i f i er >
 </ f i ndQual i f i er s>
 <name xml : l ang=" f r - ca" >Gar çon%</ name>
</ f i nd_t Model >

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 307/420

11.4.7 UDDI Binary Sort Order Qualifier

11.4.7.1 Introduction
The sortOrder type of find qualifier (a subset of find qualifier) represents a collation sequence
applied to the result set. The Binary Sort sortOrder find qualifier directs that a binary sort be
performed on the result set.

11.4.7.2 Design Goals
The Binary Sort sortOrder tModel is provided to direct inquiry results to be binary sorted.

11.4.7.3 tModel Definition
This tModel is a find qualifier that is used to enable binary sorting of UDDI inquiry results.
When this tModel is referenced in a find qualifier, a binary sort is performed on the name field,
normalized using Unicode Normalization Form C47. This qualifier conflicts with any other find
qualifier of the sortOrder type.

Name: uddi-org:binarySort

Short name: binarySort

Description: UDDI Binary Sort collation sequence find qualifier

UDDI Key (V3): uddi:uddi.org:sortorder:binarysort

Derived V1,V2 format key: uuid:c0d82cac-38fe-3a0d-982c-50e0e1253eb1

Categorization: sortOrder, findQualifier

Support: Mandatory

11.4.7.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:sortorder:binarysort">
 <name>uddi-org:binarySort</name>
 <description>UDDI binary sort sortOrder qualifier
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#sortOrd
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:sortOrder"
 keyValue="sortOrder"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

47

 http://www.unicode.org/unicode/reports/tr15/

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 308/420

11.4.7.4 Example of Use
The following represents a typical inquiry that references the Binary Sort sortOrder find
qualifier tModel. This example finds all tModels that start with ‘Rosetta’, without regard to case
and sorts the tModels that satisfy this criterion by date, oldest to newest, and within date, by
name using a binary sorting collation sequence.

<find_tModel xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:sortorder:binarysort
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:sortbydateasc
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:caseinsensitivematch
 </findQualifier>
 </findQualifiers>
 <name>Rosetta%</name>
</find_tModel>

11.4.8 UDDI Unicode Technical Standard #10 Sort Order Qualifier

11.4.8.1 Introduction
The sortOrder type of find qualifier (a subset of find qualifier) represents a collation sequence
applied to the result set. The Unicode Technical Standard #10 (UTS-10) sortOrder find qualifier
directs that a sort be performed on the Unicode Normalization Form C48 representation of
result set elements.

11.4.8.2 Design Goals
The Unicode Technical Standard #10 sortOrder tModel is provided to enable inquiry results to
be sorted according to the Unicode Technical Standard #10 Collation Order49.

48

 http://www.unicode.org/unicode/reports/tr15/

49
 http://www.unicode.org/unicode/reports/tr10/

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 309/420

11.4.8.3 tModel Definition
This tModel is a find qualifier that is used to enable sorting of UDDI inquiry results based on
the Unicode Technical Standard 10 Collation Order on elements normalized according to
Unicode Normalization Form C. When this tModel is referenced in a find qualifier, a sort is
performed according to the Default Unicode Collation Element Table in conjunction with
Unicode Collation Algorithm50 on the name field, normalized using Unicode Normalization
Form C. This qualifier conflicts with any other find qualifier of the sortOrder type, such as
uddi.org:binarySort:

Name: uddi-org:UTS-10

Short name: UTS-10

Description: UDDI Unicode Technical Standard #10 sort collation
sequence find qualifier

UDDI Key (V3): uddi:uddi.org:sortorder:uts-10

Derived V1,V2 format key: uuid:d93662bc-d3f5-3aab-8245-70bafc3b00dd

Categorization: sortOrder, findQualifier

Support: Recommended

11.4.8.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:sortorder:uts-10">
 <name>uddi-org:UTS-10</name>
 <description>UDDI Unicode Technical Standard #10 sort
 collation sequence find qualifier
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#UCASort
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:sortOrder"
 keyValue="sortOrder"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

50

 http://www.unicode.org/unicode/reports/tr10/

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 310/420

11.4.8.4 Example of Use
The following represents a typical inquiry that references the Unicode Technical Standard #10
sortOrder find qualifier tModel. This example finds businesses or their contained
businessService or bindingTemplate structures that are categorized with any value using the
‘tempuri-org:CustomerType’ value set. The businessEntity structures so found are sorted first
by name and for those that share a common name, by date, using the Unicode Technical
Standard #10 collation sequence.

<find_business xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:sortorder:uts-10
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:sortbydatedesc
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:sortbynameasc
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:combinecategorybags
 </findQualifier>
 </findQualifiers>
 <categoryBag>
 <keyedReference keyValue="%"
 keyName="tempuri-org:CustomerType"
 tModelKey="uddi:uddi.org:categorization:general_keywords"/>
 </categoryBag>
</find_business>

11.4.9 UDDI Case Insensitive Sort Find Qualifier

11.4.9.1 Introduction
The Case Insensitive Sort find qualifier directs that the result set be sorted without regard to
case, using the collation sequence specified.

11.4.9.2 Design Goals
The purpose of the Case Insensitive Sort find qualifier is to provide a means for requesting the
results to be sorted without regard to case. For result set elements that have names, this find
qualifier uses the sorting sequence in effect, but without regard to case, sorting on the first
name element contained in each result element.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 311/420

11.4.9.3 tModel Definition
This tModel is a find qualifier that is used to enable ordering of UDDI inquiry results using the
collation sequence find qualifier in effect, but without regard to case. This sort qualifier is
applied prior to any truncation of result sets and is only applicable to inquiries that return a
name element in the top-most detail level of the result set. This qualifier conflicts with the uddi-
org:binarySort and the uddi-org:caseSensitiveSort sort qualifiers. When a sort qualifier is also
provided for the Date (uddi-org:sortByDateAsc or uddi-org:sortByDateDesc), the sort is first
performed on the name fields. Results that share the same name are then sorted by date.

Name: uddi-org: caseInsensitiveSort

Short name: caseInsensitiveSort

Description: UDDI sort qualifier used to sort results without regard to
case

UDDI Key (V3): uddi:uddi.org:findqualifier:caseinsensitivesort

Derived V1,V2 format key: uuid:9240a18a-915c-3352-9112-55b3c1b2aa7f

Categorization: findQualifier

Support: Mandatory

11.4.9.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:findqualifier:caseinsensitivesort">
 <name>uddi-org:caseInsensitiveSort</name>
 <description>UDDI sort qualifier used to sort results without
 regard to case</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#caseInsensSort
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 312/420

11.4.9.4 Example of Use
The following represents a typical inquiry that references the Case Insensitive Sort sort
qualifier tModel. This inquiry seeks businesses that have Web service bindings that implement
a RosettaNet interface and sorts the businesses returned using the Unicode Technical
Standard #10 collation sequence but without regard to case.

<find_business xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:caseinsensitivesort
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:sortorder:uts-10
 </findQualifier>
 </findQualifiers>
 <!--find businesses that have bindings that reference
 the RosettaNet tModels -->
 <find_tModel>
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:caseinsensitivematch
 </findQualifier>
 </findQualifiers>
 <name>Rosetta%</name>
 </find_tModel>
</find_business>

11.4.10 UDDI Case Sensitive Sort Find Qualifier

11.4.10.1 Introduction
The Case Sensitive Sort find qualifier directs that the result set be sorted according to case,
using the collation sequence specified.

11.4.10.2 Design Goals
The Case Sensitive Sort find qualifier tModel is the implied default for sorting. It is provided to
allow explicit specification of the case sensitivity criterion for the inquiry sorting function.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 313/420

11.4.10.3 tModel Definition
This tModel is a find qualifier that is used to enable ordering of UDDI inquiry results using the
collation sequence find qualifier in effect, taking case into consideration. This sort qualifier is
applied prior to any truncation of result sets and is only applicable to inquiries that return a
name element in the top-most detail level of the result set. This qualifier conflicts with the uddi-
org:caseInsensitiveSort sort qualifier. When a sort qualifier is also provided for the Date (uddi-
org:sortByDateAsc or uddi-org:sortByDateDesc), the sort is first performed on the name fields.
Results that share the same name are then sorted by date.

Name: uddi-org: caseSensitiveSort

Short name: caseSensitiveSort

Description: UDDI sort qualifier used to sort results considering case

UDDI Key (V3): uddi:uddi.org:findqualifier:casesensitivesort

Derived V1,V2 format key: uuid:437df974-faba-3428-a59e-d1550d4494a9

Categorization: sortOrder, findQualifier

Support: Mandatory, default

11.4.10.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:findqualifier:casesensitivesort">
 <name>uddi-org:caseSensitiveSort</name>
 <description>UDDI sort qualifier used to sort results using
 case sensitivity</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#caseSensSort
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:sortOrder"
 keyValue="sortOrder"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 314/420

11.4.10.4 Example of Use
The following represents a typical inquiry that references the Case Sensitive Sort sort qualifier
tModel. This inquiry seeks businesses that have Web service bindings that implement a
RosettaNet interface and sorts the businesses returned using the Unicode Technical Standard
#10 collation sequence according to case. Note that because case sensitive sorting is the
default for inquiry functions, specification of this find qualifier is not necessary.

<find_business xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:casesensitivesort
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:sortorder:uts-10
 </findQualifier>
 </findQualifiers>
 <!--find businesses that have bindings that reference
 the RosettaNet tModels -->
 <find_tModel>
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:caseinsensitivematch
 </findQualifier>
 </findQualifiers>
 <name>Rosetta%</name>
 </find_tModel>
</find_business>

11.4.11 UDDI Sort By Name Ascending Find Qualifier

11.4.11.1 Introduction
The Sort By Name Ascending find qualifier directs that the result set be sorted by name in
ascending sequence using the collation sequence specified.

11.4.11.2 Design Goals
The purpose of the Sort By Name Ascending find qualifier is to provide a means for requesting
the field (name) and directionality (ascending) with which the results are sorted. For result set
elements that have names this find qualifier captures the sorting sequence in effect, sorting on
the first (known as the primary) name element contained in each result element.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 315/420

11.4.11.3 tModel Definition
This tModel is a find qualifier that is used to enable ordering of UDDI inquiry results using the
name element from a UDDI core data structure, in an ascending sequence, as described by
the collation sequence find qualifier in effect. This sort qualifier is applied prior to any truncation
of result sets and is only applicable to inquiries that return a name element in the top-most
detail level of the result set. When no conflicting sort qualifier is specified, this is the default sort
ordering behavior. This qualifier conflicts with the Sort By Name Descending sort qualifier.
When a sort qualifier is also provided for the Date (uddi-org:sortByDateAsc or uddi-
org:sortByDateDesc), the sort is first performed on the name fields. Results that share the
same name are then sorted by date.

Name: uddi-org:sortByNameAsc

Short name: sortByNameAsc

Description: UDDI sort qualifier used to sort results by name in
ascending order

UDDI Key (V3): uddi:uddi.org:findqualifier:sortbynameasc

Derived V1,V2 format key: uuid:8f0381c5-ef3e-3d0b-8483-5d7f480560a7

Categorization: findQualifier

Support: Mandatory, default

11.4.11.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:findqualifier:sortbynameasc">
 <name>uddi-org:sortByNameAsc</name>
 <description>UDDI sort qualifier used to sort results by name
 in ascending order</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#nameAsc
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 316/420

11.4.11.4 Example of Use
The following represents a typical inquiry that references the Sort By Name Ascending sort
qualifier tModel. This inquiry seeks businesses that have Web service bindings that implement
a fixed interface or a RosettaNet interface and sort the businesses returned by name in
ascending sequence using the Unicode Technical Standard #10 collation sequence.

<find_business xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:sortbynameasc
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:sortorder:uts-10
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:orallkeys
 </findQualifier>
 </findQualifiers>
 <!--find businesses that have bindings that reference
 this fixed tModel -->
 <tModelBag>
 <tModelKey>uddi:some.specific.example:tmodelkey</tModelKey>
 </tModelBag>
 <!--OR one of the RosettaNet tModels -->
 <find_tModel xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:caseinsensitivematch
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:sortorder:uts-10
 </findQualifier>
 </findQualifiers>
 <name>Rosetta%</name>
 </find_tModel>
</find_business>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 317/420

11.4.12 UDDI Sort By Name Descending Find Qualifier

11.4.12.1 Introduction
The Sort By Name Descending find qualifier directs that the result set be sorted by name in
descending order using the collation sequence specified.

11.4.12.2 Design Goals
The purpose of the Sort By Name Descending find qualifier is to provide a means for
requesting the field (name) and directionality (descending) with which the results are sorted.
For result set elements that have names this find qualifier overrides the default directionality to
enable sorting on the first (known as the primary) name element contained in each result
element, in a descending order.

11.4.12.3 tModel Definition
This tModel is a find qualifier that is used to enable ordering of UDDI inquiry results using the
name element in each result, in a descending sequence, as described by the collation
sequence find qualifier in effect. This sort qualifier is applied prior to any truncation of result
sets and is only applicable to inquiries that return a name element in the top-most detail level
of the result set. This qualifier conflicts with the Sort By Name Ascending sort qualifier. When a
sort qualifier is also provided for the Date (uddi-org:sortByDateAsc or uddi-
org:sortByDateDesc), the sort is first performed on the name fields. Results that share the
same name are then sorted by date.

Name: uddi-org:sortByNameDesc

Short name: sortByNameDesc

Description: UDDI sort qualifier used to sort results by name in
descending order

UDDI Key (V3): uddi:uddi.org:findqualifier:sortbynamedesc

Derived V1,V2 format key: uuid:fa909d90-0589-3c55-bdd9-94e9bafd7e97

Categorization: findQualifier

Support: Mandatory

11.4.12.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:findqualifier:sortbynamedesc">
 <name>uddi-org:sortByNameDesc</name>
 <description>UDDI sort qualifier used to sort results by
 name in descending order</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#nameDesc
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 318/420

 </categoryBag>
</tModel>

11.4.12.4 Example of Use
The following represents a typical inquiry that references the Sort By Name Descending sort
qualifier tModel. This inquiry seeks businesses that have Web service bindings for any WSDL-
based Web Service related to Transporting goods. The businesses that are discovered are
then sorted by name in descending sequence using the Unicode Technical Standard #10
collation sequence.

<find_business xmlns="urn:uddi-org:api_v3">
 <!--find businesses that have WSDL-based bindings related
 to Transporting Goods -->
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:sortbynamedesc
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:sortorder:uts-10
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:orallkeys
 </findQualifier>
 </findQualifiers>
 <!-- discover tModels that are of the WSDL type and related
 to Transporting Goods -->
 <find_tModel xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:orlikekeys
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:sortorder:uts-10
 </findQualifier>
 </findQualifiers>
 <categoryBag>
 <keyedReference keyValue="wsdlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyValue="78%"
 tModelKey="uddi:uddi.org:ubr:categorization:unspsc"/>
 </categoryBag>
 </find_tModel>
</find_business>

First tModels of the WSDL type and are related to the Transporting Goods product category
are discovered and sorted by the tModel name using the UTS-10 sort order. Then the
businesses that have bindingTemplate structures that reference any of the discovered tModels
are located. The resulting businesses are sorted by the name of the business in descending
sequence.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 319/420

11.4.13 UDDI Sort By Date Ascending Find Qualifier

11.4.13.1 Introduction
The Sort By Date Ascending find qualifier directs that the result set be sorted by the last date
updated in ascending chronological order (earliest changes first) using the collation sequence
specified.

11.4.13.2 Design Goals
The purpose of the Sort By Date Ascending find qualifier is to provide a means for requesting
the field (last date modified) and directionality (earliest to most recent) with which the results
are sorted. When this is the only sort order find qualifier specified, this find qualifier specifies
sorting on the date the last update took place on each result. When a find qualifier to sort by
name is also included for those result sets that contain name elements in their results, this find
qualifier enables results that share a common name to be sorted by date.

11.4.13.3 tModel Definition
This tModel is a find qualifier that is used to enable ordering of UDDI inquiry results using the
date last updated in each result, in an ascending sequence. See Section 3.8 operationalInfo
Structure for more information about the date last updated. This sort qualifier is applied prior to
any truncation of result sets. When the top most detail element in the result set does not
contain a name element and there is no sort qualifier specified, the sort ordering behavior as
defined by this find qualifier is the default sort ordering behavior. This qualifier conflicts with the
Sort By Date Descending sort qualifier. Sort qualifiers involving date are secondary in
precedence to the sortByName* qualifiers. Used in conjunction with one of the sortByName*
qualifiers, this sort qualifier causes results to be sorted within name by date, oldest to newest.

Name: uddi-org:sortByDateAsc

Short name: sortByDateAsc

Description: UDDI sort qualifier used to sort results by the last date
updated in ascending order

UDDI Key (V3): uddi:uddi.org:findqualifier:sortbydateasc

Derived V1,V2 format key: uuid:6a5b9207-8b01-35ed-ac8e-b6502c92fc4b

Categorization: findQualifier

Support: Mandatory

11.4.13.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:findqualifier:sortbydateasc">
 <name>uddi-org:sortByDateAsc</name>
 <description>UDDI sort qualifier used to sort results by date in
 ascending order</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#dateAsc
 </overviewURL>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 320/420

 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.4.13.4 Example of Use
The following represents a typical inquiry that references the Sort By Date Ascending sort
qualifier tModel. All branches of some_company are discovered. This intersection of this set
of businesses with businesses that are located in California is then sorted by date, oldest to
newest.

<find_business xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:sortbydateasc
 </findQualifier>
 </findQualifiers>
 <!--Find branches of some_company that are located in
 California -->
 <categoryBag>
 <keyedReference keyValue="US-CA"
 tModelKey="uddi:uddi.org:ubr:categorization:iso3166:
 business_location"/>
 </categoryBag>
 <find_relatedBusinesses xmlns="urn:uddi-org:api_v3">
 <fromKey>uddi:some_company:main_business</fromKey>
 <keyedReference keyValue="parent-child"
 keyName="branch"
 tModelKey="uddi:uddi.org:ubr:relationships"/>
 </find_relatedBusinesses>
</find_business>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 321/420

11.4.14 UDDI Sort By Date Descending Find Qualifier

11.4.14.1 Introduction
The Sort By Date Descending find qualifier directs that the result set be sorted by the last date
updated in descending chronological order (most recent changes first) using the collation
sequence specified.

11.4.14.2 Design Goals
The purpose of the Sort By Date Descending find qualifier is to provide a means for requesting
the field and directionality with which the results are sorted. This find qualifier specifies sorting
on the date the last update took place on the element in descending order (newest to oldest).
When a find qualifier to sort by name is also included for those result sets that contain name
elements in their results, this find qualifier enables results that share a common name to be
sorted by date.

11.4.14.3 tModel Definition
This tModel is a find qualifier that is used to enable ordering of UDDI inquiry results using the
date last updated for each result, in a descending sequence. See Section 3.8 operationalInfo
Structure for more information about the date last updated. This sort qualifier is applied prior to
any truncation of result sets. This qualifier conflicts with the Sort By Date Ascending sort
qualifier. Sort qualifiers involving date are secondary in precedence to the sortByName
qualifiers. Used in conjunction with one of the sortByName qualifiers, this sort qualifier causes
results to be sorted within name by date, newest to oldest.

Name: uddi-org:sortByDateDesc

Short name: sortByDateDesc

Description: UDDI sort qualifier used to sort results by the date
last updated in descending order

UDDI Key (V3): uddi:uddi.org:findqualifier:sortbydatedesc

Derived V1,V2 format key: uuid:d325de47-150c-3446-a646-b43fbeaf6905

Categorization: findQualifier

Support: Mandatory

11.4.14.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:findqualifier:sortbydatedesc">
 <name>uddi-org:sortByDateDesc</name>
 <description>UDDI sort qualifier used to sort results
 by date in descending order</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#dateDesc
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:findQualifier"

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 322/420

 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.4.14.4 Example of Use
The following represents a typical inquiry that references the Sort By Date Descending sort
qualifier tModel. This inquiry locates all of the approved value set validation Web services
when the registry follows the recommended policy and sorts the tModels with the most recent
ones first.

<find_business xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:sortbydatedesc
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:orallkeys
 </findQualifier>
 </findQualifiers>
 <!-- find approved validation services within the registry's node
 businessEntities -->
 <tModelBag>
 <tModelKey>uddi:uddi.org:v3_checkedvalueset</tModelKey>
 </tModelBag>
 <identifierBag>
 <keyedReference keyValue="%"
 tModelKey="uddi:uddi.org:identifier:nodes"/>
 </identifierBag>
</find_business>

Node Business Entity elements are discovered that contain one or more descendent
bindingTemplate elements that implement the validate_values API. These businesses are
then sorted by date in descending sequence.

11.4.15 UDDI And All Keys Find Qualifier

11.4.15.1 Introduction
The And All Keys find qualifier directs that a logical AND be performed on any bag contents
prior to performing the specified search.

11.4.15.2 Design Goals
The design goal of the And All Keys find qualifier is to provide a means for finding entities that
have all of the values specified, without regard to the value set that they are associated with.
For some bags this find qualifier merely enforces default behavior (categoryBag and
tModelBag). For identifierBags, this find qualifier overrides the default behavior.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 323/420

11.4.15.3 tModel Definition
This tModel is referenced by a find qualifier in a UDDI inquiry API to AND the keys in
identifierBag, categoryBag, and/or tModelBag prior to performing the actual search for results.
Using this find qualifier tModel does not change the treatment of categoryBag or tModelBag
contents because ANDing their bag contents is default behavior.

This find qualifier cannot be used with the uddi-org:orAllKeys or uddi-org:orLikeKeys find
qualifier. The set of values that would result from use of a wildcard in a keyValue are always
implicitly OR'd together independent of and after application of this wildcard. This allows an
inquiry of the form ‘find businesses with services in Georgia that relate to transporting goods’,
where Georgia would be specified as an explicit keyValue from a geographic value set and
transporting goods would be specified using a partial value with a wildcard from a product and
services value set.:

Name: uddi-org:andAllKeys

Short name: andAllKeys

Description: UDDI find qualifier used to request that a logical AND
be performed on bag contents prior to a search.

UDDI Key (V3): uddi:uddi.org:findqualifier:andallkeys

Derived V1,V2 format key: uuid:c2ec3b53-7bac-3f59-b313-61882e417cde

Categorization: findQualifier

Support: Mandatory

11.4.15.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:findqualifier:andallkeys">
 <name>uddi-org:andAllKeys</name>
 <description>UDDI find qualifier used to request that a
 logical AND be performed on bag contents
 prior to a search</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#andAll
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 324/420

11.4.15.4 Example of Use
The following represents a typical inquiry that references the And All Keys find qualifier tModel.
This inquiry locates the tModels that are owned by some_company and which have a D-U-N-
S® identity.

<find_business xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:andallkeys
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 </findQualifiers>
 <identifierBag>
 <keyedReference keyValue="uddi:some_company:main_business"
 tModelKey="uddi:uddi.org:ubr:identifier:owningbusiness"/>
 <keyedReference keyValue="%"
 tModelKey="uddi:uddi.org:ubr:identifier:dnb.com:d-u-n-s"/>
 </identifierBag>
</find_business>

11.4.16 UDDI Or All Keys Find Qualifier

11.4.16.1 Introduction
The Or All Keys find qualifier directs that a logical OR be performed on any bag contents prior
to performing the specified search.

11.4.16.2 Design Goals
The design goal of the Or All Keys find qualifier is to provide a means for finding entities that
reference any one of a set of values, without regard to the value set that they are associated
with. For some bags this find qualifier merely enforces default behavior (identifierBag). For
categoryBags and tModelBags, this find qualifier overrides the default behavior.

11.4.16.3 tModel Definition
This tModel is referenced by a find qualifier in a UDDI inquiry API to OR the keys in
identifierBag, categoryBag, and/or tModelBag prior to performing the actual search for results.
Using this find qualifier tModel does not change the treatment of identifierBag contents
because ORing the contents of this bag is default behavior. This find qualifier cannot be used
with the uddi-org:andAllKeys or uddi-org:orLikeKeys find qualifiers.

Name: uddi-org:orAllKeys

Short name: orAllKeys

Description: UDDI find qualifier used to request that a logical OR be
performed on bag contents prior to a search.

UDDI Key (V3): uddi:uddi.org:findqualifier:orallkeys

Derived V1,V2 format key: uuid:f5f07764-50ac-378e-9fdd-a42a87329838

Categorization: findQualifier

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 325/420

Support: Mandatory

11.4.16.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:findqualifier:orallkeys">
 <name>uddi-org:orAllKeys</name>
 <description>UDDI find qualifier used to request that a
 logical OR be performed on bag contents
 prior to a search</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#orAll
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.4.16.4 Example of Use
The following represents a typical inquiry that references the Or All Keys find qualifier tModel.
All businesses that are themselves categorized or contain descendents that are categorized in
some way as ‘Witch-doctors or voodoo services’ are returned. The Or All Keys find qualifier is
used to find references to this product category as native references, or as a part of some
group of references.

<find_business xmlns="urn:uddi-org:api_v3">
 <!--Find Businesses or their services that are categorized
 in some way as Witch-doctors or voodoo services -->
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:orallkeys
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:combinecategorybags
 </findQualifier>
 </findQualifiers>
 <categoryBag>
 <keyedReference keyValue="85.14.15.01.00"
 tModelKey="uddi:uddi.org:ubr:categorization:unspsc"/>
 <keyedReferenceGroup
 tModelKey="uddi:uddi.org:ubr:categorizationgroup:
 iso3166_unspsc">
 <keyedReference keyValue="85.14.15.01.00"
 tModelKey="uddi:uddi.org:ubr:categorization:unspsc"/>
 </keyedReferenceGroup>
 </categoryBag>
</find_business>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 326/420

11.4.17 UDDI Or Like Keys Find Qualifier

11.4.17.1 Introduction
The Or Like Keys find qualifier directs that a logical OR be performed on any bag contents that
share the same value set, as specified by the tModelKeys, and an AND be perform between
designated value sets prior to performing the specified search.

11.4.17.2 Design Goals
The design goal of the Or Like Keys find qualifier is to provide a means for finding entities that
have at least one of the designated values from each of value sets referenced. This find
qualifier allows entities to be discovered that have been described with different levels of
specificity in their categoryBags and identifierBags.

11.4.17.3 tModel Definition
This tModel is referenced by a find qualifier in a UDDI inquiry API to OR the keys in
categoryBag, and/or identifierBags that are from the same value set, and AND the referenced
value sets prior to performing the actual search for results (i.e., one of the values A, B, or C
from value set V1 AND one of the values X, Y, or Z form value set V2). The behavior of
keyedReferenceGroups is analogous to that of keyedReferences, that is,
keyedReferenceGroups that have the same tModelKey value are OR'd together rather than
AND'd. This find qualifier conflicts with the uddi-org:andAllKeys and uddi-org:orAllKeys find
qualifiers:

Name: uddi-org:orLikeKeys

Short name: orLikeKeys

Description: UDDI find qualifier used to find entities that reference
one of the values from each referenced value set.

UDDI Key (V3): uddi:uddi.org:findqualifier:orlikekeys

Derived V1,V2 format key: uuid:ba01e855-5234-3d88-a84e-b878e37b505c

Categorization: findQualifier

Support: Mandatory

11.4.17.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:findqualifier:orlikekeys">
 <name>uddi-org:orLikeKeys</name>
 <description>UDDI find qualifier used to find entities
 that reference one of the values from each
 referenced value set</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#orLike
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 327/420

 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.4.17.4 Example of Use
The following represents a typical inquiry that references the Or Like Keys find qualifier tModel.
This example seeks bridal clothing (Tuxedo or formal wear (mens) or Evening or bridal gown
(womens)) rental stores (clothing stores) that serve California.

<find_business xmlns="urn:uddi-org:api_v3">
 <!--Find clothing stores that serve California which
 offer rental of wedding attire. This is represented
 in an industry, a service location, and two product
 and services categorizations. The inquiry is
 characterized as serves California AND is any clothing
 store AND rents Tuxedos OR bridal gowns.-->
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:orlikekeys
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:combinecategorybags
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 </findQualifiers>
 <categoryBag>
 <!--Any kind of clothing store -->
 <keyedReference keyValue="7810%"
 tModelKey="uddi:uddi.org:ubr:categorization:naics:1997"/>
 <!--Tuxedo or formal wear rental -->
 <keyedReference keyValue="91.10.18.01.00"
 tModelKey="uddi:uddi.org:ubr:categorization:unspsc"/>
 <!--Evening or bridal gown or dress rental -->
 <keyedReference keyValue="91.10.18.02.00"
 tModelKey="uddi:uddi.org:ubr:categorization:unspsc"/>
 <!--Serving California, USA -->
 <keyedReference keyValue="US-CA"
 tModelKey="uddi:uddi.org:ubr:categorization:iso3166"/>
 </categoryBag>
</find_business>

This example finds clothing stores that serve California which offer rental of wedding attire.
This is represented using an industry categorization, a service location categorization, and two
product and services categorizations. The inquiry is characterized using the categoryBag
contents and the OrLikeKeys findQualifier as

• is any clothing store AND

• rents tuxedos OR bridal gowns AND

• serves California.

Because the ‘Tuxedo or formal wear rental’ and the ‘Evening or bridal gown or dress rental’
keyedReference elements are from the same value set as described by their tModelKeys, the
OrLikeKeys find qualifier allows businesses to be found that reference either of these product
categorizations.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 328/420

11.4.18 UDDI Combine Category Bags Find Qualifier

11.4.18.1 Introduction
The Combine Category Bags find qualifier, applied to the find_business inquiry, combines the
categoryBag contents of each businessEntity with those of its businessService structures to
enable discovery based on categorization that is independent of where the publishers placed
such categorizations.

11.4.18.2 Design Goals
The design goal of the Combine Category Bags find qualifier is to provide a means for finding
entities without regard to placement of the categoryBags in the published entities. This find
qualifier enables inquiries involving categorization to be successful independent of the
modeling styles of the publishers. Some publishers may place certain categorizations at the
business level, such as those related to the industries that their businesses operate in, and
place others at the service level (product and service, for example). Inquirers may not care
whether the categorization is at the business level or the service level. This find qualifier
enables such inquiries.

11.4.18.3 tModel Definition
This tModel is referenced by a find qualifier in a UDDI find_business inquiry API to treat the
categoryBag contents of businessEntity structures and contained businessService structures
as one. Searching for a category will yield a positive match on a registered business if any of
the categoryBag elements contained within the businessEntity element or any of its contained
or referenced businessService elements contains the filter criteria.

This find qualifier overrides the default behavior of find_business which performs matching on
categoryBags on the businessEntity structures themselves by instead performing matching on
categoryBags associated with contained businessService structures as well as the
businessEntity structures. The uddi-org:serviceSubset and uddi-org:bindingSubset find
qualifiers conflict with this one.

Name: uddi-org:combineCategoryBags

Short name: combineCategoryBags

Description: UDDI find qualifier used to treat all of the categoryBags
within a businessEntity as if they were one during an
inquiry.

UDDI Key (V3): uddi:uddi.org:findqualifier:combinecategorybags

Derived V1,V2 format key: uuid:58da61de-bd1e-3ea9-8796-2ec4bfcc15fc

Categorization: findQualifier

Support: Mandatory

11.4.18.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:findqualifier:combinecategorybags">

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 329/420

 <name>uddi-org:combineCategoryBags</name>
 <description>UDDI find qualifier used to treat all of the
 categoryBags within a businessEntity as if
 they were one during inquiry</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#combineCatBags
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.4.18.4 Example of Use
The following represents a typical inquiry that references the Combine Category Bags find
qualifier tModel. This example is used to locate businesses that are categorized as ‘computer
facilities management services’ or that have descendents that are so categorized.

<find_business xmlns="urn:uddi-org:api_v3">
 <!--Find computer facilities management services -->
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:combinecategorybags
 </findQualifier>
 </findQualifiers>
 <categoryBag>
 <keyedReference keyValue="541513"
 tModelKey="uddi:uddi.org:ubr:categorization:naics:1997"/>
 </categoryBag>
</find_business>

11.4.19 UDDI Service Subset Find Qualifier

11.4.19.1 Introduction
The Service Subset find qualifier, applied to the find_business inquiry, causes only
categoryBags on contained businessService structures to be inspected. The categoryBags on
businessEntity structures themselves are ignored.

11.4.19.2 Design Goals
Publishers often categorize their business services with the industries, products, service types
and geographical service areas that apply specifically to the described services, and
categorize the containing businessEntity structures with supersets of categorizations from the
contained businessService structures. The design goal of the Service Subset find qualifier is to
provide a means for finding business services using categorization using the find_business
inquiry API, omitting those businessEntity structures that may offer the kinds of services, but
which have not specifically identified them as meeting the specified needs.

11.4.19.3 tModel Definition
This tModel is referenced by a find qualifier in a UDDI find_business inquiry API to ignore the
categoryBag contents of businessEntity structures and inspect only the categoryBags of
contained businessService structures. Searching with a category yields a match on a
registered business if any of the categoryBag elements associated with contained
businessService structures contain the search category.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 330/420

This find qualifier overrides the default behavior of find_business which performs matching on
categoryBags on the businessEntity structures themselves. The uddi-
org:combineCategoryBags and uddi-org:bindingSubset find qualifiers conflict with this one.

Name: uddi-org:serviceSubset

Short name: serviceSubset

Description: UDDI find qualifier used to use categoryBags of
businessService elements to satisfy the find_business
inquiry.

UDDI Key (V3): uddi:uddi.org:findqualifier:servicesubset

Derived V1,V2 format key: uuid:55913724-e5ce-3188-9b73-4486f1ac7cd9

Categorization: findQualifier

Support: Mandatory

:

11.4.19.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:findqualifier:servicesubset">
 <name>uddi-org:serviceSubset</name>
 <description>UDDI find qualifier used to use categoryBags
 of businessService elements to satisfy the
 find_business inquiry.</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#servSubset
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 331/420

11.4.19.4 Example of Use
The following represents a typical inquiry that references the Service Subset find qualifier
tModel. This inquiry returns businessEntity elements that have descendent businessService
elements that are categorized with ‘Customer Computer Programming Services’ or ’Computer
Systems Design Services’ and which conform to some technical fingerprint.

<find_business xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:servicesubset
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:orallkeys
 </findQualifier>
 </findQualifiers>
 <tModelBag>
 <tModelKey>uddi:some.specific.example:tmodelkey</tModelKey>
 </tModelBag>
 <categoryBag>
 <keyedReference keyValue="541511"
 tModelKey="uddi:uddi.org:ubr:categorization:naics:1997"/>
 <keyedReference keyValue="541512"
 tModelKey="uddi:uddi.org:ubr:categorization:naics:1997"/>
 </categoryBag>
</find_business>

11.4.20 UDDI Binding Subset Find Qualifier

11.4.20.1 Introduction
The Binding Subset find qualifier, applied to the find_business and find_service inquiries,
cause only categoryBags on descendent bindingTemplate structures to be inspected. The
categoryBags on businessEntity and/or businessService elements themselves are ignored.

11.4.20.2 Design Goals
Publishers can categorize their bindingTemplate elements with categories to distinguish
between similar bindingTemplate structures. Such bindingTemplate structures may represent
the same Web service but for different audiences or may represent different levels of release,
for example. The design goal of the Binding Subset find qualifier is to provide a means for
finding businessEntity elements or businessService elements that have bindingTemplate
structures categorized in a particular way.

11.4.20.3 tModel Definition
This tModel is referenced as a find qualifier in a UDDI find_business or find_service inquiry API
to ignore the categoryBag contents of containing businessEntity and businessService
elements and inspect only the categoryBags of contained bindingTemplate elements.
Searching with a category yields a match on a registered business if any of the categoryBag
elements associated with contained bindingTemplate structures belong to the search category.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 332/420

This find qualifier overrides the default behavior of find_business which performs matching on
categoryBags on the businessEntity elements themselves, and of find_service which performs
matching on categoryBags on the businessService elements themselves. The uddi-
org:combineCategoryBags and uddi-org:serviceSubset find qualifiers conflict with this one.

Name: uddi-org:bindingSubset

Short name: bindingSubset

Description: UDDI find qualifier for specifying use of categoryBags of
bindingTemplate elements to satisfy the find_business or
find_service inquiries.

UDDI Key (V3): uddi:uddi.org:findqualifier:bindingsubset

Derived V1,V2 format key: uuid:81b2ec2b-e72e-31f6-8fce-7368a0d5a671

Categorization: findQualifier

Support: Mandatory

11.4.20.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:findqualifier:bindingsubset">
 <name>uddi-org:bindingSubset</name>
 <description>UDDI find qualifier for specifying use of
 categoryBags of bindingTempate elements to satisfy
 the find_business or find_service inquiries.
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#bindSubset
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </cagegoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 333/420

11.4.20.4 Example of Use
The following represents a typical inquiry that references the Binding Subset find qualifier
tModel. This inquiry returns businessEntity elements that have descendent bindingTemplate
elements that are categorized with the ‘Retail’ Customer Type and which conform to some
technical fingerprint.

<find_business xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:bindingsubset
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:caseinsensitivematch
 </findQualifier>
 </findQualifiers>
 <tModelBag>
 <tModelKey>uddi:some.specific.example:tmodelkey</tModelKey>
 </tModelBag>
 <categoryBag>
 <keyedReference keyValue="Retail"
 keyName="tempuri-org:CustomerType"
 tModelKey="uddi:uddi.org:categorization:general_keywords"/>
 </categoryBag>
</find_business>

11.4.21 UDDI Suppress Projected Services Find Qualifier

11.4.21.1 Introduction
The Suppress Projected Services find qualifier, applied to the find_business or find_service
inquiry, is used to exclude service projections from all matching comparisons and from the list
of serviceInfos included in businessInfos.

11.4.21.2 Design Goals
The design goal of the Suppress Projected Services find qualifier is to provide a means for
excluding projected services from appearing in result sets when such appearance is
unnecessary or ambiguous. When find_service is issued with no businessKey, this find
qualifier is implicitly in effect because without knowledge of the containing businessEntity,
service projections appear as exact duplicates of the services on which they project. This find
qualifier can be used to only include actual implementations of a service, excluding those that
just refer to these concrete implementations.

11.4.21.3 tModel Definition
This tModel is referenced by a find qualifier in a UDDI find_business or find_service inquiry API
to ignore service projections when performing the matching algorithm and when building the
serviceInfos to include in the result set. The behavior associated with this find qualifier is to
ignore service projections in all stages of the inquiry, as if they are not there at all.

When a UDDI inquiry couples this find qualifier with the use of tModelBags or the
serviceSubset find qualifier, empty outer elements (businessInfo for find_business; serviceInfo
for find_service) are excluded from the result set when the only qualifying entity corresponds to
a suppressed projected service.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 334/420

This find qualifier overrides the default behavior of find_business and find_service (when a
businessKey is provided).

Name: uddi-org:suppressProjectedServices

Short name: suppressProjectedServices

Description: UDDI find qualifier used to exclude service projections
from an inquiry function at all levels.

UDDI Key (V3): uddi:uddi.org:findqualifier:suppressprojectedservices

Derived V1,V2 format key: uuid:805e73a2-dcc0-3c1b-bfd8-66c5af40fc98

Categorization: findQualifier

Support: Mandatory

:

11.4.21.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:findqualifier:
 suppressProjectedServices">
 <name>uddi-org:suppressProjectedServices</name>
 <description>UDDI find qualifier used to exclude service
 projections from an inquiry function at all
 levels.</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#suppressProjSvcs
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.4.21.4 Example of Use
The following represents a typical inquiry that references the Suppress Projected Services find
qualifier tModel. The businesses that are the actual providers of a business service that
adheres to some technical fingerprint are returned. Other businesses that refer to such
businessService elements using service projections are excluded.

<find_business xmlns="urn:uddi-org:api_v3">
 <!--Find actual implementations of some technical
 interface -->
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:suppressprojectedservices
 </findQualifier>
 </findQualifiers>
 <tModelBag>
 <tModelKey>
 uddi:some.specific.example:tmodelkey
 </tModelKey>
 </tModelBag>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 335/420

</find_business>

11.4.22 UDDI Signature Present Find Qualifier

11.4.22.1 Introduction
The Signature Present find qualifier filters the result set to include only entities that are signed
or whose containing entities are signed.

11.4.22.2 Design Goals
The design goal of the Signature Present find qualifier is to provide a starting point for
establishing some confidence in the entities returned from an inquiry. Only elements that are
covered by XML Digital Signatures are returned. The actual signature(s) is obtained by
subsequent get_xx API calls and can be verified by the client.

11.4.22.3 tModel Definition
This tModel is referenced by a find qualifier in a UDDI inquiry API to only include UDDI entities
that have XML Digital Signatures or that are descendents of UDDI entities that have XML
Digital Signatures. To be returned, either the elements themselves must be signed, or at least
one of the elements that contain them must be signed. For example when the Signature
Present find qualifier is used with the find_business inquiry API, only businessEntity elements
that have an XML Digital Signature are returned. Similarly, when Signature Present is used
with the find_service inquiry API, only businessService elements that have an XML Digital
Signature or whose containing businessEntity elements have an XML Digital Signature are
returned.

The UDDI Inquiry API provides no verification associated with use of this find qualifier.

Name: uddi-org:signaturePresent

Short name: signaturePresent

Description: UDDI find qualifier used to return only entities that have
or are contained in entities that have XML Digital
Signatures.

UDDI Key (V3): uddi:uddi.org:findqualifier:signaturepresent

Derived V1,V2 format key: uuid:8a16ea11-6f8f-3085-a467-576f89f129c8

Categorization: findQualifier

Support: Mandatory

11.4.22.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:findqualifier:signaturepresent">
 <name>uddi-org:signaturePresent</name>
 <description>UDDI findQualifier used to return only entities
 that have or are contained in entities that have
 XML Digital Signatures.</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#sign
 </overviewURL>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 336/420

 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:findQualifier"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.4.22.4 Example of Use
The following represents a typical inquiry that references the Is Signed find qualifier tModel.

<find_business xmlns="urn:uddi-org:api_v3">
 <tModelBag>
 <tModelKey>
 uddi:some.specific.example:tmodelkey
 </tModelKey>
 </tModelBag>
 <find_relatedBusinesses xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:signaturepresent
 </findQualifier>
 </findQualifiers>
 <fromKey>
 uddi:some_trust_certifier.example:main_business
 </fromKey>
 </find_relatedBusinesses>
</find_business>

This example performs a two phase inquiry. First, businesses that have a signed a
relationship with some_trust_certifier are located using the embedded find_relatedBusinesses.
An intersection is built between this set of businesses and the businesses that offer Web
services compliant with the technical fingerprint captured in the tModelBag. Note that there is
no verification that the signatures associated with the returned relationships is valid prior to
obtaining businesses that have Web services that satisfy the technical fingerprint part of the
inquiry.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 337/420

11.5 Other Canonical tModels
The following tModels round out the set of tModels UDDI registries MUST contain.

There are other tModels, beyond those listed here, which are defined to help classify elements
within leading industry encoding schemes and standard protocols. These other tModels are
maintained by the UDDI Business Registry and the list is expected to expand as appropriate
as this registry expands. See the UDDI Business Registry for these tModels.

11.5.1 Domain Key Generator for the UDDI Domain

11.5.1.1 Introduction
For UDDI tModels to have publisher assigned keys, a key generator tModel for the UDDI
domain must be registered and owned by UDDI itself. Ownership of such a domain key
generator tModel allows UDDI owned entities, such as tModels, to have keys derived from the
UDDI domain. All tModels contain in this chapter have such keys. This tModel establishes the
UDDI key generator domain. Other publishers that wish to provide their own keys for UDDI
core entities must similarly register their own domain key generator tModels.

11.5.1.2 Design Goals
The design goal for the UDDI Domain Key Generator tModel is to establish a key generator
domain within a UDDI registry that allows UDDI to publish its canonical tModels. All other
tModels described in this document have keys derived from the key generator domain
established by this tModel.

11.5.1.3 tModel Definition

Name: uddi-org:keyGenerator

Description: UDDI domain key generator

UDDI Key (V3): uddi:uddi.org:keygenerator

Derived V1,V2 format key: uuid:dfd2e89d-59c1-3921-822c-da6a8f6ef57e

Categorization: keyGenerator

11.5.1.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:keygenerator" xmlns="urn:uddi-org:api_v3">
 <name>uddi-org:keyGenerator</name>
 <description>UDDI domain key generator</description>
 <overviewDoc>
 <overviewURL
useType="text">http://uddi.org/pubs/uddi_v3.htm#keyGen</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference tModelKey="uddi:uddi.org:categorization:types"
keyName="uddi-org:types:keyGenerator" keyValue="keyGenerator"/>
 </categoryBag>
 <n0:Signature xmlns:n0="http://www.w3.org/2000/09/xmldsig#">
 <n0:SignedInfo>
 <n0:CanonicalizationMethod Algorithm="urn:uddi-
org:schemaCentricC14N:2002-07-10"/>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 338/420

 <n0:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-
sha1"/>
 <n0:Reference URI="">
 <n0:Transforms>
 <n0:Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 <n0:Transform Algorithm="urn:uddi-org:schemaCentricC14N:2002-
07-10"/>
 </n0:Transforms>
 <n0:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <n0:DigestValue>LeutnHMMoAlgmZB2O+CA0gGRYOg=</n0:DigestValue>
 </n0:Reference>
 </n0:SignedInfo>

 <n0:SignatureValue>HqO3W3y3Sol8PxR6Eus1VGxrCB+mVj9A9+zWs4YbQZWU/mIGhfR2WelT67QP
spCm4LqUu1sijKI3crhYlsV1gmdFjeSQQi9ZdgIjkkKPNprW8GMqDAGc0Fl+iYFlnm80Dw5Pf7OhjR9P4S9rJaU
C4PiKjc3hNBUH4hFER++Elzw=</n0:SignatureValue>
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <KeyValue>
 <RSAKeyValue>

 <Modulus>k0b36DMw/GfWHOA7u0kFSlH5CkYkyKs84jss2frIRRiJnH84cjVwAatm/HwGEhP5A0Dxis
4I1ZMmA85Pni+awoWHeqZEjgwmCQCRg+hM+jR1sduzsP1LOjDXre7obetIh/OHXzi/4Rb9Sx4sWBtMhwlsLMbB0
aj05PiGQuwgvgE=</Modulus>
 <Exponent>AQAB</Exponent>
 </RSAKeyValue>
 </KeyValue>
 <X509Data>
 <X509IssuerSerial>
 <X509IssuerName>OU=Secure Server Certification Authority,O=RSA
Data Security\, Inc.,C=US</X509IssuerName>

 <X509SerialNumber>167897432056789938398776780754668806215</X509SerialNumber>
 </X509IssuerSerial>
 <X509SubjectName>CN=uddi.org,OU=OASIS UDDI Specification TC,O=OASIS
Open,L=Billerica,ST=Massachusetts,C=US</X509SubjectName>
<X509Certificate>MIID0jCCAz+gAwIBAgIQfk/eg8kf2LIWOlLE/xzgRzANBgkqhkiG9w0BAQUFADBfMQswCQ
YDVQQGEwJVUzEgMB4GA1UEChMXUlNBIERhdGEgU2VjdXJpdHksIEluYy4xLjAsBgNVBAsTJVNlY3VyZSBTZXJ2Z
XIgQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkwHhcNMDQxMTA0MDAwMDAwWhcNMDUxMTA0MjM1OTU5WjCBhzELMAkG
A1UEBhMCVVMxFjAUBgNVBAgTDU1hc3NhY2h1c2V0dHMxEjAQBgNVBAcUCUJpbGxlcmljYTETMBEGA1UEChQKT0F
TSVMgT3BlbjEkMCIGA1UECxQbT0FTSVMgVURESSBTcGVjaWZpY2F0aW9uIFRDMREwDwYDVQQDFAh1ZGRpLm9yZz
CBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAk0b36DMw/GfWHOA7u0kFSlH5CkYkyKs84jss2frIRRiJnH84c
jVwAatm/HwGEhP5A0Dxis4I1ZMmA85Pni+awoWHeqZEjgwmCQCRg+hM+jR1sduzsP1LOjDXre7obetIh/OHXzi/
4Rb9Sx4sWBtMhwlsLMbB0aj05PiGQuwgvgECAwEAAaOCAWgwggFkMAkGA1UdEwQCMAAwCwYDVR0PBAQDAgWgMEA
GA1UdHwQ5MDcwNaAzoDGGL2h0dHA6Ly9TVlJTZWN1cmUtY3JsLnZlcmlzaWduLmNvbS9TVlJTZWN1cmUuY3JsME
QGA1UdIAQ9MDswOQYLYIZIAYb4RQEHFwMwKjAoBggrBgEFBQcCARYcaHR0cHM6Ly93d3cudmVyaXNpZ24uY29tL
3JwYTAdBgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwbQYIKwYBBQUHAQwEYTBfoV2gWzBZMFcwVRYJaW1h
Z2UvZ2lmMCEwHzAHBgUrDgMCGgQUj+XTGoasjY5rw8+AatRIGCx7GS4wJRYjaHR0cDovL2xvZ28udmVyaXNpZ24
uY29tL3ZzbG9nby5naWYwNAYIKwYBBQUHAQEEKDAmMCQGCCsGAQUFBzABhhhodHRwOi8vb2NzcC52ZXJpc2lnbi
5jb20wDQYJKoZIhvcNAQEFBQADfgAfwogDewF6ySqxv/QYtWqzoQcL8wr9oFdJawYLW0WEHxwJztv2dfbMl7/wY
wlxua6qlXc39CCdZTvkKwike4aAyLlg08ZQlvbIoPIIMPfKRJWbL6PIJSjtCdn8FFUY+LdQBWSAsVeTkMI7YK3s
6PPxpIPXDNrpaKX3NHVFWg==</X509Certificate>
 </X509Data>
 </KeyInfo>
 </n0:Signature>
</tModel>

11.5.2 Key Generator for UDDI Categorization tModels

11.5.2.1 Introduction
This tModel establishes the UDDI categorization key partition. This key partition is used for the
categorization tModels in this specification.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 339/420

11.5.2.2 Design Goals
The design goal for the Key Generator for UDDI Categorization tModels is to establish a key
partition within a UDDI registry that allows UDDI to publish its canonical categorization
tModels. All categorization tModels described in this document have keys derived in the key
partition associated with this key generator.

11.5.2.3 tModel Definition

Name: uddi-org:categorization:keyGenerator

Description: Key Generator for UDDI Categorization tModels

UDDI Key (V3): uddi:uddi.org:categorization:keygenerator

Derived V1,V2 format key: uuid:f7343819-d5d6-3c02-aaeb-b0fe3c20dc5b

Categorization: keyGenerator

11.5.2.4 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:categorization:keygenerator"
 xmlns ="urn:uddi-org:api_v3">
 <name>uddi-org:categorization:keyGenerator</name>
 <description>Key Generator for UDDI Categorization tModels</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#categorizationKeyGen
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 keyName="uddi-org:types:keyGenerator"
 keyValue="keyGenerator"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.5.3 Key Generator for UDDI Sort Order tModels

11.5.3.1 Introduction
This tModel establishes the UDDI sort order key partition. This key partition is used for the sort
order tModels in this specification.

11.5.3.2 Design Goals
The design goal for the Key Generator for UDDI Sort Order tModels is to establish a key
partition within a UDDI registry that allows UDDI to publish its canonical sort order tModels. All
sort order tModels described in this document have keys derived in the key partition
associated with this key generator.

11.5.3.3 tModel Definition

Name: uddi-org:sortorder:keyGenerator

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 340/420

Description: Key Generator for UDDI Sort Order tModels

UDDI Key (V3): uddi:uddi.org:sortorder:keygenerator

Derived V1,V2 format key: uuid: f6d9dd51-a5d6-37ae-8a56-08dd29be7572

Categorization: keyGenerator

11.5.3.4 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:sortorder:keygenerator"
 xmlns ="urn:uddi-org:api_v3">
 <name>uddi-org:sortorder:keyGenerator</name>
 <description>Key Generator for UDDI Sort Order tModels</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#sortorderKeyGen
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 keyName="uddi-org:types:keyGenerator"
 keyValue="keyGenerator"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.5.4 Key Generator for UDDI Transport tModels

11.5.4.1 Introduction
This tModel establishes the UDDI transport key partition. This key partition is used for the
transport tModels in this specification.

11.5.4.2 Design Goals
The design goal for the Key Generator for UDDI Transport tModels is to establish a key
partition within a UDDI registry that allows UDDI to publish its canonical transport tModels. All
transport tModels described in this document have keys derived in the key partition associated
with this key generator.

11.5.4.3 tModel Definition

Name: uddi-org:transport:keyGenerator

Description: Key Generator for UDDI Transport tModels

UDDI Key (V3): uddi:uddi.org:transport:keygenerator

Derived V1,V2 format key: uuid:c356d69b-ec35-309a-a753-bdfd9fe67759

Categorization: keyGenerator

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 341/420

11.5.4.4 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:transport:keygenerator"
 xmlns ="urn:uddi-org:api_v3">
 <name>uddi-org:transport:keyGenerator</name>
 <description>Key Generator for UDDI Transport tModels </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#transportKeyGen
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 keyName="uddi-org:types:keyGenerator"
 keyValue="keyGenerator"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.5.5 Key Generator for UDDI Protocol tModels

11.5.5.1 Introduction
This tModel establishes the UDDI protocol key partition. This key partition is used for the
protocol tModels in this specification.

11.5.5.2 Design Goals
The design goal for the Key Generator for UDDI Protocol tModels is to establish a key partition
within a UDDI registry that allows UDDI to publish its canonical protocol tModels. All protocol
tModels described in this document have keys derived in the key partition associated with this
key generator.

11.5.5.3 tModel Definition

Name: uddi-org:protocol:keyGenerator

Description: Key Generator for UDDI Protocol tModels

UDDI Key (V3): uddi:uddi.org:protocol:keygenerator

Derived V1,V2 format key: uuid:6ba0bd17-482b-3994-aeb9-d906aa2f80cb

Categorization: keyGenerator

11.5.5.4 tModel Structure
This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:protocol:keygenerator"
 xmlns ="urn:uddi-org:api_v3">
 <name>uddi-org: protocol:keyGenerator</name>
 <description> Key Generator for UDDI Protocol tModels </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#protocolKeyGen
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 342/420

 keyName="uddi-org:types:keyGenerator"
 keyValue="keyGenerator"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

11.5.6 UDDI Hosting Redirector Specification

11.5.6.1 Introduction
In UDDI, tModels are used to establish the existence of a variety of concepts and to point to
their technical definitions. tModels of the specification sort are referenced by service bindings
to describe the technical fingerprint of the business service. The hostingRedirector
specification tModel establishes the concept of a hosting redirector Web service as described
in Section 3.5.2.1 accessPoint. Refer to Appendix B Using and Extending the useType
Attribute for usage details. Such Web services are used to dynamically obtain an access point
for a Web service binding.

11.5.6.2 Design Goals
The design goal for the Hosting Redirector tModel is to facilitate recognition and discovery of
Web service bindings that are associated with a hosting redirector service and to standardize
the interface for such Web services.

11.5.6.3 tModel Definition
This tModel is used in bindingTemplate structures of Hosting Redirector Web services to
indicate that the Web service implementation responds to the get_bindingDetail API with a
bindingTemplate that contains an actual access point for the redirected Web service.

Name: uddi-org:hostingRedirector

Description: UDDI Hosting Redirector service specification

UDDI Key (V3): uddi:uddi.org:specification:hostingredirector

Derived V1,V2 format key: uuid:51c1535b-7e38-3860-9078-563d548420c5

Categorization: specification

11.5.6.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:specification:hostingredirector">
 <name>uddi-org:hostingRedirector</name>
 <description>UDDI Hosting Redirector service specification</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#hostDir
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:specification"
 keyValue="specification"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 343/420

11.5.6.4 Example of Use
The following is an example of a bindingTemplate for a Hosting Redirector Web service. The
bindingTemplate of a Web service making use of indirection via a hostingRedirector Web
service contains the bindingKey of the hosting redirector service’s bindingTemplate. The
hosting redirector’s bindingTemplate contains the accessPoint of the Hosting Redirector Web
service as shown in the following example:

<bindingTemplate bindingKey="...." serviceKey="uddi:sk1....">
 <description xml:lang="en">My Redirector</description>
 <!-- URL of the Hosting Redirector service is in the
 accessPoint -->
 <accessPoint useType="hostingRedirector">
 ...the URL of the host redirection service...
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:specification:hostingredirector"/>
 </tMobdelInstanceDetails>
</bindingTemplate>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 344/420

11.5.7 UDDI Policy Description Specification

11.5.7.1 Introduction
In UDDI, tModels are used to establish the existence of a variety of concepts and to point to
their technical definitions. tModels of the specification sort are referenced by service bindings
to describe the technical fingerprint of the business service. The policy description specification
tModel establishes the concept of a description of UDDI policy using schema-based XML.

11.5.7.2 Design Goals
The design goal for the Policy Description tModel is to enable discovery of UDDI policy for a
UDDI node. UDDI policy is described in a schema driven XML document that is accessible
from the access points of bindingTemplates that reside with UDDI node business entities.

11.5.7.3 tModel Definition
This tModel is used in bindingTemplate structures to indicate that the service implementation
describes the policy of the node according to the policy description schema.

Name: uddi-org:v3_policy

Description: UDDI Policy Description service specification

UDDI Key (V3): uddi:uddi.org:specification:v3_policy

Derived V1,V2 format key: uuid:d52ce89c-01f8-3b53-a25e-89cfa5bbad17

Categorization: specification

11.5.7.3.1 tModel Structure
This tModel is represented with the following structure:

<tModel
 tModelKey="uddi:uddi.org:specification:v3_policy">
 <name>uddi-org:v3_policy</name>
 <description>UDDI Policy Description service specification</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://uddi.org/pubs/uddi_v3.htm#policyDesc
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:specification"
 keyValue="specification"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 345/420

11.5.7.4 Example of Use
The following is an example of a bindingTemplate for a Policy Description Web service. The
policy description document is obtained using http:

<bindingTemplate bindingKey="...." serviceKey="uddi:sk1....">
 <accessPoint useType="endpoint">
 http://www.example.com/MyUDDIPolicy.xml
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:specification:v3_policy"/>
 </tMobdelInstanceDetails>
</bindingTemplate>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 346/420

12 Error Codes
The following list of error codes can be returned in the error code and error number (errCode
and errno attributes) within a dispositionReport response to the API calls defined in this
specification. The descriptions in this section are general and when used with the specific
return information defined in the individual API call descriptions are useful for determining the
reason for failures or other reasons. A list of the valid UDDI errCode (errno) values follows:

• E_accountLimitExceeded: (10160) Signifies that a save request exceeded the
quantity limits for a given data type. Account limits are established based on the
relationship between an individual publisher and an individual node. See your UDDI
node’s policy for account limits for details. Other nodes in the registry MAY NOT place
additional restrictions on publishing limits established by a custodial node.

• E_assertionNotFound: (30000) Signifies that a particular publisher assertion cannot
be identified in a save or delete operation.

• E_authTokenExpired: (10110) Signifies that the authentication token information has
timed out.

• E_authTokenRequired: (10120) Signifies that an authentication token is missing or is
invalid for an API call that requires authentication.

• E_busy: (10400) Signifies that the request cannot be processed at the current time.

• E_fatalError: (10500) Signifies that a serious technical error has occurred while
processing the request.

• E_historyDataNotAvailable: (40010) Signifies that the requested history data is not
available for the time period requested.

• E_invalidCombination: (40500) Signifies conflicting find qualifiers have been
specified. The find qualifiers that caused the problem SHOULD be clearly indicated in
the error text.

• E_invalidCompletionStatus: (30100) Signifies that one of the assertion status
values passed is unrecognized. The completion status that caused the problem
SHOULD be clearly indicated in the error text.

• E_invalidKeyPassed: (10210) Signifies that the uddiKey value passed did not match
with any known key values. The details on the invalid key SHOULD be included in
the dispositionReport element.

• E_invalidProjection: (20230) Signifies that an attempt was made to save a
businessEntity containing a service projection where the serviceKey does not belong
to the business designated by the businessKey. The serviceKey of at least one such
businessService SHOULD be included in the dispositionReport.

• E_invalidTime: (40030) Signifies that the time period, the date/time, or the pair of
date/time is invalid. The error structure signifies the condition that occurred and the
error text clearly calls out the cause of the problem.

• E_invalidValue: (20200) This error code has multiple uses. This error code applies
to the subscription APIs and the value set APIs. It can be used to indicate that a value
that was passed in a keyValue attribute did not pass validation. This applies to
checked value sets that are referenced using keyedReferences. The error text

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 347/420

SHOULD clearly indicate the key and value combination that failed validation. It can
also be used to indicate that a chunkToken supplied is invalid. This applies in both
subscription and value set APIs. The error text SHOULD clearly indicate the reason
for failure.

• E_keyUnavailable: (40100) Signifies that the proposed key is in a partition that has
already been assigned to some other publisher.

• E_messageTooLarge: (30110) Signifies that the message is too large. The upper
limit SHOULD be clearly indicated in the error text.

• E_noValuesAvailable: (40200) Signifies that an attempt to retrieve valid values
yielded no (additional) values.

• E_requestDenied: (20250) Signifies that a subscription cannot be renewed. The
request has been denied due to either node or registry policy.

• E_requestTimeout: (20240) Signifies that the request could not be carried out
because a needed Web service, such as validate_values, did not respond in a
reasonable amount of time. Details identifying the failing Web service SHOULD be
included in the dispositionReport element.

• E_resultSetTooLarge: (40300) Signifies that the UDDI node deems that a result set
from an inquiry is too large, and requests to obtain the results are not honored, even
using subsets. The inquiry that triggered this error should be refined and re-issued.

• E_tokenAlreadyExists: (40070) Signifies that one or more of the businessKey or
tModelKey elements that identify entities to be transferred are not owned by the
publisher identified by the authInfo element. The error text SHOULD clearly indicate
which entity keys caused the error.

• E_tooManyOptions: (10030) DEPRECATED. Signifies that too many arguments
were passed. The error text SHOULD clearly indicate the nature of the problem.

• E_transferNotAllowed: (40600) Signifies that the transfer of one or more entities has
been by either the custodial node or the target node because the transfer token has
expired or an attempt was made to transfer an unauthorized entity.

• E_unacceptableSignature: (40400) Indicates that the digital signature in the entity is
missing or does not meet the requirements of the registry. The errInfo element
provides additional details.

• E_unrecognizedVersion: (10040) Signifies that the value of the namespace attribute
is unsupported by the node being queried.

• E_unknownUser: (10150) Signifies that the user ID and password pair passed in a
get_authToken API is not known to the UDDI node or is not valid.

• E_unsupported: (10050) Signifies that the implementer does not support a feature or
API.

• E_userMismatch: (10140) Signifies that an attempt was made to use the publishing
API to change data that is controlled by another party.

• E_valueNotAllowed: (20210) Signifies that a value did not pass validation because
of contextual issues. The value may be valid in some contexts, but not in the context
used. The error text MAY contain information about the contextual problem.

• E_unvalidatable: (20220) Signifies that an attempt was made to reference a value
set in a keyedReference whose tModel is categorized with the unvalidatable
categorization.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 348/420

Non-error conditions are not reported by way of SOAP Faults but are instead reported using
an empty response message.

12.1 Common Error Conditions
In Chapter 5 UDDI Programmers APIs, a list of applicable error conditions are described in the
Caveats sections of each API description. In addition to these error conditions that occur
within each API’s context, there are error conditions that can occur at any time, for any of the
UDDI APIs, for example, due to unavailability of the UDDI node or heavy network traffic.
Unless there are special considerations associated with a given API, these overarching error
conditions are not listed in the Caveats sections of the APIs. The error conditions that apply to
the entire UDDI API are:

• E_authTokenExpired

• E_authTokenRequired

• E_busy

• E_fatalError

• E_requestTimeout

• E_unrecognizedVersion

• E_unsupported.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 349/420

13 Related Standards and Specifications
This document refers to other UDDI documents as well as several widely recognized
standards and specifications. Detailed information on these may be found as follows:

13.1 UDDI Specifications and documents
UDDI Version 2.0 Operator’s Specification

http://uddi.org/pubs/operators_v2.pdf

UDDI Version 2.0 Custody Transfer Schema

http://uddi.org/schema/uddi_2_custody.xsd

UDDI Version 2.0 Programmer's API Specification

http://uddi.org/pubs/ProgrammersAPI_v2.pdf

UDDI Version 2.0 API Schema

http://uddi.org/schema/uddi_v2.xsd

UDDI Version 2.0 Replication Specification

http://uddi.org/pubs/replication_v2.pdf

UDDI Version 2.0 Replication Schema

http://uddi.org/schema/uddi_v2_replication.xsd

13.2 Standards and other Specifications
Specification Location

Augmented BNF for Syntax
Specifications: ABNF

http://www.ietf.org/rfc/rfc2234

Codes for the Representation of Names
of Languages–Part 2: Alpha-3 Code

http://www.loc.gov/standards/iso639-2/langhome.html

Extensible Markup Language (XML) 1.0 http://www.w3.org/TR/1998/REC-xml-19980210.html

HTML 3.2 Reference Specification http://www.w3.org/TR/REC-html32

HTTP Over TLS http://www.ietf.org/rfc/rfc2818

Hypertext Transfer Protocol -- HTTP/1.1 http://www.w3.org/Protocols/HTTP/1.1/rfc2616.pdf

Internet Security Glossary http://www.ietf.org/rfc/rfc2828

Internet X.509 Public Key Infrastructure http://www.ietf.org/rfc/rfc2459

ISO 3166-1: The Code List http://www.din.de/gremien/nas/nabd/iso3166ma/codlst
p1/index.html

ISO/IEC9075-2:1999(E)

Database Language - SQL

http://www.cse.iitb.ernet.in:8000/proxy/db/~dbms/Data/
Papers-Other/SQL1999/

Multipurpose Internet Mail Extensions
(MIME) Part One

http://www.ietf.org/rfc/rfc2045

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 350/420

Specification Location

Schema Centric XML Canonicalization http://uddi.org/pubs/SchemaCentricCanonicalization.ht
m

Simple Object Access Protocol (SOAP)
1.1

http://www.w3.org/TR/SOAP

SMTP - Simple Mail Transfer Protocol http://www.ietf.org/rfc/rfc2821

SSL 3.0 Specification http://home.netscape.com/eng/ssl3/index.html

Tags for the Identification of Languages http://www.ietf.org/rfc/rfc3066

Terminology for Policy-Based
Management

http://www.ietf.org/rfc/rfc3198

The Unicode Standard http://www.unicode.org/unicode/standard/standard.html

Unicode Standard Annex #15

UNICODE NORMALIZATION FORMS

http://www.unicode.org/unicode/reports/tr15/

Unicode Technical Standard #10

UNICODE COLLATION ALGORITHM

http://www.unicode.org/unicode/reports/tr10/

Uniform Resource Identifiers (URI):
Generic Syntax

http://www.ietf.org/rfc/rfc2396

URLs for Telephone Calls http://www.ietf.org/rfc/rfc2806

UTF-16, an encoding of ISO 10646 http://www.ietf.org/rfc/rfc2781

UTF-8, a transformation format of ISO
10646

http://www.ietf.org/rfc/rfc2279

UUIDs and GUIDs http://uddi.org/pubs/draft-leach-uuids-guids-01.txt

Web Services Description Language
(WSDL) 1.1

http://www.w3.org/TR/wsdl

XML Schema http://www.w3.org/XML/Schema#dev

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 351/420

A Appendix A: Relationships and Publisher
Assertions

UDDI includes a relationship feature based on "publisher assertions". Publisher assertions
are the basis for a mechanism to allow registered businessEntity elements to be linked in a
manner that conveys a specific type of relationship. Publisher assertions are used to establish
visible, reciprocal relationships between businessEntity elements in a way that once
completed, a matching set of assertions can be seen by the find_relatedBusinesses and
find_business calls.

In order to make it possible for either party in a relationship to have some control over the
visibility of the relationship, relationships are only visible when both parties of a potential
relationship agree that such a relationship exists at a given point in time. This is done by both
parties publishing publisherAssertions that are identical, with the exception of any optional
digitalSignature elements that are assigned to the publisherAssertions. This addresses a
problematic scenario that arises when one party falsely claims that it is related to some other
party.

Only publishers that control one of the businesses involved in the relationship are allowed to
assert that a relationship exists. When a publisher controls both businessEntity structures
involved in the relationship, a single publisherAssertion element satisfies the relationship (e.g.,
a second assertion is not required to form the relationship). In the case where a different
publisher controls each businessEntity involved in such an expression, both parties must
assert identical information about a specific relationship before UDDI surfaces any information
about the relationship. In cases where two parties are involved and both parties do not agree
as to the details of a given assertion, there is no requirement for either party to complete an
assertion. No relationship is exposed via the Inquiry API in this case.

A.1 Example
The following picture shows the start of an assertion process:

Joe and Xina each manage a businessEntity within UDDI. As we start our scenario, both Joe
and Xina have registered a businessEntity in the same UDDI registry. Joe and Xina wish to
make it possible for users of this UDDI registry to find out that the two businesses are related
and are in fact part of the same business, with Business1 being a parent-business.

To make the relationship visible for anyone who calls find_relatedBusinesses passing either
businessKey as a starting point, Joe and Xina must both make publisherAsssertion. As the
name of the element suggests, a publisherAssertion is an assertion made by a publisher who
is expressing a particular fact about a business registration and its relationship to some other
business data within UDDI.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 352/420

Joe uses an add_publisherAssertions SOAP message to make a new publisherAssertion
about Business1 and Business 2, expressing the fact that Business 1 is a corporate holding
company. This message looks like:

<add_publisherAssertions xmlns="urn:uddi-org:api_v3" >
 <authInfo>FFFFF</authInfo>
 <publisherAssertion>
 <fromKey>BK1</fromKey>
 <toKey>BK2</toKey>
 <keyedReference
 tModelKey="uddi:uddi.org:relationships"
 keyName="Holding Company"
 keyValue="parent-child" />
 </publisherAssertion>
</add_publisherAssertions>

In this example, we see that Joe asserts that the businessEntity with the businessKey value of
BK1 is the parent holding company of the businessEntity with the businessKey value of BK2.
The publisherAssertion could be signed with an XML digital signature if Joe feels this is
important.

Because only Joe has asserted this fact, the information about the relationship is not yet visible
via the inquiry API call, find_relatedBusinesses. Joe knows that for this assertion to become
visible, the publisher of the businessEntity that has the businessKey BK2 must also express
the same assertion. Joe calls Xina to let her know he wants her to make the assertion.

In order to see the data that she must express, Xina sends a get_assertionStatusReport to her
UDDI node. From the resulting assertionStatusReport, Xina sees that there is indeed an
unmatched assertion listed against her businessEntity Business 2. Since Joe has contacted
her and she agrees that the relationship should be visible within UDDI, Xina sends the exact
same assertion (with a different authInfo credential) to her UDDI node. The publisherAssertion
can be signed with an XML digital signature if such a signature is desired by Xina.

The UDDI registry now sees both assertions made by the two publishers, each of whom
control one of the two businesses involved. After checking that the requesting parties each
control half of the relationship, UDDI matches the assertions together and the status of the
relationship becomes complete.

After this is done, anyone who calls the Inquiry API call, find_relatedBusinesses, and passes
either BK1 or BK2 as the businessKey value will see the relationship. Prior to both publishers
asserting this same fact, the data about the relationship is not visible via the Inquiry API.

A.2 Managing relationship visibility
The UDDI Publish API defines several APIs to allow assertions to be managed by UDDI
publishers. These APIs fall into two general categories: administrative helpers and
maintenance functions. The administrative helpers allow the publisher to see assertions that
their businesses are involved in. In particular, the get_assertionStatusReport is the most
useful for determining whether any assertions involving the business registrations owned by a
publisher are incomplete. This provides information pertaining to assertions the publisher is
expecting and also presents information about other publishers’ attempts at making
unexpected assertions.

The maintenance functions allow publishers to deal with all assertions as a single group (e.g.
get_publisherAssertions / set_publisherAssertions) or individually (e.g.
add_publisherAssertions / delete_publisherAssertions). The set_publisherAssertions call
should be used with caution as it replaces all of the publisherAssertions for a publisher and can
be used to invalidate existing completed relationships. The latter APIs are useful for adding
one publisherAssertion at a time without having to keep track of all previous assertions.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 353/420

B Appendix B: Using and Extending the useType
Attribute

UDDI provides type information through the useType attribute on the following UDDI elements:
accessPoint, overviewURL, discoveryURL, contact, address, email and phone. The useType
attribute is intended to provide information on how to use or invoke the resource contained
within the element. This Appendix establishes and explains common values and conventions
for the useType attribute in the context of certain elements, as well as a model for establishing
new common values and conventions.

B.1 accessPoint
Four common values for providing type information about the accessPoint are: "endPoint",
"wsdlDeployment", "bindingTemplate", and "hostingRedirector.

B.1.1 Using the "endPoint" value

Typically, the network address of a Web service described by a bindingTemplate is found in
the accessPoint element. This common behavior is denoted by using the string "endpoint" as
the value of the accessPoint. Decorating an accessPoint with a useType="endPoint" signifies
that a user or application can invoke a Web service at that address. A sample of such
behavior is as follows:

<bindingTemplate bindingKey="uddi:example.org:catalog">
 <description xml:lang="en">
 Browse catalog Web service
 </description>
 <accessPoint useType="endPoint">
 http://www.example.org/CatalogWebService
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:example.org:catalog_interface"/>
 <tModelInstanceInfo tModelKey="uddi:uddi.org:transport:http"/>
 </tModelInstanceDetails>
</bindingTemplate>

In the example above, a client would be able to parse the bindingTemplate and discover the
end point of the Web service itself. However, the information about how to invoke that Web
service would be modeled using tModels. All interface information about that service would be
represented by the tModelInstanceInfo structures contained as children of the
bindingTemplate.

The client knows the transport of the accessPoint either by checking to see if a protocol tModel
has been associated with the bindingTemplate or inspecting the URI prefix. In the example
above, the http transport was used, denoted by the tModelInstanceInfo.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 354/420

UDDI RECOMMENDS that endpoints for phone, fax and modem communication follow the
guidelines outlined in RFC 2806 URLs for Telephone Calls51. Following such a convention for
a phone number accessPoint would result in the following bindingTemplate sample:

<bindingTemplate bindingKey="uddi:example.org:catalog">
 <description xml:lang="en">
 Browse catalog Web service
 </description>
 <accessPoint useType="endPoint">
 tel:+1-512-555-1212
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:uddi.org:transport:telephone"/>
 </tModelInstanceDetails>
</bindingTemplate>

B.1.2 Using the "wsdlDeployment" value

Instead of directly providing the network address in the accessPoint, it is occasionally useful or
necessary to provide this information through indirect means. One common scenario for such
a behavior is when the accessPoint is embedded within a WSDL file. In such a scenario, the
UDDI accessPoint contains the address of the WSDL file, and the client then must retrieve the
WSDL file and extract the end point address from the WSDL file itself.

In this case, decorating the UDDI accessPoint with a useType="wsdlDeployment" is
appropriate. A sample of such behavior is as follows:

<bindingTemplate bindingKey="uddi:example.org:catalog">
 <description xml:lang="en">
 Browse catalog Web service
 </description>
 <accessPoint useType="wsdlDeployment">
 http://www.example.org/CatalogWebService/catalog.wsdl
 </accessPoint>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:wsdl"
 keyValue="wsdlDeployment"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</bindingTemplate>

In the example above, a client would be able to parse the result of the bindingTemplate and
determine the end point of the Web service within the WSDL file discovered in the accessPoint
element. Note that the bindingTemplate has also been categorized with the "wsdlDeployment"
value from the uddi.org:categorization:types scheme so that it can be discovered through a
find_binding API call.

B.1.3 Using the "bindingTemplate" value

Another form of indirection uses UDDI itself to discover the location of the final end point.
Categorizing a bindingTemplate with either "bindingTemplate" or "hostingRedirector" specifies
that the accessPoint contains a bindingKey intended to be used in a get_bindingDetail API call
to a UDDI registry Inquiry API Set. How the resultant bindingTemplate is interpreted depends
on which one of the two methods described below is used. In the case of "bindingTemplate", a
bindingKey refers to another binding within the same UDDI registry.

51

 http://www.ietf.org/rfc/rfc2806

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 355/420

For example, suppose tempuri.com, the well known but fictitious maker of crispy batter coating
for fried foods, contracts with the equally fictitious Web service hosting company ws-o-
rama.com to host tempuri’s Web service that exposes its product catalog. Tempuri.com
wishes to publish a bindingTemplate for this service in the UDDI Business Registry, but wishes
to leave the details of the technical implementation and its description up to ws-o-rama.com
who may wish to change them over time. To do this, tempuri.com and ws-o-rama.com use
bindingTemplate indirection. In the UDDI Business Registry the bindingTemplate in tempuri’s
businessEntity that describes this service appears as follows:

<bindingTemplate bindingKey="uddi:tempuri.com:catalog">
 <description xml:lang="en">
 Browse catalog Web service
 </description>
 <accessPoint useType="bindingTemplate">
 uddi:ws-o-rama.com:tempuri:bt1
 </accessPoint>
</bindingTemplate>

Here, the bindingTemplate describing tempuri’s catalog browsing Web service uses an
accessPoint to refer to the bindingTemplate (also in the UDDI Business Registry) whose
bindingKey is uddi:ws-o-rama.com:tempura:bt1. When a client does a get_bindingDetail
asking for the bindingTemplate with that key, the following bindingTemplate is returned:

<bindingTemplate bindingKey="uddi:ws-o-rama.com:tempuri:bt1">
 <description xml:lang="en">
 Tempuri.com’s catalog browsing service hosted by ws-o-rama
 </description>
 <accessPoint useType="endPoint">
 http://sf1.ws-o-rama.com/tempuri/catalog/
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:..."/>
 </tModelInstanceDetails>
</bindingTemplate>

This bindingTemplate describes the actual Web service that is to be used.

B.1.4 Using the "hostingRedirector" value

It may be necessary to "hide" the network address of a Web service from unauthorized
access. In this case, a useType="hostingRedirector" can be used to indicate that the client
must follow a longer path of indirection to retrieve the accessPoint. In the bindingTemplate,
the client will discover a bindingKey, which will lead to a bindingTemplate that contains the end
point for a Web service which supports the UDDI get_bindingDetail Web Service. The client
will then be able to re-issue the get_bindingDetail message with the original key, presumably
with authentication, to this other Web service. Such an indirection mechanism allows a Web
service to be discoverable but not accessible from a given node.

For example, tempuri.com uses ws-o-rama.com to host more than just its publicly visible
catalog browsing service. In particular it has a number of services it does not wish to expose
fully in the UDDI Business Registry. Instead, it wishes to keep their full definition in its private
UDDI registry, which ws-o-rama.com also happens to host, and supply the end points to these
Web services only to authorized inquirers.

In particular, tempuri has a Web service that its suppliers use to bill it for goods they deliver. In
the UDDI Business Registry, tempuri publishes the following bindingTemplate, which contains
a bindingKey.

<bindingTemplate bindingKey="uddi:tempuri.com:billing">
 <description xml:lang="en">
 Tempuri supplier billing Web service
 </description>
 <accessPoint useType="hostingRedirector">
 uddi:ws-o-rama.com:tempuri:bt47

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 356/420

 </accessPoint>
</bindingTemplate>

Here, the bindingTemplate describing tempuri’s supplier billing Web service uses an
accessPoint to refer to the bindingTemplate (also in the UDDI Business Registry) whose
bindingKey is uddi:ws-o-rama.com: tempuri:bt47. Note that the useType equals
"hostingRedirector" which indicates that the bindingKey refers to a hostingRedirector service.
When a client does a get_bindingDetail (on the UDDI Business Registry) asking for the
bindingTemplate with that key, the following indirect bindingTemplate is returned:

<bindingTemplate bindingKey="uddi:ws-o-rama.com:tempura:bt47">
 <description xml:lang="en">
 Hosting Redirector Service for Tempuri.com
 hosted by ws-o-rama.com
 </description>
 <accessPoint useType="endPoint">
 http://sf1.ws-o-rama.com/tempuri/uddi/inquiry
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:specification:hostingredirector"/>
 </tModelInstanceDetails>
</bindingTemplate>

This bindingTemplate describes the hosting redirector Web service hosted for tempuri.com by
ws-o-rama.com. By definition, it responds to the get_bindingDetail API call using SOAP over
HTTP. The description in the bindingTemplate says it responds only to authorized requests.
For authorized clients, invoking get_bindingDetail, passing the key of the original
bindingTemplate (uddi:tempuri.com:billing) retrieves the following bindingTemplate:

<bindingTemplate bindingKey="uddi:tempuri.com:billing">
 <description xml:lang="en">
 Tempuri.com’s supplier billing browsing service
 hosted by ws-o-rama.com
 </description>
 <accessPoint useType="endPoint">
 http:sf1.ws-o-rama.com/tempuri/billing/
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:..."/>
 </tModelInstanceDetails>
</bindingTemplate>

This bindingTemplate describes the actual Web service that is to be used.

B.2 overviewURL
The overviewURL appears as a child of the overviewDoc, which appears twice in the UDDI
information model, once with tModel element and once with tModelInstanceInfo element.
There are two conventions established, "text" and "wsdlInterface".

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 357/420

B.2.1 Using the "text" value

Using the useType of "text" signifies that textual information meant for human consumption is
available at the resource specified by that URL. It is appropriate both for tModel and
tModelInstanceInfo elements.

The following example demonstrates an overviewURL that points to a .pdf file that discusses
more about the implementation of the uddi:tempuri.org:catalog_interface tModel
implemented. It might explain particular details about this implementation that a developer
needs to know.

<tModelInstanceInfo tModelKey="uddi:tempuri.org:catalog_interface">
 <instanceDetails>
 <overviewDoc>
 <description xml:lang="en">This overviewURL provides additional
information about this Web service.</description>
 <overviewURL useType="text">http://tempuri.org/info.pdf</overviewURL>
 </overviewDoc>
 </instanceDetails>
</tModelInstanceInfo>

B.2.2 Using the "wsdlInterface" value

The "wsdlInterface" value signifies that a WSDL file is located at this resource. Such a WSDL
file has no implementation information, but exists purely as an abstract interface document.
Using this convention within a tModelInstanceInfo is not appropriate.

For example, the tModel below has two overviewDocs. The first, which uses the
"wsdlInterface" value, denotes that the overviewURL points to WSDL file. The second
overviewDoc provides additional information about the tModel, using the "text" value.

<tModel tModelKey="uddi:tempuri.org:catalog_interface">
 <name>urn:tempuri.org:catalog_interface</name>
 <description>This WSDL interface has a set of APIs for querying the catalog
service.</description>
 <overviewDoc>
 <overviewURL useType="wsdlInterface">
 http://www.tempuri.org/wsdl/catalog_interface.wsdl
 </overviewURL>
 </overviewDoc>
 <overviewDoc>
 <overviewURL useType="text">
 http://www.tempuri.org/wsdl/interface_info.pdf
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:wsdl"
 keyValue="wsdlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:soap"
 keyValue="soapSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:xml"
 keyValue="xmlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:specification"
 keyValue="specification"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 358/420

B.3 discoveryURL
The discoveryURL only appears at the businessEntity level. Two conventions have been
established: "businessEntity" and "homepage".

B.3.1 Using the "businessEntity" value

Per the UDDI Specification, discoveryURLs qualified with the value "businessEntity" point to
XML documents of the type businessEntity, as defined in the UDDI API Schema.

<discoveryURL useType="businessEntity">
 http://www.example.com?businessKey= uddi:example.com:registry:sales:53
</discoveryURL>

B.3.2 Using the "homepage" value

Frequently, businesses and providers want to register HTTP-accessible HTML Web
"homepage" information. The discoveryURL useType of "homepage" satisfies that purpose:

<discoveryURL useType="homepage">
 http://www.example.com
</discoveryURL>

B.4 Contact
No conventions have been established.

B.5 Address
No conventions have been established.

B.6 Phone
No conventions have been established.

B.7 Email
No conventions have been established.

B.8 Designating a new useType value
While the useType conventions listed above cover a set of common cases, there may be
situations which a new useType attribute for an element needs to be designated. UDDI
RECOMMENDS52 that the creation of new useType values should map to UDDI tModelKeys.
In such a way, a client can look up the tModel to understand the semantic meaning of this
unknown useType attribute.

For example, imagine a new kind of indirection mechanism for the accessPoint element is
created that involves a new protocol. In this example the new protocol refers to files that have
a file extension of .nwp (for NeW Protocol). In order to decorate accessPoints with a useType
attribute that refers to this protocol, a new tModel should be published to UDDI, categorized by
the UDDI Types taxonomy, as follows:

52

Because the datatype of the useType is xsd:string, any value can be placed in this attribute, such as a well known URI.
However, by following the recommended practice, there is a known way of determining more information about the meaning of the
alien useType value.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 359/420

<tModel tModelKey="uddi:tempuri.org:tmodel:newprotocol">
 <name>tempuri.org:tModel:NewProtocol</name>
 <description>A tModel that represents the useType for the new protocol
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://tempuri.org/NewProtocol/about.htm
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:useTypeDesignator"
 keyValue="useTypeDesignator"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

This tModel establishes the new useType value "uddi:tempuri.org:tmodel:newprotocol". Its
categorization as a "useTypeDesignator" semantically signifies this purpose. When using this
useType in an accessPoint, the key of the tModel is used as the value, as follows:

<bindingTemplate bindingKey="uddi:tempuri.com:some_service">
 <description xml:lang="en">
 Tempuri Web service
 </description>
 <accessPoint useType="uddi:tempuri.org:tmodel:newprotocol">
 http://www.tempuri.org/service.nwp
 </accessPoint>
</bindingTemplate>

When a client encounters this unfamiliar useType in a bindingTemplate, the client can issue a
get_tModelDetail with the value found in the useType attribute, thus learning the technical
nature of this accessPoint.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 360/420

C Appendix C: Supporting Subscribers
This appendix describes scenarios where subscription is useful and provides examples of how to use
subscription.

C.1 Subscription Scenarios
Subscription support is intended to provide clients or subscribers with the ability to register interest in
receiving information concerning changes made to the specified subsets of the data in a UDDI Registry
and then to obtain updates to the subset on a periodic basis as the data changes. There are several
scenarios for which subscription is useful. Among the common uses are:

• Notification of new businesses or services that register - A subscriber may be
interested in receiving notification whenever a new business or service becomes
available that conforms to a pre-defined set of criteria. This might be a business that
could be a new potential business partner. The subscriber can simply register to be
informed when new users of certain tModels emerge, for instance, expanding his
potential base of suppliers.

• Monitoring of existing businesses or services - A subscriber may be interested in
receiving an update on a particular business or service whenever it is altered in any
manner, including deletion. A subscriber can use subscription to monitor a particular
service or business, receiving a notification whenever there is a change in the registry
entry for that particular service or business.

• Obtaining Registry data for use in a private UDDI Registry – A subscriber might
represent a private UDDI registry installation operated by a particular industry. A node
might, for example, wish to augment its own content with relevant entries from the
UDDI Business registry. Subscription allows them to track and receive all changes of
interest for integration into their own registry. In another example, the private registry
might even wish to mirror all of the data present in another registry with which it does
not replicate. This capability is by creating a small number of subscriptions.

• Obtaining Registry data for use by a Registrar – A subscriber might be a Registrar
who facilitates creation and maintenance of Registry entries in the UDDI Business
Registry for a specialized set of customers. As it happens, information about existing
relationships in the Registry which various business partners maintain with each other
affect the maintenance of business relationships with these customers. The
Registrar offers a service to these customers to automatically maintain their
relationship information based on a profile these customers maintain with the
Registrar. Subscription enables the Registrar to perform this service by providing
notification of changes in business relationships

• Obtaining Registry data for use by eMarketplaces – A subscriber might represent
an eMarketplace which has become a portal for a particular industry. The
eMarketplace combines and organizes all of the Web service offerings across multiple
UDDI Registries which interest its customers, offering them one-stop shopping.
Subscription helps this eMarketplace keep abreast of new and changing service
offerings without having to troll these Registries on a continuous basis.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 361/420

C.2 Using Subscription
This section describes the steps involved in using the subscription API set and provides several
examples.

C.2.1 Steps for Creating a Subscription

Establishing a subscription and monitoring the results is in general a multi-step process:

1. Create a service to receive the notifications the registry provides. Subscribers can choose to
receive subscriptions through either HTTP/SOAP Web services they implement, or via e-mail.
As many bindingTemplates of either type can be defined as desired if multiple endpoints are
required, but only one bindingTemplate can be associated with a given subscription.

2. Register the service with the registry, which the node is to use to deliver notifications. This
requires registering of a single bindingTemplate describing the service. Note that a single
service can be used to receive the notifications for multiple subscriptions or, if the subscriber
chooses, separate services can be created for each subscription.

3. Select the filter criteria to be used for the subscription. This requires some care – choosing
more restrictive criteria reduces the result set returned making it simpler to analyze. In
general, subscribers should insure that the subscriptionFilter criterion they use is as restrictive
as possible.

4. Save the subscription request using save_subscription.

5. Process the incoming HTTP/SOAP or e-mail notifications as desired.

C.2.2 Subscription Examples

In most cases, the actual values of the various keys and authInfo elements involved in these examples
are not shown, but are instead represented in bold italics descriptions.

1. Create a subscription to track changes in businesses which offer services in the Motor Vehicle
Parts industry. To accomplish this, the subscriber needs to register a service with a
bindingTemplate indicating a desire to receive notifications through an endpoint which
corresponds to either a notify_subscriptionListener service (which the subscriber implements),
or via email. Here are examples of each of these two types of bindings:

<save_binding xmlns="urn:uddi-org:api_v3">
 <authInfo>myAuthCode</authInfo>
 <bindingTemplate bindingKey="" serviceKey="uddi:myservicekey">
 <description>notify_subscriptionListener binding for
 my subscription.
 </description>
 <accessPoint URLType="https">
 https://www.myCompany.com/services/notify_subscriptionListener
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:v3_subscriptionlistener" />
 </tModelInstanceDetails>
 </bindingTemplate>
</save_binding>
<save_binding xmlns="urn:uddi-org:api_v3">
 <authInfo>myAuthCode</authInfo>
 <bindingTemplate bindingKey="" serviceKey="uddi:myservicekey">
 <description>E-mail binding for my subscription.</description>
 <accessPoint URLType="email">
 mailto:mySubscriberEmail@xyz.com
 </accessPoint>
 </bindingTemplate>
</save_binding>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 362/420

Let’s use the notify_subscriptionListener binding and register a subscription request to return a
notification every 5 days. Our subscriptionFilter will limit the results to new, changed or deleted
services categorized as "Motor Vehicle Supplies and New Parts Wholesalers" using the North
American Industry Classification System (NAICS). Note that the brief attribute is used to force
only entity keys to be returned in the results:

<save_subscription xmlns="urn:uddi-org:sub_v3">
 <authInfo>myAuthCode</authInfo>
 <subscriptions>
 <subscription brief="true">
 <subscriptionFilter>
 <find_service xmlns="urn:uddi-org:api_v3" >
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:sql99:like
 </findQualifier>
 </findQualifiers>
 <categoryBag>
 <keyedReference
 tModeKey="uddi:uddi.org:ubr:taxonomy:naics"
 keyName="Motor Vehicle Parts"
 keyValue="42112_"/>
 </categoryBag>
 </find_service>
 </subscriptionFilter>
 <bindingKey>
 bindingKeyOfTheClientsNotifySubscriptionListenerService
 </bindingKey>
 <notificationInterval>P5D</notificationInterval>
 <maxEntities>1000</maxEntities>
 </subscription>
 </subscriptions>
</save_subscription>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 363/420

An example of the node’s subsequent invocation of the client implemented
notify_subscriptionListener API is shown below. The call to
notify_subscriptionListener by the node transmits data for January 2002 using the
lexical representation of dateTime as defined by [ISO 8601], in the extended format of
CCYYMMDDThh:mm:ss where "CC" represents the century, "YY" the year, "MM" the
month and "DD" the day. The letter "T" is the date/time separator and "hh", "mm", "ss"
represent hour, minute and second respectively:

<notify_subscriptionListener>
 <subscriptionResultsList>
 <coveragePeriod>
 <startPoint>20020101T00:00:00</startPoint>
 <endPoint>20020131T00:00:00</endPoint>
 </coveragePeriod>
 <subscription brief="true">
 <subscriptionFilter>
 <find_service xmlns="urn:uddi-org:api_v3" >
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:sql99:like
 </findQualifier>
 </findQualifiers>
 <categoryBag>
 <keyedReference
 tModeKey="uddi:uddi.org:ubr:taxonomy:naics"
 keyName="Motor Vehicle Parts"
 keyValue="42112_"/>
 </categoryBag>
 </find_service>
 </subscriptionFilter>
 <bindingKey>
 bindingKeyOfTheClientsNotifySubscriptionListenerService
 </bindingKey>
 <notificationInterval>P5D</notificationInterval>
 <maxEntities>1000</maxEntities>
 <expiresAfter>20030101T00:00:00</expiresAfter>
 </subscription>
 <keyBag>
 <deleted>false</deleted>
 <serviceKey>matchingKey1</serviceKey>
 <serviceKey>matchingKey2</serviceKey>
 <serviceKey>matchingKey3</serviceKey>
 <serviceKey>matchingKey4</serviceKey>
 </keyBag>
 <keyBag>
 <deleted>true</deleted>
 <serviceKey>matchingKey5</serviceKey>
 <serviceKey>matchingKey6</serviceKey>
 </keyBag>
 </subscriptionResultsList>
</notify_subscriptionListener>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 364/420

2. Use get_subscriptionResults to retrieve chunked subscription results synchronously. In this
example, we reuse the same <save_subscription> API call shown in example (1) with the
exception that no <bindingKey> is provided. This prevents notifications from being sent under
the assumption that the client desires to use the get_subscriptionResults API to do this
instead. Here is a typical use of the get_subscriptionResults API. The request shown
retrieves results available for changes made since the beginning of January 2002:

<get_subscriptionResults>
 <authInfo>myAuthCode</authInfo>
 <subscriptionKey>mySubscriptionKey</subscriptionKey>
 <coveragePeriod>
 <startPoint>20020101T00:00:00</startPoint>
 </coveragePeriod>
</get_subscriptionResults>

The above request should return all subscription results matching the criterion we
saved in the subscription for entities whose last date of change was on or after
January 1st, 2002, up through the present time. A subscriptionResultsList is returned
synchronously by the get_subscriptionResults API:

<subscriptionResultsList>
 <chunkToken>"nodeGeneratedToken"</chunkToken>
 <coveragePeriod>
 <startPoint>20020101T00:00:00</startPoint>
 </coveragePeriod>
 <subscription brief="true">
 <subscriptionFilter>
 <find_service xmlns="urn:uddi-org:api_v3" >
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:sql99:like
 </findQualifier>
 </findQualifiers>
 <categoryBag>
 <keyedReference
 tModeKey="uddi:uddi.org:ubr:taxonomy:naics"
 keyName="Motor Vehicle Parts"
 keyValue="42112_"/>
 </categoryBag>
 </find_service>
 </subscriptionFilter>
 <bindingKey>
 bindingKeyOfTheClientsNotifySubscriptionListenerService
 </bindingKey>
 <notificationInterval>P5D</notificationInterval>
 <maxEntities>1000</maxEntities>
 <expiresAfter>20030101T00:00:00</expiresAfter>
 </subscription>
 <keyBag>
 <deleted>false</deleted>
 <serviceKey>matchingKey1</serviceKey>
 <serviceKey>matchingKey2</serviceKey>
 <serviceKey>matchingKey3</serviceKey>
 <serviceKey>matchingKey4</serviceKey>
 </keyBag>
</subscriptionResultsList>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 365/420

Unfortunately, there are too many results for us to get them in one group since we
noticed that the chunkToken value of "nodeGeneratedToken" returned was not "0",
so chunking is being used. We use this "nodeGeneratedToken" to call
get_subscriptionResults again to retrieve the next group of results:

<get_subscriptionResults>
 <authInfo>myAuthCode</authInfo>
 <subscriptionKey>mySubscriptionKey</subscriptionKey>
 <coveragePeriod>
 <startPoint>20020101T00:00:00</startPoint>
 </coveragePeriod>
 <chunkToken>nodeGeneratedToken</chunkToken>
</get_subscriptionResults>

The remaining results are returned synchronously in a subscriptionResultsList structure as
before. The last results have been returned when the chunkToken returned in the
subscriptionResultsList is "0".

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 366/420

D Appendix D: Internationalization

As part of the aim of providing a registry for universal description, discovery and integration of
business entities and their services, the UDDI registry design includes support for
internationalization features. Most of these internationalization features are directly exposed to
end users through the API sets. Others are built into the design in order to enable the use of
the UDDI registry as an international Web services discovery and description mechanism with
multilingual descriptions of business entities worldwide. This appendix provides examples for
some of the internationalization features supported:

• multilingual descriptions, names and addresses

• multiple names in the same language

• internationalized address format

• language-dependent collation

D.1 Multilingual descriptions, names and addresses
The description, name, personName, or address elements may each have an xml:lang
attribute to indicate the language used in the content of these elements. Thus names and
addresses, for example, may have characters from language scripts other than the Latin script
found in ASCII. Similarly, variants of names, due to transliteration, e.g. romanization, to
different languages, are indicated through the use of the xml:lang attribute. The rules and
syntax governing the xml:lang data type are as defined in Section 3.3.2.3 name.

The following shows an example of romanization where the primary name of the business (a
Chinese flower shop) is in Chinese, and its alternative name is a romanization:

<businessEntity . . . >

 <name xml:lang="zh">������� </name>
 <name xml:lang="en">Huang He Hwa Dian</name>

</businessEntity>

The following shows an example of transliteration where the primary name of the business is
in Chinese, and is a transliteration of its alternative English name:

<businessEntity . . . >

 <name xml:lang="zh"> ���	��
���
�������� </name>
 <name xml:lang="en">Compaq Computer Taiwan Limited</name>

</businessEntity>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 367/420

The following example XML fragment shows an address written in two languages, English and
Chinese, as indicated by the xml:lang attribute:

<address useType="Sales office" xml:lang="en" tModelKey="uddi:…">
 <addressLine>7 F</addressLine>
 <addressLine>No. 245 </addressLine>
 <addressLine>Sec. 1</addressLine>
 <addressLine>Tunhua South Road</addressLine>
 <addressLine>Taipei </addressLine>
</address>
</address><address useType="Sales office" xml:lang="zh" tModelKey="uddi:…">
 <addressLine> ����� </addressLine>
 <addressLine> ������	 </addressLine>
 <addressLine>
�� </addressLine>
 <addressLine> 245
 </addressLine>
 <addressLine> 7 � </addressLine>
 …
</address>

D.2 Multiple names in the same language
In order to support acronyms or multi-script languages, it is valid to publish multiple names that
have identical language identification.

The following shows an example of use of multiple name elements to support a multi-script
language and also the use of acronym. In the example, the first <name> element is the
primary name of the business (a Japanese flower shop) in Japanese Kanji. The second
<name> element is the business’ name transliterated into Japanese Katakana. The third
<name> element gives the business’ full English name, and the fourth <name> element gives
its English acronym:

<businessEntity . . . >

 <name xml:lang="ja"> ��������� </name>
 <name xml:lang="ja"> ��������������� � </name>
 <name xml:lang="en">NIPPON FLOWERS </name>
 <name xml:lang="en">NF</name>

</businessEntity>

Where multiple name elements are published, the first name element is treated as the primary
name, which is the name by which a business would be searched and sorted in the case of
multiply-named businesses. Client applications may use this knowledge to assist in optional
rendering of a publisher’s primary name or all alternative names.

D.3 Internationalized address format
The <address> element, contained in the businessEntity structure, contains a simple list of
<addressLine> elements.

To expose an address’ structure and meaning, virtual keyedReference elements are
employed. This is done by adorning the <address> element with a tModelKey attribute and
use of the keyName/keyValue attribute pair for each <addressLine> element.

Additionally, the UDDI Business Registry has a canonical tModel, ubr-uddi-org:postalAddress,
that identifies a canonical postal address structure with common address sub-elements (e.g.
states, cities). This canonical address structure describes address data via name/code pairs,
enabling each common address sub-element to be identified by name or code.

The following example XML fragment shows how the application of tModelKey, keyName and
keyValue attributes to <address>, in conjunction with the use of address sub-element names

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 368/420

and codes defined by the ubr-uddi-org:postalAddress tModel, allows the structure and
meaning of a contact’s address within a businessEntity to be derivable programmatically:

<address useType="Sales office" tModelKey="uddi:uddi.org:ubr:postaladdress">
 <addressLine keyName="Street" keyValue="60">Alexanderplatz</addressLine>
 <addressLine keyName="House number" keyValue="70">12</addressLine>
 …
 <addressLine keyName="Country" keyValue="20">Deutschland</addressLine>
</address>

The following example XML fragment shows an address in two languages where the
sequence of the address lines differ according to the language used. With the use of
keyName/KeyValue pair together with the codes assigned in the ubr-uddi-org:postalAddress
tModel, it is possible to determine the address semantics programmatically in spite of the
difference in address sequence :

<address useType="Sales office" xml:lang="en"
tModelKey="uddi:uddi.org:ubr:postaladdress">
 <addressLine keyName="Floor" keyValue="100">7 F</addressLine>
 <addressLine keyName="House Number" keyValue="70">No. 245 </addressLine>
 <addressLine keyName="District" keyValue="50">Sec. 1</addressLine>
 <addressLine keyName="Street" keyValue="60">Tunhua South Road</addressLine>
 <addressLine keyName="City" keyValue="40">Taipei </addressLine>
</address>
</address><address useType="Sales office" xml:lang="zh"
tModelKey="uddi:uddi.org:ubr:postaladdress">
 <addressLine keyName="City" keyValue="40"> ����� </addressLine>
 <addressLine keyName="Street" keyValue="60"> ������	 </addressLine>
 <addressLine keyName="District" keyValue="50">
�� </addressLine>
 <addressLine keyName="House Number" keyValue="70"> 245
 </addressLine>
 <addressLine keyName="Floor" keyValue="100"> 7 � </addressLine>
 …
</address>

As there is a large variation in address sub-elements of different countries53, the defined
canonical address structure does not attempt to include all possible address sub-elements of
all countries. Freeform address lines are therefore supported in the <address> element.

The usage of the canonical address structure is optional, but recommended, for both
publishers of business entities and developers of GUIs of UDDI publishing services.

53

 For information on other address format standardization efforts, refer to standards bodies, such as the Universal Postal Union
and ECCMA, which defines an International Address Element Code (IAEC).

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 369/420

D.4 Language–dependent collation
The UDDI specifications allow the collation sequence of results returned by the Inquiry APIs to
be specified via find qualifiers. The following is an example tModel overviewDoc that illustrates
the specification of a language-specific sort order tModel based on a language-specific
collation standard, in this case, the JIS X 4061 Japanese Collation Sequence.

D.4.1 UDDI JIS X 4061 Japanese Sort Order Qualifier
D.4.1.1 Introduction

The sortOrder type of find qualifier (a subset of find qualifier) represents a collation sequence
applied to the result set. The JIS X 4061 Japanese sortOrder find qualifier directs that a sort be
performed on the result set elements according to the JIS X 4061 - 1996 "Collation of
Japanese Character Strings" standard.

D.4.1.2 Design Goals

The JIS X 4061 Japanese sortOrder tModel is provided to enable inquiry results to be sorted
according to the JIS X 4061 - 1996 "Collation of Japanese Character Strings" standard.

D.4.1.3 tModel Definition

This tModel is a find qualifier that is used to enable sorting of UDDI inquiry results, based on
the JIS X 4061 - 1996 "Collation of Japanese Character Strings" standard, for Hiragana and
Katakana characters. All other characters will be sorted according to the Default Unicode
Collation Element Table. When this tModel is referenced in a find qualifier, a sort is performed
on the field designated by the sortBy* find qualifier (name, by default), normalized using
Unicode Normalization Form C. This qualifier conflicts with any other find qualifier of the
sortOrder type, such as uddi.org:binarySort.

Name: ubr-uddi-org:JIS-X4061

Short name: JIS-X4061

Description: UDDI JIS X 4061 Japanese collation sequence find qualifier

UDDI Key (V3): uddi:ubr-uddi.org:sortorder:jis-x4061

Categorization: sortOrder, findQualifier

Support: Optional

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 370/420

D.4.1.4 tModel Structure

This tModel is represented with the following structure:

<tModel tModelKey="uddi:uddi.org:sortorder:jis-x4061">
 <name>uddi-org:JIS-X4061</name>
 <description>UDDI JIS X 4061 Japanese
 collation sequence find qualifier
 </description>
 <overviewDoc typeURI="text">
 <overviewURL>
 http://ubr.uddi.org/overviewDocs/UBR_CoreOther_tModels.doc#JIS-X4061Sort
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="sortOrder"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="findQualifier"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

D.4.1.5 Example of Use

The following represents a typical inquiry that references the JIS X 4061 Japanese sortOrder
find qualifier tModel. This example finds businesses or their contained businessServices or
bindingTemplates that are categorized with any value using the ‘tempuri-org:CustomerType’
value set. The businessEntities so found are sorted first by name in ascending order, using
the JIS X 4061 Japanese collation sequence, and for those that share a common name, by
descending order of the date of the most recently updated entity.

<find_business xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:sortorder:jis-4061
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:sortbydatedesc
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:sortbynameasc
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 <findQualifier>
 uddi:uddi.org:findqualifier:combinecategorybags
 </findQualifier>
 </findQualifiers>
 <categoryBag>
 <keyedReference keyValue="%"
 keyName="tempuri-org:CustomerType"
 tModelKey="uddi:uddi.org:categorization:general_keywords"/>
 </categoryBag>
</find_business>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 371/420

E Appendix E: Using Identifiers
One of the design goals associated with the UDDI registration data is the ability to mark
information with identifiers. The purpose of identifiers in the UDDI registration data, namely for
businessEntity and tModel instances, is to allow others to find the published information using
more formal identifier systems. For example, businesses may want to use their D-U-N-S�
number54, Global Location Number (GLN)55, or tax identifier in their UDDI registration data,
since these identifiers are shared in a public or private community in order to unambiguously
identify businesses. In UDDI registries that are only used in private communities, businesses
may also want to use privately known identifiers. For example, in a UDDI registry that is used
as a service registry in a private exchange, supplier identifiers that are only known in this
community might be used to identify the businesses.

When looking at an identifier, such as a D-U-N-S� number, it is not always immediately
apparent what the identifier represents. For instance, consider the following identifier:

12-345-6789

Standing alone, it is not possible to figure out what this combination of digits and formatting
characters implies. However, if it is known that this is a D-U-N-S� number, it is at least clear
that this string identifies a business. Therefore, all appearances of identifiers in UDDI registries
pair the identifier itself with its identifier system as in the following example.

D-U-N-S� Number, 12-345-6789

E.1 Using identifiers
Two of the main UDDI data structure types provide a structure to support attaching identifiers
to data. These are the businessEntity and the tModel structures. By providing a placeholder
for attaching identifiers to these data structures, any number of identifiers can be used for a
variety of purposes.

Figure 5 - Using Identifiers

54

 D-U-N-S
� Numbers are provided by Dun & Bradstreet. See http://www.dnb.com.

55
 The Global Location Number system is defined in the EAN UCC system (http://www.ean-int.org/locations.html).

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 372/420

In the example shown in Figure 5, the businessEntity with the name "My Company Inc."
specified three identifiers in its identifierBag. These identifiers can be used, for example, in a
find_business call in order to locate the businessEntity in the UDDI registry.

For instance, it is likely that someone who wants to find the types of technical Web services
that are exposed by a given business would search using a business identifier. In the example
shown in Figure 5 the individual who registered the businessEntity data specified a D-U-N-S

�

number, a Global Location Number, and a US Tax Code identifier56.

The following fragment of an XML document shows an example of how an identifier is added
to a businessEntity in its identifierBag.

<businessEntity businessKey="uddi:my_company.example">
 …
 <identifierBag>
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:identifier:dnb.com:d-u-n-s"
 keyName="D-U-N-S:My Company"
 keyValue="12-345-6789"/>
 …
 </identifierBag>
 …
</businessEntity>

The businessEntity instance that is technically identified with the businessKey
uddi:my_company.example contains an identifierBag with a D-U-N-S number57. This is
established by the three attributes of the keyedReference:

• tModelKey: uniquely identifies the tModel that represents the identifier system

• keyName: human readable name of the identifier system, and when the identity is
coded, a human readable rendition of the value

• keyValue: the actual identifier within the specified identifier system

If a registry follows the recommended policy for recognizing identifier systems, all identifier
systems that are registered with a specific UDDI registry can be discovered with the
find_tModel call as follows:

<find_tModel>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyValue="identifier"/>
 </categoryBag>
</find_tModel>

56

 In the diagram, the actual name/value properties were abbreviated for the sake of simplicity.

57
 The identifier system examples in this section refer to actual tModelKeys that will be used to identify the corresponding tModels

in the UDDI Business Registry, Version 3.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 373/420

F Appendix F: Using Categorization
Besides the ability to mark UDDI registration data with identifiers, another design goal is the
ability to assign category information. Without categorization, locating data within a UDDI
registry would prove to be very difficult.

Especially for the discovery of previously unknown businesses, services, bindings or service
types, it is indispensable that the corresponding UDDI registration data is marked with a set of
categories that can universally be searched on. For example, the Universal Standard Products
and Services Classification (UNSPSC)58, a set of categorization codes representing product
and service categories, can be used to specify a business’ product and service offering in a
more formalized way.

F.1 Using simple categories
All four main UDDI data structure types provide a structure to support attaching categories to
data. These are the businessEntity, businessService, bindingTemplate and the tModel
structures. By providing a placeholder for attaching categories to these data structures, any
number of categories can be used for a variety of purposes.

The following fragment of an XML document shows an example59 of how categories are
added to a businessEntity using a categoryBag.

<businessEntity businessKey="uddi:my_company.example">
 …
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:unspsc"
 keyName="UNSPSC:Medical Equipment and Accessories and Supplies"
 keyValue="42.00.00.00.00"/>
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:unspsc"
 keyName="UNSPSC:Drugs and Pharmaceutical Products"
 keyValue="51.00.00.00.00"/>
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:iso3166"
 keyName="GEO:Germany"
 keyValue="DE"/>
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:iso3166"
 keyName="GEO:France"
 keyValue="FR"/>
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:iso3166"
 keyName="GEO:United States"
 keyValue="US"/>
 </categoryBag>
</businessEntity>

The businessEntity instance that is identified with the businessKey uddi:my_company.example
contains a categoryBag with two UNSPSC product category codes and three ISO 316660

58

 See http://eccma.org/unspsc.

59
 The category system examples in this section refer to actual tModelKeys that are used to identify the corresponding tModels in

the UDDI Business Registry, Version 3.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 374/420

country codes. The business that is represented by this businessKey wants to specify that it
sells medical equipment and pharmaceutical products in Germany, France and the United
States. This is technically established by the three attributes of each of the keyedReferences:

• tModelKey: uniquely identifies the tModel that represents the category system

• keyName: human readable name of the category system, and when the actual
category is coded, a human readable rendition of the value

• keyValue: the actual category code within the specified category system

In order to find all category systems that are registered with a specific UDDI registry that
follows the recommended policy for recognizing category systems, the find_tModel call can be
used as follows:

<find_tModel>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyValue="categorization"/>
 </categoryBag>
</find_tModel>

In order to simply use keywords instead of full-fledged category systems, the UDDI general
keywords taxonomy, as specified in Chapter 11, Utility tModels and Conventions, can be used.

<businessEntity businessKey="uddi:my_company.example">
 …
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:general_keywords"
 keyName="example.org:ConsultingTypes:Web service consulting"
 keyValue="Web services"/>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:general_keywords"
 keyName="example.org:ConsultingTypes:UDDI consulting"
 keyValue="UDDI"/>
 </categoryBag>
</businessEntity>

The businessEntity instance that is identified with the businessKey uddi:my_company.example
contains a categoryBag with two keywords by using the UDDI general keywords
categorization system. The business that is represented by this businessKey wants to specify
that it offers Web service and UDDI consulting services by using the keywords "Web service"
and "UDDI" as keyValue attributes within the keyedReference elements.

60

 See http://www.iso.org/iso/en/prods-services/iso3166ma/index.html.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 375/420

F.2 Grouping categories
For many cases, the use of single categories is adequate for describing the characteristics of a
business, a service, a binding, or a tModel so that it can easily be found.

But there are some cases where the relationship between single categories becomes
important. Taking the example from the section above, the business might want to specify that
it actually sells medical equipment only in Germany and France and pharmaceutical products
only in the United States.

For this and similar purposes, categoryBags can contain keyedReferenceGroups that in turn
contain a list of keyedReferences. Since the set of keyedReferences that are grouped within a
keyedReferenceGroup do not themselves provide any meaning why they are grouped
together, the keyedReferenceGroup carries its own tModelKey identifying a tModel that in turn
provides this meaning.

The following XML fragment shows how keyedReferenceGroups are used in order to achieve
the desired behavior.

<businessEntity businessKey="uddi:my_company.example">
 …
 <categoryBag>
 <keyedReferenceGroup
 tModelKey=
 "uddi:uddi.org:ubr:categorizationgroup:unspsc_geo3166">
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:unspsc"
 keyName="UNSPSC:Medical Equipment and Accessories and Supplies"
 keyValue="42.00.00.00.00"/>
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:iso3166"
 keyName="GEO:Germany"
 keyValue="DE"/>
 </keyedReferenceGroup>
 <keyedReferenceGroup
 tModelKey=
 "uddi:uddi.org:ubr:categorizationgroup:unspsc_geo3166">
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:unspsc"
 keyName="UNSPSC:Medical Equipment and Accessories and Supplies"
 keyValue="42.00.00.00.00"/>
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:iso3166"
 keyName="GEO:France"
 keyValue="FR"/>
 </keyedReferenceGroup>
 <keyedReferenceGroup
 tModelKey=
 "uddi:uddi.org:ubr:categorization:unspsc_geo3166">
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:unspsc"
 keyName="UNSPSC:Drugs and Pharmaceutical Products"
 keyValue="51.00.00.00.00"/>
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:iso3166"
 keyName="GEO:United States"
 keyValue="US"/>
 </keyedReferenceGroup>
 …
 </categoryBag>
</businessEntity>

The tModel that is used in this example, keyed as
"uddi:uddi.org:ubr:categorizationgroup:unspsc_geo3166", represents the grouping of the

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 376/420

category systems for UNSPSC and ISO 3166. As a consequence, keyedReferenceGroups
that reference this tModel describe countries or regions where a product category is offered.

Another use case that shows the importance of grouping categories is the idea of using
geographical coordinates in order to specify where a specific business or service is physically
located. The following example details how geographical latitudes and longitudes are grouped
together in a keyedReferenceGroup. The geographic reference system used in this example is
the World Geodetic System 1984 (WGS 84).

<businessEntity businessKey="uddi:my_company.example">
 <categoryBag>
 <keyedReferenceGroup
 tModelKey="uddi:uddi.org:ubr:categorizationGroup:wgs84">
 <keyedReference
 tModelKey=
 "uddi:uddi.org:ubr:categorization:wgs84:latitude"
 keyName="WGS 84 Latitude"
 keyValue="+49.682700"/>
 <keyedReference
 tModelKey=
 "uddi:uddi.org:ubr:categorization:wgs84:longitude"
 keyName="WGS 84 Longitude"
 keyValue="+008.295200"/>
 <keyedReference
 tModelKey=
 "uddi:uddi.org:ubr:categorization:geo_precision"
 keyName="Center of Street"
 keyValue="0900"/>
 </keyedReferenceGroup>
 </categoryBag>
</businessEntity>

The businessEntity instance that is identified with the businessKey uddi:my_company.example
contains a categoryBag with one keyedReferenceGroup that in turn contains a latitude, a
longitude, and a precision information grouped using the WGS 84 system. The business that is
represented by this businessKey wants to specify that it is physically located at the
latitude/longitude pair 49.6827/8.2952 and that this positioning information was derived for the
center of the street the business is being located in.

In order to find all category group systems that are registered within a UDDI registry that
follows the recommended policy for recognizing category group systems, the find_tModel call
can be used as follows:

<find_tModel>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyValue="categorizationGroup"/>
 </categoryBag>
</find_tModel>

In order to use category group systems that are not yet registered with a specific UDDI
registry, the publisher of the category group system can register this as a new tModel.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 377/420

F.3 Deriving categories
In order to use value sets, such as geographic taxonomies, for different purposes, value sets
can be derived from the tModels for some other value sets to reuse the sets of values. Each of
these derived value sets represents a specific meaning that is described in its name and
overviewDoc. The following example shows how a business is categorized with the same sets
of values, but for different purposes. The first keyedReference shows the categorization for the
physical location of the business. The second shows the categorization for the service area,
the default meaning of the geo3166-2 value set.

<businessEntity businessKey="uddi:my_company.example">
 …
 <categoryBag>
 <keyedReference
 tModelKey=
 "uddi:uddi.org:ubr:categorization:iso3166:location"
 keyName="GEOLocation:California"
 keyValue="US-CA"/>
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:categorization:iso3166"
 keyName="GEO:United States"
 keyValue="US"/>
 </categoryBag>
</businessEntity>

In order to find all category systems that are derived from a base category system, taking the
ISO 3166 category system as an example, and registered with a UDDI registry that follows the
recommended policy for identifying derived value sets, the find_tModel call can be used as
follows:

<find_tModel>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:derivedfrom"
 keyValue="uddi:uddi.org:ubr:categorization:iso3166"/>
 </categoryBag>
</find_tModel>

Note that the result list for an inquiry using the derivedFrom category system consists of all
category systems that are derived from the value set specified in the keyValue. In order to find
all derived category systems, regardless of their base category system, in a registry that
follows to the recommended policy for identifying derived value sets, the following find_tModel
call can be used:

<find_tModel>
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 </findQualifiers>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:derivedfrom"
 keyValue="%"/>
 </categoryBag>
</find_tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 378/420

The root category systems are themselves categorized with the valueSet uddi type. To find all
of the root value sets in a registry that follows the recommended policy for identifying root
value sets, the following find_tModel call can be used:

<find_tModel>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyValue="valueSet"/>
 </categoryBag>
</find_tModel>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 379/420

G Appendix G: Wildcards
This appendix provides examples of how to use wildcards in various search operations using
the find_xx APIs, as described in Section 5.1.6 About Wildcards.

G.1 Find using "starts with" searching
To find all businesses whose name begins with "ABC" – e.g., "ABC Vacuum", the following
find_business can be used:

<?xml version = "1.0" encoding = "UTF-8"?>
<find_business xmlns = "urn:uddi-org:api_v3"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 </findQualifiers>
 <name>ABC%</name>
</find_business>

G.2 Find using "starts and ends with" searching
To find all the businesses whose name begins with "Texas" and ends with "Cafe" the following
find_business can be used:

<?xml version = "1.0" encoding = "UTF-8"?>
<find_business xmlns = "urn:uddi-org:api_v3"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 </findQualifiers>
 <name>Texas%Cafe</name>
</find_business>

G.3 Find using escaped literals
To find all the businesses whose name contains a literal "_" the following find_business can be
used:

<?xml version = "1.0" encoding = "UTF-8"?>
<find_business xmlns = "urn:uddi-org:api_v3"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 </findQualifiers>
 <name>%_%</name>
</find_business>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 380/420

G.4 Find using wildcards with Taxonomies
To find all businesses classified using the D-U-N-S number system the following find_business
can be used:

<?xml version = "1.0" encoding = "UTF-8"?>
<find_business xmlns = "urn:uddi-org:api_v3"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 </findQualifiers>
 <identifierBag>
 <keyedReference
 keyValue = "%"
 tModelKey = "uddi:uddi.org:ubr:identifier:dnb.com:d-u-n-s"/>
 </identifierBag>
</find_business>

To find all businesses classified in any of the UNSPSC categories in the UNSPSC family
"Telephones and personal telecommunications devices and accessories" the following
find_business can be used:

<?xml version = "1.0" encoding = "UTF-8"?>
<find_business xmlns = "urn:uddi-org:api_v3"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 </findQualifiers>
 <categoryBag>
 <keyedReference
 keyValue = "34.10.__.__.00"
 tModelKey = "uddi:uddi.org:ubr:categorization:unspsc"/>
 </categoryBag>
</find_business>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 381/420

H Appendix H: Extensibility
UDDI supports extension through a derivation mechanism provided by XML Schema to enable
access to additional functionality using extended UDDI API and data structures. Using XML
schema derivation to extend UDDI retains compatibility with the core UDDI specification. XML
Schema restrictions are explicitly prohibited to prevent the UDDI core functionalities from being
arbitrarily limited.

Other than allowing extensibility in the XML schema, the UDDI schema extension mechanism
does not affect any other parts of the specification. There are, however, some implied
behaviors worth pointing out:

• If a client sends a request with extension to a UDDI registry that does not support the
extension, the registry MUST return an error. The registry MAY indicate the
namespace of the extension that is not supported in the error text.

• If a UDDI data structure is extended using XML schema extensions in a multi-node
registry, the extended elements MUST be replicated by all nodes. This is implied by
the definition of a registry that requires all nodes to host the same data, subject to
replication latency. See Section 1.5 Base UDDI Architecture for details.

Before introducing an extension, the designer of an extension SHOULD consider the impact of
the extension. The designer SHOULD document the impact so that administrators and users
of the registry can be fully aware of the impact in deciding whether to adopt an extension or
not.

H.1 Using the basic UDDI infrastructure
UDDI provides many levels and dimensions of flexibility such as arbitrary categorization
schemes, open-ended discoveryURLs, etc. Many requirements can be satisfied by some
application of the specification without introducing any extension. UDDI technical notes and
best practices are good sources of information about such applications of the UDDI
specification.

H.2 Establishing an extension
H.2.1 Extension designer

Extensions to UDDI can be accomplished by extending UDDI data structures (see Chapter 3
UDDI Data Structures) and/or extending the UDDI API (See Chapter 5 UDDI Programmers
APIs). Each schema extension is given its own namespace. Furthermore, the XML schema
xsi:type substitutionGroup SHOULD be used to represent the extension elements.

The designer of a UDDI extension SHOULD also register one or more tModel(s) to represent
the extension. Each tModel SHOULD indicate that it is an extension of one or more UDDI
native API set(s) by containing a categorization entry indicating the
uddi:uddi.org:categorization:derivedfrom categorization tModel, with the keyValue being the
tModelKey of a UDDI native API tModel. The categorization allows clients to discover
extensions of a UDDI native API.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 382/420

For example, an extension that extends the UDDI v3 inquiry API is represented by the
following keyedReference entry in a categoryBag

 <keyedReference
 keyName="uddi-org:derivedFrom:v3_inquiry"
 keyValue="uddi:uddi.org:v3_inquiry"
 tModelKey="uddi:uddi.org:categorization:derivedfrom"/>

H.2.2 Registries that support the extension

Conceptually speaking, a UDDI registry is a Web service. A Web service that supports the
UDDI v3 specification and a Web service that supports UDDI v3 specification with the
extension are two distinct Web services. Hence, a UDDI registry that implements the extension
SHOULD provide two sets of service end points: one set that supports the UDDI v3
specification and one set that supports the UDDI v3 specification with the extension.

To allow clients to establish the functional differences between the two sets of service end
points, the registry SHOULD indicate the differences in the service end point
bindingTemplates. The additional service end point(s) that support the extension SHOULD
reference tModels for the extension.

H.2.2.1 Special considerations in data structure extension

In the case of data structure extension, if the registry chooses to support one set of service end
point(s) instead of two sets, there will be some undesirable consequences. Specifically, if the
registry receives a get_xx request, the registry cannot distinguish whether the client is
prepared to handle the extension or not, because in a data structure extension, the get_xx API
is not extended. With two sets of service end points, the registry can identify whether the client
is prepared to handle the extension based upon the end point which the client uses.

As an alternative, an extension designer can also choose to extend the correspond save_xx
and get_xx API set so that one set of service end point(s) is sufficient to cover both the native
API and the extension.

H.3 Programmers API and UDDI Clients
There are two types of UDDI Clients: UDDI clients that are not prepared to handle the
extension and UDDI clients that are prepared to handle the extension.

H.3.1 UDDI Clients not prepared to handle the extension

A UDDI registry that supports an extension must handle native UDDI clients that have no
knowledge of or interest in the extension. Clients of this type will refer to the UDDI
namespaces contained in Chapter 2 UDDI Schemas in their API calls. The registry must
respond to such client requests by following the specification for the native UDDI namespace,
performing the behavior prescribed in this specification.

If a client follows a save of an extended entity with a subsequent save of the entity without its
extension, extension documentation determines whether to remove the extension information
or leave it untouched.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 383/420

H.3.2 UDDI Clients prepared to handle the extension

A UDDI registry that receives a message referring to a namespace for an extension that it
supports should respond with the appropriate extended response structure, if one exists. If the
API itself is extended, the registry should process the message according to the extended
behavior.

H.4 Error Codes
A UDDI extension may introduce additional error conditions. Whenever possible, extensions
SHOULD reuse existing error codes to minimize the impact on client interoperability. See
Chapter 12 Error Codes for more information.

H.5 Digital signatures
Digital signatures are used to provide integrity and authenticity of the data managed in a UDDI
registry. All of the UDDI core entities support adding XML digital signatures.

If an entity extension can be signed, either by carrying its own signature element or by being
covered by the signature of the extended entity, the designer of the extension SHOULD
provide guidance. Signing an extension provides a guarantee of integrity on the data, but it
may introduce difficulties with interoperability between registries in entity promotion scenarios.

It is worth pointing out that a publisher can also choose to provide two signatures, one for the
entity without the extension and one for the entity with the extension. In this case, however, a
publisher then needs additional transforms to exclude all the signature elements from the entity
being signed. A digital signature standard transform can only exclude the enveloped signature
itself, but not its peers.

If the extension affects save_xx API calls, the extension SHOULD NOT alter the entity that a
client sends because altering an entity can create unnecessary difficulties for a client who
digitally signs the entity.

In the case where the extension MAY alter the entity in a save_xx API call, the extension
designer SHOULD document this behavior.

H.6 Entity promotion
If the extension extends UDDI data structures, there can be some complications when an
entity is promoted from one UDDI registry to another UDDI registry, if the two registries do not
support the same set of extensions. The owners of the two registries should agree on the
extensions that will be promoted through some out-of-band communication. Additional tools
may be required to transform or filter out some extensions.

Any transformation or filtering of the entity may invalidate the digital signatures it contains.
Hence, any UDDI data structure extensions should be introduced with great caution.

H.7 Replication
In a multi-node UDDI registry where all nodes support the same data structure extension,
there are no replication issues. Taking advantage of a property of XML schema derivation,
regular change records can contain the extended data structure under the extension
namespace. The other nodes in the registry, upon receiving such change records, will be able
to recognize the data structure extension and save it correctly.

Using a data structure extension may limit the ability to add a new UDDI node from a different
vendor, however, since the extension may not be supported by that vendor.

H.8 Example

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 384/420

The following example illustrates the above considerations and provides a template for
documenting an extension. We will assume that the document is located at
http://tempuri.org/uddi_extension/specification.html. This URL is needed in the extension
tModel.

H.8.1 Description

A discoveryURLs element is added to the UDDI publisherAssertion structure. This extension
enables a business relationship to reference additional supporting documentation, such as a
business agreement between the two parties. Additional documentation of a business
relationship is particularly useful in a community / marketplace usage scenario.

H.8.2 Data structure (XML schema)

A new schema is created to extend the UDDI Version 3 API schema. In this example, the
normative schema document is located at
http://tempuri.org/schema/uddi_v3PublisherAssertionExt.xsd.

Note the targetNamespace and the egExt namespace definition. This schema imports the
UDDI Version 3 API schema, which allows extension through schema derivation.

A new type named publisherAssertionExt is defined to extend the publisherAssertion element
in the UDDI Version 3 API schema. The extension is indicated by the xsd:extension element.
An optional discoveryURLs element is added to the publisherAssertion element. When a
registry that supports this schema extension receives a publisherAssertion structure that
references this extended namespace, that does not include the optional discoveryURLs
element, it MUST behave just as it does without the extension.

<xsd:schema
 targetNamespace="http://tempuri.org/uddi_extension"
 xmlns:egExt="http://tempuri.org/uddi_extension"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:uddi="urn:uddi-org:api_v3"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xsd:import namespace="urn:uddi-org:api_v3"
 schemaLocation="http://uddi.org/schema/uddi_v3.xsd" />
 <xsd:element name="publisherAssertionExt"
 type="egExt:publisherAssertionExt"
 substitutionGroup="uddi:publisherAssertion"/>
 <xsd:complexType name="publisherAssertionExt">
 <xsd:annotation>
 <xsd:documentation>A complex type which is an extension of the
publisherAssertion complex type in UDDI.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="uddi:publisherAssertion">
 <xsd:sequence>
 <xsd:element ref="uddi:discoveryURLs"
 minOccurs = "0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:schema>

H.8.3 tModel of the extension

The extension designer then publishes two tModels to identify Web services that comply with
the UDDI extension, one for the extended inquiry API and one for the extended publication
API. The uddi:uddi.org:categorization:derivedfrom category is used to represent the
derivation.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 385/420

tModel name: tempuri-org:v3_inquiry:publisherAssertionExt

tModel Description: An extended UDDIv3 inquiry API, with an extension of UDDI
publisherAssertions to allow discoveryURLs in a publisherAssertion.

tModel key: uddi:tempuri.org:v3_inquiry:publisherassertionext

Categorization: specification, xmlSpec, soapSpec

Derived from (tModelKeys): uddi:uddi.org:v3_inquiry

This tModel is an extension to the UDDI Version 3 inquiry API (defined by tModel uddi-
org:inquiry_v3), enabling discoveryURLs to be included in a publisherAssertion. For more
information, see http://tempuri.org/uddi_extension/specification.html.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 386/420

This tModel is represented with the following structure:

<tModel tModelKey="uddi:tempuri.org:v3_inquiry:publisherassertionext">
 <name>tempuri-org:v3_inquiry:publisherAssertionExt</name>
 <description>
 Extension of UDDI publisherAssertion to allow
 discoveryURLs in a keyedReference.
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://tempuri.org/uddi_extension/specification.html
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:soapSpec"
 keyValue="soapSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:xmlSpec"
 keyValue="xmlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:specification"
 keyValue="specification"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference
 keyName="uddi-org:derivedFrom:v3_inquiry"
 keyValue="uddi:uddi.org:v3_inquiry"
 tModelKey="uddi:uddi.org:categorization:derivedfrom"/>
 </categoryBag>
</tModel>

tModel name: tempuri-org:v3_publication:publisherAssertionExt

tModel Description: An extended UDDIv3 publication API, with an extension of UDDI
publisherAssertions to allow discoveryURLs in a publisherAssertion.

tModel key: uddi:tempuri.org:v3_publication:publisherassertionext

Categorization: specification, xmlSpec, soapSpec

Derived from (tModelKeys): uddi:uddi.org:v3_publication

This tModel is an extension to the UDDI Version 3 publication API (defined by uddi-
org:publication_v3), enabling discoveryURLs to be included in a publisherAssertion. For more
information, see http://tempuri.org/uddi_extension/specification.html.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 387/420

This tModel is represented with the following structure:

<tModel tModelKey="uddi:tempuri.org:v3_publication:publisherassertionext">
 <name>tempuri-org:v3_publication:publisherAssertionExt</name>
 <description>
 Extension of UDDI publisherAssertion to allow
 discoveryURLs in a keyedReference.
 </description>
 <overviewDoc>
 <overviewURL useType="text">
 http://tempuri.org/uddi_extension/specification.html
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:soapSpec"
 keyValue="soapSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:xmlSpec"
 keyValue="xmlSpec"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:specification"
 keyValue="specification"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference
 keyName="uddi-org:derivedFrom:v3_publication"
 keyValue="uddi:uddi.org:v3_publication"
 tModelKey="uddi:uddi.org:categorization:derivedfrom"/>
 </categoryBag>
</tModel>

H.8.4 Additional service end points

A registry SHOULD provide a pair of inquiry and publication service end points in
bindingTemplate elements that support the base UDDI v3 specification, along with an
additional pair of inquiry and publication service end points in bindingTemplate elements which
support the extension.

H.8.5 Programmers API Description of the extension

A publisherAssertion can contain discoveryURLs.

For add_publisherAssertions, and set_publisherAssertions, the argument publisherAssertion is
modified as follows:

• publisherAssertion: one or more relationship assertions. Relationship assertions
consist of a reference to two businessEntity key values as designated by the fromKey
and toKey elements, as well as a required statement of the directional relationship
within the contained keyedReference element. See Appendix A Relationships and
Publisher Assertions for more information. The fromKey, the toKey, and all three parts
of the keyedReference – the tModelKey, the keyName, and the keyValue – must be
specified. Empty (zero length) keyNames and keyValues are permitted. Furthermore,
when using publisherAssertionExt elements of type publisherAssertionExt in the
egExt namespace, discoveryURLs can be optionally provided.

For get_publisherAssertions and get_assertionStatusReport, if a request is made to the
publication endpoint that supports the extension, the response message can contain a
publisherAssertion of the type egExt:publisherAssertionExt. If a request is made to the
publication endpoint that does not support extension, the response message must contain
publisherAssertion of the native UDDI v3 type.

For find_relatedBusinesses, there is no change in the request message. The syntax and the
matching rules for the keyedReference remain the same. The response message can contain
a publisherAssertion of the type egExt:publisherAssertionExt when the namespace used on
the API is egExt.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 388/420

For normal get_publisherAssertions, get_assertionStatusReport, and find_relatedBusinesses
APIs, a request sent to a native UDDI API service end point MUST return publisherAssertion
elements without the extension. A request sent to an extended service end point MUST return
extended publisherAssertion elements, if available.

H.8.6 Digital signature

publisherAssertion elements may be signed. Depending on the usage scenario, a publisher
may include or exclude the extension element in signing. A publisher may also provide two
signatures, one that includes the extension and one that excludes the extension.

If a publisher chooses to exclude the extension element in signing, the following XSLT
transform can be used:

<dsig:Transform xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 Algorithm="http://www.w3.org/TR/1999/REC-xslt-19991116">
 <xsl:stylesheet
 xmlns:xsl="http://www.w3.org/TR/1999/REC-xslt-19991116"
 xmlns:egExt="http://tempuri.org/uddi_extension"
 xmlns:uddi="urn:uddi-org:api_v3"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <xsl:output mode="xml" />
 <!-- use publisherAssertion in uddi v3 namespace and
 exclude the extension element uddi:discoveryURLs -->
 <xsl:template match="egExt:publisherAssertionExt"
 priority="1">
 <uddi:publisherAssertion>
 <xsl:apply-templates select="uddi:fromKey" />
 <xsl:apply-templates select="uddi:toKey" />
 <xsl:apply-templates select="uddi:keyedReference" />
 </uddi:publisherAssertion>
 </xsl:template>

 <!-- default identity transformation -->
 <xsl:template match="@*|node()" priority="0">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

 </xsl:stylesheet>
</dsig:Transform>

H.8.7 Registry operation: replication

All nodes must support the extension to the extent that the all nodes must replicate the
extended publisherAssertion elements of the type egExt:publisherAssertionExt.

H.8.8 Registry operation: entity promotion

The policy decision makers for the two registries should agree on whether the extension will be
promoted through some out-of-band communication.

If the target registry supports the extension and the extension is promoted, then there is no
issue.

If the target registry does not support the extension, the extension MAY by filtered out by
removing the discoveryURLs element and redefining the publisherAssertionExt element to be
of the UDDI native publisherAssertion type.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 389/420

Such filtering, however, may impact digital signatures. There are two scenarios:

• If a publisher signs a publisherAssertion with a transform that excludes the extension,
there is no issue. The manifest used to generate the digital signature does not consist
of the extension. Hence, the digital signature of the publisherAssertion in the target
registry remains valid.

• If a publisher signs a publisherAssertion without any additional transforms, the digital
signature of the publisherAssertion in the target registry will be invalid since the digital
signature covers the extension.

H.8.9 Non-normative example

This example demonstrates the addition of a publisherAssertion with a pointer to the contract
between the two entities contained in the extended publisherAssertion element. The
publisherAssertionExt element is defined to be of the type egExt:publisherAssertionExt (as
opposed to the UDDI native publisherAssertion type uddi:publisherAssertion).

<uddi:add_publisherAssertions
 xmlns:egExt="http://tempuri.org/uddi_extension"
 xmlns:uddi="urn:uddi-org:api_v3"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <uddi:authInfo>someAuthInfo</uddi:authInfo>
 <egExt:publisherAssertionExt>
 <uddi:fromKey>some business key</uddi:fromKey>
 <uddi:toKey>some other business key</uddi:toKey>
 <uddi:keyedReference
 tModelKey="uddi:uddi.org:relationships"
 keyName="some peer to peer relationship"
 keyValue="peer-peer" />
 <uddi:discoveryURLs>
 <uddi:discoveryURL useType="contract">
 http://www.example.com/contract/p2pcontract.pdf
 </uddi:discoveryURL>
 </uddi:discoveryURLs>
 </egExt:publisherAssertionExt>
</uddi:add_publisherAssertions>

Now we perform an inquiry to obtain all of the publisherAssertions owned by the publisher,
including the extension. In order to obtain the extension, a client must send the request to the
publication service end point that supports the extension.

<get_publisherAssertions
 xmlns="urn:uddi-org:api_v3">
 <authInfo>the-authinfo-token</authInfo>
</get_publisherAssertions>

Next we perform an inquiry for all of the publisherAssertions owned by the publisher, without
the extension. A client must send the request to the publication service end point that supports
only the native UDDI publication API set.

<get_publisherAssertions
 xmlns="urn:uddi-org:api_v3">
 <authInfo>the-authinfo-token</authInfo>
</get_publisherAssertions

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 390/420

In entity promotion, if the target registry filters out the extension, the extended
publisherAssertion will be transformed to the UDDI native publisherAssertion. The
discoveryURLs element is removed.

<uddi:add_publisherAssertions
 xmlns:uddi="urn:uddi-org:api_v3">
 <uddi:authInfo>someAuthInfo</uddi:authInfo>
 <!-- egExt:publisherAssertionExt element
 is replaced by uddi:publisherAssertion element -->
 <uddi:publisherAssertion>
 <uddi:fromKey>some business key</uddi:fromKey>
 <uddi:toKey>some other business key</uddi:toKey>
 <uddi:keyedReference
 tModelKey="uddi:uddi.org:relationships"
 keyName="some peer to peer relationship"
 keyValue="peer-peer" />
 <!-- uddi:discoveryURLs element is removed -->
 </uddi:publisherAssertion>
</uddi:add_publisherAssertions>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 391/420

I Appendix I: Support For XML Digital Signatures
The UDDI v3 schema supports signing of the following UDDI elements using XML-Signature
Syntax and Processing (see http://www.w3.org/TR/xmldsig-core/).

• businessEntity

• businessService

• bindingTemplate

• tModel

• publisherAssertion

This Appendix describes the process for signing the UDDI elements listed above using XML
Digital Signature and the process for verifying signatures associated with these elements.

I.1 Generation of a Signature
A Signature element SHOULD be generated according to the required steps of "Core
Generation" in XML-Signature Syntax and Processing.

The signature should be calculated on the top level element that will be stored by the registry
as a result of the Publication API call. This element, referred to as the data object in the XML-
Signature and Syntax specification, is the businessEntity element for save_business API calls,
the businessService element for save_service API calls, the bindingTemplate for save_binding
API calls, the tModel for save_tModel API calls and the publisherAssertion for
set_publisherAssertions and add_publisherAssertions API calls. The signature should be
generated on the elements before they are added to the body of an API call. Also, according
to the signature generation, all children of the element being signed are included in the
generation of the signature unless first excluded by application of a transform. For
businessService elements, any bindingTemplate elements must be included in the signature
generation unless first excluded by applying a transform. Similarly, for businessEntity
elements, businessService elements must be included in the signature generation unless first
excluded by applying a transform. Due to the containment of service projections as
businessService elements within a businessEntity element, this also means that changes to
the projected service will render a signature of the businessEntity containing the projection
invalid, unless a businessService element representing a service projection is excluded using
a transform.

Because attributes are also included in generation of a signature on an element, unless
excluded by applying a transform, node generated entity keys result in the addition of content
in attribute values. Publication API calls that include data where the keys are not assigned by
the publisher will not be able to generate a signature that will remain valid, unless the node
assigned key attributes are excluded using a transform. It is RECOMMENDED that publishers
generate a signature on elements containing publisher assigned keys. In the event that
publisher assigned keys cannot be used due to the registry or node policy on key generation, it
is RECOMMENDED that publishers generate a signature on elements after all keys in the
element and its contained elements have been generated by the node. For example, when
signing a businessService element, both the serviceKey and businessKey MUST be provided,
and in any contained bindingTemplate elements, both the bindingKey attributes and the
serviceKey attributes must be provided on each bindingTemplate. The generation of a
signature where node generated keys are included in the signature is, then, only possible on
updates of the data where no new keys are to be generated by the node.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 392/420

Due to the location of the sequence of Signature elements within an element that is to be
signed, the signature is "enveloped". As a result of the enveloping of the signature, it is
necessary to apply at least one transformation on the signed entity to exclude the signature or
signature(s). The transformation selected by a publisher or the XML Signature tool is specified
in a Transform element inside the Signature element. In the case that a publisher is generating
only one signature per containing element, the "Enveloped Signature Transform" specified in
XML-Signature Syntax and Processing is an appropriate transform to support the enveloping.

After the "Reference Generation" steps are performed according to XML-Signature Syntax and
Processing, the SignedInfo should be generated, requiring the selection of a Canonicalization
Method. It is strongly RECOMMENDED that the Schema Centric Canonicalization algorithm
be used for producing the canonical form of the data object referenced in the SignedInfo.
Other canonicalization algorithms, including the Canonical XML referenced in the XML-
Signature Syntax and Processing specification, do not account for the nature of the response
structures in UDDI registries. Due to the re-enveloping, namespace prefix normalization,
Unicode normalization and other schema based alterations to the data objects, signatures
generated using other canonicalization algorithms MAY NOT and likely will not validate
successfully when the entity is retrieved from one or more nodes of a registry.

It is RECOMMENDED that well known key formats be used in the KeyInfo applied during
generation of the signature. As indicated by XML Signature Syntax and Processing, Section
4.4, "questions of trust of such key information (e.g., its authenticity or strength) are out of
scope of this specification and left to the application." It is then left to the publisher to produce
a signature where the credentials asserted in the KeyInfo MAY be verified by an inquirer.
Without diligent verification of the contents and validity of any published KeyInfo in the
Signature element, XML-Signature Syntax and Processing only provides integrity with respect
to the data supplied by the publisher but provides no assurance of the identity of the publisher.

I.2 Validation of a Signature
A Signature element returned in the get_xxDetails API call SHOULD be validated according to
the required steps of "Core Validation" in XML-Signature Syntax and Processing.

The input to the signature validation should be the top level element that is returned by the
registry as a result of the Inquiry API call. This element, referred to as the data object in the
XML-Signature and Syntax specification, is the businessEntity element for get_businessDetail
API calls, the businessService element for get_serviceDetail API calls, the bindingTemplate for
get_bindingDetail API calls, the tModel for get_tModelDetail API calls and the
publisherAssertion contained in the sharedRelationship structure in find_relatedBusinesses
API calls.

Typically, the nodes will not validate the signature on behalf of a client, so any client that uses
signed data for any form of assurance MUST validate the signatures on the relevant data
objects and MUST perform the necessary diligence on the KeyInfo if the inquirer uses the
KeyInfo element for an assurance of identity of the publisher.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 393/420

J Appendix J: UDDI Replication Examples

J.1 Communication Graph

The following diagram is an example of a simple communicationGraph that restricts the
invocation of get_changeRecords messages to a unidirectional-ring amongst a set of four
nodes. In operational practice, it is expected that this get_changeRecords message will
typically be the only UDDI replication message where communication restrictions are imposed.
The introduction of communication restrictions on the notify_changeRecordsAvailable
messages between nodes within a registry is not expected to be commonplace.

Figure 6 - Communication Graph Example

The arrows in Figure 6 depict the direction of flow of datum from one node to another.

The communication graph depicted in the Replication Configuration Structure example in the
next section represents a spanning cycle topology. This is one of many possible topologies
supported within this replication framework.

J.2 Replication Configuration Structure Example
<?xml version="1.0" encoding="UTF-8"?>
<replicationConfiguration xmlns="urn:uddi-org:repl_v3">
 <serialNumber>8</serialNumber>
 <timeOfConfigurationUpdate>200203041859Z</timeOfConfigurationUpdate>
 <registryContact>
 <contact xmlns="urn:uddi-org:api_v3">
 <description>Registry Administrative Contact</description>
 <personName>King Kurt</personName>
 <phone useType="Voice">425-555-1212</phone>
 <email useType="e-mail">kkurt@microcute.com</email>
 </contact>
 </registryContact>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 394/420

 <operator>
 <operatorNodeID>uddi:microcute.com:node:uddi1.microcute.com</operatorNodeID>
 <operatorStatus>normal</operatorStatus>
 <contact useType="Operator Contact" xmlns="urn:uddi-org:api_v3">
 <description>Microcute Customer Contact</description>
 <personName>Customer Support</personName>
 <phone useType="Voice">444.555.5589</phone>
 <email useType="e-mail">uddiOpsExample@microcute.com</email>
 </contact>
 <operatorCustodyName>www.microcute.com/svcs/uddi</operatorCustodyName>
 <soapReplicationURL>
 https://www.microcute.com/svcs/uddi/repl.asmx
 </soapReplicationURL>
 </operator>
 <operator>

 <operatorNodeID>uddi:microcute.com:node:uddi2.microcute.com</operatorNodeID>
 <operatorStatus>normal</operatorStatus>
…
 </operator>
 <operator>

 <operatorNodeID>uddi:microcute.com:node:uddi3.microcute.com</operatorNodeID>
 <operatorStatus>normal</operatorStatus>
…
 </operator>
 <operator>

 <operatorNodeID>uddi:microcute.com:node:uddi4.microcute.com</operatorNodeID>
 <operatorStatus>normal</operatorStatus>
…
 </operator>
<communicationGraph>
 <node>uddi:microcute.com:node:uddi1.microcute.com</node>
 <node>uddi:microcute.com:node:uddi2.microcute.com</node>
 <node>uddi:microcute.com:node:uddi3.microcute.com</node>
 <node>uddi:microcute.com:node:uddi4.microcute.com</node>
 <controlledMessage>get_changeRecords</controlledMessage>
 <edge>
 <message>get_changeRecords</message>
 <messageSender>
 uddi:microcute.com:node:uddi1.microcute.com
 </messageSender>
 <messageReceiver>
 uddi:microcute.com:node:uddi2.microcute.com
 </messageReceiver>
 </edge>
 <edge>
 <message>get_changeRecords</message>
 <messageSender>
 uddi:microcute.com:node:uddi2.microcute.com
 </messageSender>
 <messageReceiver>
 uddi:microcute.com:node:uddi3.microcute.com
 </messageReceiver>
 </edge>
 <edge>
 <message>get_changeRecords</message>
 <messageSender>
 uddi:microcute.com:node:uddi3.microcute.com
 </messageSender>
 <messageReceiver>
 uddi:microcute.com:node:uddi4.microcute.com
 </messageReceiver>
 </edge>
 <edge>
 <message>get_changeRecords</message>
 <messageReceiver>
 uddi:microcute.com:node:uddi4.microcute.com
 </messageReceiver>
 <messageReceiver>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 395/420

 uddi:microcute.com:node:uddi1.microcute.com
 </messageReceiver>
 </edge>
</communicationGraph>
 <maximumTimeToGetChanges>12</maximumTimeToGetChanges>
</replicationConfiguration>

J.3 notify_changeRecordsAvailable Example
The following is an example of a notify_changeRecordsAvailable call.

<?xml version="1.0" encoding="UTF-8"?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
<notify_changeRecordsAvailable xmlns="urn:uddi-org:repl_v3">
 <notifyingNode>
 uddi:microcute.com:node:uddi2.microcute.com
 </notifyingNode>
 <changesAvailable>
 <highWaterMark>
 <nodeID>
 uddi:microcute.com:node:uddi2.microcute.com
 </nodeID>
 <originatingUSN>123</originatingUSN>
 </highWaterMark>
 <highWaterMark>
 <nodeID>
 uddi:microcute.com:node:uddi1.microcute.com
 </nodeID>
 <originatingUSN>241</originatingUSN>
 </highWaterMark>
 <highWaterMark>
 <nodeID>
 uddi:microcute.com:node:uddi3.microcute.com
 </nodeID>
 <originatingUSN>193</originatingUSN>
 </highWaterMark>
 <highWaterMark>
 <nodeID>
 uddi:microcute.com:node:uddi4.microcute.com
 </nodeID>
 <originatingUSN>173</originatingUSN>
 </highWaterMark>
 </changesAvailable>
</notify_changeRecordsAvailable>
 </Body>
</Envelope>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 396/420

J.4 get_ChangeRecords Example
The following is an example of a get_changeRecords call.

<?xml version="1.0" encoding="UTF-8"?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <get_changeRecords
 xmlns:xsd=http://www.w3.org/2001/XMLSchema
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:uddi-org:repl_v3">
 <requestingNode>
 uddi:microcute.com:node:uddi1.microcute.com
 </requestingNode>
 <changesAlreadySeen>
 <highWaterMark>
 <nodeID>
 uddi:microcute.com:node:uddi1.microcute.com
 </nodeID>
 <originatingUSN>242</originatingUSN>
 </highWaterMark>
 <highWaterMark>
 <nodeID>
 uddi:microcute.com:node:uddi2.microcute.com
 </nodeID>
 <originatingUSN>120</originatingUSN>
 </highWaterMark>
 <highWaterMark>
 <nodeID>
 uddi:microcute.com:node:uddi3.microcute.com
 </nodeID>
 <originatingUSN>193</originatingUSN>
 </highWaterMark>
 <highWaterMark>
 <nodeID>
 uddi:microcute.com:node:uddi4.microcute.com
 </nodeID>
 <originatingUSN>172</originatingUSN>
 </highWaterMark>
 </changesAlreadySeen>
 </get_changeRecords>
 </Body>
</Envelope>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 397/420

J.5 Miscellaneous Replication Example

The following XML Instance document describes several replication specific messages.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <changeRecords xmlns="urn:uddi-org:repl_v3">
 <changeRecord acknowledgementRequested="false">
 <changeID>
 <nodeID>uddi:microcute.com:node:uddi2.microcute.com</nodeID>
 <originatingUSN>120</originatingUSN>
 </changeID>
 <changeRecordNewData>
 <businessEntity businessKey="
 uddi:microcute.com:uddi2:microcute.com:3f10…"
 operator="Microcute UDDI Services"
 authorizedName="…"
 xmlns="urn:uddi-org:api_v3">
 <discoveryURLs>
 <discoveryURL useType="homepage">
 http://...</discoveryURL>
 <discoveryURL useType="businessEntity">
 http://....</discoveryURL>
 </discoveryURLs>
 <name xml:lang="en">Simple Business</name>
 <description xml:lang="en">Simple Business</description>
 <businessServices>
 <businessService serviceKey="…"
 businessKey="uddi:microcute.com:3f10…">
 <name xml:lang="en">Off Shore Mining</name>
 <description xml:lang="en">
 Off shore drilling
 </description>
 <bindingTemplates>
 <bindingTemplate bindingKey="…."
 serviceKey="…">
 <accessPoint URLType="https">
 http://...</accessPoint>
 </bindingTemplate>
 </bindingTemplates>
 <categoryBag>
 <keyedReference tModelKey="…"
 keyName="Iron Ores"
 keyValue="1010"/>
 </categoryBag>
 </businessService>
 </businessServices>
 </businessEntity>
 </changeRecordNewData>
 </changeRecord>
 <changeRecord acknowledgementRequested="false">
 <changeID>
 <nodeID>uddi:microcute.com:node:uddi2.microcute.com</nodeID>
 <originatingUSN>121</originatingUSN>
 </changeID>
 <changeRecordNewData>
 <tModel tModelKey="…"
 operator="Microcute UDDI Services"
 authorizedName="…"
 xmlns="urn:uddi-org:api_v3">
 <name>Simple tModel</name>
 <overviewDoc>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 398/420

 <overviewURL>http://…</overviewURL>
 </overviewDoc>
 <identifierBag>
 <keyedReference tModelKey="…"
 keyName="Lab Tested Protocol"
 keyValue="protocol"/>
 </identifierBag>
 <categoryBag>
 <keyedReference tModelKey="…"
 keyName="Protocol"
 keyValue="protocol"/>
 </categoryBag>
 </tModel>
 </changeRecordNewData>
 </changeRecord>
 <changeRecord acknowledgementRequested="true">
 <changeID>
 <nodeID>uddi:microcute.com:node:uddi2.microcute.com</nodeID>
 <originatingUSN>122</originatingUSN>
 </changeID>
 <changeRecordHide>
 <tModelKey xmlns="urn:uddi-org:api_v3">….</tModelKey>
 </changeRecordHide>
 </changeRecord>
 <changeRecord acknowledgementRequested="false">
 <changeID>
 <nodeID>uddi:microcute.com:node:uddi2.microcute.com</nodeID>
 <originatingUSN>123</originatingUSN>
 </changeID>
 <changeRecordPublisherAssertion>
 <publisherAssertion>
 <fromKey>….</fromKey>
 <toKey>….</toKey>
 <keyedReference tModelKey="…"
 keyName="Holding Company"
 keyValue="parent-child"/>
 </publisherAssertion>
 <fromBusinessCheck>true</fromBusinessCheck>
 <toBusinessCheck>false</toBusinessCheck>
 </changeRecordPublisherAssertion>
 </changeRecord>
 </changeRecords>
 </soap:Body>
</soap:Envelope>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 399/420

J.6 Non-normative – Cycle of Cycles Topology
This section describes one of many possible topology choices allowed by this Replication
Design. This appendix is an illustrative example only.

Figure 7 - Cycle of Cycles Topology

If the Communications Graph were a cycle of cycles, (e.g., if in addition to the ABCD spine, A0
was also on a cycle with A1, A2, and A3, B0 was on a cycle with B1, B2, and B3, etc.) a
variation of this would be applied. When a spine node such as B0 receives a
get_changeRecords request (or in the case of A, when its timer event is triggered), it handles
propagation through its sub-cycle before answering the get_changeRecords request on the
"spine". B0 continues propagation along the spine only after the first round of propagation
completes on its sub-cycle, which means that B has received all changes from B1, B2, and B3.
It does not continue the second round of propagation on its sub-cycle until it receives the
second round of changes from A, which contains updates from all other spine nodes and their
sub-cycles.

For a cycle, it is suggested that a backup node will be the next node in the cycle, and for
added safety, the node after that as well, allowing propagation to proceed correctly even if
there are node failures. Note that an incorrectly perceived node failure will not affect the
correctness of the algorithm. If additional propagation is done, no unnecessary data will be
replicated, although there may be additional get_changeRecords within the prescribed period

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 400/420

K Appendix K – Modeling UDDI within UDDI – A
Sample

UDDI itself is a set of Web services. With this in mind, modeling UDDI within UDDI is an
important and illuminating exercise to help understand modeling decisions that need to be
made when using UDDI. Moreover, the modeling of UDDI within UDDI is a required practice
for all operators of UDDI nodes. For a complete explanation of recommended vs. required
modeling decisions for UDDI nodes, see Chapter 9 Policy.

This appendix will walk through the recommended modeling of a multi-versioned instance of
UDDI. Each fragment of the different modeling pieces will be outlined, with an explanation of
the salient modeling decisions and requirements made below.

K.1 The Node’s businessEntity
All nodes must create a Node Business Entity, under which the various services they offer are
modeled.

K.1.1 XML Fragment
<businessEntity
 businessKey="uddi:tempuri.org:uddinodebusinessKey"
 xmlns="urn:uddi-org:api_v3">
 <name xml:lang="en">A UDDI Node</name>
 <description xml:lang="en">This represents a sample model of how a uddi node
 might represent itself in UDDI
 </description>
 <categoryBag>
 <keyedReference tModelKey="uddi:uddi.org:categorization:nodes"
 keyValue="node" />
 </categoryBag>

K.1.2 Explanation

As explained in Section 6.2.2.1 Normative Modeling of Node Business Entity, a node must
categorize its Node Business Entity with the uddi:uddi.org:categorization:nodes category,
using the keyValue of node.

Also note the creation of a UDDI v3 businessKey with the domainKey of
uddi:tempuri.org:uddinodebusinessentity.

K.2 The Policy Service
With v3, there are a number of policy decision points that a node must document. These
policies should be documented using the Policy schema. Policies placed in the document
should reflect overarching policies for the node. Each specific API set may have an additional
policy statement. Or, the entirety of a node’s policy might be in the XML file denoted by the
Policy service.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 401/420

K.2.1 XML Fragment
<businessService
 serviceKey="uddi:tempuri.org:policyservicekey"
 businessKey="uddi:tempuri.org:nodebusinesskey">
 <name xml:lang="en">UDDI Policy Service</name>
 <description xml:lang="en">Web Service supporting UDDI policy
 information
 </description>
 <bindingTemplates>
 <bindingTemplate bindingKey="uddi:tempuri.org:uddinodepolicy"
 serviceKey="uddi:tempuri.org:policyservicekey">
 <description xml:lang="en">This binding provides an HTTP GET
 XML document outlining overall policy decision points for
 this node.
 </description>
 <accessPoint useType="endPoint">
 https://tempuri.org/uddi/overall_policy.xml
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:uddi.org:v3_policy">
 <description xml:lang="en">This binding supports the
 UDDI Version 3.0 policy modeling schema.
 </description>
 </tModelInstanceInfo>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:protocol:serverauthenticatedssl3">
 <description xml:lang="en">This binding's access point
 requires the use of SSL 3.0 with server
 authentication.
 </description>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
</businessService>

K.2.2 Explanation

First, notice that there is a Policy businessService with a single bindingTemplate underneath it
as a child. Also, note the keys for the policy businessService and bindingTemplate are based
on the same domainKey.

The accessPoint for the policy file is an XML file called overall_policy.xml. The useType
attribute on the accessPoint has a value of "text", which denotes that there is no indirection
required to retrieve this data.

There are two tModelInstanceInfos which the Policy bindingTemplate implement. First is the
UDDI v3 Policy tModel. Implementing this tModel signifies that the XML file returned by this
accessPoint conforms to the specification laid out in the uddi:uddi.org:v3_Policy tModel.

The second tModel denotes that there is server authenticated SSL required to access this
resource. One could determine this by parsing the address itself for the https prefix, but by
modeling as such, this information can be determined through queries using the UDDI API.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 402/420

K.2.2.1 Sample Policy Document

The following document is an example of a policy document. Not all policy decision points
have been demonstrated in this sample, but rather, only a subset is represented. As shown in
the example, the policy document for the policy service includes both registry-defined policies
and policies delegated to the node.

<?xml version="1.0" encoding="UTF-8" ?>
<policies xmlns="urn:uddi-org:policy_v3">
 <policy>
 <policyName>Registering Nodes in a Registry</policyName>
 <policyDescription xml:lang="en">
 This registry contains two nodes, the tempuri.org node and the
 example.org node. The configuration
 of these nodes is protected by a signed Replication Configuration
 Structure.
 Access to this configuration file is only available to the operators of
 the nodes. Nodes may be added by mutual agreement of both nodes.
 In the event that either node is removed from the registry,
 publishers will receive notification and all data custody will be
 transferred to one the remaining nodes chosen by the publisher.
 </policyDescription>
 <policyDecisionPoint>registry</policyDecisionPoint>
 </policy>
 <policy>
 <policyName>User Limits</policyName>
 <policyDescription xml:lang="en">
 There are two levels of publisher accounts for the tempuri.org node.
 Level 1:
 A level 1 publisher account is used by individual businesses and
 organizations registering at the http://tempuri.org/uddi site.

 Current limits are as follows:

 1 Business Entity;
 4 Business Services per Business Entity;
 2 Binding Templates per Business Service;
 10 tModels;

 In the event that a publisher needs to register additional information,
 an account upgrade with increased limits for business entities or
 tModels may be requested by sending an email to node@tempuri.org.
 Additional information about the publisher will be collected to help
 verify requirements to register additional information.

 Level 2:

 A level 2 publisher account is typically used by large organizations,
 marketplaces, or service providers that provide registration services
 on behalf of multiple businesses. These accounts have no restrictions
 on the amount of information that may be registered within the node.

 A publisher account may be upgraded from Level 1 to Level 2 by
 contacting the node. To request a publisher account upgrade, send an
 email request to node@tempuri.org.

 </policyDescription>
 <policyDecisionPoint>node</policyDecisionPoint>
 </policy>
 <policy>
 <policyName>Audit</policyName>
 <policyDescription xml:lang="en">
 The http://tempuri.org/uddi site will monitor and audit all
 publication activity at its site. Any publisher registered at the node
 may request the history of its published information by sending an
 email request to node@tempuri.org. The history of each registered entry

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 403/420

 published at the node will be provided within one week.

 Audit history will be maintained for one year.
 </policyDescription>
 <policyDecisionPoint>node</policyDecisionPoint>
 </policy>
 <policy>
 <policyName>Data Integrity</policyName>
 <policyDescription xml:lang="en">
 This registry will endeavor to maintain the integrity of all
 information registered at any node of the registry, either through
 the programmatic XML and SOAP interfaces, or any other interface
 provided by a node. Limitations imposed by the specification include,
 but are not limited to, the following:

 Whitespace will be normalized and trimmed according
 to the rules defined in the UDDI specification and
 schemas. All content will also be normalized according
 to the Unicode normalization algorithm referenced in
 the specification.

 Size limits for individual data elements stored within
 the UDDI registry have been established in the
 specification. Information registered at any node
 exceeding these size limits will be rejected.

 The terms of use statement for publication of information at
 http://tempuri.org/uddi requires that all information published be
 accurate, and that the publisher is authorized to represent their
 individual organization(s). Should violations of this policy be
 detected, and/or unauthorized publication of information occur,
 notification of such violation should be sent via email to
 node@tempuri.org. The information in the registry will be tracked
 internally as suspect or contested. The registered contact information
 for the publisher of the contested information will be provided within
 4 business hours.

 Final resolution of the conflict is responsibility of the parties
 involved, and should follow established legal processes. The
 http://tempuri.org/uddi operations team will comply with the resolution
 agreed to by the parties involved, or the results of any subsequent
 litigation related to the issue. This compliance is limited to
 removal of the contested information from the UDDI registry.
 </policyDescription>
 <policyDecisionPoint>node</policyDecisionPoint>
 </policy>
</policies>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 404/420

K.3 The Security Service
In UDDI Version 3, the Security API is an optional API that may or may not be supported by a
node. In this sample, the node does support the security API, and has indicated this by
modeling a specific security service, where clients may use the Security API.

K.3.1 XML Fragment
<businessService
 serviceKey="uddi:tempuri.org:authservicekey"
 businessKey="uddi:tempuri.org:nodebusinesskey">
 <name xml:lang="en">UDDI Authentication Service</name>
 <description xml:lang="en">
 Web Service supporting UDDI Security API
 </description>
 <bindingTemplates>
 <bindingTemplate
 bindingKey="uddi:tempuri.org:authbinding"
 serviceKey="uddi:tempuri.org:authservicekey">
 <description xml:lang="en">
 This binding to authenticate with the UDDI services using the UDDI
 Security API.
 </description>
 <accessPoint useType="endPoint">
 https://tempuri.org/uddi/authenticate.asmx
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:uddi.org:v3_security">
 <description xml:lang="en">This binding's supports the UDDI v3
 Security API.
 </description>
 </tModelInstanceInfo>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:protocol:serverauthenticatedssl3">
 <description xml:lang="en">
 This binding's access point requires the use of SSL 3.0
 with server authentication.
 </description>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
</businessService>

K.3.2 Explanation

Similar to the policy businessService, the security businessService has a single
bindingTemplate which contains the accessPoint for the Security API itself.

The accessPoint provides the end point where this API can be invoked. It too is decorated
with a useType attribute of "endPoint", denoting that there is no indirection involved in the
accessPoint.

The bindingTemplate implements the uddi:uddi.org:v3_security API, and thus complies with
the requirements which are represented by that tModel.

Similar to the Policy tModel, this Security API models its security protocol using the
uddi:uddi.org:protocol:serverauthenticatedssl3 tModel.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 405/420

K.4 The Publish Service – Supporting 3 Versions
In this sample, the node supports all three UDDI Publish API sets. This has been modeled as
a single Publish businessService with three different bindingTemplates, one for each version of
the UDDI Publish API it supports.

K.4.1 XML Fragment
<businessService
 serviceKey="uddi:tempuri.org:publishservicekey"
 businessKey="uddi:tempuri.org:nodebusinesskey">
 <name xml:lang="en">UDDI Publish API Services</name>
 <description xml:lang="en">Web Service supporting UDDI
specifications</description>
 <bindingTemplates>

<bindingTemplate
 bindingKey="uddi:tempuri.org:uddinodebindingkey_publish_v1"
 serviceKey="uddi:tempuri.org:publishservicekey">
 <description xml:lang="en">
 This binding supports the UDDI Programmer's API Specification for
 publication
 </description>
 <accessPoint useType="endPoint">
 https://tempuri.org/uddi/publish.asmx
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:64c756d1-3374-4e00-ae83-ee12e38fae63">
 <description xml:lang="en">
 This binding supports the UDDI Version 1.0 Programmer's API
 Specification for publication
 </description>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
</bindingTemplate>

<bindingTemplate
 bindingKey="uddi:tempuri.org:uddinodebindingkey_publish_v2"
 serviceKey="uddi:tempuri.org:publishservicekey">
 <description xml:lang="en">
 This binding supports the UDDI Programmer's API Specification for
 publication
 </description>
 <accessPoint useType="endPoint">
 https://tempuri.org/uddi/publish_v2.asmx
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:a2f36b65-2d66-4088-abc7-914d0e05eb9e">
 <description xml:lang="en">
 This binding supports the UDDI Version 2.0 Programmer's API
 Specification for publication
 </description>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
</bindingTemplate>

<bindingTemplate
 bindingKey="uddi:tempuri.org:uddinodebindingkey_publish_v3"
 serviceKey="uddi:tempuri.org:publishservicekey">
 <description xml:lang="en">
 This binding supports the UDDI Programmer's API Specification for
 publication
 </description>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 406/420

 <accessPoint useType="endPoint">
 https://tempuri.org/uddi/publish_v3.asmx
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:uddi.org:v3_publication">
 <description xml:lang="en">
 This binding supports the UDDI Version 3.0 Programmer's API
 Specification for publication
 </description>
 <instanceDetails>
 <overviewDoc>
 <description xml:lang="en">
 This overviewURL provides policy information about
 publication.
 </description>
 <overviewURL useType="text">
 https://tempuri.org/uddi/publish_policy.xml
 </overviewURL>
 </overviewDoc>
 <instanceParms>
 <![CDATA[
 <?xml version="1.0" encoding="utf-8" ?>
 <UDDIinstanceParmsContainer
 xmlns="urn:uddi-org:policy_v3_instanceParms">
 <authInfoUse>required</authInfoUse>
 </UDDIinstanceParmsContainer>
]]>
 </instanceParms>
 </instanceDetails>
 </tModelInstanceInfo>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:protocol:serverauthenticatedssl3">
 <description xml:lang="en">
 This binding's access point requires the use of SSL 3.0 with server
 authentication.
 </description>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
</bindingTemplate>

 </bindingTemplates>
</businessService>

K.4.2 Explanation

First, note the creation of three bindingTemplates with domainKeys for each of the different
API versions: uddi:tempuri.org:uddinodebindingkey_publish_v1,
uddi:tempuri.org:uddinodebindingkey_publish_v2, and
uddi:tempuri.org:uddinodebindingkey_publish_v3. In this sample, there must be three
different bindingTemplates because each accessPoint for the different APIs is different. Were
a node to support multiple versions through the same accessPoint, fewer bindingTemplates
would be required for the purposes of modeling.

The Version 1 and Version 2 bindingTemplates are identical except for two differences: the
accessPoints differ and the tModelInstanceInfo differs, as each bindingTemplate implements a
different version of the API. Note that the Version 1 and Version 2 bindingTemplates
implement their publish API version tModels with a UUID. Because these canonical tModels
do not have a corresponding v3 domainKey, the UUIDs are taken from the earlier version of
the specification and used.

In the Version 3 bindingTemplate, note the instanceDetails of the tModelInstanceInfo for the v3
API set. There is an overviewDoc specified that directs a user to policy information about that
API specifically. For example, this document might discuss publication limits, processes for
gaining a publication account, etc. It is not required that a separate policy document be

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 407/420

created for each API, but it is convenient for the user to be able to directly access policy
information about that API.

Also, there is an XML fragment using <![CDATA[…]]> within the instanceParms. This XML
fragment models the authInfo use policy for this API, as explained in Chapter 9 Policy. In this
case, an authInfo element is required on all Publish API calls to this node.

The Version 3 bindingTemplate also implements the SSL tModel, as it must be invoked
through SSL.

Note that the Version 1 and 2 APIs are not modeled to say that they implement the SSL
tModel, nor do they have a policy overviewURL. This modeling decision was made because
the use of SSL is specified by the definition of the UDDI Version 1 and 2 Publish API sets and
because the conventions for modeling the use of SSL did not exist until the Version 3
specification. However, a node may choose to model these newer canonical tModels on older
API sets as appropriate.

K.5 The Inquiry Service – Supporting 3 Versions
Lastly, the node has modeled three different versions of the Inquiry API under a single logical
businessService.

K.5.1 XML Fragment
<businessService
 serviceKey="uddi:tempuri.org:nodeservicekey"
 businessKey="uddi:tempuri.org:nodebusinesskey">
 <name xml:lang="en">UDDI Inquiry Services</name>
 <description xml:lang="en">
 Web Service supporting UDDI Inquiry APIs
 </description>
 <bindingTemplates>

<bindingTemplate
 bindingKey="uddi:tempuri.org:uddinodebindingkey_inquiry_v1"
 serviceKey="uddi:tempuri.org:inquiryservicekey">
 <description xml:lang="en">
 This binding supports the UDDI Programmer's API Specification for inquiry
 </description>
 <accessPoint useType="endPoint">
 http://tempuri.org/uddi/inquire.asmx
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:4cd7e4bc-648b-426d-9936-443eaac8ae23">
 <description xml:lang="en">
 This access point supports the UDDI Version 1.0 Programmer's API
 Specification for inquiry
 </description>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
</bindingTemplate>

<bindingTemplate
 bindingKey="uddi:tempuri.org:uddinodebindingkey_inquiry_v2"
 serviceKey="uddi:tempuri.org:inquiryservicekey">
 <description xml:lang="en">
 This binding supports the UDDI Programmer's API Specification for inquiry
 </description>
 <accessPoint useType="endPoint">
 http://tempuri.org/uddi/inquire_v2.asmx
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:ac104dcc-d623-452f-88a7-f8acd94d9b2b">
 <description xml:lang="en">

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 408/420

 This access point supports the UDDI Version 2.0 Programmer's API
 Specification for inquiry
 </description>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
</bindingTemplate>

<bindingTemplate
 bindingKey="uddi:tempuri.org:uddinodebindingkey_inquiry_v3"
 serviceKey="uddi:tempuri.org:inquiryservicekey">
 <description xml:lang="en">
 This binding supports the UDDI Programmer's API Specification for inquiry
 </description>
 <accessPoint useType="endPoint">
 http://tempuri.org/uddi/inquire_v3.asmx
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:uddi.org:v3_inquiry">
 <description xml:lang="en">
 This access point supports the UDDI Version 3.0 Programmer's API
 Specification for inquiry
 </description>
 <instanceDetails>
 <overviewDoc>
 <description xml:lang="en">
 This overviewURL provides policy information about
 inquiry.
 </description>
 <overviewURL useType="text">
 http://tempuri.org/uddi/inquiry_policy.xml
 </overviewURL>
 <instanceParms>
 <![CDATA[
 <?xml version="1.0" encoding="utf-8" ?>
 <UDDIinstanceParmsContainer
 xmlns="urn:uddi-org:policy_v3_instanceParms">
 <defaultSortOrder>binarySort</defaultSortOrder>
 <authInfoUse>ignored</authInfoUse>
 </UDDIinstanceParmsContainer>
]]>
 </instanceParms>
 </overviewDoc>
 </instanceDetails>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
</bindingTemplate>

 </bindingTemplates>
</businessService>

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 409/420

K.5.2 Explanation

Similar to the Publish API modeling, the Inquiry API modeling creates three bindingTemplates
with three new bindingKeys. Each bindingTemplate has a different accessPoint. All three
accessPoints are decorated with a useType attribute of "endPoint", as there is no indirection in
accessing these APIs. Each Version implements the appropriate tModel signifying the
contract necessary to invoke that API. The Version 1 and Version 2 tModels use UUIDs,
whereas the Version 3 tModel, uddi:uddi.org:v3_inquiry, has a domainKey.

Note that the Version 3 tModel has an instanceDetails structure with an overviewDoc that
leads to a policy file. Such a policy file might contain information specific to that API.

Also, there is an XML fragment nested with a "block escape" of the instanceParms. This XML
fragment models the authInfo use policy for this API set as well as the default sort order.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 410/420

L Appendix L: Glossary of Terms

ABNF: See Augmented Backus-Naur Form

<adjective> tModel: Any tModel that represents a concept of the type named by <adjective>.
Hence, category system tModel, specification tModel, etc.

Affiliation: A collection of registries whose policies make copying data among the registries
safe and easy to do.

API: Application Programming Interface. (pl.: APIs.) The interface to any of the SOAP-based
Web services defined in the UDDI Specification. Most are offered by UDDI nodes and invoked
by clients, but validate_values, get_allValidValues, and notify_subscriptionListener are offered
by clients of UDDI and invoked by a UDDI node.

API Set: Any of the collections of related UDDI APIs represented by a single specification
tModel. There are 9 API sets in UDDI v3. They are inquiry, publication, subscription, custody
transfer, security, subscription listener, replication, value set validation, and value set data API
sets.

Appendix: Any of the lettered top-level sections of the UDDI v3 Specification.
E.g., Appendix C Supporting Subscribers.

Assert a relationship: To publish a publisherAssertion containing an appropriate
keyedReference, toKey and fromKey, to indicate that one businessEntity is associated with
another in the way indicated by the specified keyedReference. See also, Complete a
relationship.

Augmented Backus-Naur Form: The formal syntax notation defined in RFC 2234. See:
http://www.ietf.org/rfc/rfc2234.txt.

Authentication: the process of verifying an identity claimed by or for a system entity. See
http://www.ietf.org/rfc/rfc2828.txt.

Authorization: a right or a permission that is granted to a system entity to access a system
resource. See http://www.ietf.org/rfc/rfc2828.txt.

Best practice: A non-normative document accompanying a UDDI specification that provides
guidance on how to use UDDI registries. Best Practices not only represent the UDDI Working
Group’s view on some UDDI-related topic but also represent well established practice. Cf.,
"Technical note".

Business: The people or organizations that are described in UDDI with a businessEntity.
While quite often these are, in fact, businesses in the usual sense of the word, they need not
be. For example, the "businesses" in a registry internal to a business might well be internal
organizations.

Canonical: A tModel that is normative with respect to the UDDI specification. Every canonical
tModel is described in Chapter 11 Utility tModels and conventions.

Categorize: To tag an entity with a category by placing an appropriate keyedReference or
keyedReferenceGroup in the categoryBag of the entity. All entities categorized with the same
value in the same category system are said to belong to the category named. E.g., in the
NAICS category system, the category 481212 means "Non-scheduled chartered freight air
transportation". Every businessEntity categorized with the NAICS value 481212 belongs to the
NAICS Non-scheduled chartered freight air transportation category.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 411/420

Category: A value representing a defined division of classification from a specified
category system.

Category group system: A tModel that represents a group of category systems intended to
be used to categorize entities in which it is referenced with groups of categories. Category
group systems are referenced in keyedReferenceGroups and its category systems are
referenced in keyedReferences in contained keyedReferences.

Category system: Any value set intended to be used to categorize the entities in which it is
referenced. The documentation for a category system should describe the characteristics that
mark the divisions, or categories, in the system. Each category in a category system typically
represents a means of grouping distinct entities with similar characteristics.

Chapter: Any of the top-level, numbered sections of the UDDI v3 Specification.
E.g., Chapter 6 Node Operation.

Checked: Of or pertaining to a value set whose use is subject to validation before an entity
that refers to it is published. Checked value sets may be internally hosted or externally hosted.
Cf. "Unchecked".

Client: Any person who invokes one or more of the APIs covered in Chapter 5 UDDI
Programmer APIs. Note that clients are clients of a node, not a registry. If the same person
invokes APIs at two different nodes of a registry, two clients are involved. Identity of persons
when they are established at all are node specific. The relationship of identities, if any, across
the registry is a matter of node and registry policy.

Complete a relationship: To publish the second of two matching publisherAssertion entities.
In the case in which the publisher owns referred-to businessEntity structures, asserting the
relationship also completes it; no second publisherAssertion is required. Completed
relationships are visible to inquirers; relationships that have not been completed are visible
only to the owners of the businessEntity structures involved. See also Assert a relationship.

Container: An element in one of the UDDI API schemas that contains one other single,
recurring child element. The collection of all child elements in a corresponding XML document
is called a list.

Core data structures: Any of the data structures businessEntity, businessService,
bindingTemplate, tModel. The core data structures are all entities.

Custody: Each entity in UDDI is said to be in the custody of the node at which it was
published. That node is said to be the custodial node for the entity.

Data Integrity: the property that data has not been changed, destroyed, or lost in an
unauthorized or accidental manner. See http://www.ietf.org/rfc/rfc2828.txt.

Data Confidentiality: the property that information is not made available or disclosed to
unauthorized individuals, entities, or processes. See http://www.ietf.org/rfc/rfc2828.txt.

Data model: A mapping of the contents of an information model into a form that is specific to a
particular type of data store or repository. UDDI specifies an information model but not a data
model. Implementations are free to choose any data model they find convenient.

Delegated policy: In UDDI, a policy decision that the registry has chosen to allow a node to
make. In the context of RFC 3198, the registry delegates the policy to the node.

Derived key generator: More fully, "derived key generator tModel". In the UDDI keying
scheme, a key generator with a publisher-assigned key whose value is in the partition of a key
generator owned by the publisher.

Digital signature: Any of the signature elements found in the optional signatures element of
each UDDI entity.

Domain key generator: More fully, "domain key generator tModel". In the UDDI keying
scheme, any key generator with a key of the form

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 412/420

"uddi:" domain ":keygenerator"

Where domain is a DNS domain – e.g., "example.com".

Element: An XML element. See http://www.w3.org/TR/REC-xml - elemdecls.

Entity: Any of the data structures that have a corresponding save_xx API. I.e., The core data
structures plus publisherAssertion and subscription

Exporter: The behavior of an inquirer associated with a given registry that publishes copied
(and, perhaps, modified) data into some other registry.

Find qualifier: Any of the modifiers that may be specified in the findQualifiers element of the
find_xx APIs to modify the APIs’ behavior. The find qualifiers are discussed in Section 5.1.4
Find qualifiers of the UDDI v3 Specification

Hosting redirector: An instance of a Web service whose service type is defined by the tModel
uddi-org:hostingRedirector. Hosting redirector services provide a level of indirection in the
retrieval of bindingTemplates. See Section B.1.4 Using the "hostingRedirector" value and
Section 11.5.6 UDDI Hosting Redirector Specification for more information.

HTTP: Hyper Text Transfer Protocol. The protocol used by the World Wide Web as defined in
RFC 2068. See http://www.ietf.org/rfc/rfc2068.txt.

Identifier: A value representing the distinct identity of the entity from a specified identifier
system.

Identifier system: Any value set intended to be used to identify the entities in which it is
referenced. The documentation for an identifier system should describe the distinct
characteristics of an entity for each value, or identifier, in the system. Each identifier in an
identifier system typically represents a unique entity or entities that are considered equivalent.

Identify1: (Concerning UDDI entities) To tag an entity with an identifier by placing an
appropriate keyedReference in the identifierBag of the entity. E.g., Microsoft Business
Solutions Group has the Thomas Register Supplier ID 43038249. Placing a keyedReference
with this keyValue and referring to the Thomas Register Supplier ID identifier system into the
identifierBag of a businessEntity identifies the businessEntity as being that of the Microsoft
Business Solutions Group.

Identify2: (Concerning security) To present an identifier to a system so that the system can
recognize a system entity and distinguish it from other entities. (See
http://www.ietf.org/rfc/rfc2828.txt)

Implementation1: (of a UDDI API set) A running instance of a UDDI API set.

Implementation2: (of a node) The collection consisting of the implementations of all of the API
sets constituting a node.

Implementer: Any person who implements a UDDI node.

Importer: The behavior of a publisher associated with a given registry that copies (and,
perhaps, modifies) data stored in one or more other registries.

Information model: An abstraction and representation of the UDDI entities in a managed
environment, their properties and attributes, and the way they relate to each other. An
information model is independent of any specific data model it may be mapped to. Chapters 1
through 8 of this document define the UDDI v3 information model. This includes the structure
of the data, the behavior of all API sets as well as the recommended means of transport and
encapsulation of the API sets. UDDI does not define a data model.

Inquirer: Any client who uses the inquiry API set.

Internally hosted: Of or pertaining to checked value sets whose use is validated entirely by
the node at which the publish operation takes place. Cf., "Provider-hosted".

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 413/420

Internally revised: Of or pertaining to internally hosted value sets, the values for which are
refreshed from time to time in some way that is entirely internal to the registry.

Internationalization: The process of generalizing computer systems so that they can handle
a variety of linguistic and cultural conventions61.

Key: Any of the unique tokens used to identify and refer to an entity stored in a registry. Keys
in UDDI v3 are Uniform Resource Identifiers (URIs). See also UDDI keying scheme.

Key generator: More fully, "key generator tModel". In the UDDI keying scheme, a tModel
whose key ends with ":keygenerator". Ownership of a key generator tModel represents the
authority to propose keys that, so long as they are of the appropriate form, will meet the
registry’s policy for publisher-assigned keys. The form of the keys that is appropriate depends
on the key of the tModel; the appropriate form for two different key generators is never the
same.

KSS: Key Specific String

List: The collection of all elements that occur in a container element

Multi-node registry: A registry consisting of more that one node. Typically in a multi-node
registry, each node has its own copy of the entities stored in the registry. In such cases the
copies are typically kept synchronized using an implementation of the replication API set at
each node.

Namespace: A collection of distinct names represented as strings of characters. Usually the
names in a namespace are constructed according to a set of rules given by the definition of the
namespace. URIs of various kinds are commonly used to construct the names in
namespaces. For example, the namespace for UDDI keys in the UDDI keying scheme
consists of the URIs in the "uddi" scheme.

Node: A collection of Web services, each of which implements the APIs in a UDDI API set,
and that are managed according to a common set of policies. Typically, a node consists of at
least an implementation of the Inquiry, the Publication, and the Custody and Ownership
Transfer API sets; often a node will implement additional API sets such as Subscription and
Replication.

Node Business Entity: A businessEntity in a registry that is categorized using the uddi-
org:operators category system. At a minimum, each Node Business Entity describes the Web
services that constitute the node.

Non-normative: Information included in the UDDI v3 Specification that is advisory or
explanatory and does not constitute required aspects of the specification.

Normative: Specification information that is intrinsic to the UDDI v3 Specification and must be
adhered to.

Operator: The role of a person who sets node policy and runs a node. There is exactly one
operator for a given node.

Overview document: A document providing the technical definition of the concept a given
tModel represents. The overview documents for a given tModel may be retrieved using the
URLs contained within the overviewDoc structure of the tModel.

Owner: The publisher who has the authority to change a given entity.

61 Martin O’Donnell, Sandra. Programming for the World. Prentice Hall, Englewood Cliffs, NJ. 1994.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 414/420

Partition: In the UDDI keying scheme, the appropriate form of publisher-assigned keys for a
given tModel. The exact definition for the partition of a key generator is given in Section 5.2.2.1
Key generator keys and their partitions.

Person: Someone – for example, an actual individual, an organization, or a job role – who
interacts with a UDDI registry in some way.

Policy: Certain behaviors, as identified in Chapter 9 Policy, that are permitted to vary from
registry to registry or even from node to node within a registry. The choice of specific behavior
made by a registry or node is its policy with respect to the variable behavior. As described in
Chapter 9, each registry and node describes the policies it adheres to.

Policy abstractions: Broad definitions of high level information management policies. Policy
can be represented at different levels, ranging from business goals to device specific
configuration parameters. Translation between different levels of "abstraction" may require
information other than policy, such as network and host parameter configuration and
capabilities. In UDDI there are often ways to model the policies as a tModel. In other cases the
policy may be documented.

Policy decision: A process perspective that deals with the evaluation of a policy rule's
conditions. When an instance of UDDI is implemented, choices are made about the support for
the UDDI APIs. There are points at which the implementation is responsible for a
determination about whether or not the request is processed based on the rule’s specified for
that node.. Because UDDI can be implemented in a variety of ways, these actions are
considered policy decisions and the implementation must document how these decisions are
made within this implementation of UDDI.

Policy decision point: A logical entity that makes policy decisions for itself or for other
network elements that request such decisions. See http://www.ietf.org/rfc/rfc2753.txt. The
UDDI registry and its delegates make policy decisions.

Policy enforcement: The execution of a policy decision.

Policy enforcement point: A logical entity that enforces policy decisions. See
http://www.ietf.org/rfc/rfc2753.txt. The UDDI API implementations enforce policy decisions.

Policy goals: The business objectives or desired state intended to be maintained by a policy
system. At the highest level of abstraction of policy, these goals are most directly described in
business rather than technical terms.

Policy rule: A basic building block of a policy-based system. It is the binding of a set of actions
to a set of conditions where the conditions are evaluated to determine whether the actions are
performed.

Postal address system: Any value set intended to be used to define the meaning of
addressLine structures.

Project (verb): To establish the existence of a service projection. E.g., "Business A projects
the View Catalog business service belonging to business B in its businessEntity."

Protocol tModel: A tModel representing a protocol such as the standard fax protocol. Cf.,
"Specification tModel" and "Transport tModel".

Provider-revised: Of or pertaining to internally hosted value sets, the values for which are
revised from time to time by the value set publisher. Publisher-revised value sets have a
get_allValidValues Web service associated with them from which nodes retrieve the revised
value set values.

Provider-hosted: Of or pertaining to checked value sets whose use is validated using a
validate_values Web service.

Publisher: Any client who uses the publish API set.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 415/420

Publish: The act of placing one or more entities in a registry by invoking one of the publication
APIs.

Publisher-assigned key: Any key created by a publisher (as opposed to one created by a
node.) A publisher may propose a key for a new entity at the time it is first published. If the
proposed key meets the registry’s policy for publisher-assigned keys and the publish operation
succeeds, the key proposed by the publisher becomes a publisher-assigned key.

Registry: One or more UDDI nodes may be combined to form a UDDI Registry. The nodes in
a UDDI registry collectively manage a particular set of UDDI data. This data is distinguished by
the visible behavior associated with the entities contained in it. A UDDI Registry has these
defining characteristics: a registry is comprised of one or more UDDI nodes; the nodes of a
registry collectively manage a well-defined set of UDDI data. Typically, this is supported by the
use of UDDI replication between the nodes in the registry which reside on different systems;
and a registry MUST make a policy decision for each policy decision point. It MAY choose to
delegate policy decisions to nodes. See Chapter 9 Policy for details. The physical realization of
a UDDI Registry is not mandated by this specification.

Registry administrator: The role of the person who sets the policies for a registry. There is
exactly one registry administrator for every registry. Typically, a registry administrator is an
organization consisting of the operators of the registry’s nodes.

Registry-assigned key: If no key is proposed for an entity at the time it is first published, the
registry assigns a key. Such keys are called registry-assigned keys.

Relationship: An association between one businessEntity and another established by
completing a relationship. See also Assert a relationship and Complete a relationship

Relationship type: A value from a specified relationship type system.

Relationship type system: Any value set intended to be used to define the relationship types
that are used in relationships between businessEntities.

Romanization: The practice in some cultures of transliterating words, particularly names, from
their usual written form into Roman letters so that people unfamiliar with the usual form can
(make some sort of attempt to) pronounce them. In Japan, for example, it is common practice
to Romanize personal names and place names for the benefit of people who cannot read
Japanese.

Root key generator: More fully, "root key generator tModel". In the UDDI keying scheme
either a "domain key generator" or a "uuid key generator".

Section: Any of the titled parts of a chapter or appendix.
E.g., Section C.2 Using subscription.

Service projection: A projected businessService is made a part of a businessEntity by
reference as opposed to by containment. Every businessService is "contained" in exactly one
businessEntity. The businessEntity the businessService is contained in is the one whose
businessKey is specified in the businessKey attribute of the businessService in question.
Therefore, if the businessKey found in a businessService is not the same as the businessKey
of the businessEntity in which it is found, the businessService is a service projection. See also
Project.

Service type: The type of a Web service as defined by its technical fingerprint.

Short name: Any of the abbreviated names for common find qualifiers as defined in Section
5.1.4 Find Qualifiers.

signatureComponent tModel: A tModel representing a component of a Web service
specification. Some specifications, such as the RosettaNet are deliberately broken into pieces
meant to be composed together to form a complete description of a Web service a
signatureComponent tModel is used to represent each of these pieces.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 416/420

SMTP: Simple Mail Transport Protocol. The mail transport mechanism commonly used on the
Internet. Defined in RFC 2821. See: http://www.ietf.org/rfc/rfc2821.txt.

SOAP: Simple Object Access Protocol Version 1.1. The most common Web service protocol.
Defined in World Wide Web Consortium Note. See: http://www.w3.org/TR/SOAP/.

soapSpec tModel: An xmlSpec tModel whose specification expresses its data using SOAP
1.1.

Sort order: Any of the find qualifiers that specify the base algorithm to be used to order the
results returned by the find_xx APIs

Specification tModel: A tModel representing the specification for a Web service type. Cf.
"Protocol tModel" and "Transport tModel".

Structure: Any of the UDDI elements that are permitted by the schemas to have elements
contained within them.

SSL: Secure Sockets Layer Version 3.0. A commonly used network protocol as defined in
http://home.netscape.com/eng/ssl3/index.html.

Subscriber: Any client who uses the subscription API set.

Technical fingerprint: The collection of tModel references found in the tModelInstanceDetails
of a bindingTemplate. This collection, taken without regard to order, defines the type of the
Web service described by the bindingTemplate.

Technical Note: A non-normative document accompanying the UDDI v3 Specification that
provides guidance on how to use UDDI registries. While technical notes represent the UDDI
Working Group’s view on some UDDI-related topic, they are often prospective and need not
document existing practice. Cf. Best Practice.

tModel: The type of entity in UDDI that is used to represent concepts.

Transport tModel: A tModel representing a transport mechanism such as HTTP. Typically
used in a technical fingerprint, if required by the specification tModel, to specify which transport
mechanism a given Web service instance uses.

UDDI: Universal Description, Discovery and Integration. The subject of this specification.

UDDI Business Registry: A publicly available UDDI registry. The Web services offered by the
UDDI Business Registry's nodes can be found at http://uddi.org/register.html (publication) and
http://uddi.org/find.html (inquiry).

UDDI keying scheme: The URI scheme "uddi" together with the set of registry policies that
makes copying data among registries safe and easy to do. The keying scheme is described in
Chapter 4 of the UDDI v3 Specification

UDDI schema: Any of the documents written in the XML Schema Definition Language that
accompany this specification and are a part of it. See Chapter 2 UDDI Schemas.

UDDI v3 Specification, The: The main textual document that specifies UDDI version 3.

UDDI Version 2: The prior version of this specification. See
http://uddi.org/pubs/ProgrammersAPI_v2.pdf.

Unicode: The character set defined by the Unicode Consortium. See www.unicode.org. UDDI
data is express using the Unicode character set.

UTF-16: An encoding scheme used by UDDI to express Unicode characters. See:
http://www.ietf.org/rfc/rfc2781.txt.

UTF-8: An encoding scheme used by UDDI to express Unicode characters. See
http://www.ietf.org/rfc/rfc2279.txt.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 417/420

uuid key generator: More fully, "uuid key generator tModel". In the UDDI keying scheme, a
key generator with a key of the form

"uddi:" uuid ":keygenerator"

Where uuid is a Universally Unique Identifier.

Unchecked: Of or pertaining to value sets whose use in not subject to validation. Cf.,
"Checked".

URI: A Uniform Resource Identifier as represented by the XML Schema data type anyURI.
When, as it occasionally is, the term is used more narrowly, the context makes this clear.

UUID: A really big integer, generated according to certain rules that allow them to be
generated on independent computers in such a way that the same one is never generated
twice. UUIDs are conventionally expressed as specially formatted hexadecimal.

Value set: Any category system, identifier system, relationship system or postal address
system.

Value set provider: Any publisher who publishes a checked value set tModel. Typically a
value set provider also provides a get_allValidValues or a validate_values Web service or
both.

Web service: Any service capable of being described by a UDDI bindingTemplate. Typically
Web services are used for machine-to-machine communication and typically, they share much
of the technology that underlies the World Wide Web, such as TCP/IP, HTTP, and XML.

Web service type: Informally, the type of a Web service instance is defined by the external
behaviors it exhibits. Typically these are defined by the specifications, protocols, and
transports to which it adheres. Formally in UDDI, the type of a Web service is the technical
fingerprint of the bindingTemplate that describes it.

WSDL: Web Services Description Language Version 1.0. An XML vocabulary and set of
conventions used to describe the technical details of a Web service, particularly of a SOAP-
based Web service. See: http://www.w3.org/TR/wsdl.

wsdlSpec tModel: An xmlSpec tModel whose description is expressed in WSDL and which
follows the UDDI Best Practice for the combined use of UDDI and WSDL.

XML: eXtensible Mark-up Language. A platform and implementation-neutral way to describe
data. See: http://www.w3c.org/TR/2000/REC-xml-20001006

xmlSpec tModel: A specification tModel whose specification expresses its data using XML.

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 418/420

M Appendix M: Acknowledgements
This specification was developed as a result of joint work of many individuals from the OASIS
UDDI Specification TC and the former UDDI.org Working Group. We would like to
acknowledge the efforts and contributions of the following individuals:

Former OASIS UDDI Specification TC members:

Bob Atkinson, Microsoft
Toufic Boubez, Layer Seven Technologies
Maud Cahuzac, France Telecom
Ugo Corda, SeeBeyond Technology
Alexandru Czimbor, OSS Nokalva
Patrick Felsted, Novell
Shishir Garg, France Telecom
Rajul Gupta, OSS Nokalva
Brad Henry
Karsten Januszewski, Microsoft
Aikichi Kawai, NTT USA
Keisuke Kibakura, Fujitsu
Eric Lee, Microsoft
Sam Lee, Oracle
Anne Thomas Manes, Individual Member
Alok Srivastava, Oracle
Paul Thorpe, OSS Nokalva
Alessandro Triglia, OSS Nokalva
Max Voskob, Individual Member
George Zagelow, IBM

UDDI Working Group members (at the time the UDDI Version 3.0 specification was
published):

Selim Aissi, Intel
David Ehnebuske, IBM (Editor)
Tom Gaskins, HP
Tom Glover, IBM
Christian Hansen, SAP
Thomas Hardjono, VeriSign
Richard Harrah, HP
Maryann Hondo, IBM (Editor)
Yin Leng Husband, HP (Editor)
Karsten Januszewski, Microsoft (Editor)
Keisuke Kibakura, Fujitsu
Sam Lee, Oracle (Editor)
Seán MacRoibeáird, Sun
Barbara McKee, IBM (Editor)
Joel Munter, Intel (Editor)
Ed Mooney, Sun
Andrew Nielsen, HP
Christian R. Thomas, Intel
Johannes Viegener, SAP

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 419/420

N Appendix N: Notices
Copyright © 2001-2002 by Accenture, Ariba, Inc., Commerce One, Inc., Fujitsu Limited, Hewlett-
Packard Company, i2 Technologies, Inc., Intel Corporation, International Business Machines
Corporation, Microsoft Corporation, Oracle Corporation, SAP AG, Sun Microsystems, Inc., and
VeriSign, Inc. All Rights Reserved.

These UDDI Specifications (the "Documents") are provided by the companies named above
("Licensors") under the following license. By using and/or copying this Document, or the Document
from which this statement is linked, you (the licensee) agree that you have read, understood, and will
comply with the following terms and conditions:

Permission to copy, prepare derivative works based on, and distribute the contents of this Document,
or the Document from which this statement is linked, and derivative works thereof, in any medium for
any purpose and without fee or royalty under copyrights is hereby granted, provided that you include
the following on ALL copies of the document, or portions thereof, that you use:

1. A link to the original document posted on uddi.org.

2. An attribution statement : "Copyright © 2000 - 2002 by Accenture, Ariba, Inc., Commerce
One, Inc. Fujitsu Limited, Hewlett-Packard Company, i2 Technologies, Inc., Intel
Corporation, International Business Machines Corporation, Microsoft Corporation,
Oracle Corporation, SAP AG, Sun Microsystems, Inc., and VeriSign, Inc. All Rights
Reserved."

If the Licensors own any patents or patent applications that may be required for implementing and
using the specifications contained in the Document in products that comply with the specifications,
upon written request, a non-exclusive license under such patents shall be granted on reasonable and
non-discriminatory terms.

EXCEPT TO THE EXTENT PROHIBITED BY LOCAL LAW, THIS DOCUMENT (OR THE
DOCUMENT TO WHICH THIS STATEMENT IS LINKED) IS PROVIDED "AS IS," AND LICENSORS
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, ACCURACY OF THE INFORMATIONAL CONTENT, NON-INFRINGEMENT, OR TITLE;
THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT
THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY OR
(WITH THE EXCEPTION OF THE RELEVANT PATENT LICENSE RIGHTS ACTUALLY GRANTED
UNDER THE PRIOR PARAGRAPH) LICENSOR PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS. Some jurisdictions do not allow exclusions of implied warranties or conditions, so the
above exclusion may not apply to you to the extent prohibited by local laws. You may have other rights
that vary from country to country, state to state, or province to province.

EXCEPT TO THE EXTENT PROHIBITED BY LOCAL LAW, LICENSORS WILL NOT BE LIABLE
FOR ANY DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL DAMAGES, OR OTHER DAMAGES
(INCLUDING LOST PROFIT, LOST DATA, OR DOWNTIME COSTS), ARISING OUT OF ANY USE,
INABILITY TO USE, OR THE RESULTS OF USE OF THE DOCUMENT OR THE PERFORMANCE
OR IMPLEMENTATION OF THE CONTENTS THEREOF, WHETHER BASED IN WARRANTY,
CONTRACT, TORT, OR OTHER LEGAL THEORY, AND WHETHER OR NOT ANY LICENSOR
WAS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Some jurisdictions do not allow the
exclusion or limitation of liability for incidental or consequential damages, so the above limitation may
not apply to you to the extent prohibited by local laws.

Copyright © OASIS Open 2002-2004. All Rights Reserved.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document
or the extent to which any license under such rights might or might not be available; neither does it

UDDI Version 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019

 420/420

represent that it has made any effort to identify any such rights. Information on OASIS's procedures
with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of
rights made available for publication and any assurances of licenses to be made available, or the result
of an attempt made to obtain a general license or permission for the use of such proprietary rights by
implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to implement
this specification. Please address the information to the OASIS Executive Director.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing the copyright notice or
references to OASIS, except as needed for the purpose of developing OASIS specifications, in which
case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be
followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS
OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

