
OASIS WSIA Technical Committee

Requirements Document
Use Case Report: Coordinated Producers

Version <1.2>

Requirements Document Version: <1.0>
Use Case Report: <Use-Case Name> Date: <dd/mmm/yy>
<document identifier>

Confidential OASIS WSIA Technical
Committee, 2000

ii

Revision History
Date Version Description Author

05/Mar/2002 1.0 Coordinated Producers Dan Gisolfi, Graeme
Riddell, Alan Kropp, Eilon
Reshef, Gil Tayar, Rex
Brooks, Ravi Konuru,
Keven Brinkley, Aditi
Karandikar, Monica
Martin, Rich Thompson,
Charlie Wiecha

11/Mar/2002 1.1 Added discussion of basic activity flow
through coordinated updates of multiple
presentation services

Charlie Wiecha, Monica
Martin

14/Mar/2002 1.2 Factored discussion into general flow and
sub-flows with example approaches to
coordination.

Shankar Ramaswamy,
John Lucassen, Charlie
Wiecha

Requirements Document Version: <1.0>
Use Case Report: <Use-Case Name> Date: <dd/mmm/yy>
<document identifier>

Confidential OASIS WSIA Technical
Committee, 2000

iii

Table of Contents
1. Definition of the Coordinated Producers use case 3

1.1 Brief Description 3

2. Actors 2

3. Flow of Events 2
3.1 Basic Flow 2
3.2 Alternative Flows 4

3.2.1 Generalized XFORMS update processing model for propagating property changes 4
3.2.2 Procedural coordination for propagating property changes 7
3.2.3 Flow composition for propagating property changes 8
3.2.4 Stream-oriented approach to Producer coordination 8

4. Diagrams 9
4.1 Relationship between Producers and Consumers in the Coordinated Producers Use Case 9
4.2 Stream-oriented approach to coordination 9

5. PreConditions 10
5.1 < Precondition One > 10

6. PostConditions 10
6.1 < Postcondition One > 10

Use Case Report: Coordinated Producers
1. Definition of the Coordinated Producers use case

Definition: Use cases in which the Consumer uses information returned either from
Producers it controls, or from interaction with the End-user, to change the state (setting
properties, calling operations) of multiple Producers in order to create a unified End-user
experience among them. The Consumer establishes connections between the Producers it
is coordinating. Possible means include executing procedural code in the Consumer that
explicitly coordinates a known set of Producers or interpreting a declarative binding
specification that controls which properties on each Producer are linked with which
Properties on other Producers.

1.1 Brief Description
The goal of coordinating multiple Producers from the Consumer is to create a unified
End-user experience from a set of independently-authored Producers.

The business value of such an integrated user experience is to reduce the effort required
by the End-user to accomplish tasks with the system by reducing the need to manually
drive multiple Producers to the appropriate and inter-related states required by a unified
task.

Requirements Document Version: <1.0>
Use Case Report: <Use-Case Name> Date: <dd/mmm/yy>
<document identifier>

Confidential OASIS WSIA Technical
Committee, 2000

2

Producers may need to be coordinated in their (1) presentation states (selected page, tab,
field), and (2) in their data states, i.e. to avoid the need for the user to enter redundant
data across multiple Producers, and to convert data from the format required by one
Producer to that of another Producer.

Examples of coordinated Producers from the WSIA scenarios include:

[Traveler's checks] As the user selects amounts of Travelers Checks, a field in the left in
a separate WSIA service saying "Purchases So Far" is being updated.

[Traveler's checks] Providing a different navigation bar for Travelers Checks, and
connecting its presentation and data state to the rest of the Travelers Checks application.

[Financial charting] The Consumer adds an additional Producer for custom interaction
with the End-user in selecting iChart preferences. As the End-user interacts with this
Producer, changes in its state need to be reflected in changes to the
preferences/properties of the iChart Producer. The Consumer is responsible for ensuring
that these changes are propagated to the other Producers, including iChart. Possible
means include: application-specific code (ie. procedural implemented coordination) or by
indicating through a binding specification the connections between the properties of the
various Producers so that the changes can be propagated by some kind of Consumer
middleware, or by other means.

[Multimedia sports portal] Syndication of synchronized (coordinated in WSIA terms)
content from different sources. Different media needs to be synchronized to provide (1) a
high level of interactivity and (2) seamless End-user experience. To what degree are
streaming media types in scope for WSIA? The coordination requirement is independent
of the media type so this is a valid use case nonetheless, but which media types are in
scope should be considered explicitly.

2. Actors
There are three actors in this use case:

- Producer: one or more WSIA web services

- Consumer: an application that acts as a “container” that instantiates and controls
interaction with the Producers on behalf of End-Users.

- End-User: a person who interacts directly with the output of the Consumer

3. Flow of Events

3.1 Basic Flow
Consumer composes page out of individual producer fragments (note that a subset of the
producers may be used on any particular consumer page). In the process of doing so, the
consumer will rewrite references to all user actions within the markup to ensure it
receives all of them.

WSIA requirements:

Requirements Document Version: <1.0>
Use Case Report: <Use-Case Name> Date: <dd/mmm/yy>
<document identifier>

Confidential OASIS WSIA Technical
Committee, 2000

3

 Standards for enabling composition of producer markup (i.e. producers need to
produce legal fragments that can be composed).

 Standards for flagging user action references in producer markup.

 Standards that allow augmenting action references with originating producer identity
for disambiguation at the consumer.

User interacts with page and selects a particular action.

Consumer receives the user action and does one of the following:

 Delegates the action to the originating producer (which includes the consumer in case
the action resulted from a page fragment produced locally at the consumer).

 Performs some pre-processing and post-processing before and/or after delegating to
the originating producer, which may include setting properties on the originating
producer

 Performs some pre-processing and post-processing before and/or after invoking one
or more actions and/or settings properties at any of its producers including the
originating producer. This may include observing property changes at any of its
producers and setting properties on that producer or any other producer as a result

 Processes the action itself without delegating to the originating producer or any of the
other producers.

WSIA Requirements:

 Standards for describing producer action semantics including the inputs they process.

 Standards for describing producer property semantics including the values associated
with them

 Standards for describing the circumstances under which the consumer can invoke a
specific producer action. [NOTE: this requirement fits better in the “Orchestrated”
use-case]

 Standards for describing the circumstances under which the consumer can set a
specific producer property and the circumstances under which the consumer can
expect changes in a specific producer property. [NOTE: this requirement fits better in
the “Orchestrated” use-case]

 Standards for describing how the consumer can maintain a consistent state with a
producer if it decides to bypass a specific producer action. [NOTE: this requirement
belongs in the “Orchestrated” use-case]

Consumer obtains new markup fragments from producers (note that this set may be
different from the ones on the previous page) to compose the page (similar to Step 1).
Cycle continues.

Requirements Document Version: <1.0>
Use Case Report: <Use-Case Name> Date: <dd/mmm/yy>
<document identifier>

Confidential OASIS WSIA Technical
Committee, 2000

4

3.2 Alternative Flows

3.2.1 Generalized XFORMS update processing model for propagating property changes
The basic flow of activity in this approach to the Coordinated use case is shown in Figure
4.1. This case corresponds to the example where an action bar provided by default in the
Stock Plot Producer is to be replaced by the Consumer with one more suited to the
specific way in which the Stock Plot Producer is to be used in this context.

For example, given knowledge of the End-users stock portfolio, perhaps the Consumer
will allow only certain stock symbols to be charted. Perhaps a limited range of dates will
be allowed. Perhaps a given stock symbol is to be added to the chart for comparison
purposes if alternative investment decisions are being considered. For all of these
reasons, a customized action bar is required offering either a subset of functions of the
default action bar, or a customized set of functions tailored by the Consumer given it's
knowledge of the particular End-user context.

In advance of the End-user interacting with the coordinated set of Producers, the
Consumer must establish the interrelationships among them that will coordinate their
presentation and data states. The basic mechanism for doing so is to define relationships
among the properties of each Producer in such a way that changes to one Producer's
properties will cause corresponding changes to one or more other Producer's properties.
Following the distribution of these property change events, the Consumer will request the
updated output from all changed Producers, and will reconstruct either the complete or
incrementally updated page to return to the user.

Various alternative mechanisms for propagating property change updates and
reconstructing the page (entirely or incrementally) are considered in the alternative
subflows.

In the basic flow, we assume that the Consumer hasa binding specification that controls
which properties on each Producer are linked with which Properties on other Producers.
These binding specifications may resemble XLINK-based expressions. In general, there
may be transformations on each link which can be used to change the format of
properties and convert them from the defined schemas for the properties of the source
Producer into the defined schemas for the properties of the target Producer.

The remaining steps of the basic flow are identified numerically in Figure 4.1, and are:

1. The Consumer requests the current output from each of its Producers and constructs
the composite page to be returned to the End-User.

 This process follows the sequence described in the Embedded and Customized
user cases in that actions and URLs need to be rewritten by the Consumer as
output flows through it toward the End-User to allow subsequent user interaction
to be delegated to the appropriate Producer.

 The manner in which each Producer's output is composed with that from other
Producers and from the Consumer is not addressed by this use case (or indeed,
even by WSIA). Alternative layout policies and technologies may be employed
as desired by the designer of the Consumer.

Requirements Document Version: <1.0>
Use Case Report: <Use-Case Name> Date: <dd/mmm/yy>
<document identifier>

Confidential OASIS WSIA Technical
Committee, 2000

5

 WSIA may need to specify the constraints on how output may be emitted by
Producers in order that it can be combined into valid composite pages. In the
absence of a general web-based framework for compound documents, (see W3C
interest group on container-component standards) most fragment composition
frameworks adopt a set of markup conventions that allow intermediaries to
assemble complex pages from the various fragments emitted by each Producer.
WSIA should seek to reuse these conventions where possible and avoid
introducing a new set of its own. In particular, if WSRP will define a standard set
of markup conventions, WSIA should consider reusing those conventions.

2. The End-user's interaction is returned to the Consumer.

 End-user interactions in WSIA are defined as updates or operations on the output
of a component, i.e. require validation by the service before resulting in updates to
its properties.

 These semantics allow the individual WSIA service to determine the manner in
which its property values are to be computed (for example to apply data
validation), and to introduce private or intermediate values to support a particular
interaction with the End-user.

 In Figure 4.1, the End-User interaction is returned via an HTTP POST message.
A converter will map this interaction into a Soap message invoking an operation
on the Consumer. The Consumer then uses the URL/action encoding discussed in
the Embedded and Customized user cases to determine to which Producer the
interaction should be delegated.

3. The Consumer then forwards the user interaction to that Producer by calling the
indicated operation (typically invokeAction).

4. During the processing of the user interaction, the Producer may update any of its
properties. Note that the manner in which user interaction messages are related to
properties is not defined by WSIA. Individual Producers may employ various
programming models which help to define this linkage. Some examples may include:

 XFORMS. The Producer's output may be controlled by an XFORMS view, i.e.
specified using the XFORMS UI widget set. The elements in the XFORMS view
are bound to its model using XPATH expressions. The XFORMS model then
would appear as all or part of that Producer's property set.

 Servlet/JSP: The Producer's output would be generated by the execution of a set
of JSP tags embedded in a page. Some or all of the Producer's properties could
correspond to the values in the data object passed to the JSP to control the
generation of its output. Returning updated property values would be set by the
servlet.

 Struts: This programming model follows closely on the servlet/JSP model above.
The Struts form bean may give a more direct way of mapping the WSIA
properties onto the particular programming model in this case.

Requirements Document Version: <1.0>
Use Case Report: <Use-Case Name> Date: <dd/mmm/yy>
<document identifier>

Confidential OASIS WSIA Technical
Committee, 2000

6

5. Changed property values in the Producer originally receiving the End-user interaction
trigger updates to other Producers whose properties are in turn dependant on the
changed values. Several alternative subflows for propagating changed values to other
dependent Producers are discuss below.

6. In Figure 4.1, applying the property changes in step (6) on the stock plot proxy
triggers the remote invocation of the stock plot service. This step is not, of course,
visible to the Consumer, and would not be required in the case that the stock plot
service is running locally at the Consumer.

7. In general, changes to one set of a Producer's properties may have side effects and
make changes in other properties.

8. The action bar is finally updated with side effects from its original property changes
being applied to other dependent properties.

9. Output can now be generated by the Consumer from all changed Producers.

 Using the Producer dependency graph from above, the Consumer requests output
from all Producers having been notified of property changes during the update
cycle.

 If a producer is able to determine that no additional links into it exists for further
property change notifications, it may generate and return its output immediately.
Two alternatives exist for propagating this output back to the Consumer: (1) along
the return path from property change notifications, and (2) directly to the
Consumer using an additional (output)change notification connection. [If the
review of whether or not a Producer can ever safely make this determination
determines it can’t, this bullet should be deleted.]

10. The consumer returns the resulting page to be returned to the End-user, applying all
URL/action rewriting steps as in the Embedded and Customized user cases.

This approach for distributing change notifications to other Producers who depend on
changed property values is a generalization of the update processing model used in
XFORMS to update its model when elements are changed.

The property change processing model builds a graph of all Producers depending directly
on indirectly on the changed Producer. The graph is ordered in terms of the degree of
dependency, i.e. the number of intermediate Producers who are in turn dependent on the
changed Producer (in-degree).

The processing model does not depend on knowing the details of how each Producer will
map changed inputs to changes in other properties. Each Producer is opaque to the
processing model in this sense.

Requirements Document Version: <1.0>
Use Case Report: <Use-Case Name> Date: <dd/mmm/yy>
<document identifier>

Confidential OASIS WSIA Technical
Committee, 2000

7

A limited form of loops among Producers is supported. In this way, the action bar in
Figure 4.1 may trigger changes on the stock plot properties, and then eventually be
notified of corresponding changes to other of the action bar properties that result. For
example, by setting a particular stock plot type in step (4) the action bar service may be
notified subsequently in step (9) that only certain date ranges are now valid for a related
property. This related property will then be used to constrain the values for the user to
select in a corresponding pull-down of the action bar.

Updates to WSIA properties are applied in batch, i.e. all properties for a given target
Producer are updated at one time in order to minimize the number of network roundtrips
required to propagate change notifications to all directly or indirectly dependent
Producers.

The backward dependencies from the stock plot Producer to the action bar Producer are
modeled with separate binding expressions so that they can be included in the overall
graph of update dependencies and evaluated in the appropriate sequence. In Figure 4.1,
side effect changes stock plot properties flow back to the action bar service through any
required transformations on the binding expressions.

Infinite looping in property change notifications is prevented by computing the network
of Producer dependencies only at the start of the update processing model. [when is this?
[It theory the dependency graph can be computed when the binding statements are
parsed. Logically it is produced (likely by subsetting the larger one) when a change
notification is being processed exactly as per XFORMS] When the application is
compiled, linked, or loaded? Whenever the dependency graph is changed?] In this case,
all of the steps outlined above would be visible and executed once. The final updating of
the action bar Producer with side effects from its change to the stock plot Producer would
not trigger another iteration of the update processing cycle since it represents the final
step of the original cycle, leaving the list of Producer dependencies empty. [Not positive
this statement is correct. It seems to imply that the Consumer doing the coordination has
to know all the impacts of sending the change notification to the Stock Plot Producer and
that is not a likely scenario.][**How do we resolve this?]

3.2.2 Procedural coordination for propagating property changes
Alternative approaches to synchronizing changed property values among multiple
Producers include doing so through application specific code implemented at the
Consumer. In this approach, no additional infrastructure is required to declare
dependencies among Producers, nor to determine the order in which Producers will be
informed of changes to their values that result from changed properties on other
Producers. This logic is expressed directly by the application designer responsible for the
Consumer.

Requirements Document Version: <1.0>
Use Case Report: <Use-Case Name> Date: <dd/mmm/yy>
<document identifier>

Confidential OASIS WSIA Technical
Committee, 2000

8

3.2.3 Flow composition for propagating property changes
The sequence of steps discussed above, as application level code at the Consumer, for
propagating changed property values among Producers can clearly also be described as a
control and/or a data flow among Producers. Thus web services tools for expressing and
composing flows are an additional means of providing the application-specific
specifications required at the Consumer for interdependencies among Producers.

3.2.4 Stream-oriented approach to Producer coordination
As in the Customized use case, there are in general both property/operation oriented
means for Producer coordination, and stream-oriented approaches to coordination. In the
property approach discussed above, the Consumer uses changes in Producer property
values, independent of the markup, to determine corresponding changes in properties on
other Producers -- in advance of requesting the updated output from all changed
Producers.

In the stream-oriented approach, the Consumer can intercept messages originating either
from the Producer or from the End-user, extract appropriate data from either the output or
the input messages, and use that data to (1) to set properties or invoke operations on the
original or another Producer, or (2) to implement the required function locally at the
Consumer.

Figure 4.2 illustrates this approach to service coordination.

Requirements Document Version: <1.0>
Use Case Report: <Use-Case Name> Date: <dd/mmm/yy>
<document identifier>

Confidential OASIS WSIA Technical
Committee, 2000

9

4. Diagrams

4.1 Relationship between Producers and Consumers in the Coordinated Producers Use Case

4.2 Stream-oriented approach to coordination

Requirements Document Version: <1.0>
Use Case Report: <Use-Case Name> Date: <dd/mmm/yy>
<document identifier>

Confidential OASIS WSIA Technical
Committee, 2000

10

5. PreConditions
[A precondition (of a use case) is a textual description of any constraints or dependencies that must be
satisfied prior to entry of the use case.]

5.1 < Precondition One >

6. PostConditions
[A postcondition (of a use case) is a textual description of any constraints or dependencies that must be
satisfied after termination of the use case.]

6.1 < Postcondition One >

